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Abstract. In this article we propose two grid generation

methods for global ocean general circulation models. Con-

trary to conventional dipolar or tripolar grids, the proposed

methods are based on Schwarz–Christoffel conformal map-

pings that map areas with user-prescribed, irregular bound-

aries to those with regular boundaries (i.e., disks, slits,

etc.). The first method aims at improving existing dipo-

lar grids. Compared with existing grids, the sample grid

achieves a better trade-off between the enlargement of the

latitudinal–longitudinal portion and the overall smooth grid

cell size transition. The second method addresses more mod-

ern and advanced grid design requirements arising from

high-resolution and multi-scale ocean modeling. The gen-

erated grids could potentially achieve the alignment of grid

lines to the large-scale coastlines, enhanced spatial resolu-

tion in coastal regions, and easier computational load bal-

ance. Since the grids are orthogonal curvilinear, they can be

easily utilized by the majority of ocean general circulation

models that are based on finite difference and require grid

orthogonality. The proposed grid generation algorithms can

also be applied to the grid generation for regional ocean mod-

eling where complex land–sea distribution is present.

1 Introduction

The generation of the model grid preludes the simulation

with ocean general circulation models (OGCMs) and sea ice

models. The majority of OGCMs use orthogonal curvilin-

ear dipolar or tripolar grids with the North Pole relocated to

continental areas, including models in the Coupled Model In-

tercomparison Project, fifth phase (CMIP5; CMI, 2014), and

those used for high-resolution oceanic forecast (e.g., Met-

zger et al., 2014; Storkey et al., 2010). The grids are usually

generated with an analytical formulation, such as a Moebius

transformation, or orthogonal curves, as in Murray (1996)

and Murray and Reason (2001). The only land–sea distribu-

tion information that is exploited in these grids is to which

continental positions the North Pole is relocated.

Contrary to OGCMs, regional ocean models (Shchepetkin

and McWilliams, 2005) usually utilize orthogonal curvilin-

ear grids that only enclose the modeling region. The design

choice to align grid lines with coastlines is a well-established

practice. Examples include the study of small-scale phenom-

ena such as river plumes (Gan et al., 2009), as well as basin-

scale modeling such as Xu and Oey (2011). The motivations

are that (1) it is beneficiary to align grid lines with coast-

lines or isobaths, for better simulation of the river discharge

and more realistic topographic forcing on the oceanic flow;

and (2) the removal of lands in the grid’s domain results in

lower computational overhead, since lands no longer occupy

the logically rectangular index space of the grid. Grid genera-

tion tools, such as SeaGrid (Sea, 2014), utilize the numerical

solution of Laplacian equations and conformal mappings to
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ensure the orthogonality of the resulting grid. With SeaGrid,

modelers need to manually specify the key vertices of the

grid for the modeling region.

As an important trend for global ocean modeling, high-

resolution simulation has been applied in oceanic forecast

(Metzger et al., 2014) and climate studies (Dennis et al.,

2012). Up to 0.1◦ or higher nominal resolution has been

successfully utilized by using large-scale parallel comput-

ers. With the high resolution, small-scale phenomena can

be resolved explicitly, such as narrow but important water

channels and mesoscale eddies, but the simulation is usually

very computationally costly. To alleviate this problem, ocean

modelers adopt load balancing algorithms to improve com-

putational efficiency, and multi-scale modeling with spatial

refinements. The load balancing algorithms exploit the fact

that many grid points are inactive during the simulation as

a result of the land–sea distribution (Kerbyson and Jones,

2005). On the other hand, multi-scale simulation could ex-

ploit the spatial and temporal multi-scale characteristics of

the ocean’s dynamics, or the practical requirements of the

spatial resolution (Mandli and Dawson, 2014; Ringler et al.,

2013; Chelton et al., 1998).

In this paper, we propose two new grid generation algo-

rithms that improve existing grids in various aspects. They

are based on Schwarz–Christoffel conformal mappings. The

first algorithm improves dipolar grids, with an enlarged

latitudinal–longitudinal (lat–lon) portion of the grid and

smooth transition of grid sizes and scaling factors. The sec-

ond algorithm aims at supporting high-resolution and multi-

scale modeling, including (1) the removal of a major conti-

nental area from the grid, (2) enhanced spatial resolution in

coastal regions, and (3) the alignment of grid lines to large-

scale coastlines. In the following part of this section, we first

review the design of orthogonal curvilinear grids for OGCMs

in Sect. 1.1, and then give a short introduction to Schwarz–

Christoffel conformal mappings in Sect. 1.2.

1.1 Grids for ocean general circulation models

The practice of modeling the ocean involves (1) the selection

of an equation set to characterize the thermodynamic and dy-

namic evolution of the ocean, and (2) numerical treatments of

the equation set, including spatial discretization, numerical

approximation and time-domain integration. The majority of

OGCMs utilize a mixture of finite difference and finite vol-

ume spatial and temporal discretization, and assume local or-

thogonality of the underlying grid. In the traditional latitude–

longitude grid, which is a special case for general orthogo-

nal curvilinear grids, meridians converge at the North Pole.

This brings several challenges to the ocean modeling: (1) the

small grid step sizes in the zonal direction near the North

Pole impose a strict limitation on the maximum allowed time

step sizes and computational efficiency, especially for high-

resolution modeling; and (2) there exists large grid step size

anisotropy near the North Pole, which negatively affects the

effective spatial resolution. To overcome these shortcomings,

current OGCMs usually utilize angle-preserving mappings

that relocate the grid’s pole from the North Pole to one or

several continental locations.

Figure 1 shows two examples (GX1, a dipolar grid, and

TX0.1, a tripolar grid) for the POP ocean model (POP, 2014)

in CESM (CES, 2014). As shown, the North Pole is relocated

to lands (in Greenland for GX1, and in Eurasia and North

America for TX0.1). Despite the relocated North Pole, the

large portion of the grid is still lat–lon, including the low lat-

itudes and the Southern Hemisphere. There are three benefits

to the grid being lat–lon. Firstly, the latitudinal and longitu-

dinal directions are characteristic of the large-scale geophys-

ical fluid dynamics, and the grid lines being zonal/meridional

could potentially improve the simulation accuracy, especially

for models with low spatial resolutions. Secondly, it allows

easy analysis of the model output for the majority part of the

ocean. Thirdly, the grid variables (such as latitudes and lon-

gitudes, Coriolis parameter, cell edge sizes) could be stored

by one-dimensional arrays, instead of the two-dimensional

arrays for the general case. By reducing the memory foot-

print during the simulation, the model’s computational per-

formance could be improved. In fact, each of GX1 or TX0.1

consists of two patches that complement each other: (1) the

southern patch that is lat–lon (i.e., the area with the latitude

lower than a certain “turning latitude” φ); and (2) the north-

ern patch (i.e., the area north of φ), which contains a relo-

cated North Pole and is not lat–lon (as in Murray, 1996).

