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Abstract. State-of-the-art numerical snowpack models es-

sentially rely on observational data for initialization, forc-

ing, parametrization, and validation. Such data are available

in increasing amounts, but the propagation of related uncer-

tainties in simulation results has received rather limited at-

tention so far. Depending on their complexity, even small

errors can have a profound effect on simulations, which di-

lutes our confidence in the results. This paper aims at quan-

tification of the overall and fractional contributions of some

archetypical measurement uncertainties on snowpack simu-

lations in arctic environments. The sensitivity pattern is stud-

ied at two sites representing the accumulation and ablation

area of the Kongsvegen glacier (Svalbard), using the snow-

pack scheme Crocus. The contribution of measurement er-

rors on model output variance, either alone or by interaction,

is decomposed using global sensitivity analysis. This allows

one to investigate the temporal evolution of the fractional

contribution of different factors on key model output metrics,

which provides a more detailed understanding of the model’s

sensitivity pattern. The analysis demonstrates that the spec-

ified uncertainties in precipitation and long-wave radiation

forcings had a strong influence on the calculated surface-

height changes and surface-energy balance components. The

model output sensitivity patterns also revealed some charac-

teristic seasonal imprints. For example, uncertainties in long-

wave radiation affect the calculated surface-energy balance

throughout the year at both study sites, while precipitation

exerted the most influence during the winter and at the upper

site. Such findings are valuable for identifying critical pa-

rameters and improving their measurement; correspondingly,

updated simulations may shed new light on the confidence of

results from snow or glacier mass- and energy-balance mod-

els. This is relevant for many applications, for example in the

fields of avalanche and hydrological forecasting.

1 Introduction

Snow is a key component of the earth system, and it has a vi-

tal importance for the structure and dynamics of the atmo-

spheric boundary layer by modifying, for example, the ex-

change processes between the atmosphere and the underlying

ground. Bridging the gap between the inherent microphysi-

cal snow processes and the exchange processes at the snow

surface, still constitutes major challenges to scientists.

Sophisticated snowpack models summarize the present

knowledge and prove themselves to be a useful tool in simu-

lating the spatial and temporal evolution of snowpacks. Thus,

snow models have been successfully adopted for avalanche

forecasting (e.g. Bellaire et al., 2013; Durand et al., 1999;

Lehning et al., 1999), glacier modelling (e.g. Obleitner and

Lehning, 2004; Gallée et al., 2001), hydrological research

(e.g. Magnusson et al., 2014; Lehning et al., 2006; Liston

and Elder, 2006; Bernhardt et al., 2010), and climate impact

studies (e.g. Durand et al., 2009). The currently used snow

models can be roughly classified by their degree of com-

plexity, ranging from simplified bulk or single-layer mod-

els to detailed physical snowpack models (Etchevers et al.,

2004; Feng et al., 2008; Rutter et al., 2009). In general, the

development and use of higher-order models also induces a

need for more and better data to constrain the initialization,

forcing, parametrizations, and validation of the simulations.

However, the quality of relevant data (model and observa-

tions) is still difficult to assess. In that sense, the true value
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of a measured quantity remains a rather theoretical concept

and can often not be determined. One therefore usually esti-

mates a range of values within which the true value is likely

to fall. Probability density functions are widely recognized as

appropriate measures for describing the uncertainty of input

data and model parameters, and they are used in this study

(see Sect. 3.2). In practise, however, these can often not be

specified in a straightforward manner due to the complex

nature of the measurement errors. It is nevertheless a major

methodical issue to account for best estimated measurement

errors, which allows scientists to objectively quantify their

impact on the model outcome, and to provide information

on the robustness of the results. A corresponding approach is

based on Monte Carlo methods considering randomly drawn

samples for each input factor from previously derived dis-

tribution functions. First- and higher-moment statistics can

be computed to quantify the integrated model uncertainty. In

this context, integrated is understood as the total effect of

all measurement or parameter uncertainties on the model’s

variability. At this point, there is still no information on how

uncertainty in the model output can be assigned to differ-

ent sources of uncertainty in the input data set or parame-

ter setting. For example, interaction effects make it difficult

to unambiguously allocate the uncertainty of model param-

eters and forcing data on the model’s variance. To achieve

a full understanding of the sensitivity pattern of highly inter-

connected and non-linear models, such as sophisticated snow

models, it is necessary to decompose the complete variance

of the model results. Following this line, there have been

increasing efforts to quantify the parametric and predictive

uncertainty of mass- and energy-balance models (e.g. Franz

et al., 2010; He et al., 2011; Schmucki et al., 2014; Gur-

giser et al., 2013; Gerbaux et al., 2005; Fujita, 2008; Radić

and Hock, 2006; Greuell and Oerlemans, 1986; Oerlemans,

1992; Braithwaite and Zhang, 2000). Some of these also con-

sider the investigation of effects on the energy and mass

balance of glaciers or ice sheets (e.g. Karner et al., 2013;

Van de Wal and Oerlemans, 1994; Greuell and Konzelmann,

1994; Van den Pelt et al., 2012). Raleigh et al. (2015) were

the first to explore how different error types and distribu-

tions influence the physically based simulations of snow vari-

ables in snow-affected catchments. Their approach to test-

ing the model sensitivity to co-existing errors in the forc-

ing was based on Sobol’s global sensitivity analysis. The

present study was developed independently and follows a

similar concept to identify how the systematic measurement

errors (biases) and uncertainties of some critical factors influ-

ence our confidence in glacier mass-balance simulations. We

study the seasonal evolution of the energy and mass balance

of snow and ice at two sites on the arctic glacier Kongsve-

gen (KNG; Svalbard) (see Sect. 2.2). These sites are chosen

to represent conditions in the accumulation and ablation area

of the glacier, thus addressing different mass- and energy-

balance regimes. The snowpack model Crocus was originally

developed and is still used for operational snow avalanche

warnings (Brun et al., 1992; Durand et al., 2009) and has

been applied to various research studies, for example Brun

et al. (2013), Fréville et al. (2014), Carmagnola et al. (2013),

Wang et al. (2013), Phan et al. (2014), Gallet et al. (2014),

Castebrunet et al. (2014), and Vernay et al. (2015). Vionnet

et al. (2012) provide a comprehensive review of Crocus and

its implementation in SURFEX, which is an integrated plat-

form for simulating earth surface processes.

This study is the first to address the uncertainty of simu-

lations due to measurement errors using Crocus, and it may

be generalized due to the local application and possible spe-

cific influences due to the arctic environmental conditions.

However, it may be helpful to demonstrate the benefits of the

applied method, to identify critical issues concerning model

input and parametrization and to establish future priorities

in corresponding research. An attractive approach for esti-

mating sensitivity measures independently of the degree of

linearity (model free) is based on global sensitivity analysis

(GSA), which is introduced in Sect. 2.4. We then developed

reference runs, which are validated by key observations at

the two glacier sites. Based on these reference runs and the

specification of the uncertainties of key variables and param-

eters, we performed Monte Carlo simulations. The results are

presented in Sect. 3.1 and are mainly discussed regarding the

impact of key drivers in terms of first- and total-order indices

and inherent limitations, as well as regarding differences con-

cerning the two sites at the glacier.

2 Data and methods

2.1 Crocus model set-up

Crocus is a physically based finite-element and one-

dimensional multilayer snow scheme implemented in the

land-surface model ISBA of the modelling platform SUR-

FEX. The model is extensively described elsewhere (Vionnet

et al., 2012; Brun et al., 1992), and we therefore simply pro-

vide a basic description and note modifications important for

this study.

