
Geosci. Model Dev., 8, 3823–3835, 2015

www.geosci-model-dev.net/8/3823/2015/

doi:10.5194/gmd-8-3823-2015

© Author(s) 2015. CC Attribution 3.0 License.

On the relationships between the Michaelis–Menten kinetics, reverse

Michaelis–Menten kinetics, equilibrium chemistry approximation

kinetics, and quadratic kinetics

J. Y. Tang

Department of Climate Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Correspondence to: J. Y. Tang (jinyuntang@lbl.gov)

Received: 7 August 2015 – Published in Geosci. Model Dev. Discuss.: 3 September 2015

Revised: 16 November 2015 – Accepted: 18 November 2015 – Published: 1 December 2015

Abstract. The Michaelis–Menten kinetics and the reverse

Michaelis–Menten kinetics are two popular mathematical

formulations used in many land biogeochemical models to

describe how microbes and plants would respond to changes

in substrate abundance. However, the criteria of when to use

either of the two are often ambiguous. Here I show that

these two kinetics are special approximations to the equi-

librium chemistry approximation (ECA) kinetics, which is

the first-order approximation to the quadratic kinetics that

solves the equation of an enzyme–substrate complex ex-

actly for a single-enzyme and single-substrate biogeochem-

ical reaction with the law of mass action and the assump-

tion of a quasi-steady state for the enzyme–substrate complex

and that the product genesis from enzyme–substrate com-

plex is much slower than the equilibration between enzyme–

substrate complexes, substrates, and enzymes. In particular,

I show that the derivation of the Michaelis–Menten kinet-

ics does not consider the mass balance constraint of the sub-

strate, and the reverse Michaelis–Menten kinetics does not

consider the mass balance constraint of the enzyme, whereas

both of these constraints are taken into account in deriv-

ing the equilibrium chemistry approximation kinetics. By

benchmarking against predictions from the quadratic kinet-

ics for a wide range of substrate and enzyme concentra-

tions, the Michaelis–Menten kinetics was found to persis-

tently underpredict the normalized sensitivity ∂ lnv/∂ lnk+2
of the reaction velocity v with respect to the maximum

product genesis rate k+2 , persistently overpredict the normal-

ized sensitivity ∂ lnv/∂ lnk+1 of v with respect to the in-

trinsic substrate affinity k+1 , persistently overpredict the nor-

malized sensitivity ∂ lnv/∂ ln [E]T of v with respect the to-

tal enzyme concentration [E]T , and persistently underpre-

dict the normalized sensitivity ∂ lnv/∂ ln [S]T of v with re-

spect to the total substrate concentration [S]T . Meanwhile,

the reverse Michaelis–Menten kinetics persistently under-

predicts ∂ lnv/∂ lnk+2 and ∂ lnv/∂ ln [E]T , and persistently

overpredicts ∂ lnv/∂ lnk+1 and ∂ lnv/∂ ln [S]T . In contrast,

the equilibrium chemistry approximation kinetics always

gives consistent predictions of ∂ lnv/∂ lnk+2 , ∂ lnv/∂ lnk+1 ,

∂ lnv/∂ ln [E]T , and ∂ lnv/∂ ln [S]T , indicating that ECA-

based models will be more calibratable if the modeled pro-

cesses do obey the law of mass action. Since the equi-

librium chemistry approximation kinetics includes advan-

tages from both the Michaelis–Menten kinetics and the re-

verse Michaelis–Menten kinetics and it is applicable for al-

most the whole range of substrate and enzyme abundances,

land biogeochemical modelers therefore no longer need to

choose when to use the Michaelis–Menten kinetics or the re-

verse Michaelis–Menten kinetics. I expect that removing this

choice ambiguity will make it easier to formulate more robust

and consistent land biogeochemical models.

1 Introduction

The recent recognition that the typical turnover-pool-based

soil carbon models cannot model the priming effect has re-

vived the interest in developing microbe explicit soil bio-

geochemistry models. This has been manifested in a long

list of microbial models that were published in the last few

years (e.g., Schimel and Weintrub, 2003; Moorhead and

Sinsabaugh, 2006; Allison et al., 2010; German et al., 2012;
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Wang et al., 2013; Wieder et al., 2013; Li et al., 2014; He et

al., 2014; Riley et al., 2014; Xenakis and Williams, 2014;

Tang and Riley, 2015; Sulman et al., 2014; Wieder et al.,

2015). To build a microbial model, the substrate kinetics is

fundamental as it describes the rate at which microbes would

take up a substrate and represents the first step towards de-

scribing how microbes would decompose the soil organic

matter. Under the assumption that a single “master reaction”

limits the growth of microbes (Johnson and Lewin, 1946), the

substrate kinetics even completely determines the microbial

dynamics as done in many models (e.g., the Monod model).

Among the many mathematical formulations of substrate ki-

netics (see Tang and Riley, 2013 for a review), the Michaelis–

Menten (MM) kinetics is often used because it has succeeded

in many applications ever since its creation in the early 20th

century (Michaelis and Menten, 1913). However, Schimel

and Weintraub (2003) proposed in their study that the decom-

position rate should vary more like an asymptotic function of

enzyme abundance such that the reverse Michaelis–Menten

(RMM) kinetics would better model the soil carbon decom-

position dynamics. The proposal of RMM kinetics was mo-

tivated by the empirical observation that, as enzyme concen-

tration increases, microbial growth cannot increase continu-

ously without a limit; therefore, some dynamic feedbacks be-

tween the different components must stabilize the system. In

contrast, the MM kinetics predicts that substrate degradation

is proportional to enzyme concentration and, therefore, like

the linear kinetics, as used in Schimel and Weintraub (2003),

it will predict unstable decomposition dynamics. The suc-

cess by Schimel and Weintraub has led to a number of stud-

ies using the RMM kinetics as the backbone of their micro-

bial models, including the Moorhead and Sinsabaugh (2006)

model of litter decomposition, the Drake et al. (2013) model

for root priming, the Waring et al. (2013) model for change

in microbial community structure in soil carbon and nitrogen

cycling, and the Averill (2014) model for change in microbial

allocation in soil carbon decomposition.