On the boundary between the northern and southern patches,

abrupt changes in grid edge sizes should be avoided (Roberts

et al., 2006). The (local) scaling factor s (defined as the pro-

portion of adjacent cell edge sizes) in the meridional direc-

tion should be close to 1 to ensure smooth transition of edge

sizes.

To summarize, we outline the design requirements for

OGCM grids as follows. They are loosely sorted according to

relative importance, starting from more important or classic

ones to less important or more modern ones.

1. Grid orthogonality.

2. Relocation of the grid pole to continental locations. The

farther the grid poles from the ocean, the better.

3. The scaling factor is close to 1 for the whole grid; i.e.,

there is no jump of local grid cell sizes.

4. The major part of the grid is still lat–lon.

5. Grid cell size anisotropy should be low.

6. The grid does not induce very small time steps.

7. The grid is indexable as a Cartesian grid.

8. The grid can reduce as many unused grid points (i.e.,

grid points on land) as possible.
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(a) Sample dipolar grid (GX1)

(b) Sample tripolar grid (TX0.1)

Figure 1. Orthogonal curvilinear grids for OGCMs.

9. The grid can support high-resolution and multi-scale

modeling.

This list is arguably more comprehensive than that in

Roberts et al. (2006), with the first four items coinciding with

the whole list in Roberts et al. (2006) and added items reflect-

ing new trends in ocean modeling. Items 6 through 8 are re-

lated to computational aspects. In the temporal domain, the

maximum allowed time step size is crucial to the model’s

computational efficiency, which is constrained by the CFL

(Courant–Friedrichs–Lewy) condition. Hence, the grid gen-

eration method should not introduce grid cell sizes that are

too small, as is a shortcoming of traditional lat–lon grids.

To utilize parallel computers, OGCMs usually adopt two-

dimensional domain decomposition in the horizontal spatial

domain. A logical Cartesian grid is both intuitive and easy

to implement, for both domain decomposition and commu-

nication management (item 7). We denote the logical index-

ation of the model grid as the grid index space. With respect

to item 8, since grid cells dedicated to land are inactive for

both computation and communication during the simulation,

reducing their total number or proportion in the grid index

space could improve efficiency and potentially exempt the

need for load balancing. Item 9 is related to the aforemen-

tioned trends of high-resolution and multi-scale simulation

with OGCMs. It is beneficiary that the grid could achieve

higher spatial resolution where needed (such as coastal re-

gions, comparatively shallower regions and polar regions for

resolving mesoscale eddies) and alignment of coastlines to

grid lines (as in regional ocean models).

It is worth noting that finite-element methods-based

OGCMs utilize irregular meshes (Chen et al., 2006; Wang

et al., 2014; Pain et al., 2005, e.g.), and could potentially

achieve multi-scale ocean modeling. However, it is impos-

sible for the majority of existing OGCMs to adopt irregu-

lar meshes, which potentially involves the re-formulation of

the numerical treatments of the equation set from scratch. In

this paper, one of the proposed algorithms aims at provid-

ing a basis for the multi-scale modeling with the large body

of existing OGCMs, by using Schwarz–Christoffel mappings

to achieve land removal and enhanced spatial resolution in

coastal regions.

1.2 Schwarz–Christoffel conformal mapping

Conformal mappings (Nehari, 1975) are angle-preserving

transformations on the complex plane. As the simplest con-

formal mapping, the Moebius transformation has been used

to generate dipolar grids for OGCMs (Murray, 1996). A

Moebius transformation z= a∗z+b
c∗z+d

is constructed to (1) map

the northern patch (under stereographic projection) to the

unit disk, and to (2) map the grid’s North Pole (a user-

specified position, e.g., in Greenland) to the origin of the

unit disk. Once the conformal mapping is constructed (i.e.,

the variables a, b, c and d are computed), a polar coordinate

could be constructed on the unit disk and mapped back to

form the grid on the northern patch. Since (1) the Moebius

transformation is angle-preserving, (2) the polar coordinate

is orthogonal, and (3) forward and backward stereographic

projections preserve angles, it is guaranteed that the grid for

the northern patch is orthogonal. Figure 2 shows the grid con-

structed by a Moebius transformation for the northern patch

of a turning latitude of 20◦ N and the conformal center in

Greenland (45◦ N, 40◦W). Note that the maximum and min-

imum of scaling factors of the grid are d2/d3 and d1/d3,

which are 1.66 and 0.66, respectively, which are far from 1.

For a single-connected region R with an irregular bound-

ary (e.g., not a circle for a uniform turning latitude), instead

of a Moebius transformation, a Schwarz–Christoffel (SC)

conformal mapping (Driscoll and Trefethen, 2002) is needed

for the mapping between a unit circle and R. For a polygon

boundary with n vertices, {vi |1≤ i ≤ n}, and internal angles

of {φi |1≤ i ≤ n}, the SC mapping f from the unit disk to the

region enclosed by the polygon could be defined as
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Figure 2. Northern patch constructed from a Moebius transforma-

tion.

f (z)= A+C

z∫ n∏
i=1

(1−
ζ

zi
)

(
φi
π

)
dζ, (1)

where A and C are scalar constants, and zis correspond

to vis under the SC mapping. The values of A, C and zis

could be numerically computed through a construction pro-

cess (Driscoll and Trefethen, 2002). Figure 3 shows an exam-

ple in which an SC mapping is generated for a user-defined

region with a polygonal boundary, generated with SCTool-

Box (SCT, 2012). Vertices vis of the polygon and the cor-

responding vertices on the unit circle (zis) are shown. The

polar coordinate on the unit disk is constructed and mapped

with f to form an orthogonal grid on the polygonal region

(potentially a northern patch).