Snow is considered a porous material, whose properties

are described through bulk physical properties (thickness,

density, temperature, and liquid water content) and basic

microstructure characteristics – dendricity, sphericity, grain

size, and snow grain history. The parameter of snow grain

history indicates whether there once was liquid water or

faceted crystals in the layer (Brun et al., 1992; Vionnet

et al., 2012). The changes in the morphological shape of

snow crystals depend on snow metamorphism in response

to atmospheric forcing and internal processes. To adequately

treat the internal processes, the model employs a number of

parametrizations derived from specific field and laboratory

experiments (Brun et al., 1989). The governing equations

are numerically solved in a vertical domain with space- and

time- varying grid distances (which are necessary in order to
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cope with accumulation or settling processes). The model is

forced by the basic meteorological parameters (air temper-

ature, humidity, wind speed, and precipitation rate as well

as incoming solar and long-wave radiation) and is initial-

ized by the vertical profiles of the key physical properties of

snow and its underlying substrate. Model outputs comprise

the vertical profiles of the snow temperature, density, liquid

water content and structure parameters, and prognostic time

series of surface temperature, snow depth, and energy- and

mass-balance components, the latter two being coupled. Fol-

lowing, for example, Armstrong and Brun (2008), the model

treats layerwise changes of internal energy according to

SEB= NR+SHF+LHF+R+G, (1)

SEB= Lli(Rf−RM)−

HS∫
z=0

[
d

dt
(ρzcpTz)

]
dz. (2)

Therein, the surface-energy balance (SEB) denotes the

surface-energy budget, that is the sum of net radiation (NR),

the turbulent fluxes of sensible (SHF) and latent heat (LHF),

the heat transferred by precipitation and blowing snow (R),

and by conduction from the underlying material (G; glacier

ice in our case). The associated changes in energy can

be used for changes in the cold content of the snowpack

throughout its total depth (HS) (second term in Eq. 2) or

phase changes (melt or freeze; first term in Eq. 2). Rf and

RM are the freezing and melting rate, Lli is the latent heat of

the fusion of ice (3.34× 105 Jkg−1), cp is the specific heat

capacity of ice (2.1× 103 Jkg−1 K−1), and ρz and Tz denote

the density and snow temperature at depth z, respectively.

Net radiation itself is composed of the sum of incoming and

outgoing solar- and long-wave radiation. Crocus treats solar

radiation in three spectral bands ([0.3–0.8], [0.8–1.5], and

[1.5–2.8] µm). For each band, the spectral albedo is com-

puted as a function of the snow properties (microstructure),

and the incoming radiation in each band is then depleted as

a function of the spectral albedo. The remaining energy pen-

etrates into the snowpack and is assumed to decay exponen-

tially with snow depth. Turbulent fluxes are parametrized fol-

lowing the standard micrometeorological framework based

on the Monin–Obukhov similarity theory, which employs a

bulk-transfer approach and a stability correction for stable

stratification of the atmospheric surface layer.

Layerwise changes in internal energy induce either-

varying cold content (warming/cooling; second term of

Eq. 2) or phase changes of individual snow layers (Eq. 2, first

term). Precipitation (P ), meltwater refreezing and/or subli-

mation/evaporation rates (E) as well as runoff (Rrunoff) cou-

ple the energy and the mass budget of a snowpack according

to

dM

dt
= P ±E−Rrunoff. (3)

The key parameters of this coupled system will also be

addressed in this study. Crocus has not yet been applied

to Kongsvegen. The following paragraphs summarize the

main modifications and set-up used in this study in order to

develop reference runs properly reproducing the seasonal

evolution of snow and ice at the two glacier sites.

Water flow and refreezing. The formation of superimposed

ice is an important factor for the mass balance of arctic

glaciers, and an appropriate treatment is also important

in this study. We refer to superimposed ice as all water

that percolates through the snowpack and refreezes on

the glacier surface (Wright et al., 2007; Brandt et al.,

2008; König et al., 2002). Obleitner and Lehning (2004)

and Karner et al. (2013) showed that on the Kongsvegen

glacier, the superimposed ice layer can reach a thickness of

several decimetres in some years. The water percolation and

refreezing routine in the current Crocus version basically

simulates the gravitational water flow through the snowpack

(Gascon et al., 2014). The energy available for refreezing

is calculated at the beginning of each iteration step. If the

snow layer temperature is below the melting point, water

refreezes and the residual liquid water is retained up to

a maximum holding capacity, which is difficult to determine.

Default Crocus assumes a value of 5 % of the pore volume

and reproduces an increase of the average density of layers

affected by the refreezing of water (Vionnet et al., 2012).

This implementation is appropriate for the simulation of

snow evolution in Alpine terrain but it fails to reproduce the

formation of superimposed ice because water can percolate

through glacier ice as well. To overcome the issue, all water

exceeding the maximum liquid water holding capacity at an

impermeable snow–ice interface is assumed to contribute to

the runoff, and the water flow to the next layer is simply set

to zero. This prevents percolation of water into the glacier

ice and increases the refreezing potential at the snow–ice

interface. This approach has been successfully applied in a

similar setting using a different snow model (Obleitner and

Lehning, 2004).

Model input/output. The Crocus model is forced by air

temperature (T ), relative humidity (RH), wind speed (U ), in-

coming shortwave radiation (SW), incoming long-wave ra-

diation (LW), P , and atmospheric pressure (see Sect. 2.2).

These time-dependent parameters were measured at both

sites and are provided to the model by NetCDF file for hourly

time steps. The input file was modified to include the rough-

ness length for momentum as well as the fraction of total

pore volume used to calculate the maximum holding capac-

ity. Constant model parameters are provided by a static op-

tion file describing the initial and boundary conditions and

the basic model parameters.

2.2 Input data

To run Crocus, we use meteorological and glaciological ob-

servations from two sites at the Kongsvegen glacier, located
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Figure 1. A map showing the location of the Kongsvegen glacier

and the position of the automatic weather stations KNG8, KNG6,

and KNG1 (Norwegian Polar Institute, 2014).

in north-western Svalbard. The Kongsvegen glacier currently

covers a total surface area of ∼ 100 km2 and extends over

a total length of 26 km. From the highest point (750 ma.s.l.)

in the east, the glacier flows towards the north-west coast

of the archipelago. Several automatic weather stations were

operated along the flow line of the glacier. The study makes

use of two of them: KNG8 (78.75◦ N, 13.33◦ E; 668 ma.s.l.),

located in the accumulation zone, and KNG1 (78.84◦ N,

12.66◦ E; 162 ma.s.l.), located in the ablation zone (see

Fig. 1). Due to computational limitations, we had to restrict

our simulations and error analysis to a 1-year period. The

stations are equipped with state-of-the-art sensors for air

temperature (unventilated), relative humidity, wind speed,

and direction as well as shortwave and long-wave radiation

components (see Table 2). Surface-height changes were

measured by an ultrasonic ranger. Comprehensive quality

control of the recorded data was performed following the

method of Karner et al. (2013). The data have been further

corrected.

Filling data gaps. For shorter gaps, the missing values

were estimated by linear regression from surrounding sta-

tions, where it was possible. When the surrounding stations

had missing values, the values were estimated by a stochastic

nearest-neighbour resampling conditioned on the remaining

variables (Beersma and Buishand, 2003). This was achieved

by first calculating the Euclidean distance between the

present-day and all other days without gaps. Then the

missing value was replaced by randomly drawing out one of

the 20 most analogous days. This approach is convenient for

small gaps and guarantees physically consistent fields.

Conversion of snow depth changes to water equiva-

lent. Snow precipitation rates were calculated offline from

surface-height changes measured by the ultrasonic ranger,

and converted to snow water equivalent (SWE) for input to

the model. The density of freshly fallen snow ρnew was cal-

culated according to the default parametrization used by Cro-

cus, which is a function of wind speedU , and air temperature

Tair, given as

ρnew = aρ + bρ · (Tair− 273.16)+ cρ ·
√
U, (4)

where aρ = 300 kgm−3, bρ = 6 kgm−3 K−1, and cρ =

26 kgm−7/2 s−1/2 (Brun et al., 1992; Vionnet et al., 2012).

