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Abstract. An integrated method of advanced anisotropic

hr-adaptive mesh and discretization numerical techniques

has been, for first time, applied to modelling of multiscale

advection–diffusion problems, which is based on a discontin-

uous Galerkin/control volume discretization on unstructured

meshes. Over existing air quality models typically based on

static-structured grids using a locally nesting technique, the

advantage of the anisotropic hr-adaptive model has the abil-

ity to adapt the mesh according to the evolving pollutant

distribution and flow features. That is, the mesh resolution

can be adjusted dynamically to simulate the pollutant trans-

port process accurately and effectively. To illustrate the capa-

bility of the anisotropic adaptive unstructured mesh model,

three benchmark numerical experiments have been set up

for two-dimensional (2-D) advection phenomena. Compar-

isons have been made between the results obtained using

uniform resolution meshes and anisotropic adaptive reso-

lution meshes. Performance achieved in 3-D simulation of

power plant plumes indicates that this new adaptive multi-

scale model has the potential to provide accurate air quality

modelling solutions effectively.

1 Introduction

It is well-known that the interaction of multiscale physi-

cal processes in atmospheric phenomena poses a formidable

challenge for numerical modelling (Kühnlein, 2011). Large-

scale processes can trigger small-scale features that again

have an important influence/feed back to the large scale

(Behrens, 2007). For example, the processes of tropical cy-

clone involve a range over a continuous spectrum of scales

from the large-scale flow environment ∼O(106–107)m,

tropical cyclone itself ∼O(105–106)m, embedded eye wall

and rainbands ∼O(103–104)m, as well as down to mi-

croscales of the boundary layer turbulence ∼O(10–102)m

(Kühnlein, 2011). For air pollution, the dynamic and chemi-

cal processes also involve a wide range of scales. The initial

transformation of emissions from urban and industrial cen-

tres or dispersion of plumes from large power plant stacks

occur on relatively small scales, but would be engaged to

much larger scales after long range transport. It is a gar-

gantuan computational challenge to modelling large regions

with uniform resolution at the finest relevant scale. There-

fore, mesh adaptation may be the only effective way to en-

compass different scales (e.g. local, urban, regional, global)
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in a unified modelling system to better capture the interac-

tions among the processes relevant at each scale (Garcia-

Menendez and Odman, 2011; Kühnlein, 2011; Weller et al.,

2010; Nikiforakis, 2009).

So far, the accurate numerical modelling of advection (or

transport) remains a central problem for many applications

such as air pollution, atmospheric chemistry, meteorology

and other physical sciences. There have been many studies

on the numerical advection schemes (e.g. PPM, Bott and

Walcek etc.) that have been used in many air quality mod-

els (e.g. CMAQ, CMAx, NAQPMS etc.) (Colella and Wood-

ward, 1984; Bott, 1989; Walcek and Aleksic, 1998). These

advection algorithms were implemented based on a fixed

uniform mesh system. The successive global refinement can

be used to capture the details of small-scale flow features,

but is prohibitively expensive and not feasible for practi-

cal applications. Alternatively, the nesting technique, plac-

ing finer meshes within coarser meshes, is often used for

achieving local higher resolution in many air quality mod-

els (Garcia-Menendez and Odman, 2011; Frohn et al., 2002;

Wang, 2001). In static mesh nesting, the solutions obtained

from the global coarse mesh model provide the boundary

conditions for the nested mesh regional model; in turn, the

solutions in the global model are updated with the high res-

olution solutions. However this may lead to spurious oscil-

lations at the interface between the coarse mesh and nested

fine mesh, especially when concentration gradients are large

cross the interface. Although the numeral techniques such

as blending, nudging and selective damping approaches can

be used to remove these oscillations, the small-scale features

on the fine meshes may be damped (Garcia-Menendez and

Odman, 2011; Zhang et al., 1986; Debreu and Blayo, 2008;

Alapaty et al., 1998). Moreover, due to highly unsteady at-

mospheric flows, it is almost impossible to construct a static

optimal nested mesh suitable for an accuracy simulation over

a long time period. The use of dynamically adaptive mesh

techniques can therefore be considered in such as way that

the mesh resolution can be adjusted locally in response to

the evolution of the flow and passive tracer (Piggott et al.,

2009; Behrens, 2007).