For an area with a connectivity of n (2< n <∞), e.g.,

a complex plane with n−1 non-intersecting areas, there exist

canonical forms that this region could be mapped to (Chap-

ter 7 of Nehari, 1975). Figure 4 shows a sample region with

connectivity of 5, and its canonical forms under Schwarz–

Christoffel mappings. For a complex plane with polygonal

regions as in Fig. 4a, an SC mapping exists that maps this

plane to other planes on which the polygonal regions are

mapped to (1) circles, as in Fig. 4b, (2) parallel line seg-

ments, as in Fig. 4c, (3) radial line segments, as in Fig. 4d, or

(4) circular line segments in Fig. 4d. The conformal invari-

ant point, i.e., the point whose position remains unchanged

under the SC mapping, is marked out by an asterisk on each

complex plane.

Despite the fact that the canonical forms of multiple-

connected regions have long been recognized, the construc-

tion theory for such a Schwarz–Christoffel mapping between

a user-specified polygonal region and its canonical forms is

a recent discovery since Delillo et al. (2004). In this paper,

we omit the technical details for SC mapping construction

as introduced in DeLillo and Kropf (2011) and DeLillo et al.

f

Figure 3. Schwarz–Christoffel mapping for a single-connected

polygon.

(2013), and focus on their application in grid generation for

OGCMs.

Hereby we denote SCSC as the Schwarz–Christoffel map-

ping for single-connected regions, and MCSC the Schwarz–

Christoffel mapping for multiple-connected regions. In

Sect. 2, we apply SCSC to improve existing dipolar grids.

Specifically, we improve the patching scheme by designing

a North Polar cap with an irregular boundary instead of a

uniform turning latitude, to enlarge the lat–lon portion of the

dipolar grid. By using SCToolBox for implementation, we

construct an SCSC mapping to generate the orthogonal grid

for the North Polar cap. In Sect. 3, we treat the continental

part of the earth as a multiple-connected region (with irregu-

lar boundaries), denoted as C, and remove C by constructing

an MCSC mapping to map C to a set of slits. Hence, a grid

can be constructed with continents removed and grid lines

aligned to continental boundaries. The open-source software

of MCSC (MCS, 2013) is used for the construction of the

conformal mapping. For each grid generation algorithm, we

provide a sample grid for the static evaluation and carry out

idealized simulation with the POP model, to validate that

they can be easily adopted by OGCMs. In Sect. 4, extensions

to the proposed methods and the relationship with existing

methods are discussed. Finally, Sect. 5 concludes the article.

2 Pole relocation with SCSC mappings

In this section we apply the Schwarz–Christoffel mapping for

single-connected regions (SCSC) to the generation of dipo-

lar grids for OGCMs. We mainly address the following grid

design objectives: (1) the enlargement of the lat–lon portion

of the grid; (2) the mitigation of scale changes across patch

boundaries; and (3) reduced grid cell size anisotropy in po-

lar regions. Traditional dipolar grids (Murray, 1996; Roberts

et al., 2006) usually contain (1) a northern patch and a south-

ern patch, divided by a turning latitude, (2) a regular lat–lon

grid for the southern patch, and (3) a non-lat–lon grid in the

northern patch. To reduce the non-lat–lon portion of the grid

(50 % for GX1 and 28 % for TX0.1 as shown in Table 1),

we design a new patching scheme, which shrinks it to as low

as 6.2 % while maintaining the overall smooth transition of
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** *

(c) Canonical slits I - 
parallel lines

(d) Canonical slits II -
radial lines

(e) Canonical slits III -
circular lines

*

(a) A sample region 
(connectivity=5)

*

(b) Canonical circles

Figure 4. Multiple-connected regions and canonical forms.
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Figure 5. Patching scheme for the global grid.

scaling factors. The patching scheme is shown in Fig. 5, in

which the earth’s surface is divided into five patches. Central

to the grid generation algorithm is a northern patch with an

irregular, non-longitudinal boundary. We denote it the North

Polar cap patch (NP). It includes a relocated pole in Green-

land and a smooth but irregular non-longitudinal boundary

with four segments, as listed below.

– Longitudinal segment across the Atlantic Ocean at a

certain latitude (at 47◦ N), which extends into the Eura-

sia and North America continents on both ends;

– Longitudinal segment across the Pacific Ocean at a cer-

tain latitude (across the Bering Strait), which extends

into the Eurasian and North American continents on

both ends;

– Smooth linkage for the first two segments in Eurasia;

– Smooth linkage for the first two segments in North

America.

The last two segments were constructed to ensure that the

overall boundary is smooth. Due to the irregular boundary of

NP, an SCSC mapping is constructed to map (1) a unit disk

to the stereographic projection of NP and (2) the origin of the

Table 1. Statistics of the sample orthogonal curvilinear grids.

Grid Type Turning latitude Non-lat–lon portion

GX1 Dipolar 0◦ N 50 %

TX0.1 Tripolar 29◦ N 25.8 %

unit disk to the prescribed continental position in Greenland

(i.e., the location for the grid’s pole).

The remaining patches are (1) the southern patch (SP), to

cover the middle and high latitudes in the Southern Hemi-

sphere; (2) the equatorial band patch (EBP), to cover low-

latitude areas (with meridional refinement); (3) the North Pa-

cific patch (NPP), covering the area between EBP and NP

on the Pacific Ocean and Indian Ocean; and (4) the North

Atlantic patch (NAP), covering the leftover area between

EBP and NP (which mainly corresponds to the North At-

lantic Ocean). The boundaries between NPP and NAP are in

the meridional direction and in continental areas, i.e., Eurasia

and North America.

Furthermore, we construct the oceanic part of NPP and

NAP to be lat–lon (and orthogonal). The non-oceanic areas in

NPP and NAP are filled with non-orthogonal grid cells. Since

the grid points in these areas are not active in the simulation,

it is guaranteed that the loss of orthogonality of these points

will not affect simulation results. During the construction of

each patch, meridional refinements are introduced where the

grid size anisotropy is large.

The grid generation algorithm is outlined as follows.

1. Generation of the NP boundary.

2. Grid generation for NP, by constructing an SCSC map-

ping from a unit disk to the stereographic projection of

NP. An orthogonal polar coordinate is generated for the

unit disk and mapped back by the SCSC mapping and

backward stereographic projection. The meridional grid

cell sizes along the boundary of NP are computed.

3. Generation of the Pacific and North Atlantic basin

patches, i.e., NAP and NPP. Linkage between (1) NAP

and NPP on the eastern and western boundaries;

(2) NAP (or NPP) and NP are also constructed.

www.geosci-model-dev.net/8/3471/2015/ Geosci. Model Dev., 8, 3471–3485, 2015



3476 S. Xu et al.: Schwarz–Christoffel mapping and grid generation

4. Generation of the equatorial and southern grid patches,

i.e., EBP and SP, according to grid cell anisotropy re-

quirements.