Note, that the default value for aρ is set to 109 kgm−3 (Pa-

haut, 1976). The modification of this parameter accounts

for the systematic underestimation of simulated settling and

compaction of the near-surface snow layers compared to re-

peated snow pit observations. The latter reveal that the mean

density of the near-surface snow layers is usually in the range

of 100–200 kgm−3. It was further necessary to reduce the

amount of noise in the original snow records in order to avoid

erratic precipitation events, which lead to unrealistically high

accumulation. The main factors that affect the sensor signal

are blowing snow, intense snowfall, uneven snow surfaces,

extreme temperatures, and snow crystal type. Blowing and

drifting snow are frequent processes in the European Arctic

and often result in the formation of sastrugi, which introduce

additional surface variability not associated with precipita-

tion events (Sauter et al., 2013). In principle, the associated

small-scale variability can be usually reduced by moving av-

erage filter, but the very different event durations sometimes

make it difficult to determine an appropriate subset size. We

therefore decided to take the mean saltation trajectory height

as a criterion of the uncertainty, which is assumed to be pro-

portional to the surface shear stress u2
∗ [m2 s−2] (Pomeroy

and Gray, 1990):

hsalt =
1.6 · u2

∗

2 · g
, (5)

where g (ms−2) is the gravitational acceleration. The

surface-shear stress has been estimated by assuming a loga-

rithmic wind profile and an arbitrarily chosen constant rough-

ness length of z0 = 0.02 m. Finally, snow depth variations

smaller than 0.8 ·hsalt were considered as noise. The factors

z0 and 0.8 were used for calibration and to determine how

much signal was removed from the original time series. At

KNG8, for example, this procedure yields a simulated end-

winter snow accumulation, which is well validated by inde-

pendent stake observations.

Large amplitude spikes. Large amplitude data spikes in

recorded snow depth can occur during intense snowfall

events when snow particles obstruct the propagation of the

sensor signal (ultrasonic pulses). Sudden snow depth changes

in excess of 50 mmh−1 are assumed to belong to this class

of events, and were simply ignored. Transition from rain to

snow was assumed to take place in the range from 0 to 1 ◦C,

with half the precipitation falling as snow, and the other half
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Table 1. Model parameters used for the reference run.

Parameter Value Description

z0 0.002 m Roughness length for momentum

zh0 0.0002 m Roughness length for heat

HCLW 0.05 – Max. liquid water holding capacity

ALB0.3 0.38 – Ice albedo for spectral band 0.3–0.8 mm

ALB0.8 0.23 – Ice albedo for spectral band 0.8–1.5 mm

ALB1.5 0.08 – Ice albedo for spectral band 1.5–2.8 mm

ρthres 830 kgm−3 Ice density threshold

Rainthres 1 ◦C Rain threshold temperature

Snowthres 0 ◦C Snow threshold temperature

ε 0.99 – Snow emissivity

Table 2. Specification of basic model input uncertainties and assigned probability density functions. The Sobol sequence has been generated

from the distributions given in the last column, whereN (µ,σ ) is a normal distribution with mean µ and standard deviation σ , and U(lb,ub)
is a uniform distribution in the interval [lb,ub].

Parameter Description Uncertainty Distribution

Tair Air temperature ±0.3 K N (0.00,0.30)

RH Relative humidity ±3.0 % N (0.00,3.00)

SW Shortwave incoming radiation ±10.0 % N (0.00,0.10)

LW Long-wave incoming radiation ±10.0 % N (0.00,0.10)

U Wind speed ±0.3 ms−1 N (0.00,0.30)

P Precipitation ±25.0 % N (0.00,0.25)

z0 Aerodynamic roughness length 0.001–0.10 m U(0.001,0.10)

PVOL Pore volume fraction for maximum liquidwater holding capacity 0.03–0.05 U(0.03,0.05)

as rain. There was no direct information available to better

constrain this threshold. Input of calculated changes in pre-

cipitation water equivalent are considered as part of the cali-

bration procedure of the reference runs and yield overall sat-

isfactory reproduction of the independently observed end of

winter snow height, that is accumulation at both sites.

2.3 Reference run set-ups

The reference runs serve as basis for the subsequent as-

sessment of the uncertainty of the simulation results (see

Sect. 3.2), and the corresponding decomposition of the model

variance (see Sect. 3.4). The modified Crocus model (see

Sect. 2.1) is forced with the pre-processed and adjusted in-

put data introduced in Sect. 2.2. The most relevant model

parameters are given in Table 1. Following Björnsson et al.

(1996) and Brandt et al. (2008), the model at KNG8 is ini-

tialized with an isothermal firn layer (273.16 K) with a mean

density of 600 kgm−3 and a total thickness of 20 m. At the

bottom of the model domain a constant base temperature of

271 K has been applied. The maximum number of snow lay-

ers is set to 50 in order to obtain a detailed snowpack stratig-

raphy. The initial grid spacing is increased from 0.01 m at

the surface to 10 m at the bottom. The number of grid cells

and their spacing is updated during the simulation according

to the accumulation, temperature, density, and melt. KNG8

is located in the accumulation zone of the glacier, where the

near-surface layers consist of perennial snow rather than bare

ice (Björnsson et al., 1996; Brandt et al., 2008). KNG1 is lo-

cated in the ablation area of the glacier, where surface con-

ditions are characterized by less snow accumulation during

winter, stronger melt during summer, and a corresponding

prevalence of bare ice at the surface. At both sites, the simu-

lations start at the end of the ablation season, with the lowest

recorded snow depth (defined by the minimum recorded sur-

face height), and they are forced by hourly measurements.

Simulation results are stored every 6 h for analysis. At the

lower station, KNG1, the glacier ice reappears at the surface

in the course of the ablation season. To represent the site-

specific condition, the initial density is set to 830 kgm−3,

which is corroborated by observations from ice cores. Mea-

surements of surface temperature and albedo are used for val-

idation only and are considered as key indicators to judge the

model’s ability to calculate the energy balance. Validation of

mass-balance calculations is performed by comparing sim-

ulated and observed snow temperature and density profiles.

Note, however, that the reference simulations were not op-

timized to fully reproduce the available observations. This

would have required further tunings, which are not necessary

for the purpose of this methodical study. There is no doubt,

however, that the two reference runs truly reflect the basic

www.geosci-model-dev.net/8/3911/2015/ Geosci. Model Dev., 8, 3911–3928, 2015
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characteristics of the seasonal evolution of snow and ice at

the two considered sites.

2.4 Global sensitivity analysis

In general, sensitivity analysis (SA) permits inferences on

the different sources of uncertainty in model inputs (Sauter

and Venema, 2011). This section gives an overview of

how model-free sensitivity measures can be derived from

variance-based methods. For the purpose of illustration, let

us assume a generic model f

Y= f (X1,X2, · · ·,Xk), (6)

where the model output is Y, the input quantity Xk , and the

corresponding total or unconditional variance V (Y). Most

common SA measures are based on local derivatives ∂Y/∂Xk
to estimate the relative importance of individual components.

It is convenient to normalize the derivatives by the standard

deviation so that the measures are weighted and sum up to

1. It is also interesting to note in this context that in linear

models, the normalized derivatives coincide with the well-

known standardized (linear) regression coefficients (Saltelli

et al., 2006). Obviously, both measures rely on the assump-

tion of linearity, which makes them unsuitable for complex

models. This is particularly true when interaction effects be-

come important, which is a characteristic property of non-

linear and non-additive models. However, such effects may

be addressed by so-called model-free measures, which can

be effectively estimated by the GSA method described here.

In contrary to the commonly used SA, GSA calculates the

sensitivity measures in broader regions of parameter space by

selecting appropriate distributions instead of a specific value

of each parameter.

If one forcing input Xi is fixed at a particular value x∗i , the

resulting conditional variance of Y is given by VX∼i(Y|Xi =

x∗i ). This measure characterizes the relative importance of

the factor Xi , since the conditional variance will be less than

the unconditional variance. The fact that this sensitivity mea-

sure depends on the value of x∗i makes it rather impractical.