In contrast to locally nested mesh techniques, adaptive

mesh techniques can not only resolve multiscale processes

in a consistent way, but also enable to follow and capture

the features of flows as time evolves. Dynamic mesh adap-

tation can be achieved, either by re-locating mesh nodes or

by locally increasing (and decreasing) the number of nodes

in time and space. The former, known as mesh movement

(i.e. r-adaptive technique), can be used to improve the accu-

racy of solutions by optimally re-locating mesh nodes to re-

solve the small-scale features of interest (Garcia-Menendez

and Odman, 2011; Srivastava et al., 2000; Lagzi et al., 2009;

Kühnlein et al., 2012; Nikiforakis, 2009). However, the ac-

curacy of solutions using r-adaptivity is restricted a priori

for achieving an optimal dynamic mesh (where the total

number of nodes is fixed). The latter, known as mesh en-

richment (i.e. h-adaptive technique), can guarantee a min-

imum solution accuracy level by providing sufficient res-

olution where and when it is needed (Baker et al., 2013;

Constantinescu et al., 2008; Piggott et al., 2005). Various h-

adaptive techniques based on structured meshes as well as

the r-adaptive techniques on unstructured/structured meshes

have been explored in atmospheric modelling; furthermore

some of these techniques have been applied to air quality

models (Garcia-Menendez and Odman, 2011). Recently, sig-

nificant research efforts have been focused on application

of this new adaptive mesh techniques in ocean modelling

(Pain et al., 2005; Piggott et al., 2009, 2008a, b).

This article applies a new anisotropic hr-adaptive mesh

technique into air quality transport (advection) modelling.

This adaptive unstructured mesh technique provides the dy-

namic spatial and temporal resolution to capture moving

features, e.g. moving fronts or power plant plumes. Using

the hr-adaptive technique, existing elements can be split (h-

adaptive) or element vertices can be moved (r-adaptive), to

periodically modify the mesh geometry. Hence, the purpose

of this article is to demonstrate, through example problems,

the capability of anisotropic mesh adaptivity for modelling

of multiscale transport phenomena.

The remaining structure of this article is as follows:

Sect. 2 describes numerical methods, including discontinu-

ous Galerkin (DG) and control volume (CV) methods based

on unstructured meshes. Section 3 covers the topics of mesh

adaptivity, error measures and interpolation. Section 4 in-

troduces three-dimensional (3-D) unstructured anisotropic

adaptive mesh model (Fluidity). Section 5 discusses its per-

formance in three benchmark advection problems and a

model problem for dispersion of power plant plumes. Con-

clusions are drawn in Sect. 6.

2 Numerical methods for transport equation

As a model problem, we consider the generic transport equa-

tion for a scalar quantity, c, is given in conservative form by

∂c

∂t
+∇ · (uc)−∇ · (κ∇c)= s, (1)

where u= (u,v,w)T is the velocity vector, κ is the diffusiv-

ity (tensor) and s represents any source or reaction terms. If

κ = 0 and s = 0, Eq. (1) reduces to the advection equation

∂c

∂t
+∇ · (uc)= 0, (2)

2.1 Spatial discretization

Integrating Eq. (2) by part over the computational domain�,

its weak form can be written∫
�

(
φ
∂c

∂t
−∇φ ·

(
uc− κ∇c

)
−φs

)
d�
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+

∫
∂�

(
φn̂ ·uc−φn̂ · κ∇c

)
d∂�= 0. (3)

2.1.1 Discontinuous Galerkin discretization

As a locally conservative, stable and high-order accurate

method, the discontinuous Galerkin methods can easily con-

struct discontinuous approximations on unstructured meshes

to capture highly complex solutions and are well-suited

for hr-adaptivity and parallelization (Cockburn et al., 2000;

Cockburn and Shu, 2001; Flaherty et al., 2002; Hesthaven

and Warburton, 2007). Moreover DG methods, as a gener-

alization of finite volume methods, can directly make nu-

merical fluxes and slope limiters available in the finite ele-

ment framework (Burbeau et al., 2001; Hoteit et al., 2004;

Krivodonova, 2007; Krivodonova et al., 2004).

Integrating Eq. (2) over a single element and summing

over all elements, we obtain

∑
e


∫
e

(
φ
∂c

∂t
−∇φ ·

(
uc− κ∇c

)
−φs

)
de

+

∫
∂e

(
φn̂ ·uc−φn̂ · κ∇c

)
d∂e

= 0, (4)

where the hatted term represents fluxes across the element

facets. If κ = 0 and s = 0, Eq. (4) becomes a pure advection

equation

∑
e


∫
e

(
φ
∂c

∂t
−∇φ · uc

)
de+

∫
∂e

φn̂ ·uc d∂e

= 0. (5)

Due to the discontinuous nature of fields, there is no unique

value for the flux term; however the requirement that c is

a conserved quantity, does demand that adjacent elements

make a consistent choice for the flux between them. In this

work, two advective flux schemes, the upwind and local Lax–

Friedrichs flux methods, are used to represent n̂ ·u c for DG

methods (AMCG, 2014). In n̂ ·u c, the advecting velocity u

can be calculated by either averaging it on each side of the

face or applying a Galerkin projection to project the velocity

onto a continuous basis.