Wang and Post (2013) pointed out that both the MM ki-

netics and RMM kinetics (although the latter is empirical)

are special approximations to the quadratic kinetics that ex-

actly solves for the enzyme–substrate complex under the

quasi-steady-state approximation (QSSA), which states that

the enzyme–substrate complexes are in instantaneous equi-

librium with enzyme and substrate concentrations (Borghans

et al., 1996). They further concluded that the MM kinet-

ics is applicable when the substrate concentration far ex-

ceeds the enzyme concentration, and the RMM kinetics is

applicable when either the enzyme concentration far exceeds

the substrate concentration or vice versa. The condition for

the MM kinetics to be applicable as provided by Wang and

Post (2013) was however much narrower than that was pro-

posed in some earlier studies. For instance, Borghans et

al. (1996) showed that the MM kinetics is a good approxi-

mation to the quadratic kinetics when enzyme concentration

is far smaller than the sum of the substrate concentration and

the Michaelis–Menten constant (Palsson, 1987; Segel, 1988;

Segel and Slemrod, 1989). To handle enzyme–substrate in-

teractions under high enzyme concentrations, Borghans et

al. (1996) proposed the total quasi-steady-state approxima-

tion (tQSSA) and obtained a substrate kinetics that was a

special case of the later proposed equilibrium chemistry ap-

proximation (ECA) kinetics by Tang and Riley (2013). Tang

and Riley (2013) applied the law of mass action with tQSSA

and derived the ECA kinetics to describe the formation of

enzyme–substrate complexes in a network of an arbitrary

number of enzymes and substrates.

The consistent application of mathematical formulations

to describe a dynamic system is critical for the model to suc-

cessfully resolve the empirical measurements that observe

the dynamic system. This consistency requirement has been

raised in several studies using microbe explicit models. For

instance, Maggi and Riley (2009) have found the MM kinet-

ics has to be revised to resolve the evolution of δ15N-N2O

in their data of nitrification and denitrification. Druhan et

al. (2012) later used Maggi and Riley (2009)’s revision to ob-

tain an improved modeling of the δ34S data collected in the

acetate-enabled uranium bioremediation at the US Depart-

ment of Energy’s Rifle Integrated Field Research Challenge

site. Tang and Riley (2013) showed that the MM kinetics

failed to resolve the evolution of the lignocellulose index dur-

ing a litter decomposition experiment. I was not able to find

any example of using the RMM kinetics to model kinetic iso-

tope fractionation. However, because the RMM kinetics is a

linear function of the substrate concentration, its application

for modeling kinetic isotope fractionation will be doomed

inevitably. Therefore, a substrate kinetics that merges the ad-

vantages from both the MM kinetics and the RMM kinet-

ics would be a better choice for developing robust microbial

models.

The call for a substrate kinetics that can consistently

work across a wide range of substrate and enzyme (or more

broadly competitor) concentrations becomes more impera-

tive when land biogeochemical models are required to re-

solve plant–microbe interactions. In plant–microbe interac-

tions, both substrates and competitors evolve constantly and

their concentration ratios could vary by orders of magnitude.

For instance, when a soil is seriously nitrogen limited, the

aqueous nitrogen concentration is much lower than the volu-

metric density of competitors and substrate uptake may fol-

low more linearly with respect to the substrate concentra-

tion and be of an asymptotic function of competitors as de-

scribed by the RMM kinetics. However, when a large dose

of fertilizer is added, the soil quickly becomes nitrogen sat-

urated, such that the uptake dynamics would follow more

linearly with respect to the variation of competitors (or en-

zymes) as represented in the MM kinetics. To consistently

model the soil nitrogen dynamics that fluctuates between sta-

tus of nitrogen limitation and nitrogen saturation, one there-

fore has to constantly choose between the MM kinetics and

RMM kinetics, making a consistent mathematical formula-
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tion theoretically impossible. Therefore, an approach that in-

cludes the advantages from both the MM kinetics and RMM

kinetics will significantly advance our capability in model-

ing soil biogeochemical processes. Fortunately, such kinetics

(a.k.a. the ECA kinetics) was already derived in Tang and Ri-

ley (2013), but my coauthor and I did not give a theoretical

analysis for the relationships between MM kinetics, RMM

kinetics, and the ECA kinetics, nor did we explain how the

parametric sensitivity would vary depending on the choice of

substrate kinetics and whether the ECA kinetics is superior

across the whole range of feasible kinetic parameters. Be-

cause all model calibration methods either explicitly or im-

plicitly rely on the parametric sensitivity to tune model pre-

dictions with respect to observations (e.g., Tang and Zhuang,

2009; Zhu and Zhuang, 2014), correct parametric sensitivity

of the model formulation is a requisite for delivering a ro-

bust model. An analysis of the differences in their predicted

parametric sensitivities will also help to reveal the pitfalls

that may exist in biogeochemical models that rely on the

MM kinetics (Allison et al., 2010) or RMM kinetics (e.g.,

Averill, 2014) or a combination of the two (e.g., Sihi et al.,

2015) when the model is otherwise benchmarked against its

equilibrium-chemistry-based formulation that solves the bio-

geochemical system exactly under the tQSSA (readers please

refer to Tang and Riley (2013) for a thorough discussion

on why the equilibrium chemistry formulation should be the

benchmark for models based on the MM kinetics, RMM ki-

netics, and ECA kinetics).

In this study, I first review how the ECA kinetics could be

derived from the quadratic kinetics and how the MM kinetics

and RMM kinetics could be derived from the ECA kinetics

or directly from the equilibrium chemistry formulation of the

enzyme–substrate interaction. Then I analyze how accurate

the MM kinetics, the RMM kinetics, and the ECA kinetics

could approximate the parametric sensitivity, as one would

derive from the quadratic kinetics that is exact for the one-

enzyme and one-substrate biogeochemical reaction. Based

on these analyses, I finally give recommendations on how

to obtain more robust microbial models for soil biogeochem-

ical modeling. Note that, although the following analysis is

for a single-enzyme and single-substrate system in an aque-

ous solution, the results are applicable to a wide range of

problems, including predator–prey, microbial growth, Lang-

muir adsorption, and any process that can be appropriately

formulated as an equilibrium binding problem (Tang and Ri-

ley, 2013).

2 The mathematical relationship between different

kinetics

Below I first review how one could obtain the quadratic ki-

netics under the QSSA for a biogeochemical reaction that

involves one enzyme and one substrate. Then I show how

one could derive the ECA kinetics, the MM kinetics, and the

RMM kinetics.

The biogeochemical reaction of the system is

E+ S
k+1
⇔
k−1

ES
k+2
→ E+P, (1)

where E, S, ES, and P are, respectively, enzyme, sub-

strate, enzyme–substrate complex, and product. The three

kinetic parameters are the intrinsic substrate affinity k+1
(m3 mol−1 s−1), backward enzyme–substrate dissociation

constant k−1 (s−1), and product genesis rate k+2 (s−1).