Taking instead the average over the uncertainty distribution

of x∗i , the undesired dependence will disappear (Saltelli et al.,

1999, 2006). The expression

V (Y)= EXi (VX∼i(Y|Xi = x
∗

i ))+VXi (EX∼i(Y|Xi = x
∗

i ))

(7)

decomposes the total variance V (Y) into the first-order (sec-

ond right-hand-side term) and higher-order (first right-hand-

side term) contributions. The corresponding first-order sen-

sitivity index of Xi is given by

Si =
VXi (EX∼i(Y|Xi = x

∗

i ))

V (Y)
. (8)

This sensitivity index indicates the importance of individ-

ual factors without considering interactions effects. When the

model belongs to the class of additive models, the first-order

terms add up to 1, for example
∑k
i=1Si = 1. If this is not

the case, the remaining variance must be explained by the

higher-order effects induced by the interaction of input factor

uncertainties. Interactions represent an important feature of

non-linear non-additive models. The total sensitivity STi of

a factor Xi is made up of the first- and all higher-order terms

where a given factor Xi is participating, consequently giving

information on the non-additive character of the model. The

STi can be computed using

STi =
E(V (Y|X∼i))

V (Y)
, (9)

where X∼i indicates that all factors have been fixed and only

Xi varies over its uncertainty range. This approach permits,

even for non-additive models, the recovery of the complete

variance of Y. The sum of STi is equal to 1 for perfectly ad-

ditive models, otherwise it is always greater than 1. The dif-

ference between Si and STi is a useful measure of how much

each factor is involved in interactions with any other factor

(Saltelli et al., 2010).

First and total-order indices can be computed by Monte

Carlo-based numerical procedures (Saltelli et al., 2010;

Sobol et al., 2007). Estimating the conditional variances,

such as VXi (EX∼i(Y|Xi = x
∗

i )), is computationally expen-

sive, but Saltelli et al. (2010) provided an efficient algorithm

for the simultaneous computation of Si and STi . The calcu-

lation requires two independent sampling matrices A and B,

with the elements aji and bji . The subscript i runs from one

to the number of factors k, while j runs from one to the num-

ber of samples N . A third matrix, A
(i)
B , is introduced, where

all columns are taken from A, except for the ith column,

which is from B. The first-order effect can then be computed

as

VXi (EX∼i(Y|Xi = x
∗

i ))=
1

N

N∑
j=1

f (B)j (f (A
(i)
B )j−f (A)j ),

(10)

where f (·)j denotes the model output of the j th row. Simi-

larly, total effect can be estimated by

E(V (Y|X∼i))=
1

2N

N∑
j=1

(f (A)j − f (A
(i)
B )j )

2. (11)

The indices are estimated at a total cost of N · (k+ 2) model

runs with N , a sufficiently large number of base samples. In

this study, we performed 20 000 model runs with k = 8 fac-

tors and N = 2000 base samples, which proved to be a rea-

sonable compromise between computational feasibility and

robustness of the results. The elements of the matrices A

and B are generated from quasi-random Sobol sequences (see

Sect. 2.6). The Sobol sequence generates quasi-random num-

bers in a range between [0,1]. The random numbers are then
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mapped to match the uncertainty distributions given in Ta-

ble 2 (see also Sect. 2.5). The roughness length for heat zh0

is derived from the roughness length for momentum using the

relation zh0
= z0/10 as its a default setting for Crocus. The

snowpack model is forced with each of the 20 000 parameter

combinations.

Sensitivity indices are computed from the 6-hourly model

output of these Monte Carlo runs and are analysed with re-

gard to snow depth, surface-energy balance, turbulent heat

flux, and latent heat flux. The calculations are based on the

reference runs performed at the two glacier sites. Therefore,

this strategy allows for the study of the detailed temporal evo-

lution and distinction of patterns during summer and winter

and in different mass-balance regimes of the glacier (accu-

mulation and ablation area), respectively. The accuracy of the

sensitivity indices was assessed from 1000 empirical boot-

strap samples being randomly drawn with replacement from

the original data set. The indices STi are calculated for each

of the bootstrap data sets, and the 95 % confidence regions

are estimated.

2.5 Measurement error characteristics

The model uncertainty is estimated from a set of quasi-Monte

Carlo sequences (see Sect. 2.6), based on the calibrated ref-

erence runs and specified uncertainty measures of key input

factors and model parameters (Table 2). The probability den-

sity distributions of the measurement errors are either derived

from simultaneous measurements with two sensors (as for

air temperature) or by the accuracy of the sensor given by

the manufacturer specifications (this set-up is similar to the

NB_lab scenario in Raleigh et al., 2015). When dealing with

measurement errors, there is usually insufficient information

on how the given uncertainties were determined and how the

underlying distribution functions look. Regarding field ap-

plications, additional factors come into play that are usually

not considered in calibration procedures. For example, tem-

perature measurements may be affected by aging or insuf-

ficient shielding from solar radiation, both also being cru-

cial in glacier environments. To characterize the uncertainty

of the measured meteorological parameters used to force the

model, we follow a common approach and assign normally

distributed errors considering the standard deviation derived

from the manufacturer specifications. Roughness length and

pore volume fraction are assumed to vary uniformly in a pre-

defined range, which appears justified by observational evi-

dence indicating high local and temporal variability of snow

surface conditions due to the formation of sastrugi or melt-

water conduits (Sauter et al., 2013). It therefore also seems

reasonable to use a uniform range of pore volume fractions

rather than assuming a truncated normal distribution.

2.6 Sobol’s sampling

Randomly drawn samples from a hypercube space tend to

have clusters and gaps. Such sequences are said to have a

high discrepancy. Low-discrepancy sequences, also known

as quasi-random sequences, are designed to have well-

distributed numbers in a multidimensional space, even for

small quantities. Quasi-random algorithms bias the selection

of points to maintain an even spread across the hypercube.

These sequences are commonly used in sensitivity analy-

sis and provide better estimates of the model-free sensitivity

measures (see Sect. 2.4). Sobol sequences, which are used

in this study, belong to this class of sequences (Sobol, 1998;

Sobol et al., 2007).

3 Results

3.1 Reference run

Here we mainly examine the accuracy of the reference run

at KNG8, which is representative of the accumulation area

of the glacier and prevailing snow conditions. Validation of

the reference run for KNG1 (representative of the ablation

area of the glacier) reveals similar skills, and so we more or

less forego a detailed description of those results. Compari-

son of the simulation at KNG8 with the snow pit profile from

6 April 2011 shows a difference in snow depth at the end of

the winter period of less than 0.1 m (see Fig. 2).

In terms of water equivalent, the accumulated mass dur-

ing the winter amounts to +0.76 m, compared to +0.82 m

having been observed. Figure 2 also shows the compari-

son of simulated snow surface temperature with observa-

tional data. The simulated snow surface temperature is de-

rived from upwelling long-wave radiation assuming a snow

emissivity of 0.99. Surface temperature is a key variable

for flux parametrizations and also links the calculated mass

and energy balance. Its temporal variability is well captured

(R2
= 0.93), and a root mean squared error of 2.3 K con-

forms to the general skill of most sophisticated snowpack

models (Obleitner and De Wolde, 1999; Rutter et al., 2009;

Etchevers et al., 2004). The spread increases in the winter,

which, for example, could be associated with undetected rim-

ing of the sensor or structural model uncertainties. The ver-

tical temperature gradient in the snowpack is an important

driver of snow metamorphism and is depicted in Fig. 2. In the

upper 0.6 m, the observed temperature is slightly higher than

modelled and the RMSE= 1.2 ◦C is in part also attributed to

measurement shortcomings (Obleitner and De Wolde, 1999).

The corresponding density profile confirms that the model

is able to simulate the gross snowpack layering (see Fig. 2).

The relatively large difference within the upper 0.1 m is due

to the fact that the constant aρ in Eq. (4) is set to 300 kgm−3.

The RMSE between the measured and modelled albedo over

the entire simulation period is 0.06. Note that the measured
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Figure 2. Comparison of the modelled and measured snow temperatures (upper left), snow density (lower left), snow surface temperature

(upper right), and snow albedo (lower right) at the location KNG8.

albedo ranges between 0.65 in the ablation period and 0.92 in

the accumulation period, which is characteristic for a site in

the accumulation region (Armstrong and Brun, 2008; Greuell

et al., 2007). Albedo is significantly depleted at the lower site

during summer, as is typical for a site in the ablation area due

to exposure of darker glacier ice, which has also been con-

firmed by Greuell et al. (2007).

