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Abstract. JULES-crop is a parametrisation of crops in the

Joint UK Land Environment Simulator (JULES). We inves-

tigate the sources of the interannual variability in the mod-

elled maize yield, using global runs driven by reanalysis data,

with a view to understanding the impact of various approx-

imations in the driving data and initialisation. The standard

forcing data set for JULES consists of a combination of mete-

orological variables describing precipitation, radiation, tem-

perature, pressure, specific humidity and wind, at subdaily

time resolution. We find that the main characteristics of the

modelled yield can be reproduced with a subset of these vari-

ables and using daily forcing, with internal disaggregation to

the model time step. This has implications in particular for

the use of the model with seasonal forcing data, which may

not have been provided at subdaily resolution for all required

driving variables. We also investigate the effect on annual

yield of initialising the model with climatology on the sow-

ing date. This approximation has the potential to consider-

ably simplify the use of the model with seasonal forecasts,

since obtaining observations or reanalysis output for all the

initialisation variables required by JULES for the start date

of the seasonal forecast would present significant practical

challenges.

1 Introduction

The ability to forecast crop yield on a seasonal timescale

has significant economic and humanitarian benefits (Hansen

et al., 2006; Iizumi et al., 2014; Mishra et al., 2008). Cli-

mate variability and extremes can have significant impacts

on crops (e.g. Challinor et al., 2014), and improvements in

the seasonal forecast of meteorological variables such as

temperature and rainfall (Molteni et al., 2011; MacLachlan

et al., 2015; Manzanas et al., 2014) therefore have the po-

tential to improve yield forecasts. However, existing stud-

ies of crop model performance focused on seasonal forecast

applications show considerable variation in skill depending

on the region, scale, processes and crops involved (Hansen

et al., 2011; Dessai and Bruno Soares, 2013; Falloon et al.,

2013). Crop model simulations driven by statistically down-

scaled seasonal hindcasts for European wheat (Palmer et al.,

2004; Cantelaube and Terres, 2005), and specifically for

wheat in Italy (Marletto et al., 2007), showed that reliable

crop yield predictions could be produced using an ensem-

ble multi-model approach and the Joint Research Centre

(JRC) crop model, for instance, estimating a high proba-

bility of a positive yield anomaly in 1996 and a negative

yield anomaly in 1998 in the UK, consistent with observa-

tions. Similarly, Coelho and Costa (2010) used an ensem-

ble of bias-corrected and disaggregated seasonal forecasts to

simulate maize yields over southern Brazil, with the General

Large-Area Model for annual crops (GLAM) crop model.

The model showed generally good agreement with observa-

tions, with observed yields within the 95 % forecast interval

for most years. Using a statistical approach to assess the reli-

ability of hindcasts of global-scale yield decreases of at least

5 %, Iizumi et al. (2013) found that within-season hindcasts

with lead times of 1–3 months generally reproduced interan-

nual variability in observed yields in major wheat-exporting

countries better than pre-season hindcasts with lead times

of 3–5 months. Iizumi et al. (2014) modelled global yields

of major crops by combining satellite-derived net primary

productivity (NPP) data and global agricultural data sets for

crop calendar, harvested area and country yield statistics.

This statistical model mostly performed well compared to
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observations, with modelled yields explaining 45–81 % of

the spatial variation of observed yields in 2000, and corre-

lation coefficients between modelled yield time series and

sub-national yield statistics for 1982–2006 in major crop-

producing regions generally greater than 0.8. Nicklin et al.

(2011) found some positive skill in reproducing both severe

crop failure (yields below 10th percentile of climatology)

and less severe crop failure (yields below the 25th percentile

of climatology) of groundnut in West Africa with GLAM

driven by seasonal forecast data; they found that these re-

sults were relatively independent of assumptions on the va-

rieties of groundnut modelled. Mishra et al. (2008) ran the

Système d’Analyse Régional des Risques Agroclimatiques-

Habillé (System for Regional Analysis of Agro-Climatic

Risks) (SARRA-H) crop model at five locations in Burk-

ina Faso, showing that, in most cases, incorporating seasonal

rainfall forecasts improved sorghum yield predictions made

early in the season.