By the law of mass action, the governing equations for

biogeochemical Reaction (1) are

d[E]

dt
=−k+1 [S] [E]+

(
k−1 + k

+

2

)
[ES] , (2)

d[S]

dt
=−k+1 [S] [E]+ k−1 [ES] , (3)

d[ES]

dt
= k+1 [S] [E]−

(
k−1 + k

+

2

)
[ES] , (4)

d[P ]

dt
= k+2 [ES] . (5)

Here and below, I use square brackets to designate the con-

centration (mol m−3) of a given state variable.

Under the QSSA, Eq. (4) is approximated as

[S] [E]=KES [ES] , (6)

where KES =
(
k−1 + k

+

2

)/
k+1 (mol m−3) is the Michaelis–

Menten constant.

For a small temporal window when the amount of new

product is negligible, it holds that [P ]� [ES]+ [S]= [S]T
(here and below subscript T designates total concentration

including both enzyme–substrate complex and free concen-

trations), then [ES] could be solved from Eq. (6) under the

constraints

[ES]+ [E]= [E]T , (7)

[ES]+ [S]= [S]T . (8)

By solving [E] from Eq. (7), [S] from Eq. (8) and enter-

ing the results into Eq. (6), one then obtains the quadratic

equation

[ES]2
− (KES + [E]T + [S]T ) [ES]+ [E]T [S]T = 0. (9)

Therefore, if one applies the quadratic formula to Eq. (9)

and takes the physically meaningful solution, [ES] is then

found as

[ES]=
(KES + [E]T + [S]T )

2(
1−

√
1−

4[E]T [S]T

(KES + [E]T + [S]T )
2

)
. (10)
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2.1 The equilibrium chemistry approximation kinetics

To obtain the ECA formulation of the enzyme–substrate

complex, one assumes

ε =
[E]T [S]T

(KES + [E]T + [S]T )
2
� 1. (11)

Then by substitution of the first-order approximation
√

1− 4ε ≈ (1− 2ε) (with Taylor expansion taken at ε = 0;

e.g., Cha and Cha, 1965) into the square root term of Eq. (10),

the ECA formulation of [ES] is obtained:

[ES]=
[E]T [S]T

KES + [E]T + [S]T
. (12)

The application of Eq. (12) implies

d[S]T

dt
=−k+2 [ES] , (13)

which together with the QSSA forms the tQSSA (Borghans

et al., 1996). Note Eq. (13) is more than a restatement of

Eq. (5). Rather, Eq. (13) describes the temporal trend of the

total substrate concentration instead of the temporal trend of

the free substrate concentration, as done in the QSSA based

MM kinetics shown below.

2.2 The Michaelis–Menten kinetics

The MM kinetics can be derived in two different approaches.

In the first approach, by assuming KES + [S]T � [E]T , Eq.

(12) gives the MM formulation of [ES]:

[ES]≈
[E]T [S]T

KES + [S]T
. (14)

In the second approach, one solves [ES] from Eqs. (6) and

(7) and obtains

[ES]=
[E]T [S]

KES + [S]
. (15)

Note [S]= [S]T − [ES]< [S]T , and because [ES] is a

monotonically increasing function of [S], [ES] computed

from Eq. (14) will be greater than that from Eq. (15). How-

ever, almost all existing applications do not differentiate be-

tween Eqs. (14) and (15). The strict application of Eq. (14)

requires the substrate evolution to be computed by the tQSSA

form Eq. (13), whereas under the QSSA the strict application

of Eq. (15) requires

d [S]

dt
=−k+2 [ES] . (16)

When [S] is low or when enzyme concentration [E]T is

high, equating [S] to [S]T and ignoring the contribution of

[E]T in calculating the enzyme–substrate complex [ES] will

cause significant error in computing the parametric sensitivi-

ties, as I will show in Sect. 3.

The sufficient condition KES + [S]T � [E]T (which al-

ways leads to ε� 1, the sufficient condition to derive the

ECA kinetics) for the MM kinetics to be applicable was well

recognized in early studies; however, it was often misinter-

preted as [S]T � [E]T (see a discussion in Borghans et al.,

1996). Yet, more importantly, I note that the derivation of

the MM kinetics does not take into account the mass balance

constraint for substrate (Eq. 8). As I will show in Sect. 3,

the negligence of mass balance constraint for substrate will

lead to poor predictions of parametric sensitivity by the MM

kinetics when benchmarked with the quadratic kinetics.

2.3 The reverse Michaelis–Menten kinetics

There are also two approaches to derive the RMM kinetics.

In the first approach, one assumes KES + [E]T � [S]T and

then, from Eq. (12), obtains the RMM formulation of [ES]:

[ES]≈
[E]T [S]T

KES + [E]T
. (17)

In the second approach, one solves [ES] from Eqs. (6) and

(8):

[ES]=
[E] [S]T

KES + [E]
. (18)

Note [E]= [E]T − [ES]< [E]T and, because [ES] is a

monotonically increasing function of [E], [ES] calculated

from Eq. (17) will be greater than that from Eq. (18). Like

the MM kinetics, existing applications have treated Eqs. (17)

and (18) as equivalent.

Here the condition KES + [E]T � [S]T (which always

leads to ε� 1, the sufficient condition to derive the ECA ki-

netics) for the RMM kinetics to hold is more general than the

condition [E]T � [S]T proposed in Wang and Post (2013).

I also note that the derivation of the RMM kinetics does not

take into account the mass balance constraint for enzymes

(Eq. 7). This negligence of the mass balance constraint for

enzymes will lead the RMM kinetics to predict poor para-

metric sensitivities when benchmarked with the quadratic ki-

netics.