Table 3 gives a summary of the observed meteorological

variables and the calculated energy-balance components at

KNG8 and KNG1. We thereby distinguish values for consis-

tent summer and winter periods covering the months JJA and

DJF, respectively. These must not be interpreted as ablation

or accumulation periods, which are, in fact, of different dura-

tions at both sites. Air temperatures decrease with elevation

and remain negative all over the glacier during the consid-

ered winter period, while they are positive during the central

summer months. This is basically reflected in the observed

surface temperatures, which indicate that the glacier (snow)

surface melts during JJA while remaining frozen during the

DJF period. Bulk vertical temperature gradients between the

2 m level (nominal) and the surface indicate inversion condi-

tions prevailing throughout the year. Humidity increases with

elevation along the glacier as expected. The otherwise ob-

served decrease of vapour pressure with elevation during the

summer may be related to low-lying clouds (as suggested by

long-wave incoming radiation data). The local vertical gra-

dients in vapour pressure are calculated by assuming satura-

tion at the surface, and they reveal higher values in the air.

This leads to positive latent heat fluxes providing mass and

energy to the surface. Wind speeds are generally higher at

KNG1, which is more pronounced during the winter months,

when the air is more stably stratified. Katabatic winds play a

role in this context, as is obvious from analysis of wind di-

rections (shown in Karner et al., 2013). With regard to the

radiation components, there is virtually no input from solar

radiation during the winter months. During summer, global

radiation, that is the sum of direct and diffuse solar radia-

tion, increases by about 5 Wm−2 per 100 m elevation. About

80 % of incoming solar radiation is reflected at the higher

site (KNG8) during the summer and reflects the persistence

of snow. An albedo of about 48 % is calculated for the lower

site (KNG1), where snow disappears early in the spring and

exposes darker glacier ice at the surface. Long-wave incom-

ing radiation is an important source of energy during both

seasons. Its increase with elevation during the winter and

the decrease during the summer, which reflects correspond-

ing changes in cloud characteristics (low level fog in winter).

These characteristics of the radiation components induce a

decrease of net radiation with elevation, with overall nega-

tive values during the winter and positive ones during the

summer. Sensible heat fluxes are generally directed towards

the surface, which is more pronounced during the winter and
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Table 3. Mean and standard deviation (brackets) of the meteorological variables and energy-balance components for the summer months

(JJA) and winter months (DJF) at KNG8 and KNG1.

KNG8 KNG1

Variable DJF JJA DJF JJA

Air temperature (2 m) [◦C] 253.5 (8.0) 271.5 (2.6) 261.1 (6.9) 277.1 (1.6)

Surface temperature [◦C] 252.3 (9.1) 270.1 (3.9) 255.9 (9.4) 273.1 (0.3)

Rel. humidity (2 m) [%] 97 (6) 91 (7) 83 (12) 83 (9)

Water vapour pressure (2 m) [hPa] 3.3 (0.8) 5.3 (0.5) 2.1 (1.3) 6.9 (0.7)

Wind speed (2 m) [ms−1
] 1.2 (1.9) 0.8 (1.9) 4.6 (3.6) 1.6 (2.6)

SW incoming radiation [Wm−2
] 0.1 (0.9) 239.5 (167.9) 1.0 (7.0) 209.3 (157.5)

SW outgoing radiation [Wm−2
] 0.1 (0.8) 193.6 (137.4) 0.8 (5.6) 99.6 (86.4)

LW incoming radiation [Wm−2
] 223.4 (43.9) 268.5 (39.6) 200.7 (55.2) 288.2 (35.7)

LW outgoing radiation [Wm−2
] 231.5 (32.4) 301.8 (16.9) 245.1 (35.3) 315.2 (1.9)

Sensible heat flux [Wm−2
] 3.1 (36.0) 3.5 (17.1) 21.0 (16.3) 12.1 (15.2)

Latent heat flux [Wm−2
] 2.9 (4.5) −1.1 (6.1) 20.8 (17.2) 20.5 (33.4)

Surface-energy balance [Wm−2
] −1.9 (14.5) 14.8 (34.3) −2.2 (20.7) 101.1 (86.2)

at the lower site KNG1. This is also true with regard to la-

tent heat fluxes, which by magnitude equally contribute to

the calculated surface-energy budget. The latter is character-

ized by negative values during the winter, when small gra-

dients along the glacier occur. During the considered sum-

mer months, the energy budget is strongly positive and fos-

ters melt at both sites. Naturally, this is more effective at the

lower site, which mainly can be traced back to stronger in-

put from solar radiation (lower albedo) and turbulent fluxes.

There were corresponding developments of the mass balance

at both sites. Note that further energy and mass-balance com-

ponents were calculated by the simulations, which on aver-

age were small in magnitude. Therefore, they are not con-

sidered in the overall context of this study, which does not

aim at a detailed investigation of the individual fluxes and

associated processes themselves.

3.2 Integrated model uncertainty

Figure 3 shows the time series of snow depth for the ref-

erence run as well as of the quantiles estimated from the

ensemble simulations for KNG8 and KNG1. At KNG8, the

95 % quantile range can be clearly divided into two regimes:

(i) the build up of the snowpack when the 95 % interquar-

tile range increases towards ±1.2 m until the end of June,

and (ii) the melt period when the interquartile range ex-

periences an additional increase. At the end of the 1-year

simulation period, the uncertainty (95 % quantile range) in

snow depth caused by the systematic measurement errors

reaches more than 3 m. Note that the interquartile range

shows a clear asymmetry, which is more pronounced after

June 2011. This marks the onset of effective melt, which in-

duces a higher liquid water content of the near-surface snow

layers. The associated wet snow metamorphism drives a de-

crease in albedo. The development is enhanced upon expo-

sure of snow from the previous year, which is characterized

by even lower albedo and higher density. Sporadic snowfall

events in August 2011 led to an increase of the upper 99 %

quantile bound. The simulations are also quite sensitive to

disturbances during the first 2 months, when the amounts of

snowfall are small. The overall evolution and the final char-

acteristics of the ensemble variability at KNG1 are similar to

that at KNG8. Note, however, that the accumulation season

is significantly shorter (beginning in November compared to

August at KNG8) and is characterized by a smaller ensem-

ble spread compared to KNG8. The latter reflects that pre-

cipitation at this elevation mostly comes in the form of rain.

Throughout the accumulation season, the ensemble spread is

low and is related to small snowfall amounts and widens sig-

nificantly in the ablation season, when the glacier reappears

at the surface. The point at which the glacier ice reappears

depends on the maximum snow depth and can occur between

May and the beginning of July. The final uncertainty (95 %

quantile range) in snow depth due to measurement errors is

almost 5.5 m at the end of the ablation season.

3.3 Mean total-order sensitivity indices

Figure 4 shows the mean STi of individual factors on the vari-

ance of calculated surface-height changes (SHC), SEB, the

SHF, LHF flux at KNG8 and KNG1. Recall that total-order

indices, STi , measure the contribution of each factor to the

ensemble variance, including all interaction effects.

At KNG8, SHC is mainly affected by uncertainties in pre-

cipitation P (0.58) and incoming long-wave radiation LW

(0.29). The remaining factors are very likely to have little im-

pact. SEB, SHF, and LHF are most sensitive to LW, with STi

values ranging from 0.53 to 0.77. Of note is the sensitivity of

SEB to P (0.25) and z0 (0.4). Hence, z0 is the second-most

important parameter for SEB and SHF, and it even explains
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Figure 3. Spread of the ensemble simulation at KNG8 (upper panel) and KNG1 (lower panel) due to propagating uncertainties in the model

inputs. The black lines represent the reference run. The intervals show the 99, 95, and 75 % quantiles estimated from the quasi-random Monte

Carlo runs (20 000 ensemble members). Note the different horizontal and vertical scales.