Palmer et al. (2004) and Cantelaube and Terres (2005) also

found that downscaling seasonal hindcasts improved crop

model performance – the r2 value of simulated biomass for

the whole of Europe increased from 0.62 to 0.69 with greater

regional improvements when downscaled seasonal forecasts

were used instead of the original, pre-downscaled versions.

On the other hand Challinor et al. (2005) found that bias

correction of general circulation model (GCM)-derived sea-

sonal hindcasts data had generally small effects for simu-

lation of groundnut yields in India. Watson and Challinor

(2013) found that errors in rainfall data had the largest im-

pact on crop model skill for groundnut in India, mainly be-

cause the study region was rainfall limited, while generally

the largest yield errors were caused by errors in interannual

variability in temperature and precipitation. In contrast, for

French maize, temperature errors had a stronger influence on

yield estimates from both a statistical model and a process-

based model than precipitation (Watson et al., 2014).

The ability of crop models to represent interannual effects

of climate variables also varies depending on the processes

represented in the models (Falloon et al., 2014b). For ex-

ample, high-temperature stress around anthesis (the onset of

flowering) can have strong impacts on crop yields, but not all

models include this effect, and responses vary across models

that do (Asseng et al., 2013). In general, there is little infor-

mation on the role of initial conditions such as soil moisture

in crop model performance on seasonal timescales (Falloon

et al., 2013), although hydrological studies have shown that

different spin-up approaches may be needed for different im-

pacts (Cosgrove et al., 2003) and different regions.

The JULES-crop model (Osborne et al., 2015) was devel-

oped with the dual aim of being able to simulate the impact

of weather and climate on crop productivity and the impact

that croplands have on weather and climate. It is a component

of the Joint UK Land Environment Simulator (JULES) (Best

et al., 2011; Clark et al., 2011), which is a community land

surface model that can be used both online as part of the

Met Office Unified Modelling system and offline for impact

studies. As part of the EU FP7 project EUPORIAS (Euro-

pean Provision Of Regional Impacts Assessments on Sea-

sonal and Decadal Timescales; Hewitt et al., 2013), JULES-

crop will be driven by seasonal forecasts and its ability to

produce probabilistic forecasts of crop yield will be investi-

gated. EUPORIAS aims to maximise the societal benefit of

seasonal and decadal forecasts by making the predictions di-

rectly relevant to decision makers. As part of this project, a

multi-model ensemble of seasonal meteorological forecasts

will be used to drive an ensemble of impacts models, includ-

ing JULES-crop.

However, using JULES-crop on a seasonal timescale in-

troduces a number of technical and scientific issues. The aim

of this paper is to address those issues that are centred around

the availability of data, by investigating to what extent the in-

terannual variability of the modelled yield can be captured if

some of these data requirements are relaxed.

The first data availability issue concerns the driving data.

JULES is driven by a combination of meteorological vari-

ables describing air temperature, precipitation, radiation,

wind speed, humidity and pressure (for a full description, see

the JULES User Guide, available at https://jules.jchmr.org/)

for each grid box in the model domain, ideally at subdaily

resolution. Output in this format for each ensemble mem-

ber requires a large amount of storage space and is typically

not made externally available by seasonal forecast centres. It

is therefore useful to investigate whether the yield variabil-

ity can be modelled sufficiently well if only a subset of the

forcing variables are taken from the seasonal forecast and

the others set to climatology, or if the model is forced with

daily meteorological data and disaggregated internally to the

model time step. To gain a better understanding of the de-

pendence of the yield on the different forcing variables, we

look at the effect of removing water stress and the correla-

tion of the yield with the total grid box precipitation during

the crop-growing season.

The second data availability issue concerns the variables

required to initialise the JULES-crop runs, such as the mois-

ture content of each soil layer (as a fraction of the water con-

tent at saturation). Obtaining accurate values for these vari-

ables on the start date of the seasonal forecast runs would

present a significant practical challenge, as recent observa-

tions would be required to estimate these values directly or as

input to a reanalysis run. Therefore, we investigate the loss in

predictability of yield if the JULES-crop model run is started

on the sowing date of the crop in that grid box and initialised

by the climatological values for that date. This set-up would

be simple to reproduce with seasonal forecast forcing that

has been bias-corrected to a reanalysis data set, such as those

available as part of EUPORIAS, since JULES-crop can be

run with this reanalysis data set to produce a climatology of

the initialisation variables. Starting the run before or on the

sowing date means that the initialisation of crop variables

(e.g. height) is trivial since the crop either does not yet exist
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or only exists as a seed. It has also been suggested that the ini-

tialisation of impact model runs driven by seasonal forecasts

is more critical for some impacts and regions than others; for

example, it may be more critical for water resources in cold

regions where snow stores are important than for dry land

cropping (Falloon et al., 2014a).