In the upwind flux formulation, the value of c at each

quadrature point on the face is taken to be the upwind value;

that is, if fluid is into/out of the element then it is the value

on the exterior/interior side of the face. Integrating the ad-

vection term by parts twice, then Eq. (5) becomes (AMCG,

2014):

∑
e

{∫
e

(
φ
∂c

∂t
−φ û · ∇c

)
de+

∫
∂e∩∂�

n · û (cb− cint)d∂e

+

∫
∂er∂�

n · û (cext− cint)d∂e

}
= 0, (6)

where û represents the flux velocity and a weakly imposed

boundary condition c = cb is applied on the inflow part of

boundaries; cext and cint are the values on the exterior and

interior side of the face respectively.

In local Lax–Friedrichs flux formulation, the tracer advec-

tion is given by

n̂ ·u c =
1

2
n · û(cint+ cext)−

C

2
(cint− cext) , (7)

where for each facet s ⊂ ∂e:

C = supx∈s |û ·n|. (8)

Here, “sup” is the abbreviation of supremum.

To ensure nonlinear stability and effectively suppress spu-

rious oscillations, the slope limiting techniques are used here

(Kuzmin, 2010; Cockburn and Shu, 2001; Luo et al., 2007).

2.1.2 Control volume discretization

The control volume discretization uses a dual mesh con-

structed around the nodes of the parent finite element mesh.

Once the dual control volume mesh has been defined, it is

possible to discretize the transport Eq. (1) using piecewise

constant shape functions within each volume, v. Integrating

Eq. (1) by parts within a volume, v and summing over all

volumes, we obtain

∑
v


∫
v

(
∂c

∂t
− s

)
dv+

∑
k

∫
∂vk

(
n̂ ·u c− n̂ · κ∇c

)
d∂vk

= 0.

(9)

For the flux term n̂ ·u c, the velocity is well-defined since

the control volume facets are in the centre of the elements

of the parent mesh where it is continuous. The face value of

ck is computed at each quadrature point of the facet k us-

ing the finite element interpolation approach, i.e. interpolat-

ing it using the finite element basis functions on the parent

mesh. Usually the first-order quadrature is performed on the

control volume facets; however if higher-order control vol-

ume facet quadrature is selected then k refers to each quadra-

ture point on the facet. To avoid spurious oscillations, the

CV–TVD (control volume – total variation diminishing) lim-

iter is used to make the solutions total variation diminishing

(Sweby, 1984; AMCG, 2014).

For diffusion term n̂ · κ∇c, ∇c is treated with control-

volume element-based gradients, equal-order Bassi–Rebay

and staggered mesh Bassi–Rebay discretization (for details,

see AMCG, 2014).
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Table 1. Basic configuration for FEM_Adapt_L and FEM_Fix_L schemes (where FEM represents CV or DG; the maximum mesh size is set

to be 0.2).

Mesh schemes (L) 1 2 4 8 128

Minimum mesh size (h) 0.01 0.005 0.0025 0.00125 7.8125× 10−6

The maximum number of nodes FEM_Adapt_L 3500 7500 15 000 25 000 15 000

The number of nodes FEM_Fix_L 10 201 40 401 160 801 641 601 163 865 601

Mesh schemes (L) 1 2 4 8 128

Minimum mesh size (h) 0.01 0.005 0.0025 0.00125 7.8125× 10−6

The maximum number of nodes FEM Adapt L 3500 7500 15000 25000 45000

The number of nodes FEM Fix L 10201 40401 160801 641601 163865601
Table 1. Basic configuration for FEM Adapt L and FEM Fix L schemes (where FEM represents CV or DG;

the maximum mesh size is set to be 0.2).

(a) 2D (b) 3D

Fig. 1. Initial distribution / exact solution at t= 2π in 2D and 3D view.

16

Figure 1. Initial distribution/exact solution at t = 2π in (a) 2-D and (b) 3-D view.

2.2 Time discretization

The semi-discrete matrix form of Eq. (3) can be written as

M
dc

dt
+A(u)c+Kc = r, (10)

in which the vector c = (c1, . . .,cN )T contains the solution

of variable c at nodes (N is the number of nodes), M is the

mass matrix, A(u) is the advection operator, K is the diffu-

sion operator, and r is the right-hand side vector containing

boundary, source and absorption terms, where for continuous

Galerkin discretization:

Mij =

∫
�

φiφj , Aij =−

∫
�

∇φi ·uφj ,

Kij =−

∫
�

∇φi · κ∇φj , i,j ∈ (1,2, . . .,N ). (11)

The time derivative term at time level n+ 1 is treated using

the θ method to yield

M
cn+1
− cn

1t
+A(un)cn+θ +Kcn+θ = rn+θ . (12)

where θ ∈ [0,1] and the terms cn+θ are given by

cn+θ = θcn+1
+ (1− θ)cn. (13)

Equation (12) can be rearranged for unknown vector cn+1:(
M+ θ1t

(
A
(
un
)
+K

))
cn+1

=
(
M− (1− θ)1t

(
A
(
un
)
+K

))
cn+ rn+θ . (14)

Equation (14) can be solved in two stages:

M
c∗− cn

1t
+A

(
un
)
cn+θ = rn+θD , (15)

M
cn+1
− c∗

1t
+Kcn+θ = rn+θN + rn+θs , (16)

where r in Eq. (14) is split into Dirichlet rD and Neumann

boundary components rN, and a source component rs.