Figure 4. Yearly averaged total-order effects of factors (see Table 2) on surface-height change (SHC), surface-energy balance (SEB) and

sensible heat flux (SHF) and latent heat flux (LHF) at KNG8 and KNG1. The whiskers show the 95 % confidence interval derived from 1000

empirical bootstrap samples. The mean (taken over the whole period) of the 6-hourly first-order sums (linear effects) are given in the upper

right corner.

most of the LHF variance (0.27). A smaller share of SHF and

LHF uncertainty is explained byU and RH. In particular, RH

is important for LHF. In order to make an important contri-

bution to the ensemble spread, the total-order indices should

exceed the 0.05 limit (Saltelli et al., 2006). Following this cri-

teria, some factors (T , SW, and pore volume, PVOL) can be

designated as insensitive and with little influence on SHC,

SEB, SHF, and LHF. The averaged first-order indices vary

between 0.66 and 0.82, depending on the considered model

output (see Fig. 4). The sensitivity pattern at KNG1 differs

from that at KNG8. SHC is sensitive to LW, P , and z0. In

contrast to KNG8, P has less influence on SHC variability

than LW at KNG1. In total, the model is less affected by the

uncertainty of z0. However, RH (STi = 0.1) explains slightly

more of the LHF variability at KNG1 than at KNG8.

3.4 Temporal evolution of the total-order sensitivity

indices

Figures 5 and 6 show the temporal evolution of the STi values

with respect to SHC, SEB, SHF, and LHF. The STi values are
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Figure 5. Evolution of the 6-hourly total-effect indices affecting modelled surface-height change (SHC), surface-energy balance (SEB),

sensible heat flux (SHF) and latent heat flux (LHF) at KNG8. Refer to Table 2 for the explanation of the indicated uncertainty factors.

calculated for each time step using the 20 000 Monte Carlo

runs.

The variability of SHC at KNG8 is mainly caused by the

uncertainty of P and LW. From November to May, almost all

uncertainty is attributed to P , with STi ranging between 0.7

and 0.9. During the ablation season, LW becomes a dominant

factor. Other factors, such as U , z0, and SW, make less of a

contribution (< 0.2) to overall SHC variability, even though

they can have an intermittently strong impact (> 0.3) on the

variance of SEB, SHF, and LHF. Errors in LW and z0 have a

strong impact on SEB all year, while P is only relevant in the

winter season. During the spring, SW has an increased influ-

ence on SEB and drops to zero during the arctic winter. RH

and U contribute most to SEB variability in the period from

August to March. Along with LW, U and z0 have a signifi-

cant effect on both SHF and LHF variance. The uncertainty

in T and PVOL do not have an influence on either SHC or

SEB.

At KNG1, the contribution of P and LW is lower and not

as consistent as at KNG8. In August and September, z0 tem-

porarily contributes (up to 0.8) to the SHC variability. In con-

trast to the sensitivity pattern at KNG8, other factors (z0, U ,

RH, SW) contribute substantially to SHC. SEB is by far most

sensitive to errors in LW. SW gains importance for a short pe-

riod in May, with STi up to 0.4, although most of the time the

contribution is very low, which is also true for RH, T , and

PVOL. In general, the sensitivity pattern of SHF and LHF is

similar to the pattern observed at KNG8. Here again, z0 and

U temporarily explain a large share of the variability in tur-

bulent fluxes (> 0.75) in the summer. Errors in RH mainly

impact LHF variability.

4 Discussion

We investigated the seasonal pattern of the sensitivity of

snow model output to uncertainties in input data and some

key model parameters. Eight metrics characterizing forcing

uncertainties (LW, P , PVOL, RH, SW, T , U , and z0) and

four metrics characterizing the model response (SHC, SEB,

SHF, and LHF) have been considered. The introduced uncer-

tainties represent the typical measurement errors of data used
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Figure 6. Evolution of the 6-hourly total effect indices affecting modelled surface-height change (SHC), surface-energy balance (SEB),

sensible heat flux (SHF) and latent heat flux (LHF) at KNG1. Refer to Table 2 for the explanation of the indicated uncertainty factors.

to force the model. The presented results are based on Monte

Carlo simulations and subsequent application of Sobol’s sen-

sitivity analysis to decompose first- and higher-order effects

on the resultant variance. Simulations and analysis were ap-

plied to two sites at an arctic glacier to address characteristics

in different mass-balance regimes.

The results from the reference simulations at the two sites

allow for an in-depth discussion of the typical meteorologi-

cal conditions at the two study sites and the related surface

exchange processes, which are reflected in the constellation

of the energy and mass-balance components. Such a study

has not been performed at the Kongsvegen glacier thus far,

but related aspects will nevertheless not be discussed in

more detail here due to the rather methodical outline of this

study. Note, however, that Obleitner and Lehning (2004)

and Karner et al. (2013) have already studied this issue

at another site close to the average equilibrium line of the

glacier (ca. 537 m a.s.l.). This location is only about 137 m

below KNG8, but the results concerning energy and mass

balance are not directly comparable because the sites are

located in different glaciological regimes (equilibrium line

altitude vs. accumulation area). Some common features may

be inferred from Table 3 though, which in part is addressed

in Sect. 3.1. Consideration of sites other than KNG6 was

mainly motivated by the availability of correspondingly

suitable data. It is to be noted in this context that for the

purpose of this study, the reference runs were not fully

calibrated towards the observations, which would have

been necessary for, for example, quantitative mass-balance

studies. The overall results of this work show that on average

about 80 % of the total variance of SHC and SEB can

be explained by first-order effects (Fig. 4). This means

that the remaining 20 % of the variance is due to non-linear

interaction effects. There is no significant difference between

the two sites at the glacier. This is in partial contrast to the

findings of Raleigh et al. (2015), who performed similar

investigations for different snow regimes and found that

first- and total-order indices are of comparable magnitude.

However, the results cannot be directly compared because

they analysed different model output variables and used

simpler parametrizations (i.e. bulk model), which possibly

enhances the interaction effects. The performed sensitivity
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analysis further demonstrates that the considered model

output metrics respond most sensitively to uncertainties in

the forcings of long-wave incoming radiation, precipitation,

and surface roughness (Figs. 4, 5, and 6). Considered in

more detail, however, each of these three factors exerts

specific footprints depending on season and site, which will

be discussed, along with the occasionally emerging impact

of the remaining factors. As far as is possible, we try to

relate the statistical findings to physical processes in the

near-surface snow layers.

Long-wave incoming radiation depends on column

integrated air temperature humidity and cloudiness and is

the dominant source of energy for the glacier, independent

of site and season. This is typical for glacier environments

(Greuell and Smeets, 2001) and is enhanced in the Arctic,

where input from shortwave insolation is missing during the

polar night conditions (e.g. Obleitner and Lehning, 2004;

Van den Broeke et al., 2011; Karner et al., 2013). Variability

in LW therefore directly impacts NR and hence SEB. This

also holds true for corresponding measurement uncertain-

ties, which are comparatively large. The sensitivity analysis

shows, that about 50 % of SEB variance can be explained by

total-order effects due to LW (Fig. 4). The effect is slightly

reduced at the higher site (KNG8), which may be related to

the general decrease of long-wave incoming radiation with

elevation (Table 3). Neither study site shows a pronounced

seasonal variability in the corresponding SEB sensitivity

pattern, which may be related to the rather continuous nature

of long-wave incoming radiation and its dominance for NR

(Figs. 5 and 6). LW uncertainty also strongly impacts on the

variance of the calculated turbulent fluxes. Yearly averaged

total-order indices are somewhat lower than for SEB, ranging

at about 0.3 (KNG8) and ca. 0.5 (KNG1), respectively. The

sensitivity analysis further reveals a stronger impact on SHF

and an outstanding seasonal dependency of the sensitivity

of the turbulent fluxes (Figs. 5 and 6). Feedback related to

surface temperature provides a key for understanding these

features, which couples the (long-wave) radiation budget

and the turbulent fluxes. The stronger input by long-wave

radiation, the more positive NR is, which in part is absorbed

at the surface and increases surface temperature. Hence,

surface temperature fluctuations are larger than those of

air temperature and respond very sensitively to changes

(uncertainties) in LW. This in turn effectively changes the

stability of the near-surface air, which drives turbulent

exchange therein. This feedback is most effective during

dry snow, that is winter conditions, with large total-order

sensitivity indices from autumn until spring (Fig. 5). In the

ablation season, when the surface temperature is more or less

at the melting point, SHF and LHF are no longer sensitive to

uncertainties in LW. LHF is also affected (though to a lesser

extent) because of the associated changes in vapour pressure

at the surface. LW also strongly impacts SHC variability,

which is more pronounced at KNG1 (Fig. 4) and during

the summer (Figs. 5 and 6) when LW uncertainty explains

more than 80 % of SHC variability. This can be related to

the fact that in our approach the input uncertainty range

(±10 %) proportionally increases with the magnitude of

LW. The latter is essentially true during summer when air

temperature and humidity are high. LW is further enhanced

due to cloudiness and during precipitation events. Note

that in the Kongsvegen area the percentage of low clouds

rises over 60 % from April to October (Kupfer et al., 2006).