3 Parametric sensitivity analyses

In the following I analyze the sensitivities of the reaction ve-

locity with respect to the four parameters as predicted by the

four kinetics. The four parameters are (1) maximum product

genesis rate k+2 , (2) intrinsic substrate affinity k+1 , (3) the total

enzyme concentration [E]T , and (4) the total substrate con-

centration [S]T . The reaction velocities predicted by the four

different kinetics are, respectively, for the quadratic kinetics

vQD =
k+2 (KES + [E]T + [S]T )

2(
1−

√
1−

4[E]T [S]T

(KES + [E]T + [S]T )
2

)
, (19)
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for the ECA kinetics

vECA =
k+2 [E]T [S]T

KES + [E]T + [S]T
, (20)

for the MM kinetics

vMM =
k+2 [E]T [S]T

KES + [S]T
, (21)

and for the RMM kinetics

vRMM =
k+2 [E]T [S]T

KES + [E]T
. (22)

In evaluating the parametric sensitivity, I made the con-

ventional assumption that k−1 � k+2 to obtain a better pre-

sentation of the results (although excluding this assumption

will not change the conclusion below). This assumption leads

to KES = k
+

2

/
k+1 , which states that the apparent substrate

affinity 1
/
KES is a linearly decreasing function of k+2 , a re-

lationship that has been used to characterize the K− r trade-

off (e.g., Litchman and Klausmeier, 2008). Because KES is

a function of k+2 , the intrinsic affinity k+1 better describes the

substrate affinity for the enzymes.

In addition, to simplify the presentation, I define y =

KES + [E]T + [S]T and x = 4[E]T [S]T
/
y2. Since the

derivations for the MM- and RMM-kinetics-related paramet-

ric sensitivities could be derived from the ECA predictions

straightforwardly, I only provide details to derive the results

for the quadratic and ECA-related parametric sensitivities

(Appendices A and B). Nevertheless, to help the readers to

visualize the differences in the predicted parametric sensi-

tivities by using different kinetics, I have summarized the

comparison in four different figures: Fig. 1 for k+2 , Fig. 2

for k+1 , Fig. 3 for [E]T , and Fig. 4 for [S]T . All sensitivities

are evaluated over the 2-D normalized substrate-enzyme con-

centration domain [0.001,1000]× [0.001,1000], with both

[E]T and [S]T normalized by KES . In addition, because the

quadratic kinetics is exact under the QSSA, its predictions

are used to benchmark the predictions made by the ECA

kinetics, MM kinetics, and RMM kinetics (see (d) panels

in Figs. 1–4). For comparison between predictions by the

ECA kinetics and the quadratic kinetics, I plotted the nor-

malized sensitivities as 2-D functions of the normalized sub-

strate [S]T
/
KES and [E]T

/
KES (see (a) and (b) panels in

Figs. 1–4), and evaluated their differences using the index(
aQD− aECA

)/ (
aQD+ aECA

)
(see (c) panels in Figs. 1–4),

where the subscripts QD and ECA indicate, respectively, sen-

sitivities predicted by the quadratic kinetics and the ECA ki-

netics.

In all the analyses below, I represent the parametric sensi-

tivity using the normalized form ∂ lnv
/
∂ lns to remove the

unit dependency of the results. The normalized sensitivity

represents the relative change of reaction velocity v in re-

sponse to a relative change in parameter s, where s could be

any of the four parameters being analyzed.

3.1 Reaction velocity vs. k+

2

The normalized sensitivities of the reaction velocity vs. k+2
are, respectively, for the quadratic kinetics

k+2

vQD

∂vQD

∂k+2
=1+

KES

y
−
KES

y

(
1−
√

1− x
)−1

(1− x)−1/ 2x, (23)

for the ECA kinetics

k+2

vECA

∂vECA

∂k+2
= 1−

KES

KES + [E]T + [S]T
, (24)

for the MM kinetics

k+2

vMM

∂vMM

∂k+2
= 1−

KES

KES + [S]T
, (25)

and for the RMM kinetics

k+2

vRMM

∂vRMM

∂k+2
= 1−

KES

KES + [E]T
. (26)

From the equations above, it is observed that both the

MM kinetics and RMM kinetics predict a less variable and

lower parametric sensitivity than the ECA kinetics, because

the ECA kinetics predicts a more variable and larger denom-

inator in the second term (in Eq. 24) as compared to that

by the MM kinetics (Eq. 25) and RMM kinetics (Eq. 26).

Large deviations between predicted sensitivities by the MM

kinetics and the ECA kinetics are expected at high enzyme

concentrations, whereas large deviations between predictions

by the RMM kinetics and ECA kinetics are expected at high

substrate concentrations. Predicted sensitivities by the MM

kinetics and RMM kinetics are also smaller than those by the

quadratic kinetics (green and black dots in Fig. 1d). In con-

trast, the ECA kinetics consistently captures the variability of

the normalized sensitivity, with some overestimation (but the

relative difference is no greater than 5 %) under moderate en-

zyme and substrate concentrations (Fig. 1c), where the nor-

malized sensitivity is, however, small or moderate (Fig. 1a).

3.2 Reaction velocity vs. k+

1

The normalized sensitivities of the reaction velocity vs. k+1
are, respectively, for the quadratic kinetics

k+1

vQD

∂vQD

∂k+1
=−

KES

y
+
KES

y
(1− x)−1/ 2

(
1−
√

1− x
)−1

x, (27)

for the ECA kinetics

k+1

vECA

∂vECA

∂k+1
=

KES

KES + [E]T + [S]T
, (28)

for the MM kinetics

k+1

vMM

∂vMM

∂k+1
=

KES

KES + [S]T
, (29)
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Figure 1. (a) ECA-kinetics-predicted normalized sensitivity of the reaction velocity with respect to the maximum product genesis rate

k+
2

; (b) predictions by the quadratic kinetics; (c) the normalized difference
(
aQD− aECA

)
/
(
aQD+ aECA

)
between the quadratic kinetics

predictions aQD and the ECA kinetics predictions aECA; (d) comparison of normalized sensitivity predicted by different kinetics.

and for the RMM kinetics

k+1

vRMM

∂vRMM

∂k+1
=

KES

KES + [E]T
. (30)

From Eqs. (28)–(30), it is inferred that both the MM ki-

netics and RMM kinetics predict a less variable and higher

normalized sensitivity with respect to k+1 than the ECA ki-

netics. Large differences between predicted sensitivities by

the ECA kinetics and the MM kinetics are expected at high

enzyme concentrations, whereas large differences between

predicted sensitivities by the ECA kinetics and the RMM ki-

netics are expected at high substrate concentrations. The pre-

dicted sensitivities by the MM kinetics and RMM kinetics

are also lower than that by the quadratic kinetics (Fig. 2d),

whereas the ECA kinetics predicts consistent parametric sen-

sitivity for the wide range of enzyme and substrate concen-

trations (Fig. 2). The underpredicted sensitivity by the ECA

kinetics is significant only at high substrate and high enzyme

concentrations (Fig. 2c), where the parametric sensitivity is

close to zero (Fig. 2a, b).