5. Assembly of the patches into a global grid.

6. Generation of land and depth masks.

As a consequence of the irregular boundary of NP, the

grid cell sizes in the meridional direction along its boundary

are not uniform. Because the Atlantic Ocean and the Pacific

Ocean are not directly connected between 40 and 70◦ N, in

order to ensure the same meridional step count, we utilize

different meridional grid edge sizes in NAP and NPP to mit-

igate the difference in latitude range in NAP and NPP.

Before introducing the detailed design, we show a sam-

ple grid with nominal 1◦ resolution (360× 306) in Fig. 7,

with a detailed view of the North Polar region. One in ev-

ery five grid points is shown in both directions. As is shown,

a large portion of the Pacific and Atlantic oceans is lat–lon.

The boundaries between NPP and NAP are not smooth, since

the orthogonality in these continental regions is not ensured.

2.1 Settings for the NP

The choice for the boundary of NP is a trade-off between

several factors: the reduction of the length of the boundary

on the Pacific and Atlantic oceans, the smoothness of the

scaling factor in both meridional and zonal directions, etc.

In the sample grid, we choose (1) on the Pacific side, the

longitudinal segment crossing the Bering Strait, i.e, at about

66◦ N, from 170◦ N to 160◦W; (2) on the Atlantic side, the

longitudinal segment at about 48◦ N, from 70 to 0◦ N; (3) the

smooth linkage between the two longitudinal segments on

the North American and Eurasian continents, respectively;

and (4) the relocation of the grid’s pole to Greenland (78◦ N,

42◦ N). The smoothness is ensured by constructing a cosine

function-shaped curve in the latitude–longitude space. Sup-

pose that we need to construct the linkage between a point

at (lat1, lon1) and another point at (lat2, lon2), with smooth

linkage to longitudinal lines on both ends. The latitude lat on

a specific point on the link at a certain longitude lon could be

written as a function of the longitude:

lat= lat1+ (lat2− lat1)
1− cos( lon−lon1

lon2−lon1
×π)

2
. (2)

The scheme is shown in Fig. 6a. Approaching either end of

the link, i.e., (lat1, lon1) and (lat2, lon2), the line is gradu-

ally parallel to and joined with the corresponding longitudi-

nal line. Hence, the overall smoothness is attained.

We use a discretized boundary (nominal resolution in the

zonal direction) as the polygonal boundary (shown in Fig. 5

by blue lines) to construct the SCSC mapping. The grid lines

are orthogonal within NP and perpendicular to the boundary

of NP.

Latitude

Longitude
Lon1 Lon2

Lat 1

Lat 2

Meridional Step Size

Latitude
EBP Northern

Latitude
NP Boundary

Latitude

EBP Boundary 
Meridional 
Step Size

NP Boundary 
Meridional 
Step Size

(a) Smooth linkage in 
NP boundary

(b) Meridional step size 
mitigation in NPP/NAP

Figure 6. Smooth linkage of NP boundary and meridional step size

mitigation.

2.2 Control of grid anisotropy

For dipolar grids, grid cells in the polar regions tend to fea-

ture very large anisotropy in cell sizes. Meanwhile, equato-

rial regions are often modeled with higher meridional reso-

lution for purposes such as higher accuracy in the simulation

of tropical waves and ENSO (Griffies et al., 2000). For GX1

(shown in Fig. 1a), the grid cell anisotropy (meridional edge

size divided by zonal edge size) in the tropics is about 4.24.

In the proposed grid generation method, we introduce a

bespoken threshold value to limit the maximum anisotropy

in polar regions. This value is also used for the meridional

refinement in EBP. Hence, the maximum anisotropy of the

whole grid is kept below this value. For SP, due to the fact

that it is purely lat–lon, the latitudes and longitudes of the

grid points could be computed as one-dimensional arrays.

We start from the lowest latitude (the southern boundary of

EBP) and numerically integrate to higher latitudes by grad-

ually decreasing the sizes of latitudinal steps. The gradual

decrease in meridional step sizes is designed to ensure that

the maximum anisotropy does not increase beyond the prede-

fined threshold. For NP, a similar strategy to gradually reduce

the latitudinal steps is used, except that due to the uneven

edge sizes for any circle in the zonal direction, the anisotropy

of a certain zonal circle of the grid is computed as the aver-

age meridional edge size divided by the average zonal edge

size on the circle.

One important property of the anisotropy control scheme

is that although it increases the number of unknowns, it has

a limited effect on the largest allowed time step size Tmax

for the simulation. The value of Tmax is the global mini-

mum of the local largest allowed time step sizes (Tmax(i,j),

where i and j are the logical indices of the model grid).

As constrained by the local stability condition of gravity

wave dispersion, Tmax(i,j) is proportional to the value of

1dist(i,j)=

√
12
x1

2
y

12
x+1

2
y

, where 1x and 1y are the local grid

cell sizes in the zonal and meridional directions. There-

fore, in the polar regions, the value of Tmax(i,j) is mainly

dominated by 1xs (i.e., the zonal direction). Since the grid

anisotropy in these regions is above 1, the control of the
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(a) Global grid (b) North Polar part

Figure 7. Sample grid with nominal 1◦ resolution.

anisotropy (with a threshold of 3 in the sample grid) will in-

duce a limited decrease in Tmax(i,j).

2.3 Mitigation of scaling factors

In order to maintain the accuracy of finite difference oper-

ators, we should keep the local scaling factors close to 1.

To ensure that there are no abrupt scale changes across the

boundary of NP, after the grid generation for NP, we com-

pute the cell edge sizes along the two oceanic segments of

the NP boundary as the average meridional cell edge size of

all the cells in each of the segments. Then, NAP and NPP are

treated separately to ensure a smooth transition of meridional

edge sizes, starting from the uniform meridional edge size

in the south (i.e., their boundaries with EBP), and gradually

changing to the meridional edge sizes on its northern bound-

ary with NP. We use a cosine function to construct the merid-

ional edge sizes: (1) on both the southern and northern ends

the transition of cell sizes is smooth, and (2) the numerical

integration (i.e., the sum) of all the meridional edges equals

the latitude difference between EBP and NP. This scheme is

shown in Fig. 6b. The count of meridional points for NAP

and NPP should be the same, to ensure that the grid is still

addressable as a Cartesian grid.