Stronger long-wave radiation input leads to higher surface

temperatures, which induce steeper temperature gradients

within the near-surface snow layers and enhance their

metamorphism (settling or even melt). To put these findings

in a broader context, Karner et al. (2013) applied another

snow model to data from KNG6 (Fig. 1) and also identified

LW uncertainty as the most influential factor on calculated

mass balance and SEB. However, their study is based on

consideration of single-order effects only. Another hint

regarding the outstanding influence of uncertainties in LW

is provided by Raleigh et al. (2015), who systematically

explored the propagation of forcing uncertainties to snow

model output based on Sobol’s sensitivity analysis. Their

results confirm the importance of LW uncertainty, but a

straightforward comparison to our results is hampered due to

the different metrics used for input uncertainties and model

output.

Precipitation is another influential factor on the variance

of snow model output. This mainly concerns the simulated

surface height changes (which is considered as a metric

of calculated mass balance) and surface energy balance.

Total-order sensitivity indices are particularly high during

the winter and at KNG8 (Fig. 4). The lower values in

summer are bound up with the fact that no liquid precipi-

tation is measured at this site, and hence has no impact on

the variability. In these higher regions of the Kongsvegen

glacier, recurrent snowfall events may occur year round,

which results in a deeper snowpack (2.2 m) and a longer

accumulation period (October through April). This is evident

from Fig. 3 and the corresponding SHC sensitivity patterns.

Snowfall occurs comparatively infrequently and is overall

inefficient at the glacier tongue and during the summer

months. This is mainly an effect of temperature lapse-rate

determining the rain-snow transition and the tendency of

cloud formation at the crest of mountains. Similar to Raleigh

et al. (2015), we find that P uncertainty is a critical factor

for the snow disappearance in the ablation zone (see Fig. 3).

Depending on the winter conditions, the reappearance of

glacier ice typically occurs between May and July. However,

we find little evidence that ablation rates are significantly

controlled by P . Note that in our study, precipitation was

derived from ultrasonic sensors and corresponding uncer-

tainty was specified from the manufacturer specifications.

Frequently, however, snow precipitation is derived from

standard gauges. As previously mentioned, even small
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errors due to wind-induced under-catch or conversion of

snow depth changes to precipitation rates in terms of SWE

(see also Sect. 2.2) might thus have a significant impact

on the simulations. According to Eq. (4), the conversion

is sensitive to air temperature (∂ρ/∂Tair = bρ) and wind

velocity (∂ρ/∂U = cρ/(2 ·
√
U )). This demonstrates that

the conversions are particularly sensitive to measurement

errors at low wind speed. However, precipitation measure-

ments at higher wind velocities usually show a systematic

under-catch. Schmucki et al. (2014) showed that for standard

precipitation measurements, a correction of under-catch may

reduce the mean absolute percentage error by 14 % for snow

depth at high alpine stations. Førland and Hanssen-Bauer

(2000) demonstrated the importance of this issue for Sval-

bard environments. During winter and spring the calculated

SEB is strongly affected by uncertainties in precipitation

input, which explains about 25 % of the total variance. There

is no indication of important interaction with shortwave

radiation (missing during winter) or turbulent fluxes. Hence,

precipitation-induced perturbation of LW is considered

as the most important factor linking the variability of P

and SEB. The effect is more pronounced at the upper site.

At the lower part of the glacier, fresh snow events are

comparatively infrequent and inefficient. During the summer

in particular, fresh snow usually melts within a short period

without leaving a significant impact on SEB.

Surface roughness length has a strong impact on the

turbulent fluxes and hence on SEB variances. Overall, this

is due to the associated processes and their parametrizations

(Vionnet et al., 2012). The sensitivity is particularly pro-

nounced regarding SHF and at the upper study site (KNG8),

where total-order sensitivity indices reach 0.3 on average

throughout the year (Fig. 4) and are highest during the period

from April until June. Interestingly enough, KNG1 experi-

ences the most pronounced impact of z0 uncertainty on SEB

during the period from July to September, which constitutes

the main ablation period at this site (Fig. 3). This feature

is attributed to the concurrent appearance of bare ice and

the accordingly parametrized increase of surface roughness,

which represent the formation of, for example, meltwater

channels. Uncertainty in z0 also impacts the simulations of

SHC, which is most pronounced at the lower site and during

the summer. This again is related to the overall increased

roughness (factor 10) and accordingly enhanced turbulent

fluxes contributing the surface melt. These findings basically

conform to the first-order sensitivity studies by Karner et al.

(2013), changing z0 by an order of magnitude. However, as

a straightforward comparison is difficult due to the choice of

error range, which can have a strong influence on the results

(Raleigh et al., 2015).

Errors in wind speed significantly impact the calculated

turbulent fluxes during the period from April to June (KNG8)

and July to September (KNG1). It is notable that the latter

periods correspond to those when z0 uncertainties exert the

most influence, indicating combined effects. We therefore

attribute their impact on SEB and SHC mainly to their direct

involvement in the calculation of the turbulent fluxes. The

largest sensitivity of U is associated with lower wind speeds

(Table 3). This is in line with the findings of Dadic et al.

(2013), who found higher sensitivity of the turbulent fluxes

with respect to wind speed in the range of 3–5 ms−1. The

effect of local wind velocity variations on turbulent fluxes

and ablation rates has also been addressed by other studies

(Mott et al., 2013; Marks et al., 1998).

Air temperature may be expected to strongly influence

the calculation of the turbulent fluxes and, therefore, also

on the SEB. However, this is not seen in the results of the

sensitivity analysis, which at both stations does not show

significant impacts on any of the considered model output

metrics (SHF, LHF, SEB, and SHC). Further, this result

must be considered in light of the variances rather than

absolute values. The driving temperature gradients between

the surface and the air are of the order of 2–5 K (Table 3),

which reduces the sensitivity of the calculated fluxes due

to the comparatively small measurement errors that have

been assumed (±0.3 K). Further, Raleigh et al. (2015) found

that T -forcing biases had a stronger impact on ablation

rates (which may be considered as measure of summer

SEB) compared to random errors, while peak snow water

equivalent (comparable to winter SHC) was hardly affected.

Similarly, Karner et al. (2013) found a strong impact of T

biases on the calculated SEB. The seasonal T -sensitivity

patterns on SEB and its components are characterized by

relatively strong impacts in the spring and autumn. During

this period, temperature is crucial whether precipitation is

considered as snow or rain. Feedback related to albedo or

LW may play an additional role there. The sensitivity study

was performed based on standard laboratory specifications

given by the manufacturers. However, the actual uncertain-

ties of air temperature measurements can be much larger

depending on the efficiency of the used radiation shields

or ventilation devices. Relevant to this study, Karner et al.

(2013) did not find significant biases between ventilated or

unventilated air temperature measurements. However, this

result may not be generalized.