For discontinuous Galerkin discretization, the explicit Eu-

ler scheme (θ = 0) is used in Eq. (15). An advection subcy-

cling method based upon a CFL criterion or a fixed number

of subcycles is adopted in modelling advection flows; that is,

the time step 1t is split to N sub-time-step 1tsub =
1t
N

to

satisfy the specified Courant number:

Mcnew =

(
M−

1t

N
A
(
un
))

cold+ rn+θD . (17)

To guarantee a bounded solution, the slope limiter is ap-

plied to cnew after each sub-time-step. Note that the matrix

M− (1t/N)A(un) is constant within one time step. There-

fore the process of solving Eq. (17) only involves the matrix–

vector multiplication, thus reducing a large amount of the

Geosci. Model Dev., 8, 3421–3440, 2015 www.geosci-model-dev.net/8/3421/2015/
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Figure 2. Case one – solid body revolution: the errors in the c field solutions and the CPU time (as a function of the mesh size h) required

for one revolution (t = 2π), where h is the mesh size for FEM_Fix_L schemes while the minimum mesh size for FEM_Adapt_L schemes.

Figure 3. Case one – solid body revolution: the evolution of number of nodes for (a) CV_Adapt, (b) DG_Adapt.

CPU time required for assembling the matrices, especially

when unstructured meshes are used.

For control volume discretization, an explicit scheme is

simple but strictly limited by the CFL number, which can be

restrictive on adaptive meshes as the minimum mesh size can

be very small. Here, we adopt a new time stepping θ scheme

based on traditional Crank–Nicolson scheme (θaim = 1/2)

because of its robustness, unconditional stability and second-

order accurate in time (Pavlidis et al., 2015; Versteeg and

Malalasekera, 2007; Donea and Huerta, 2003). For the given

time step, the value of θmin can be estimated at each CV

face based on the satisfaction of a total variation diminish-

ing (TVD) criterion. Therefore, for each control volume v,

we can choose θv ∈ [θmin,1] to be as close to θaim as possi-

ble; that is, θv =max{θmin,θaim}. In this way, it can elimi-

nate the local time step restriction for physically realistic and

bounded solution although it may be at a cost of losing some

local accuracy (for details, see Pavlidis et al., 2015).

3 Mesh adaptivity

The optimization-based adaptivity technique, developed by

the Applied Modelling and Computation Group (AMCG)

at Imperial College London (AMCG, 2014), is introduced

www.geosci-model-dev.net/8/3421/2015/ Geosci. Model Dev., 8, 3421–3440, 2015
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(a) CV Fix 1 (b) CV Adapt 4

(c) DG Fix 1 (d) DG Adapt 4

Fig. 4. Case one - solid body revolution: the results from the fixed and adaptive mesh schemes using almost

the same nodes number N , where N = 10201 for FEM Fix 1 scheme while N ≈ 11500 for FEM Adapt 4

scheme, at t= 2π.

18

Figure 4. Case one – solid body revolution: the results from the fixed and adaptive mesh schemes using almost the same node number N ,

where N = 10 201 for FEM_Fix_1 scheme while N ≈ 11 500 for FEM_Adapt_4 scheme, at t = 2π .

in this section. It utilizes dynamic adaptation of a fully un-

structured triangular (or tetrahedral) mesh in two (or three)-

dimensions, as presented in Pain et al. (2001, 2005) and Pig-

gott et al. (2009). The unstructured and adaptive meshes al-

low computational effort to resolve important fluid dynam-

ics at diverse scales. The key objective of using adaptive

mesh methods is to reduce the overall computational cost in

achieving an error goal; thus ensuring that fine resolution is

used only when and where it is needed (Fang et al., 2010;

Pain et al., 2001). A error metric tensor to guide an adaptive

meshing algorithm can be defined (Pain et al., 2001):

M̄e =
γ

ε
|H| , (18)

where ε is the required level of errors and γ a scalar constant

(here, γ = 1) and H is the Hessian matrix of variable fields

(here, the tracer concentration c):

H=



∂2c

∂x2

∂2c

∂x∂y

∂2c

∂x∂z
∂2c

∂y∂x

∂2c

∂y2

∂2c

∂x∂z
∂2c

∂z∂x

∂2c

∂z∂y

∂2c

∂z2

 .