3.3 Reaction velocity vs. [E]T

The normalized sensitivities of the reaction velocity vs. [E]T
are, respectively, for the quadratic kinetics

[E]T

vQD

∂vQD

∂[E]T
=

[E]T

y
+

[E]T

y(
1−
√

1− x
)−1

(1− x)−1/ 2
×

(
2[S]T

y
− x

)
, (31)

for the ECA kinetics

[E]T

vECA

∂vECA

∂[E]T
= 1−

[E]T

KES + [E]T + [S]T
, (32)

for the MM kinetics

[E]T

vMM

∂vMM

∂[E]T
= 1, (33)

and for the RMM kinetics

[E]T

vRMM

∂vRMM

∂[E]T
= 1−

[E]T

KES + [E]T
. (34)

From the equations above, it is observed that the MM ki-

netics predicts a constant normalized sensitivity of the reac-

tion velocity with respect to the total enzyme concentration

[E]T . The RMM kinetics predicts the normalized sensitiv-

ity as a monotonically decreasing function of the normal-

ized enzyme concentration [E]T
/
KES . The predicted sen-

sitivity by the ECA kinetics is a function of both the nor-

malized substrate concentration [S]T
/
KES and the normal-

ized enzyme concentration [E]T
/
KES . Compared to pre-

dictions by the quadratic kinetics, the MM kinetics persis-

tently overestimates the parametric sensitivity (green dots

in Fig. 3d), whereas the RMM kinetics persistently under-

estimates the parametric sensitivity (black dots in Fig. 3d).

The ECA predicted sensitivity is largely consistent with that

by the quadratic kinetics (Fig. 3), albeit with some signifi-

cant deviation in regions of very high substrate and enzyme

concentrations (Fig. 3c), where the parametric uncertainty is

moderate or low (Fig. 3a, b).
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Figure 2. Similar to Fig. 1, but the sensitivity is evaluated against the intrinsic substrate affinity k+
1

.

3.4 Reaction velocity vs. [S]T

The normalized sensitivities of the reaction velocity vs. [S]T
are, respectively, for the quadratic kinetics

[S]T

vQD

∂vQD

∂[S]T
=

[S]T

y
+

[S]T

y

(
1−
√

1− x
)−1

(1− x)−1/ 2
×

(
2[E]T

y
− x

)
, (35)

for the ECA kinetics

[S]T

vECA

∂vECA

∂[S]T
= 1−

[S]T

KES + [E]T + [S]T
, (36)

for the MM kinetics

[S]T

vMM

∂vMM

∂[S]T
= 1−

[S]T

KES + [S]T
, (37)

and for the RMM kinetics

[S]T

vRMM

∂vRMM

∂[S]T
= 1. (38)

Because [S]T and [E]T are symmetric in the quadratic ki-

netics and ECA kinetics, the predicted normalized sensitivity

of the reaction velocity with respect to the total substrate con-

centration [S]T mirrors that of [E]T along the lower-left to

upper-right diagonal (Fig. 3 vs. Fig. 4). Such symmetric re-

lationships also exist in predictions by the MM kinetics and

RMM kinetics; however, the MM kinetics persistently un-

derpredicts the normalized sensitivity of the reaction velocity

with respect to [S]T , and the RMM kinetics predicts a con-

stant sensitivity (Eq. 38). The ECA kinetics once again pre-

dicts consistent parametric sensitivity when compared with

the quadratic kinetics.

4 Discussions and conclusions

From the above analyses, I showed that the ECA kinetics

is a better approximation to the quadratic kinetics, which,

obtained from the law of mass action and the quasi-steady-

state approximation, is the exact solution to the governing

equations of substrate-enzyme interaction (as indicated by

Eqs. 6–8). In contrast, the Michaelis–Menten kinetics and

the reverse Michaelis–Menten kinetics are inferior in approx-

imating the quadratic kinetics over the wide range of enzyme

and substrate concentrations. The worse performance of the

MM kinetics than the ECA kinetics in approximating the

quadratic kinetics stems from the negligence of mass balance

constraint of the substrate during the derivation of the MM

kinetics; while the worse performance of the RMM kinetics

in approximating the quadratic kinetics is caused by the neg-

ligence of mass balance constraint of the enzyme during the

derivation of the RMM kinetics. The failure to consider the

mass balance constraints for both enzyme and substrate dur-

ing their derivations caused the MM kinetics and the RMM

kinetics to predict significantly biased normalized sensitivity

of the reaction velocity with respect to the two kinetic pa-

rameters k+1 and k+2 , the total enzyme concentration [E]T ,

and the total substrate concentration [S]T . Although being

a first-order approximation to the quadratic kinetics under
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Figure 3. Similar to Fig. 1, but the sensitivity is evaluated against the total enzyme concentration [E]T .
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Figure 4. Similar to Fig. 1, but the sensitivity is evaluated against the total substrate concentration [S]T .

the assumption that [E]T [S]T � (KES + [E]T + [S]T )
2, be-

cause it considers the mass balance for both substrate and en-

zyme, the ECA kinetics predicts consistent parametric sensi-

tivity with that by the quadratic kinetics over the wide range

of normalized substrate and enzyme concentrations.

In modeling complex soil biogeochemical dynamics, the

consistency between the kinetics used and the equilibrium

chemistry formulation of the relationships between enzymes,

substrates, and enzyme–substrate complexes might be crit-

ical (Tang and Riley, 2013), but it has been unfortunately

underappreciated in many previous studies. In Tang and

Riley (2013), it was shown that, for a system involving

three microbes competitively decomposing three carbon sub-

strates, the MM kinetics failed wildly even with industrious

calibration (see their Fig. 12). In an earlier study, Moorhead

and Sinsabaugh (2006) had to prescribe the relative decom-
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position between lignin and cellulose in order to resolve the

lignocellulose index dynamics. The ECA kinetics was able to

consistently resolve the lignin–cellulose dynamics during the

litter decomposition because it explicitly considers the mass

balance constraints for each of the substrates and enzymes

(or, effectively, abundance of competitors; Tang and Riley,

2013). Both the success of the ECA kinetics and the failure

of the MM kinetics in abovementioned studies can be traced

back to their capability in approximating the actual paramet-

ric sensitivities of the specific dynamic system. Because all

model calibration techniques rely on a model’s parametric

sensitivity to obtain improved agreement between model pre-

dictions and measurements, wrong parametric sensitivity as

formulated in the adopted substrate kinetics would result in

a non-calibratable or poorly calibratable model, which could

be manifested as systematic model biases or completely un-

reasonable model predictions. This explained well why the

MM-kinetics-based model in Tang and Riley (2013) failed

wildly even with intensive Bayesian model calibration.