It is important to note that while this study provides a

practical methodology for driving JULES-crop with seasonal

forecasts, given commonly available forcing and initialisa-

tion data, there are many aspects of the uncertainty chain that

remain to be addressed. For example, once an application has

been identified (e.g. a decision threshold based on the yield of

a particular crop in a particular region), a thorough validation

would need to be performed of the relevant model diagnostic

against observational data and against hindcast-driven runs.

This paper is organised as follows. Section 2 describes

the JULES-crop model and how it interacts with the other

JULES components, Sect. 3 describes the model set-up used

for the runs presented in this paper, Sect. 4 presents the re-

sults and Sect. 5 draws conclusions from these runs about

the model behaviour and sensitivities and how these can in-

form the design of JULES-crop runs forced with seasonal

forecasts.

2 Model description

JULES is a process-based model that simulates fluxes of car-

bon, water, energy and momentum between the land surface

and the atmosphere. Sub-grid heterogeneity is represented

through tiles of various surface types, such as broadleaf trees,

bare soil and C3 grass. As of JULES version 4.0, it includes a

crop parametrisation (JULES-crop) which introduces an ad-

ditional tile for each crop simulated. We refer the reader to

Best et al. (2011) and Clark et al. (2011) for a fuller descrip-

tion of JULES and to Osborne et al. (2015) for a descrip-

tion of JULES-crop in particular; here we focus on features

that are particularly relevant to this article, such as the influ-

ence of temperature on crop growth stage, the influence of

soil moisture on photosynthesis and the partitioning of car-

bon into different parts of the plant.

The status of development of the crop on each tile is

parametrised by the crop development index (DVI), which

is −2 before sowing, −1 at sowing, 0 at emergence and 1 at

flowering. Under normal conditions, harvest occurs at a DVI

of 2. The progression between the development stages is de-

termined by crop-specific thermal time parameters, set by the

user. For the purposes of this paper, thermal time is an accu-

mulation of effective temperature between one development

stage and the next (since we do not include a photoperiod

dependence). Effective temperature is defined by

Teff =


0 for T < Tb

T − Tb for Tb ≤ T ≤ To

(To− Tb)(1−
T − To

Tm− To

) for To < T < Tm

0 for T ≥ Tm

,

(1)

where T is the air temperature of the tile at that time step and

Tb, To and Tm are crop-specific cardinal temperatures.

Potential leaf-level photosynthesis (unstressed by water

availability and ozone effects) is calculated as the smoothed

minimum of three potentially limiting rates, based on Col-

latz et al. (1991, 1992): (a) the Rubisco-limited rate, which

depends on the maximum rate of carboxylation of Rubisco,

(b) the light-limited rate and (c) the rate associated with the

transport of photosynthetic products for C3 plants or PEP

carboxylase limitation for C4 plants. The vertical profile of

radiation through the canopy can use either the big-leaf ap-

proach (following Beer’s law) or a multi-layered canopy ra-

diation scheme, which treats the direct and diffuse com-

ponents of the radiation separately. The latter can option-

ally include the direct component of the direct beam radia-

tion (“sunflecks”). The potential leaf-level photosynthesis is

scaled by a soil water factor β, to account for soil moisture

stress. This factor is 0 when the mean soil moisture content in

the root zone θ is less than or equal to a wilting point concen-

tration θw, 1 when θ is greater than the critical concentration

θc and linearly increasing in between (i.e. a slant step func-

tion). As of JULES version 4.1, it is possible to irrigate part

of each grid box, which involves adding water to the soil until

β = 1 during certain times of the year.

NPP is calculated by scaling the leaf-level photosynthesis

to the canopy level and subtracting plant maintenance and

growth respiration. Crop growth is modelled by integrating

NPP over the course of a day and splitting this carbon be-

tween the crop root, stem, leaf, harvest and stem reserve car-

bon pools for that tile (Croot, Cleaf, Cstem, Charv, and Cresv

respectively). The proportion of carbon given to each pool

depends on the DVI of the crop and the crop type.