Within EBP, since the meridional refinement is adopted, a

similar scheme for smooth transition is also used, as shown

by the example grid in Fig. 7.

The meridional and zonal grid edge sizes of the sample

grid are shown in Fig. 8a and b in grid index space, and the

anisotropy (local meridional edge size divided by local zonal

edge size) is shown in Fig. 8c. The value of the anisotropy

threshold for constructing the sample grid is 3. As is shown,

the overall anisotropy is kept under 3. As a result, more grid

points are dedicated to the Arctic Ocean, with enhanced res-

olution to resolve the important passages such as Nares Strait

and Lancaster Sound. The effect of scaling factor mitigation

is shown in Fig. 8d (with areas of the scaling factor larger

than 1.1 marked out by black contours). The North Atlantic

Ocean is shown, and the largest scaling factor of the whole

grid is present (on the boundary between NAP and NP). As is

shown, the scaling factor is kept lower than 1.1 for the largest

part of the area, and only exceeds 1.1 at the eastern end of the

patch boundary.

In the sample grid, 93.8 % of the global oceanic area is

still lat–lon. Compared with traditional dipolar grids (as in

Roberts et al., 2006), in which about 75.3, 79.0 and 82.2 %

of the earth’s oceanic part are covered by a regular latitude–

longitude part for the turning angles of 20, 25 and 30◦ N, re-

spectively, the proposed dipolar grid achieves a much higher

portion of pure lat–lon regions. Actually this proportion is

similar to that achieved by a tripolar grid (96 %) with high-

latitude transition (HLT, as in Murray, 1996) with a polar

patch starting at 66◦ N. It is worth noting that there exist large

scaling factors in the HLT grid, despite the fact that it fea-

tures a high lat–lon portion. The advantages of the sample

grid over existing dipolar grids are achieved through (1) the

irregular boundary that allows more of the oceanic part to

be included by the lat–lon portion of the grid, and (2) non-

orthogonal grid cells with abrupt scale changes that reside

on the continents and do not affect simulation. The proposed

grid generation method exploits more land–sea distribution

information for the grid construction.

2.4 Evaluation with OGCM simulation

Since the sample grid is an orthogonal curvilinear grid, it can

be utilized by the majority of OGCMs. We evaluate the sam-

ple grid from the following aspects: (1) the static evaluation

in terms of the maximum allowed time steps and comparison

with existing dipolar grids, and (2) the application of the grid

in POP.

With the assumption of an explicit (split) formulation, we

show the global map of the maximum allowed count of time

steps per simulation hour for the external gravity wave (i.e.,

the barotropic mode) in Fig. 10a. The local maximum al-

lowed time step count is defined as 3600 s

1dist/
√
gh

, where g is the
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(a) Meridional grid cell size (km) (b) Zonal grid cell size (km)

(c) Grid anisotropy (d) Meridional scaling factor

Figure 8. Scales of the 1◦ global grid with North Pole relocation.

gravity acceleration, h the ocean depth at the cell, and 1dist

defined in Sect. 2.2.

Similar to traditional dipolar grids (e.g., GX1), the critical

area with respect to barotropic time step size is in the Arctic,

near Greenland, as the result of (1) small zonal edge sizes and

(2) the large external gravity wave speed. The sample grid is

comparable to GX1 in terms of the maximum allowed time

step count per simulation hour (87.7 vs. 58.5 for GX1, which

has a lower zonal resolution of 1.125◦ and a shallower Arctic

basin).

We further implemented the grid in POP. We generate the

grid’s depth mask field by interpolation and discretization on

46 depth levels. The depth for each vertical layer starts from

3 m for the surface layer to 250 m in the deep ocean. The

global maximum depth is 6000 m. Simulation with idealized

forcing is carried out to demonstrate that the sample grid can

be easily utilized by OGCMs. The configuration of the simu-

lation is as follows: (1) the potential temperature and salinity

are initiated to a climatological profile (POP, 2014); (2) the

model is forced by analytical, latitude-dependent wind stress

and surface heat forcing (with SST restoring) that is constant

in time, shown in Fig. 9a and b, respectively; and (3) the

spin-up period is 50 years. In Fig. 10b and c, we show the

mean surface temperature (SST) field and sea surface height

(SSH) field of the first month after the spin-up, respectively.

It is shown that under the analytical forcings, the model could

reproduce reasonable SST and SSH distributions. This pro-

vides validation that the grid could be integrated as a swap-

in option in existing OGCMs. The further application of the
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Figure 9. Analytical wind stress and surface heat forcing.

grid in climate studies serves as future work, including (1) re-

fined boundary information for the grid construction, (2) the

long-term spin-up with realistic atmospheric forcings, and

(3) the simulation with coupled models.

3 Grid generation with MCSC mappings

In this section we propose the second grid generation method

for OGCMs. It targets the new trends of high-resolution and

multi-scale ocean modeling (items 8 and 9 in the list in

Sect. 1). By utilizing Schwarz–Christoffel conformal map-

pings for multiple-connected regions (MCSC), we remove

major continental masses from the grid by mapping them to

slits with no area. Similar to the sample grid in Sect. 2, the re-

sulting grid is orthogonal curvilinear, and can be utilized by
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(a) Time step count per simulation hour

(b) SST field

(c) SSH field

Figure 10. Model evaluation of sample grids with SCSC mapping.

the majority of OGCMs. It can potentially achieve (1) the re-

moval of major continental masses from the grid index space,

(2) higher spatial resolution in coastal regions, and (3) the

alignment of the large-scale coastlines to the grid lines.

The outline of the grid generation method is as follows.

1. The manual selection of the polygonal boundary for

each continental mass that is to be mapped to slits. The

area enclosed by the polygon should be strictly in-land.

2. The construction of an MCSC mapping f between the

following two complex planes: (a) the complex plane

pe, which is the stereographic projection of the earth,

and (b) a complex plane ps on which the aforemen-

tioned polygonal continental areas are mapped to slit

regions.

3. According to the grid resolution requirements, a polar

grid coordinate system is generated on ps and mapped

back to pe with f , and further onto the globe through

backward stereographic projection to form the model

grid.

*

1
2

3

4

ps

f

pe
Figure 11. Conformal mapping between pe and ps .

4. The generation of land and depth masks.

The mapping scheme between pe and ps is shown in

Fig. 11a.