Therefore, if the ecological dynamics involved in substrate

processing by microbes does approximately obey the law of

mass action and the total quasi-steady-state approximation

(as it is already implied in any microbe explicit model that

uses the MM kinetics or the RMM kinetics), then the analyt-

ically tractable ECA kinetics is a much more powerful and

mathematically more consistent tool than the popular MM

kinetics and RMM kinetics that are currently used in many

microbial models. Indeed, a recent application (Zhu and Ri-

ley, 2015) indicated that by representing plant–microbe com-

petition of soil mineral nitrogen using the ECA kinetics, the

predicted global nitrogendynamics became much more con-

sistent with that inferred from the δ15N isotopic data (Houl-

ton et al., 2015). The ECA kinetics was also found to satisfy-

ingly model the plant–microbe competitions for phosphorus

and mineral nitrogen at several fertilized sites (Zhu et al.,

2015a) and predicted consistent vertical nitrogen uptake pro-

files measured at an alpine meadow ecosystem (Zhu et al.,

2015b). Theoretically, because either the MM kinetics or the

RMM kinetics works only in a small subdomain of the pa-

rameters that are used in the original quadratic kinetics, mod-

els based on the MM kinetics or RMM kinetics may likely

have a much lower predictive capability than is implied in the

mechanisms that the models are trying to represent (e.g., the

law of mass action, which is the foundation to all substrate

kinetics). I therefore recommend modelers to use the ECA ki-

netics to describe the substrate uptake processes in modeling

microbe-regulated biogeochemical processes. As I showed

above, with the same number of parameters as one would

use with either the MM kinetics or the RMM kinetics, the

ECA kinetics achieved better accuracy in approximating the

exact quadratic kinetics for a biogeochemical reaction that

involves a single enzyme and a single substrate. The supe-

rior performance of ECA is also true for systems that involve

many substrates and many enzymes (Tang and Riley, 2013),

which are much more common in the natural environment

that we are trying to model. Lastly, and more importantly,

the ECA kinetics could spare modelers from the pain of de-

ciding when to use the MM kinetics or the RMM kinetics

to represent a soil that fluctuates between status of nutrient

limitation and nutrient saturation, for which neither the MM

kinetics nor the RMM kinetics is (but ECA is) theoretically

consistent with the law of mass action, the best theory we

have for modeling biogeochemical reactions.
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Appendix A: Derivation of parametric sensitivities

(Eqs. 23, 27, 31, and 35) for the quadratic kinetics

Using the definitions y =KES + [E]T + [S]T and x =

4[E]T [S]T
/
y2, one has the following results:

vQD =
k+2 y

2

(
1−
√

1− x
)
, (A1)

∂x

∂k+1
=

8[E]T [S]T

(KES + [E]T + [S]T )
3

KES

k+1
=

8[E]T [S]T

y3

KES

k+1
, (A2)

∂x

∂k+2
=−

8[E]T [S]T

(KES + [E]T + [S]T )
3

1

k+1
=−

8[E]T [S]T

y3

1

k+1
, (A3)

∂x

∂[E]T
=

4[S]T

(KES + [S]T + [E]T )
2
−

8[E]T [S]T

(KES + [S]T + [E]T )
3
=

4[S]T

y2
−

2x

y
, (A4)

∂x

∂[S]T
=

4[E]T

(KES + [S]T + [E]T )
2
−

8[E]T [S]T

(KES + [S]T + [E]T )
3
=

4[E]T

y2
−

2x

y
, (A5)

∂
√

1− x

∂k+1
=−

1

2
(1− x)−1/ 2 ∂x

∂k+1
, (A6)

∂
√

1− x

∂k+2
=−

1

2
(1− x)−1/ 2 ∂x

∂k+2
, (A7)

∂
√

1− x

∂[E]T
=−

1

2
(1− x)−1/ 2 ∂x

∂[E]T
, (A8)

∂
√

1− x

∂[S]T
=−

1

2
(1− x)−1/ 2 ∂x

∂[S]T
, (A9)

∂y

∂k+1
=
∂KES

∂k+1
=−

KES

k+1
, (A10)

∂y

∂k+2
=
∂KES

∂k+2
=

1

k+1
, (A11)

∂y

∂[E]T
=

∂y

∂[S]T
= 1. (A12)

Then, from Eq. (A1), one has

∂vQD

∂k+2
=
y

2

(
1−
√

1− x
)
+
k+2

2

(
1−
√

1− x
) ∂y

∂k+2

−
k+2

2
y
∂
√

1− x

∂k+2
. (A13)

By substitution of Eqs. (A3), (A7), and (A11) into (A13),

and using the definition of vQD from Eq. (A1), one obtains

∂vQD

∂k+2
=
y

2

(
1−
√

1− x
)
+
KES

2

(
1−
√

1− x
)
−
KES

2
(1− x)−1/ 2x

=
vQD

k+2

{
1+

KES

y
−
KES

y

(
1−
√

1− x
)−1

(1− x)−1/ 2x

}
,

(A14)

which, after some rearrangements, gives Eq. (23) in the main

text.

Similarly, from Eq. (A1), one has

∂vQD

∂k+1
=
k+2

2

(
1−
√

1− x
) ∂y

∂k+1
−
k+2 y

2

∂
√

1− x

∂k+1
, (A15)

which, after using Eqs. (A2), (A6), and (A10), leads to

∂vQD

∂k+1
=−

1

2
K2
ES

(
1−
√

1− x
)
+

1

2
K2
ES(1− x)

−1/ 2x

=
vQD

k+1

{
−
KES

y
+
KES

y
(1− x)−1/ 2

(
1−
√

1− x
)−1

x

}
.

(A16)

By multiplying k+1

/
vQD on both sides of Eq. (A16), one

easily obtains Eq. (27).

Taking the partial derivative with respect to [E]T in

Eq. (A1), one obtains

∂vQD

∂[E]T
=
k+2

2

(
1−
√

1− x
) ∂y

∂[E]T
−
k+2 y

2

∂
√

1− x

∂[E]T
, (A17)

which, when combined with Eqs. (A4), (A8), and (A12), be-

comes

∂vQD

∂[E]T
=
k+2

2

(
1−
√

1− x
)
+
k+2

2
(1− x)−1/ 2

(
2[S]T

y
− x

)
=
vQD

[E]T

{
[E]T

y
+

[E]T

y

(
1−
√

1− x
)−1

(1− x)−1/ 2

×

(
2[S]T

y
− x

)}
,

(A18)

from which, after some rearrangement, one finds Eq. (31).