Once the proportion of carbon given to the stem pool drops

below 0.01, carbon from the stem reserve pool is mobilised

to the harvest pool, by reducing Cresv by 10 % each day and

adding this carbon to the harvest pool. Similarly, once the

DVI is above 1.5, carbon from the leaf pool is mobilised

to the harvest pool, by reducing Cleaf by 5 % each day and

adding this carbon to Charv, to simulate leaf senescence. At

harvest, the carbon in the harvest pool becomes yield and

each crop carbon pool is reset.

The model does not include a way of calibrating against

yield observations (e.g. a yield gap parameter which accounts

for the impact of pests, diseases and non-optimal manage-

ment on the crop yield). Therefore the outputted yield is the

water-limited potential yield when irrigation is switched off,

and the potential yield when the crop is fully irrigated.
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3 Experimental set-up

All runs were performed with JULES 4.2.

3.1 Control run (control)

The experimental set-up for the control run follows the

global set-up in Osborne et al. (2015). The control run

was forced by 6-hourly CRU-NCEPv4 climate data as used

by the Global Carbon Project (Le Quéré et al., 2014), regrid-

ded to a n96 grid (i.e. grid boxes are 1.875 degrees by 1.25

degrees). The main run was from 1960 to 2009. The initial-

isation variables were taken from a CRU-NCEP-forced run

with the crop model switched off and the model was spun

up by repeating the first 10 years five times, before starting

the main run, in order to remove the sensitivity to this ini-

tialisation. Wheat, soybean, maize and rice were modelled,

with the crop parameters listed in Osborne et al. (2015).

A multi-layer canopy radiation scheme was used, which

accounts for direct/diffuse radiation components including

sunflecks (can_ran_mod=5). The crop-sowing dates were

taken from Sacks et al. (2010) and extended using nearest-

neighbour interpolation. The crop tile fractions were taken

from Monfreda et al. (2008), and other ancillaries were taken

from HadGEM2-ES (Collins et al., 2011; Jones et al., 2011).

Irrigation was not switched on.

3.2 Fully irrigated run (irrig)

We repeated the control run with irrigation demand

switched on, such that, when one of the crops on the grid

box had DVI>−1, water was added to the top two soil lev-

els until the critical soil moisture content θc was reached, so

that the soil water factor β was 1, with no constraint on water

availability. The run was initialised and spun up in the same

way as the control run.

3.3 Full disaggregated run (disagg)

We created daily means and daily temperature ranges from

the CRU-NCEPv4 driving data, and we used this to drive a

JULES run. The internal JULES disaggregator (described in

Williams and Clark, 2014) was used to disaggregate these

forcing data to the internal model time step of 1 h. For tem-

perature, this involves adding a sinusoidal diurnal cycle. Pre-

cipitation in a day is modelled as occurring in one rainfall

event of constant intensity, with a duration that depends on

the precipitation type. The run was initialised and spun up in

the same way as the control run. All other settings were

the same as the control run.

3.4 Disaggregated runs with some forcing from

climatology (sens-*)

In order to investigate the sensitivity to variability in different

parts of the driving data, we created daily climatologies of

each driving data variable in the full disaggregated run. For

example, for each grid box, the value used for 1 January in

the precipitation climatology was the mean over the CRU-

NCEP precipitation on every 1 January from 1960 to 2009 in

that grid box. We then repeated the runs (for 1960 to 2009,

as before) with climatological driving data for all variables

apart from certain combinations. The combinations we refer

to in this paper are shown in Table 1. The run was initialised

and spun up in the same way as the control run.

3.5 Runs initialised from climatology (init)

We created a climatology for each initialisation variable, for

each day of the year, using daily means outputted from the

control run and averaging over 1960–2009. The model

requires 16 initialisation variables, on multiple model lay-

ers or tiles, such as tile surface temperature and moisture in

soil layers as a fraction of water content at saturation (see

JULES user guide for full list). The model domain was split

by sowing date, and we performed a separate run for each

sowing date for each crop for each year, initialised by the

climatology for that sowing date, without spin up. For exam-

ple, for maize, we modelled 77 different sowing dates across

the globe for 48 years, which involved 77× 48 individual

JULES runs. The full 6-hourly driving data were used. Each

run lasted 1 year, and the annual yields were concatenated to

get a 48-year time series for each crop in each grid box.