Because of (1) the orthogonality of the polar coordinates

on ps , (2) the angle-preserving property of f , and (3) the

properties of the stereographic projection, the orthogonality

of the grid is guaranteed. The resulting grid features several

unique properties. On ps , the grid points close to the slits are

mapped to physical positions close to continental boundaries

on pe. On ps , the circular slits are parallel to circular grid

lines of the polar coordinate, and the radial slits to radial grid

lines. The parallelism between grid lines and slits is kept on

pe by f . The closer the grid points are to a slit on ps , the

better the alignment of grid lines (in either direction) to the

corresponding continental boundary that is attained, as is the

result of the conformal mapping. Since slits have zero area on

ps , the grid lines that cross any slit on ps will be long, poten-

tially curved lines on pe. Because only the inner boundaries

of the continental masses are chosen to be mapped to slits,

the grid lines crossing slits and their corresponding grid cells

only reside on land, and are inactive during the simulation of

the ocean. Hence, the removal of a major continental mass in

the grid index space (i.e, I–J space) is achieved. Note that as

the lateral boundary of the oceans (hence the lateral bound-

ary condition for the model), the coastlines are still present

in the grid.

For the numerical implementation, we use an adapted ver-

sion of the MCSC open-source software (MCS, 2013) for

the generation of f , with code changes and augmentations

to accommodate the mixed type of slit maps (i.e., supporting

radial and circular slits simultaneously). We evaluate the grid

generation method by constructing a sample grid with a set

of basic, manually chosen continental areas. In the following

part of this section, we cover the details of the grid design,

the basic evaluation of the sample grid, and the verification

with OGCM simulation.

3.1 Continental boundary and slit choices

For the sample grid, we limit the choice of the polygonal

boundaries for continents to those enclosed by manually

picked points. The number of points per continental mass
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3480 S. Xu et al.: Schwarz–Christoffel mapping and grid generation

Table 2. Continental boundaries and slit information.

Continent Polygon vertices Slit

type

Area

proportion

Eurasia (48◦ N, 6◦ E), (47◦ N, 14◦ E), (42◦ N, 21◦ E), (40◦ N, 30◦ E), (29◦ N, 55◦ E),

(27◦ N, 60◦ E), (26◦ N, 69◦ E), (23◦ N, 73◦ E), (18◦ N, 75◦ E), (18◦ N, 80◦ E),

(25◦ N, 90◦ E), (25◦ N, 92◦ E), (19◦ N, 96◦ E), (18◦ N, 98◦ E), (18◦ N, 104◦ E),

(22◦ N, 107◦ E), (22◦ N, 110◦ E), (24◦ N, 116◦ E), (27◦ N, 119◦ E), (30◦ N, 120◦ E),

(36◦ N, 118◦ E), (40◦ N, 116◦ E), (43◦ N, 122◦ E), (42◦ N, 125◦ E), (46◦ N, 134◦ E),

(51◦ N, 136◦ E), (55◦ N, 132◦ E), (59◦ N, 138◦ E), (61◦ N, 143◦ E), (61◦ N, 152◦ E),

(65◦ N, 170◦ E), (70◦ N, 145◦ E), (69◦ N, 120◦ E), (73◦ N, 95◦ E), (65◦ N, 80◦ E),

(66◦ N, 55◦ E), (62◦ N, 40◦ E), (55◦ N, 25◦ E)

Circular 65.44 %

Africa Northern part:

(31◦ N, 5◦W), (25◦ N, 11◦W), (14◦ N, 14◦W), (8◦ N, 9◦W), (8◦ N, 5◦ E),

(5◦ N, 11◦ E), (0◦ N, 41◦ E), (8◦ N, 48◦ E), (10◦ N, 42◦ E), (17◦ N, 37◦ E),

(29◦ N, 31◦ E), (31◦ N, 23◦ E), (29◦ N, 19◦ E), (32◦ N, 11◦ E), (35◦ N, 8◦ E),

(34◦ N, 1◦ E)

Southern part:

(17◦ S, 13◦ E), (23◦ S, 16◦ E), (28◦ S, 18◦ E), (31◦ S, 22◦ E), (30◦ S, 28◦ E),

(23◦ S, 33◦ E), (18◦ S, 34◦ E), (15◦ S, 39◦ E), (10◦ S, 37◦ E), (5◦ S, 20◦ E),

(10◦ S, 15◦ E), (12◦ S, 15◦ E)

Northern

part:

circular

Southern

part:

radial

66.05 %

North America (54◦ N, 68◦W), (50◦ N, 78◦W), (50◦ N, 82◦W), (57◦ N, 98◦W), (65◦ N, 100◦W),

(66◦ N, 105◦W), (66◦ N, 110◦W), (68◦ N, 122◦W), (68◦ N, 140◦W), (67◦ N, 155◦W),

(65◦ N, 156◦W), (63◦ N, 150◦W), (62◦ N, 140◦W), (52◦ N, 124◦W), (49◦ N, 120◦W),

(45◦ N, 122◦W), (39◦ N, 122◦W), (35◦ N, 119◦W), (32◦ N, 113◦W), (25◦ N, 105◦W),

(25◦ N, 102◦W), (31◦ N, 97◦W), (32◦ N, 84◦W), (36◦ N, 79◦W), (39◦ N, 79◦W),

(44◦ N, 74◦W)

Circular 56.55 %

South America (6◦ S, 39◦W), (3◦ S, 48◦W), (3◦ S, 52◦W), (2◦ N, 55◦W), (7◦ N, 64◦W),

(8◦ N, 74◦W), (1.5◦ N, 75◦W), (5◦ S, 78◦W), (11◦ S, 74◦W), (17◦ S, 68◦W),

(25◦ S, 68◦W), (31◦ S, 68◦W), (40◦ S, 71◦W), (37◦ S, 63◦W), (32◦ S, 61◦W),

(31◦ S, 54◦W), (22◦ S, 49◦W), (18◦ S, 43◦W)

Radial 64.42 %

(i.e., the vertex count for the corresponding polygon) is kept

small, so that it is feasible for a manual choosing process.

It also ensures that the region enclosed by the polygon is

strictly in-land, to guarantee that no oceanic region is mapped

to slits. The scheme presented here is basic, and only used

to demonstrate the grid generation methodology. More ad-

vanced schemes are also possible but beyond the scope of this

paper, including (1) a spline-based smooth boundary gener-

ated from manually picked in-land points, or (2) automati-

cally retrieved continental boundaries.

Each polygonal region, representing a continental mass, is

mapped to either a circular or radial slit on ps , as introduced

in Sect. 1. The slit type of each area can be specified by the

user by subjective judgments based on the shape of the area.