The absolute value of the symmetric Hessian matrix is de-

fined as (Pain et al., 2001)

|H| = V3VT, (19)

where the matrices V and 3 contain the eigenvectors ei and

eigenvalues λi of the Hessian matrix H, respectively. The re-

quired edge length in the direction ei to achieve the required

level of errors ε can be obtained (Piggott et al., 2009):

hi =
1
√
ελi

. (20)

The rotation matrix V in combination with 3 can be used to

adapt the original element to an anisotropic element required

Geosci. Model Dev., 8, 3421–3440, 2015 www.geosci-model-dev.net/8/3421/2015/
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Figure 5. Case two – swirling flow: the errors in the c field solutions and the CPU time (as a function of the mesh size h) required for one

revolution, where h is the mesh size for FEM_Fix_L schemes while the minimum mesh size for FEM_Adapt_L schemes, using the same

1t = 0.00125.

Figure 6. Case two – swirling flow: the evolution of number of nodes for (a) CV_Adapt, (b) DG_Adapt.

for the given level of errors. To bound the aspect ratio of

elements in physical space, the eigenvalues of the metric can

be modified (Pain et al., 2001):

λ̂j =max

{
λ′j ,

1

a2
max3

i=1λi

}
, j = 1,2,3, (21)

where

λ′j =min

{
1

h2
min

, max

{∣∣λj ∣∣ , 1

h2
max

}}
, j = 1,2,3, (22)

where a is the a given aspect ratio of elements, and hmin and

hmax are the minimum and maximum sizes of elements, re-

spectively.

To represent small-scale dynamics, a relative error metric

formulation is suggested:

Me =
γ |H|

max(ε · |c| ,εmin)
, (23)

where c is the field under consideration, ε is now a relative

tolerance and εmin is the minimum tolerance used to ensure

that the denominator never becomes zero.

To guide refinement/coarsening of the mesh, the max-

imum and minimum mesh sizes are set to allow one to

www.geosci-model-dev.net/8/3421/2015/ Geosci. Model Dev., 8, 3421–3440, 2015
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(a) CV Fix 1 (b) CV Adapt 4

(c) DG Fix 1 (d) DG Adapt 4

.

Fig. 7. Case two - swirling flow: the results from the fixed and adaptive mesh schemes using almost the same

nodes number N , where N = 10201 for FEM Fix 1 scheme while N ≈ 12000 for FEM Adapt
Figure 7. Case two – swirling flow: the results from the fixed and adaptive mesh schemes using almost the same node number N , where

N = 10 201 for FEM_Fix_1 scheme while N ≈ 12 000 for FEM_Adapt_4 scheme, at t = T/2(= 0.5).

impose different limits in different directions (for details, see

AMCG, 2014). Assuming that these directions are aligned

with the coordinate axes allows one to define diagonal ten-

sors. The maximum and minimum number of nodes are also

set for mesh adaptivity. This is effected by computing the

expected number of nodes from the given metric. If the ex-

pected number of nodes is greater than the maximum number

of nodes, the metric resolution is homogeneously decreased

so that the expected number of nodes is the maximum num-

ber of nodes.

Another key issue of mesh adaptivity is to interpolate

any necessary data from the previous mesh to the adapted

one. The consistent interpolation is often adopted in mesh

adaptivity. However, the consistent interpolation can intro-

duce a suboptimal interpolation error, unsuitability for dis-

continuous fields, and lack of conservation. An alternative

conservative interpolation approach, the Galerkin projection

is proposed for discontinuous fields. A supermeshing algo-

rithm (Farrell et al., 2009) is used for implementation of the

Galerkin projection.

4 Introduction of a 3-D unstructured anisotropic

adaptive mesh model (Fluidity, version 4.1.9)

The new multiscale air quality transport model has been de-

veloped with a 3-D unstructured and adaptive mesh model

(Fluidity; developed by the AMCG at Imperial College

London). Fluidity, an open-source LGPL model, numeri-

cally solves the 2-D/3-D Navier–Stokes equation (being non-

hydrostatic, to model dense water formation and flows over

steep topography) and field equations with a range of control

volume and finite element discretization methods. It includes

a number of novel, advanced methods based upon adapting

and moving anisotropic unstructured meshes, advanced finite

element and control volume discretization, and a range of

numerical stabilization and large-eddy simulation (LES) tur-

bulence models. Among existing unstructured mesh models,

Fluidity is the only model that can simultaneously resolve

both small- and large-scale fluid flows while smoothly vary-

ing resolution and conforming to complex topography. The

model employs 3-D anisotropic mesh adaptivity to resolve

and reveal fine-scale features as they develop while reduc-

ing resolution elsewhere. A number of interpolation methods

(e.g. non-conservative pointwise and conservative methods)