4 Results

Global time series for each crop were constructed from the

model output by first masking any grid boxes which had one

or more years in which the crop did not reach a DVI of 1.5 or

greater or had a yield less than the seed carbon 0.01 kgCm−2

(which we assumed was due to a failure on the part of the

model or model settings to represent the crops in this grid

box) and then weighting according to grid box size and crop

tile fraction. We define a year as 1 January to 31 December

(i.e. the model year). In a small fraction of the grid boxes with

harvest dates around the end of December/beginning of Jan-

uary, this definition caused issues, as two harvests could fall

in one year and none in the next. These points were masked

out, as the zero yield appears as a model failure. Osborne

et al. (2015) found that maize yield in the control run had

the highest correlation with detrended global FAO yield ob-

servations out of the four crop types modelled (maize, soy-

bean, rice and wheat); therefore we will explicitly discuss the

results for maize only, although we have confirmed that our

overall conclusions apply to each of the four crops individ-

ually. Results from the other crops are given in the Supple-

ment.

Using daily forcing data and disaggregating rather than

using the full 6-hourly data results in a slightly lower

mean global yield (10.2 Mgha−1 for the disaggregated run,
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Table 1. Combinations of driving variables that are allowed to vary in the sens-* runs. Each column is a separate run. All driving variables

not marked with an “×” are set to their daily climatology.

Name sens-T sens-P sens-TP sens-TPR sens-TPW

Mean temperature (T) × × × ×

Precipitation (P) × × × ×

Downward shortwave radiation (R) ×

Wind speed (W) ×

Table 2. Results from the global runs described in Sect. 3. First column is the run name; second column is the mean maize yield (in Mgha−1);

third column is the standard deviation of the annual global yield time series (in Mgha−1). The fourth column gives the Pearson correlation

coefficient with the global yield in the control run, and the fifth column gives the Pearson correlation coefficient with the global yield in

the disagg run. All results have been weighted as described in Sect. 4. These results are presented as scatter plots in Appendix A.

Name Mean Standard deviation Global corr with control Global corr with disagg

control 10.6 0.55

irrig 16.2 0.18 0.48

init 10.3 0.48 0.91

disagg 10.2 0.53 0.98

sens-T 10.7 0.23 0.23

sens-P 10.9 0.42 0.87

sens-TP 11.1 0.51 0.92

sens-TPR 11.1 0.50 0.92

sens-TPW 10.3 0.52 0.96

compared to 10.6 Mgha−1; see Table 2). The global yield

time series from the disaggregated run correlates very well

with the global yield time series from the control run: the

Pearson correlation coefficient is 0.98. The annual control

yield is plotted against the annual disagg yield in Fig. A1,

and it shows no obvious deviations from linearity, even at

the extremes. Figure 1 (top right) shows the correlation for

each grid box, 94 % of which are greater than 0.85 (note that

there will be spatial correlation between grid boxes and au-

tocorrelation in the time series for each grid box. Also the

Pearson correlation coefficient is not resistant to outliers). It

is interesting to note that many of the grid boxes with low

correlations are in Brazil, a region where the disaggregator

has been seen previously to reproduce the climatology of key

variables such as evaporation better than runs driven with

3-hourly data (Williams and Clark, 2014). As discussed in

Williams and Clark (2014), since the 3-hourly data are more

representative of the underlying driving data than the disag-

gregated data, this apparent “improvement” with the disag-

gregator is likely to be result of the extra parameters involved

in the disaggregation being tuned to compensate for a bias

elsewhere in the model. As a result, the maize yield from the

disaggregated run can actually have a higher correlation with

FAO country yield data than the control run for Brazil

(not shown here). We can therefore conclude that using daily

forcing data and disaggregating is a very good approximation

to the control run, for the purposes of looking at variabil-

ity in the maize yield.

Comparing the control run with the fully irrigated run

allows us to determine how much of the modelled yield vari-

ability is driven by soil moisture variability. Removing the

effect of soil moisture stress increases global NPP as ex-

pected, which results in considerably higher global mean

yields: maize yield rises from 10.6 to 16.2 Mgha−1 (Table 2).