Note, because switching the order of [E]T and [S]T in

Eq. (A1) does not change the definition of vQD, Eq. (35)

could be derived from Eq. (31) by simply swapping [E]T
and [S]T .

Appendix B: Derivation of parametric sensitivities

(Eqs. 24, 28, 32, and 36) for the equilibrium chemistry

approximation kinetics

Using the definitions of x and y, vECA is

vECA =
k+2 [E]T [S]T

y
. (B1)

From Eq. (B1), one has

∂vECA

∂k+2
=

[E]T [S]T

y
−
k+2 [E]T [S]T

y2

∂y

∂k+2
, (B2)

which, when combined with Eq. (A11), becomes

∂vECA

∂k+2
=
vECA

k+2
−
vECA

k+2

KES

y
. (B3)
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Then, by dividing both sides of Eq. (B3) with vECA

/
k+2 , one

obtains Eq. (24).

Similarly, from Eq. (B1), one has

∂vECA

∂k+1
=−

k+2 [E]T [S]T

y2

∂y

∂k+1
. (B4)

Then, by aid of Eq. (A10), one finds

∂vECA

∂k+1
=
vECA

k+1

KES

y
, (B5)

which gives Eq. (28) by multiplying k+1

/
vECA on both sides.

For [E]T , one can derive from Eq. (B1)

∂vECA

∂[E]T
=
k+2 [S]T

y
−
k+2 [E]T [S]T

y2

∂y

∂[E]T
, (B6)

which, when combined with Eq. (A12), leads to

∂vECA

∂[E]T
=
vECA

[E]T
−
vECA

y
. (B7)

Then, by dividing both sides of Eq. (B7) with

vECA

/
[E]T , one obtains Eq. (32).

By using the symmetry between [E]T and [S]T in the defi-

nition of vECA, Eq. (36) could be obtained by swapping [E]T
and [S]T in Eq. (32).

www.geosci-model-dev.net/8/3823/2015/ Geosci. Model Dev., 8, 3823–3835, 2015



3834 J. Y. Tang: Relationships between MM, RMM and ECA kinetics

Author contributions. J. Y. Tang developed the theory, conducted

the analyses, and wrote the paper.

Acknowledgements. This research is supported by the Direc-

tor, Office of Science, Office of Biological and Environmental

Research of the US Department of Energy under contract no.

DE-AC02-05CH11231 as part of the Next-Generation Ecosystem

Experiments (NGEE-Arctic) and the Accelerated Climate Model

for Energy project in the Earth System Modeling program. I

sincerely thank Thomas Wutzler, Joshua Schimel, an anonymous

reviewer, and the handling editor for their constructive comments,

which significantly improved the paper.

Edited by: C. Sierra

References

Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon

response to warming dependent on microbial physiology, Nat.

Geosci., 3, 336–340, 2010.

Averill, C.: Divergence in plant and microbial allocation strategies

explains continental patterns in microbial allocation and biogeo-

chemical fluxes, Ecol. Lett., 17, 1202–1210, 2014.

Borghans, J. A. M., DeBoer, R. J., and Segel, L. A.: Extending the

quasi-steady state approximation by changing variables, B Math.

Biol., 58, 43–63, 1996.

Cha, S. and Cha, C. J. M.: Kinetics of Cyclic Enzyme Systems, Mol.

Pharmacol., 1, 178–189, 1965.

Drake, J. E., Darby, B. A., Giasson, M.-A., Kramer, M. A., Phillips,

R. P., and Finzi, A. C.: Stoichiometry constrains microbial re-

sponse to root exudation- insights from a model and a field ex-

periment in a temperate forest, Biogeosciences, 10, 821–838,

doi:10.5194/bg-10-821-2013, 2013.

Druhan, J. L., Steefel, C. I., Molins, S., Williams, K. H., Conrad,

M. E., and DePaolo, D. J.: Timing the onset of sulfate reduction

over multiple subsurface acetate amendments by measurement

and modeling of sulfur isotope fractionation, Environ. Sci. Tech-

nol., 46, 8895–8902, doi:10.1021/Es302016p, 2012.

German, D. P., Marcelo, K. R. B., Stone, M. M., and Allison, S. D.:

The Michaelis-Menten kinetics of soil extracellular enzymes in

response to temperature: a cross-latitudinal study, Global Change

Biol., 18, 1468–1479, 2012.

He, Y., Zhuang, Q., Harden, J. W., McGuire, A. D., Fan, Z., Liu, Y.,

and Wickland, K. P.: The implications of microbial and substrate

limitation for the fates of carbon in different organic soil horizon

types of boreal forest ecosystems: a mechanistically based model

analysis, Biogeosciences, 11, 4477–4491, doi:10.5194/bg-11-

4477-2014, 2014.

Houlton, B. Z., Marklein, A. R., and Bai, E.: Representation of ni-

trogen in climate change forecasts, Nat. Clim. Change, 5, 398–

401, 2015.

Johnson, F. H. and Lewin, I.: The Growth Rate of E-Coli in Relation

to Temperature, Quinine and Coenzyme, J. Cell. Compar. Physl.,

28, 47–75, 1946.

Li, J. W., Wang, G. S., Allison, S. D., Mayes, M. A., and Luo, Y.

Q.: Soil carbon sensitivity to temperature and carbon use effi-

ciency compared across microbial-ecosystem models of varying

complexity, Biogeochemistry, 119, 67–84, 2014.

Litchman, E. and Klausmeier, C. A.: Trait-Based Community Ecol-

ogy of Phytoplankton, Annu. Rev. Ecol. Evol. S, 39, 615–639,

2008.

Maggi, F. and Riley, W. J.: Transient competitive complexa-

tion in biological kinetic isotope fractionation explains non-

steady isotopic effects: Theory and application to denitri-

fication in soils, J. Geophys. Res.-Biogeo., 114, G04012,

doi:10.1029/2008jg000878, 2009.

Michaelis, L. and Menten, M. L.: The kenetics of the inversion ef-

fect, Biochem. Z., 49, 333–369, 1913.

Moorhead, D. L. and Sinsabaugh, R. L.: A theoretical model of lit-

ter decay and microbial interaction, Ecol. Monogr., 76, 151–174,

2006.