For example, in Fig. 11, Eurasia, Africa, North America and

South America are mapped to a set of two circular slits (for

Eurasia and North America) and two radial slits (for Africa

and South America).

We construct the sample grid with the four major conti-

nental masses as listed in Table 2. The conformal center for

ps and pc is in Greenland (77.5◦ N, 41◦ N), which serves as

the geographic location of the grid’s North Pole. The corre-

sponding polygonal areas are shown as blue or red colored

patches in Fig. 12a, with blue ones mapped to circular slits

and red ones to radial slits on ps . For the Eurasia continent,

we omit the Black Sea and the Caspian Sea from the ocean

modeling, so they are included in the polygonal area for the

Eurasia continent. For North America, Greenland is omitted

since it contains the conformal center. Africa is divided into

two parts as the result of its special shape: the northern part

mapped to a circular slit and the southern part mapped to a

radial slit. Along the south-eastern coastline of China, sev-

eral extra points are added, to demonstrate that the grid lines

can be forced to follow coastlines more closely if needed.

3.2 Basic evaluation of the sample grid

We focus on two aspects for the basic evaluation of the sam-

ple grid: (1) the effect of the continental area removal, and

(2) the alignment of grid lines to large-scale coastlines. As

shown in Table 2, the proportion of the area mapped to slits

on North America is 56.55 % and above 64 % for other con-

tinents. It is worth noting that this is the result of the specific

choice of polygons for the sample grid. If a high-resolution

grid is to be constructed, the choice of in-land points could

be refined to fit the coastlines more closely. For the sample

grid, the in-land points are chosen to be at least 100 km from

any oceanic area. On the earth, these areas (at least 100 km

away from any seas) account for 80 % of the total land area.

Hence, the removed area is over 80 % of the total removable

area with respect to the 100 km threshold. In addition, we do

not consider peninsulas and archipelagos, which also lowers

the proportion of the continental area removal.
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Figure 12. Global grid with MCSC mapping.

Figure 12 shows the global sample grid and details in spe-

cific regions. The sample grid is nominal 0.25◦ in resolution,

and 1 in every 10, 10, 2, 2 and 4 points is plotted in the sub-

figures, respectively. As shown in Fig. 12b, the grid lines in

the North Polar region are well constrained by the two major

continental boundaries, in particular Hudson Bay. Since re-

gions such as the Scandinavian Peninsula, the Canadian Arc-

tic Archipelago, Indochina and the Iberian Peninsula are not

included, grid lines are not forced to align with the continen-

tal boundaries in these regions. It is worth noting that (1) the

land–sea distributions in these regions are still present in the

grid, providing the necessary lateral boundary condition for

the OGCM, and that (2) the resolutions in these regions, es-

pecially among archipelagos, are enhanced, since the grid

points that were dedicated to lands are now redistributed to

enhance the spatial resolution of coastal regions. The align-

ment of grid lines to the continental boundaries is a collateral

result of the alignment of grid lines to the boundaries of the

removed polygonal regions. Due to (1) the hand-picked poly-

gon boundary only reflecting the large-scale land–sea distri-

bution information and (2) the physical coastlines featuring

multi-scale and fractal characteristics, the alignment of grid

lines to coastlines of the sample grid is only at the large scale.

Figure 12c and d show that coastlines can be forced to align

with grid lines by adding more points.

The actual land–sea distribution and grid cell edge sizes in

the grid index space are shown in Fig. 13. The slits on ps cor-

respond to one-dimensional arrays (constant-I or constant-

J ) in the grid index space. They are marked out by corre-

sponding colors as in Fig. 12. It is shown that major con-

tinental masses are removed from the grid index space. Al-

though Fig. 13 is not directly recognizable as global maps, it

is still clear which part the oceans correspond to. There are

some large cell sizes present in the oceanic areas, especially

at the slit tips of each continental area. This could be im-

proved through modifications to the positions of hand-picked

in-land points.

Through the static evaluation of the grid, we show that

the sample grid satisfies the three major aforementioned fea-

tures: (1) the removal of major continental masses from the

grid index space, (2) the alignment of large-scale coastlines

to grid lines, and (3) enhanced spatial resolution in coastal

areas. The features are achieved at the same time, as a result

of the conformal mapping and its harmonics behavior.

3.3 Evaluation with OGCM simulation

We evaluate the sample grid under the same protocol as in

Sect. 2, i.e., by examination of the maximum allowed time

step count per simulation hour, and the simulation result with

POP under idealized forcings. The sample grid used for sim-

ulation is nominal 0.5◦ (720 by 330).

Figure 14a shows that the most critical area in restricting

the time step sizes is also the Arctic region close to Green-

land, with respect to an explicit (split) model formulation.

The minimum time step count per simulation hour is 116.1.

As compared with the sample grid generated with SCSC

mapping (1◦ nominal zonal resolution with 87.7 steps per

hour) and GX1 (1.125◦ nominal zonal resolution with the

global maximum depth of 5500 m and 58.5 steps per hour),

the sample grid is comparable in terms of the maximum al-

lowed time step size.

Figure 14b and c show the mean SST field and SSH field

after 50 years of the model spin-up. Similar to the sample

grid in Sect. 2, the sample grid generated with MCSC map-

ping yields reasonable SST and SSH distribution. The simu-

lation result provides verification that the grid could be inte-

grated with existing OGCMs as a swap-in option. The further

work with the proposed grid generation method includes the

grid generation with a set of refined continental boundaries

for the MCSC mapping, and long-term ocean simulation with

realistic atmospheric forcings.
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(a) Meridional grid cell size (km)

(b) Zonal grid cell size (km)

Figure 13. Meridional and zonal grid step sizes in grid space.

4 Related work and discussion

In this article, advanced conformal mapping techniques,

namely Schwarz–Christoffel mappings, are used to gener-

ate orthogonal grids for ocean general circulation models.

These curvilinear orthogonal grids are indexable in a regu-

lar Cartesian manner, and can be easily integrated with ex-

isting OGCMs that already support orthogonal curvilinear

grids, such as POP or NEMO (NEM, 2014).