This increase in NPP also has the effect of increasing the

number of grid boxes which contribute to the global yield

time series, since fewer grid boxes have crops that are har-

vested prematurely in the model due to lack of growth. Re-

moving soil moisture stress also significantly decreases the

(year-to-year) standard deviation for maize yield, which has

a global standard deviation of 0.55 Mgha−1 in the control

run and 0.18 Mgha−1 in the irrigated run.

We also calculated the Pearson correlation coefficient be-

tween the global control run yield and irrigated run yield

for each grid box, as shown in Fig. 1, bottom right. There was

a high correlation coefficient between the two runs in areas

with high rainfall during the model maize-growing season

such as Southeast Asia, central Brazil, the northern part of the

Amazon Basin and Bangladesh/east India, where we would

not expect soil moisture to be a limiting factor in crop growth,

even with no irrigation. However, in drier regions, these cor-

relations were much lower, as expected. The percentage of

unmasked grid boxes with correlations above 0.85 was just

www.geosci-model-dev.net/8/3987/2015/ Geosci. Model Dev., 8, 3987–3997, 2015
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Figure 1. All plots show the correlations with the annual maize yield in the control run for each grid box. Top left: the correlation between

yield in control run and crop season precipitation. Top right, bottom left and bottom right: the correlation between yield in control run

and yield in the disagg, init and irrig runs respectively.

Figure 2. The correlations between the annual maize yield in the disagg run and the annual maize yield from the sens-P (top left),

sens-TP (top right), sens-T (bottom left) and sens-TPR (bottom right) runs for each grid box.

20 % for maize, showing that in most regions soil moisture

variability is an import contribution to the yield variability in

the control run.

Moving on from soil moisture to precipitation, we con-

structed a time series for the crop season precipitation by

integrating the rainfall between the sowing and harvesting

dates for each crop in each grid box. In many regions, this

crop season precipitation index correlates reasonably well

with the crop yield for the unmasked grid boxes, particularly

outside of Southeast Asia, central Brazil, the northern part of

the Amazon Basin and Bangladesh/east India, where, as we

have already identified, the modelled yield variability does

not follow soil moisture variability.

It is therefore interesting to look at how much of the mod-

elled yield variability can be reproduced if the daily precip-

itation is used to drive the model, while keeping all other

variables at their climatological value for each day of the

year (sens-P). A priori we can not assume this will be

a good approximation to using the full daily driving data

(disagg) from the result for the crop season precipitation

index above, since, in the control run, the precipitation is

not independent of the other driving data. However, Fig. 2
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(top left) shows that the sens-P run does indeed corre-

late well with the disagg run in areas outside of Southeast

Asia, central Brazil, the northern part of the Amazon Basin

and Bangladesh/east India. Seventy-four percent of the grid

boxes shown have a correlation of 0.85 or more. The corre-

lation between the global yield time series from the sens-P

run and the disagg run is 0.87. The sens-P run does have

a slightly higher mean global maize yield than the disagg

run: 10.9 Mgha−1 as compared to 10.2 Mgha−1.

If temperature is the only variable allowed to vary

between years (i.e. the sens-T run), then the global

mean maize yield is 10.7 Mgha−1, with standard deviation

0.23 Mgha−1. This reduction in standard deviation compared

to the disagg run is consistent with the reduction in stan-

dard deviation seen when the effect of soil moisture was re-

moved (the irrig run). Unsurprisingly, Fig. 2 (bottom left)

shows that the sens-T run does not correlate well with the

disagg run in areas where the sens-P run had a higher corre-

lation.

If both daily precipitation and daily mean temperature

are allowed to vary (sens-PT), the grid box correlations

with the disagg run are much more spatially uniform than

when either of these variables are varied on their own: in

the sens-PT run, 81 % of the grid boxes have a correla-

tion higher than 0.85 (Fig. 2, top right). Many of the areas

with low correlations in the sens-P run are much higher

in the sens-PT run, such as parts of Brazil, Columbia,

Bangladesh and Southeast Asia, although these still remain

lower than surrounding regions. The correlation between the

global maize yield time series in the sens-TP run and the

disagg run is 0.92. The scatter plot of these yield time se-

ries (Fig. A2) shows that the relation between the outputted

yield is well approximated by a linear fit. In general, there-

fore, driving the model with daily precipitation and mean

temperature and using climatology for all other driving vari-

ables is a good approximation to make when looking at the

interannual yield variability across the majority of global

maize-growing regions.