Palsson, B. O.: On the Dynamics of the Irreversible Michaelis

Menten Reaction-Mechanism, Chem. Eng. Sci., 42, 447–458,

1987.

Riley, W. J., Maggi, F., Kleber, M., Torn, M. S., Tang, J. Y.,

Dwivedi, D., and Guerry, N.: Long residence times of rapidly

decomposable soil organic matter: application of a multi-phase,

multi-component, and vertically resolved model (BAMS1) to

soil carbon dynamics, Geosci. Model Dev., 7, 1335–1355,

doi:10.5194/gmd-7-1335-2014, 2014.

Schimel, J. P. and Weintraub, M. N.: The implications of exoen-

zyme activity on microbial carbon and nitrogen limitation in soil:

a theoretical model, Soil Biol. Biochem., 35, 549–563, 2003.

Segel, L. A.: On the Validity of the Steady-State Assumption of

Enzyme-Kinetics, B. Math. Biol., 50, 579–593, 1988.

Segel, L. A. and Slemrod, M.: The Quasi-Steady-State Assumption

– a Case-Study in Perturbation, Siam Rev., 31, 446–477, 1989.

Sihi, D., Gerber, S., Inglett, P. W., and Inglett, K. S.: Com-

paring models of microbial-substrate interactions and their re-

sponse to warming, Biogeosciences Discuss., 12, 10857–10897,

doi:10.5194/bgd-12-10857-2015, 2015.

Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E., and

Pacala, S. W.: Microbe-driven turnover offsets mineral-mediated

storage of soil carbon under elevated CO2, Nat. Clim. Change, 4,

1099–1102, 2014.

Tang, J. Y. and Zhuang, Q. L.: A global sensitivity analysis

and Bayesian inference framework for improving the param-

eter estimation and prediction of a process-based Terrestrial

Ecosystem Model, J. Geophys. Res.-Atmos., 114, D15303,

doi:10.1029/2009JD011724, 2009.

Tang, J. Y. and Riley, W. J.: A total quasi-steady-state formulation

of substrate uptake kinetics in complex networks and an example

application to microbial litter decomposition, Biogeosciences,

10, 8329–8351, doi:10.5194/bg-10-8329-2013, 2013.

Tang, J. Y. and Riley, W. J.: Weaker soil carbon-climate feedbacks

resulting from microbial and abiotic interactions, Nat. Clim.

Change, 5, 56–60, 2015.

Wang, G. S. and Post, W. M.: A note on the reverse Michaelis-

Menten kinetics, Soil Biol. Biochem., 57, 946–949, 2013.

Wang, G. S., Post, W. M., and Mayes, M. A.: Development

of microbial-enzyme-mediated decomposition model parameters

through steady-state and dynamic analyses, Ecol. Appl., 23, 255–

272, 2013.

Waring, B. G., Averill, C., and Hawkes, C. V.: Differences in fungal

and bacterial physiology alter soil carbon and nitrogen cycling:

Geosci. Model Dev., 8, 3823–3835, 2015 www.geosci-model-dev.net/8/3823/2015/

http://dx.doi.org/10.5194/bg-10-821-2013
http://dx.doi.org/10.1021/Es302016p
http://dx.doi.org/10.5194/bg-11-4477-2014
http://dx.doi.org/10.5194/bg-11-4477-2014
http://dx.doi.org/10.1029/2008jg000878
http://dx.doi.org/10.5194/gmd-7-1335-2014
http://dx.doi.org/10.5194/bgd-12-10857-2015
http://dx.doi.org/10.1029/2009JD011724
http://dx.doi.org/10.5194/bg-10-8329-2013


J. Y. Tang: Relationships between MM, RMM and ECA kinetics 3835

insights from meta-analysis and theoretical models, Ecol. Lett.,

16, 887–894, 2013.

Wieder, W. R., Bonan, G. B., and Allison, S. D.: Global soil carbon

projections are improved by modelling microbial processes, Nat.

Clim. Change, 3, 909–912, 2013.

Wieder, W. R., Grandy, A. S., Kallenbach, C. M., Taylor, P. G., and

Bonan, G. B.: Representing life in the Earth system with soil

microbial functional traits in the MIMICS model, Geosci. Model

Dev., 8, 1789–1808, doi:10.5194/gmd-8-1789-2015, 2015.

Xenakis, G. and Williams, M.: Comparing microbial and chemical

kinetics for modelling soil organic carbon decomposition using

the DecoChem v1.0 and DecoBio v1.0 models, Geosci. Model

Dev., 7, 1519–1533, doi:10.5194/gmd-7-1519-2014, 2014.

Zhu, Q. and Riley, W. J.: Improved modeling of soil nitrogen losses,

Nat. Clim. Change, 5, 705–706, 2015.

Zhu, Q. and Zhuang, Q. L.: Parameterization and sensitivity analy-

sis of a process-based terrestrial ecosystem model using adjoint

method, J. Adv. Model Earth. Sy., 6, 315–331, 2014.

Zhu, Q., Riley, W. J., Tang, J., and Koven, C. D.: Multiple soil nutri-

ent competition between plants, microbes, and mineral surfaces:

model development, parameterization, and example applications

in several tropical forests, Biogeosciences Discuss., 12, 4057–

4106, doi:10.5194/bgd-12-4057-2015, 2015a.

Zhu, Q., Riley, W. J., and Tang, J. Y.: A new theory of plant and

microbe nutrient competition resolves inconsistencies between

observations and Earth System Models, in review, 2015b.

www.geosci-model-dev.net/8/3823/2015/ Geosci. Model Dev., 8, 3823–3835, 2015

http://dx.doi.org/10.5194/gmd-8-1789-2015
http://dx.doi.org/10.5194/gmd-7-1519-2014
http://dx.doi.org/10.5194/bgd-12-4057-2015

	Abstract
	Introduction
	The mathematical relationship between different kinetics
	The equilibrium chemistry approximation kinetics
	The Michaelis--Menten kinetics
	The reverse Michaelis--Menten kinetics

	Parametric sensitivity analyses
	Reaction velocity vs. k2+
	Reaction velocity vs. k1+
	Reaction velocity vs. [E]T
	Reaction velocity vs. [S]T

	Discussions and conclusions
	Appendix A: Derivation of parametric sensitivities (Eqs. 23, 27, 31, and 35) for the quadratic kinetics
	Appendix B: Derivation of parametric sensitivities (Eqs. 24, 28, 32, and 36) for the equilibrium chemistry approximation kinetics
	Author contributions
	Acknowledgements
	References