The impact of humidity forcing errors on the simulation

metrics was analysed concerning the directly measured

variable (relative humidity). By definition, however, the

latter combines humidity and temperature information and

is therefore not an ideal metric, which may be considered in

forthcoming studies. Irrespective of that, our results reveal

that on average RH uncertainty has an overall small but

somewhat stronger impact on calculated SEB compared to U

(Fig. 4). The impact is less pronounced at the lower site and

during the summer (Figs. 5 and 6). The overall variability
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of the seasonal SEB sensitivity pattern is small, however,

and is difficult to interpret due to the inherent temperature

effects. There are indications of stronger impacts in the

spring when conditions are favourable for sublimation due

to high saturation deficits occurring simultaneously with

strong winds and moderate temperatures (Sauter et al.,

2013; Obleitner and Lehning, 2004; Karner et al., 2013).

Calculated RH sensitivity is generally stronger regarding

LHF compared to SHF, which is reasonable.

Shortwave incoming radiation is a strongly influential

factor on the SEB of snow and ice, and corresponding

uncertainties are expected to have a strong impact on

respective simulations. Contrasting this general anticipation,

our sensitivity analysis reveals that on an annual basis, only

a small amount of the total SEB variance can be explained

by the assumed uncertainty of SW input data (Fig. 4).

This concerns both sites and basically reflects that in the

Arctic, the anticipated effect is generally reduced due to

the lack of solar insolation during winter. Recall that in the

Kongsvegen environment, the polar night conditions last

from late October to early February. This is also reflected

in the seasonal sensitivity pattern, which do not show any

signal during the winter. There is, however, a significant

influence on SEB in the spring and autumn (Figs. 5 and 6).

This might be related to the previously mentioned influence

of intermittent fresh snow on older surfaces with lower

albedo, whose effectiveness also depends on SW and its

variability (and temperature as addressed above). Another

reasoning is based on the consideration of energy supplied

by uncertainties in SW compared to those in LW. Hence, the

sensitivity of net shortwave radiation (∂G) to measurement

errors (∂ESW) is given by ∂G/∂ESW = 1−α, with α

denoting albedo. Therefore, the ratio (R) of the sensitivities

of incoming long-wave radiation and available net shortwave

radiation at the ground is R = 1/(1−α). By multiplying

R with the error ratio, we obtain a properly scaled ratio

R̂ = (ELW/ESW) · (1/(1−α)). Assuming a 10 % error of

typical daytime values in the summer (ESW = 40 Wm−2,

and ELW = 26 Wm−2) and a α = 0.75, we obtain R̂ = 2.6.

This means that the changes in energy due to the measure-

ment uncertainty of LW are about 2.6 times greater than that

for SW. In spring and autumn, the ratio becomes larger due

to an increasing albedo and decreasing incoming shortwave

radiation. This also leads to the conclusion that increasing

the accuracy of SW measurements by a few percent would

not increase our confidence in simulations of snow depth

or SEB components. The sensitivity of SHC on uncertain

specification of shortwave radiation SW is negligible overall,

except in summer the latter being more pronounced at the

lower site. This again reflects a coupling to albedo, which is

lower at KNG1. The results conform to Karner et al. (2013)

showing that the overall influence of SW is strikingly smaller

compared to that of LW. As was pointed out by Raleigh

et al. (2015), overall, this is attributed to the high albedo of

snow (reducing absorbed energy and the associated impact

of uncertainties) and the non-linear (amplifying) interactions

of LW, which through surface temperature is coupled to the

calculation of the turbulent fluxes.

The liquid water holding capacity of snow, PVOL,

strongly depends on snow microstructure and related sur-

face/subsurface developments throughout the winter season,

and it is difficult to measure (Armstrong and Brun, 2008).

However, investigation of the propagation of corresponding

uncertainties in the snow model results was hardly addressed

and therefore was considered in this study. According to our

results, the uncertainty in specifying liquid water holding ca-

pacity of snow makes the least contribution to the total model

variance of virtually all considered output metrics, mainly by

interactions. The seasonal PVOL sensitivity pattern reveals

some enhanced impact on SEB variability in the spring and

autumn, which is more pronounced at the upper site (KNG8).

Tentatively, this feature could be attributed to the percolation

of rain or meltwater and subsequent refreezing. However, it

remains to be investigated whether the associated release of

energy can explain the observed variance pattern. Gascon

et al. (2014) remarked that the Crocus percolation scheme

tends to favour near-surface freezing and insufficient refreez-

ing at depth, which could be another factor in this context.

Overall, the assumption of default values (as in this study)

does not have a significant impact on the calculated mass-

balance (SHC).

5 Conclusions

We investigated the seasonal pattern of the sensitivity of

snow model output to uncertainties in input data and some

key model parameters. A set of eight metrics characteriz-

ing forcing uncertainties and four metrics characterizing the

model response have been considered. The introduced uncer-

tainties characterize typical measurement errors of data used

to force a state-of-the-art snow model, and the presented re-

sults are based on Monte Carlo simulations and subsequent

application of Sobol’s GSA. Simulations and analysis are ap-

plied to two sites at an arctic glacier to address character-

istics in different mass-balance regimes. The results clearly

demonstrate that even conservatively estimated input uncer-

tainties can lead to a significant loss of confidence in key sim-

ulation results concerning the surface energy and mass bud-

get. The overall impact of individual error sources on the sen-

sitivity pattern varies between the two stations considered. In

the accumulation zone (higher elevation station), precipita-

tion and long-wave radiation are key factors for the evolu-

tion of the snowpack and contribute most to the model un-

certainty. The precipitation variability is of less significance

at the lower elevation station, while other factors, such as

wind velocity or surface roughness, gain importance. Uncer-

tainties in the measurement of incoming shortwave radiation
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and air temperature have little influence on the model out-

come, the former being biased by the specific arctic condi-

tions. The calculated seasonal sensitivity patterns are sim-

ilar overall at both study sites. The most temporally con-

tinuous influence on model output is exerted by variance

of long-wave radiation and surface roughness. Precipitation

tends to have the strongest impact during the winter, while

wind velocity, air temperature, humidity, and liquid water

holding capacity mainly impact the simulations in the sum-

mer or transitional seasons. The results thus allow for the

identification of the most critical parameters and environ-

mental conditions, which together with the consideration of

relevant model parametrizations, provide directions for fu-

ture improvements. The analysis is based on rather conserva-

tive though commonly used uncertainty estimations. These

are mostly based on manufacturer specifications and hence

on laboratory settings. In field applications, however, effec-

tive uncertainty is likely enhanced but is difficult to quan-

tify. Moreover, we did not systematically consider effects

of different uncertainty types (bias vs. random), different

probability distributions or their combined propagation ef-

fects. Correspondingly, set-up ensemble simulations fed by

sampling from quasi-random sequences are therefore recom-

mended for future investigations. Overall, the performed de-

composition of the snow model output sensitivity by GSA

proved valuable for enhancing our understanding of key

snow model output sensitivity patterns in response to un-

certainties in forcing data. The key findings either confirm

or complement those derived from a few other studies em-

ploying GSA. The revealed importance of long-wave radia-

tion input may be considered as a trend-setting example. No

doubt, however, more common efforts are necessary to fur-

ther test and improve the method. This concerns enhanced

consideration of the effects of different combinations of error

types and probability distributions, including the propaga-

tion of parametrization uncertainties, which are mostly even

less constrained than measurement errors. Detailed consider-

ation of the parametrization of albedo in Crocus is suggested

for the future, which was not addressed in this study. The

presented approach is universal and can be applied to earth

system models in general and may be applied to snow and

glacier mass- and energy-balance modelling in all climate

regions. From a practical and methodical point of view, the

main limitations of this study are the high computational ef-

fort and proper specification of the probability density func-

tions of the parameter uncertainties. Finally, we would like to

note that measurement uncertainties are independently sam-

pled and do not possess any correlation structures. Conse-

quently, the approach cannot be used to investigate the re-

sponse of snow or ice depending on systematic changes in

the environmental (climate) conditions. This requires appro-

priate sampling strategy to obtain the same correlation struc-

ture as those observed in nature.
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