Spatial discretization with irregular and non-orthogonal

grids is adopted by algorithms such as finite-element meth-

ods, which are widely used in computational fluid dynamics

and structure design. In recent years, these non-structured

grids have also been adopted in ocean modeling, such as

FVCOM (Chen et al., 2006), MPAS-Ocean (Ringler et al.,

2013), FESOM (Wang et al., 2014), ICOM (Pain et al.,

2005), etc. Despite certain limitations as listed in Griffies

et al. (2010), these models have shown advantages in the

context of multi-scale modeling (Chen et al., 2009; Scholz

et al., 2013, e.g.,). On the contrary, traditional OGCMs based

on structured meshes usually provide multi-scale simulation

capabilities through nested grids with one-way forcing or

two-way coupling. The proposed grid generation method in

Sect. 3 provides a basis for multi-scale simulation by using

existing OGCMs. Grid points that were dedicated to lands are

redistributed to oceanic areas, with coastal areas with poten-

tially higher density of grid points. By combining with other

dynamic or static spatial refinement strategies, modelers can

carry out multi-scale ocean simulation with respect to the re-

(a) Time step count per simulation hour

(b) SST field

(c) SSH field

Figure 14. Model evaluation of sample grids with MCSC mapping.

quired spatial resolution, such as Rossby deformation radii

for resolving mesoscale eddies.

The sample grid in Sect. 3 does not have a latitude–

longitude grid along the Equator. It is worth noting that this is

not due to the limitation of the methodology. Extra polygons

on pe could be added for the equatorial lines on both the

Atlantic and Pacific oceans (corresponding to circular slits

on pe), and the conformal map could be constructed to map

these polygons to two circular slits on ps . Hence, the align-

ment of grid lines to the Equator is achieved.

In Murray (1996), a grid generation method was proposed

to utilize the conformal equivalence of the orthogonal grid to

an electrostatic field. This approach, denoted the multi-polar

algorithm (MP), is able to remove some land area from the

grid by placing two points with positive and negative charges

on the same continent (e.g., Eurasia, Antarctica). Although

different in motivation, this approach and the one proposed

in Sect. 3 bear certain similarity in the capability to remove

continental areas. With MP, the modeler does not have direct

control of the continental area to be removed. For effective

removal of continental masses, the modelers need to make
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extra efforts, including (1) a variable number of charged

points, with variable values of charge, and (2) the numeri-

cal optimization of these values in order to approximate the

boundary of removed areas with the real continental bound-

aries. Instead, with the proposed method based on MCSC

mapping, modelers have direct control over the areas to be

removed, by specifying the polygonal areas and the specific

slit type for each area.

The invariance of the solution of a Laplacian equation with

first- or second-type boundary conditions under conformal

mappings could be further utilized for the grid generation for

OGCMs. Instead of the construction of the conformal map-

ping, a numerical solution of a boundary value problem is

needed. The first- and second-type boundary conditions are

equivalent to the circular and radial slits as in the approach in

Sect. 3, assuming that the grid’s poles in Greenland and the

South Pole have the first-type boundary condition.

The proposed method in Sect. 3 could also be applied to

the generation of grids for regional ocean models such as

ROMS (Shchepetkin and McWilliams, 2005), especially for

regions with complex land–sea distribution such as the Cana-

dian Arctic Archipelago or Southeast Asia. For traditional

grid generation methods, the multiple connectivity of land ar-

eas in these regions poses a special challenge, as well as nar-

row but hydrologically important water channels. The pro-

posed algorithm in Sect. 3 potentially serves as a framework

to overcome both problems.

In the supplements, we provide the grid input files for

POP in binary format for the two sample grids, with nomi-

nal 1 and 0.5◦ resolution, respectively. Integration with other

OGCMs requires the conversion of grid input formats and

the interpolation of initial conditions for the ocean, etc. The

two grid generation methods in this paper are implemented

in MATLAB, which utilize open-source softwares of SC-

ToolBox and MCSC. We plan to provide the two grid gen-

eration methods in the format of open-source software, with

which users could specify various grid settings such as dif-

ferent spatial resolutions, etc. The generation of the SC map-

pings, as compared with analytical forms-based grid gen-

eration methods, is much more computationally intensive.

One notable shortcoming of MATLAB is the limited com-

putational performance as compared with the C language or

FORTRAN-based implementations. Since the grid genera-

tion task is only carried out once for a whole set of simu-

lations (the spin-up run or the coupled model simulations,

etc.), currently we only focus on the functionality aspects of

the methods. The optimization in terms of the computational

performance is postponed to future works.

5 Conclusions

In this paper, we propose two new grid generation meth-

ods for global ocean generation circulation models. Con-

trary to conventional dipolar or tripolar grids based on

analytical formulations, these new methods are based on

Schwarz–Christoffel (SC) conformal mappings with user-

defined boundary information. The first method improves the

conventional dipolar grids. With SCSC mappings, we con-

struct an orthogonal North Pole patch with a smooth but ir-

regular southern boundary. By utilizing the disconnectedness

of major ocean basins in the mid-latitudes in the Northern

Hemisphere, the scaling factors across patch boundaries are

kept low. In the sample grid, 93.8 % of the oceanic area is

still covered by a regular latitudinal–longitudinal grid, which

is higher than conventional dipolar grids and comparable to

commonly used tripolar grids.

The second grid generation method aims at more modern

topics in ocean modeling: (1) the removal of major conti-

nental masses from the global grid, (2) better resolution at

coastal regions with the alignment of large-scale coastlines

to grid lines, and (3) the support for multi-scale ocean mod-

eling. This is achieved by constructing an MCSC mapping,

which maps the continental areas to slit regions. In the grid

index space, these areas correspond to one-dimensional grid

cells. The conformal mapping ensures the alignment of grid

lines with the boundaries of these areas, hence achieving

the approximate alignment with coastlines. Oceanic regions

near these boundaries feature a higher density of grid points,

which corresponds to better spatial resolution in coastal re-

gions. Compared with conventional dipolar or tripolar grids,

this method exploits more information on land–sea distribu-

tion in the form of user-prescribed continental boundaries.

Through static evaluation and simulation with the POP

ocean model, we show that the sample grids can serve as

swap-in replacements for existing grids for the majority of

OGCMs that already support orthogonal curvilinear grids.

The MCSC-based grid generation method could also be used

in combination with other dynamic or static spatial refine-

ment methods to achieve multi-scale ocean modeling. For

the first aspect of the future work, we plan to further apply

the proposed methods with refined continental boundary in-

formation for grid construction and long-term spin-up runs

with realistic atmospheric forcings. As the second aspect, we

plan to formulate the proposed methods into complete, open-

source grid generation software for both global and regional

ocean modeling.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-3471-2015-supplement.
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