Geosci. Model Dev., 8, 3421–3440, 2015 www.geosci-model-dev.net/8/3421/2015/
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(a) CV Fix 1 (b) CV Adapt 4

(c) DG Fix 1 (d) DG Adapt 4

Fig. 8. Case two - swirling flow: the results from the fixed and adaptive mesh schemes using almost the same

nodes number N , where N = 10201 for FEM Fix 1 scheme while N ≈ 12000 for FEM Adapt
Figure 8. Case two – swirling flow: the results from the fixed and adaptive mesh schemes using almost the same node number N , where

N = 10 201 for FEM_Fix_1 scheme while N ≈ 12 000 for FEM_Adapt_4 scheme, at t = T (= 1).

(a) t= 0 (b) t= 0.5 (c) t= 1

Fig. 9. Case two - swirling flow: the evolution of the adaptive mesh colored with tracer value c, where

DG Adapt
Figure 9. Case two – swirling flow: the evolution of the adaptive mesh coloured with tracer value c, where DG_Adapt_4 scheme is used.

are available for mesh-to-mesh interpolations between adap-

tations.

Fluidity is parallelized using MPI and is capable of

scaling to many thousands of processors. It has a user-

friendly GUI and a python interface that can be used

to calculate diagnostic fields, set prescribed fields or

set user-defined boundary conditions (for details see

https://www.imperial.ac.uk/engineering/departments/

earth-science/research/research-groups/amcg/). It is noted

that version 4.1.9 of Fluidity is not necessarily required, but

older versions might work as well.

5 Numerical examples

To illustrate the efficiency and accuracy of anisotropic adap-

tive schemes, four benchmark problems have been adopted,
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(a) 2D (b) 3D

Figure 10. Case three – swirling deformation: initial distribution and velocity field.

(a) Walcek (b) CV_Adapt_128

(c) DG_Adapt_128 (d) Exact Solution

Figure 11. Case three – swirling deformation: comparison of the analytical solution with the results from different schemes using almost the

same number of nodes N ≈ 15 000, at t = 3T/20, where T = 2.6376.
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(c) DG_Adapt_128 (d) Exact Solution

(a) Walcek (b) CV_Adapt_128

Figure 12. Case three – swirling deformation: comparison of the analytical solution with the results from different schemes using almost the

same number of nodes N ≈ 15 000, t = T/5, where T = 2.6376.

which are representative and challenging enough to predict

how the new adaptive multiscale model would behave in fu-

ture real-life applications (LeVeque, 1996; Kuzmin, 2009;

Staniforth et al., 1987; Walcek and Aleksic, 1998; Bott, 1989,

1993, 2010).

In the following comparative study, we consider FEM_Fix

and FEM_Adapt schemes (FEM represents CV or DG)

based on the control volume and discontinuous Galerkin

discretization. The CV_Fix_L and DG_Fix_L schemes use

fixed uniform triangular meshes, while the CV_Adapt_L and

DG_Adapt_L schemes use adaptive meshes (where L repre-

sents the different mesh schemes, as shown in Table 1). For

CV discretization, a finite element interpolation is used at the

control volume faces with a CV-TVD limiter to bound the

solution. The time discretization used here is the new time

stepping θ scheme based on the Crank–Nicolson scheme.

For DG discretization, the upwind flux is chosen in combi-

nation with vertex-based slope limiter. The slope limiter used

with the discontinuous Galerkin formulation only guarantee

a bounded solution in conjunction with an explicit advection

scheme. Therefore, advection subcycling based upon a CFL

criterion is necessary for DG discretization (AMCG, 2014).

Equation (14) is solved by the generalized minimum residual

method (Saad, 1993). The successive over-relaxation precon-

dition is invoked to speed up convergence at large time steps.

To assess the difference between the analytical solution c

and its numerical approximation ch, we introduce the error

norms:

E1 =

∫
�

|c− ch|d�= ‖c− ch‖1, (24)

E2 =

√√√√∫
�

|c− ch|2d�= ‖c− ch‖2. (25)

The order of accuracy in modelling is used to assess the nu-

merical convergence rate:

p = log2(E1(h)E1(h/2)), (26)
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(a) t = T/20 (b) t = T/10

(c) t = 3T/20 (d) t = T/5

Figure 13. Case three – swirling deformation: the evolution of the

adaptive mesh coloured with tracer value c, where DG_Adapt_128

scheme is used.

where h is the mesh size.

All computations were performed on a workstation using

the Gfortran Compiler for Linux. The simulation workstation

has 8 processors and a 4 GB random access memory (RAM).

The processor used in workstation is Intel(R) Core(TM) i7-

2600 CPU @ 3.40 GHz. A single processor with frequency

of 3.40 GHz was used since the test cases were simulated in

serial.