In order to improve the approximation further, it may be

desirable to additionally allow downward shortwave radia-

tion to vary (sens-PTR) or additionally allow wind speed

to vary (sens-PTW). Allowing downward shortwave radia-

tion to vary improves performance (i.e. grid box correlations

with the disagg run) in the areas which still have relatively

low performance in the sens-PT run, i.e. Brazil, Columbia,

Bangladesh and Southeast Asia (Fig. 2, bottom right). Al-

ternatively, allowing wind speed to vary results in a mean

global yield that is closer to the mean global of the disagg

run (Table 2).

The final remaining question concerns the model initial-

isation. The set of runs that are initialised on each sow-

ing date with climatology (init) in general reproduce

the spatial distribution of yield from the control run.

The global yield is generally lower than in the control

run in each year, which results in slightly lower mean

global yield (10.3 Mgha−1) compared to the control run

(10.6 Mgha−1). The correlation between the global maize

yield in the init run and the control run is 0.91 (see

Fig. A1 for scatter plots), and 70 % of individual grid boxes

have a correlation above 0.85 (Fig. 1, bottom left). The cor-

relations are relatively poor in some parts of India, the Congo

basin and south/southeastern Brazil. However, outside these

areas, initialising on the sowing date has the potential to be a

very useful approximation.

5 Conclusions

In this article, we have investigated a number of possible ap-

proximations that could be made when running JULES-crop:

– use driving data at daily rather than subdaily resolution,

and disaggregate internally to the model time step;

– use a subset of daily driving data, and set the rest to a

daily climatology.

– initialise with climatology on the crop-sowing date.

Each of these approximations significantly simplifies the use

of JULES-crop for seasonal crop yield forecasts, due to the

reduction in required driving and initialisation data. With this

usage in mind, we have concentrated on the effect of these

approximations on the interannual variability of the modelled

yield.

Using daily forcing data and disaggregating performs the

best out of these approximations, although care should be

taken if modelling the Amazon basin, where the precipitation

disaggregation parameters may have been tuned to compen-

sate for biases in JULES.

We have shown that, in most regions outside Southeast

Asia, central Brazil, the northern part of the Amazon Basin

and Bangladesh/east India, the interannual variability of the

yield from a JULES-crop run in the control configuration is

mainly driven by precipitation, which affects the crop via wa-

ter availability from the soil, which we have confirmed with

a fully irrigated run. As a result, in these regions, it is a good

approximation to drive the model with forecast precipitation

and leave the other driving data at their climatological values

for each day of year. It should be noted that the processes and

parameters which govern the response of the crop model to

the soil moisture distribution, such as the soil water factor β

and the root distributions in JULES, are therefore keys areas

for future model development. Driving the model with both

precipitation and temperature improves the performance in

areas with high soil moisture, and some further improvement

in these areas can be obtained from the addition of downward

shortwave radiation.

Perhaps the most important approximation considered

here is initialising with climatology on the sowing date,

since obtaining accurate initialisation data on the timescales

needed for seasonal forecast runs is a particularly significant
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practical challenge. We have confirmed that this approxima-

tion performs well across the majority of maize-growing re-

gions and identified areas where the approximation breaks

down.

Taken together, these approximations allow JULES-crop

to be driven by seasonal meteorological forecasts where en-

sembles of bias-corrected daily precipitation and daily tem-

perature (and possibly downward shortwave radiation) are

available. The reference data set used for the bias correction

can be used to generate the climatology of the initialisation

variables and the other driving variables. Since these data are

widely available, this provides a practical methodology by

which to obtain seasonal crop forecasts with JULES-crop.

Geosci. Model Dev., 8, 3987–3997, 2015 www.geosci-model-dev.net/8/3987/2015/
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Appendix A:

Scatter plots of global yield from model runs

Figure A1. Scatter plots comparing the global mean maize yield from different model runs.

Figure A2. Scatter plots comparing the global mean maize yield from different model runs.
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