5.1 Case one: solid body revolution

A standard test problem applied to the advection Eq. (2) in 2-

D is solid body revolution (LeVeque, 1996; Kuzmin, 2009).

The incompressible velocity field in the domain�= [0,1]×

[0,1] is represented by

u(x,y)= (0.5− y,x− 0.5), (27)

which corresponds to a anticlockwise rotation around the

centre (0.5,0.5) of �. Following LeVeque (1996), we con-

sider a slotted cylinder, a sharp cone and a smooth hump as

the initial solid bodies defined within the circle centred at

each reference point (x0,y0):

r(x,y)=
1

r0

√
(x− x0)2+ (y− y0)2 ≤ 1, (28)

where r0 = 0.15. After each full revolution (t = 2πk), the

exact solution is returned to the initial distribution as de-

picted in Fig. 1. For the slotted cylinder, the reference point

is (x0,y0)= (0.5,0.75) and

c(x,y,0)=

{
1 if |x− x0| ≥ 0.03 or y ≥ 0.85,

0 otherwise.
(29)

The cone is centred at (x0,y0)= (0.5,0.25) and its geometry

is given by

c(x,y,0)= 1− r(x,y). (30)

The peak of the smooth hump is located at (x0,y0)=

(0.25,0.5) and the shape function is

c(x,y,0)=
1+ cos(πr(x,y))

4
. (31)

In the rest of the domain �, the solution of Eq. (2) is ini-

tialized by zero. The challenge of this numerical test case is

to preserve the shape of the rotating bodies as time evolves.

The mesh size used for the FEM_Fix_L schemes and the

FEM_Adapt_L schemes are listed in Table 1. The time step

is set to 1t = 0.01 for all different mesh schemes. For DG

discretization, the explicit advection subcycling scheme with

a tight CFL criterion (here 0.1) is used to make sure that the

simulation is converging as the mesh is refined. For CV dis-

cretization, although the time stepping θ scheme based on

the Crank–Nicolson scheme can maintain high accuracy, the

subcycling number is set to be {2,4} for h= {1/400,1/800}

respectively such that the sub-time-step is small enough to

guarantee convergence and higher accuracy.

Figure 2 shows the errors of results at t = 2π (one full

revolution) and the CPU time required. It can be seen that

compared with the CV method, the DG method is more ac-

curate but requires more computer memory and CPU time.

For the CV method, the accuracy of results using the adap-

tive mesh scheme is very close to that using the fixed mesh

(global mesh refinement) scheme, while the CPU time re-

quired by the adaptive mesh scheme is reduced by 75%. For

the DG method, to achieve a given level of accuracy of re-

sults, for example, E1 = 0.0055 and E2 = 0.035, by using

adaptive meshes, the CPU time can be reduced by 45% of

that required using fixed meshes. With increasing mesh res-

olution, the CPU time for the adaptive schemes increases at

a much slower rate than those for the fixed (global mesh re-

finement) approach (see Fig. 3 and Table 1). Compared with

that in the fixed mesh (global mesh refinement) schemes,

the problem size is reduced by 68–97.7 % using the adap-

tive mesh schemes. Hence, the use of adaptive meshes pro-

vides an efficient approach to lower the storage requirement,
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(a) t = T/20 (b) t = T/10

(c) t = 3T/20 (d) t = T/5

Figure 14. Case three – swirling deformation: the evolution of the adaptive mesh coloured with tracer value c, in the subdomain [0.49,0.51]×

[0.62,0.627], using DG_Adapt_128 scheme.

(a) (b) (c)

Figure 15. Case three – swirling deformation: the evolution of (a) number of nodes, (b) max local and (c) integral of CFL number for

CV_Adapt_128 schemes.

thus leading to the reduction of the overall computing time,

while remaining the accuracy of numerical results. To esti-

mate the rate of convergence, the order of accuracy is cal-

culated in Eq. (26) (here, h= 1/200). The order of accu-

racy is {0.83, 0.54, 0.95, 0.72} for {CV_Fix, CV_Adapt,

DG_Fix, DG_Adapt} schemes, respectively. It is argued that

non-smooth profiles in the complex problems presented here

lead to a low order of accuracy, that is, a low convergence

rate. If we only consider the hump-smooth profile as the ini-

tial data, the order of accuracy can increase to be {1.98, 1.52,

1.54, 1.13}.

Figure 4 shows the numerical results at t = 2π (after one

full revolution) using the adaptive and fixed mesh schemes.

For comparison purpose, the FEM_Fix_1 and FEM_Adapt_4

schemes are chosen since the number of nodes in these two

mesh schemes are almost the same, where N = 10 201 for

FEM_Fix_1 scheme while N ≈ 11 500 for FEM_Adapt_4

scheme. The solutions of CV_Fix_1 and DG_Fix_1 are com-

puted on a structured uniform mesh of triangular elements

with mesh size h= 1/100 and 1t = 0.01. It can be seen that

there is severe erosion of the slotted cylinder when the fixed

mesh scheme is adopted. The adaptive mesh scheme provides

an improvement in accuracy of results. It is shown that with

use of adaptive meshes (especially DG Adapt_Adapt_4), the

initial shape of bodies is well preserved.

5.2 Case two: swirling flow

The capability of the adaptive mesh model has been further

demonstrated in modelling swirling flow phenomena. The

set-up of the simulation in this case is similar with case one;

however the velocity field is provided by the formula (LeV-

eque, 1996; Kuzmin, 2009):

u(x,y, t)= ( sin2(πx)sin(2πy)g(t), −sin2(πy)sin(2πx)g(t)),

(32)

where g(t)= cos(πt/T ) on the time interval 0≤ t ≤ T (here

T = 1).

The initial mass distribution will be deformed by the time-

dependent velocity field, which gradually slows down to zero

and reverses its direction at t = T/2. Thus, the initial pro-

file will be reproduced at the final time t = T as depicted in

Fig. 1. Due to the flow here being time variable, the time step

is set small enough to be1t = 0.00125 for all different mesh

schemes.
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Figure 16. Case three – swirling deformation: the distribution of CFLNumber for CV_Adapt_128 scheme at t = T/5, where T = 2.6376.

(a) (b)

Figure 17. Case four – power plant plumes: (a) the distribution of power plants and (b) the corresponding initial mesh.

A comparison of results using fixed and adaptive meshes

is illustrated in Figs. 5–8. Again, it can be observed that

by using the adaptive mesh scheme in the model, both the

CPU time and number of nodes required are significantly re-

duced for a given level of accuracy of results (see Fig. 6).

To improve the stability of solutions when the mesh reso-

lution is increased, the explicit advection subcycling based

upon a CFL criterion is used for DG discretization, and the

Crank–Nicolson scheme is used for CV discretization. In this

case, the order of accuracy is {0.81, 0.68, 0.92, 0.79} for

{CV_Fix, CV_Adapt, DG_Fix, DG_Adapt} schemes respec-

tively. Again the convergence rate is low due to non-smooth

profiles in solutions.

The numerical solutions in Figs. 7 and 8 (at time levels

t = T/2 and T ) were computed by different fixed and adap-

tive mesh schemes. Again adaptive mesh modelling is able

to present better deformation of shapes at t = T/2 (Fig. 7)

and preserve the initial shape after one full revolution (t = T )

much better than fixed mesh modelling Fig. 8.

Figure 9 displays the change of adaptive meshes as time

evolves. It is observed the dynamic mesh adaptation algo-

rithm is capable of following the evolution details of tran-

sient flows. As the simulation progresses, the mesh has to be

adapted not only to the current solution profile but also to its

expected shape in the future. It can be seen that the mesh is

adapted to capture the details of local flows, i.e. increasing
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Figure 18. Case four – power plant plumes: simulated SO2 concentrations (µgm−3) at 21:00 UTC, 12 January 2013 using the CV methods

on different horizontal resolution of (a) 10 km, (b) 5 km, (c) 2.5 km and on the (d) adaptive mesh.

the resolution around the shape’s boundary with anisotropic

elements and then capturing the shape of deformed bodies.

5.3 Case three: swirling deformation

A comparison of the anisotropic adaptive mesh schemes with

the Walcek (or Bott) scheme (Walcek and Aleksic, 1998;

Bott, 2010) adopted by many air quality models has been

undertaken in this section. The case used here was described

in Staniforth et al. (1987). In this case, we only focus on the

subdomain [0.24,0.76]×[0.12,0.88] of�. A cone is initially

centred at (x0,y0)= (0.5,0.5) with a negative (−0.2) back-

ground as shown in Fig. 10 and its geometry is given by

c(x,y,0)= 1.2(1− r(x,y))− 0.2. (33)

The velocity field defined by the following stream function

(Staniforth et al., 1987):

ψ(x,y)= Asin(kx)cos(ky) (34)

with

u(x,y)= (−ψy ,ψx)= (Ak sin(kx)sin(ky), Ak cos(kx)cos(ky)),

(35)

where A= 0.08,k = 4π .

Staniforth et al. (1987) defined two flow regimes (short

time periods and long time periods) that have different eval-

uation criteria for the numerical advection schemes. Here,

we focus on the evaluation of the first regime (short time

periods) so that the numerical solutions should be com-

pared with the analytical solutions in a qualitative manner.

Figures 11 and 12 show the comparison of three different

schemes’ results with the analytical solution at time t =

3T/20 and t = T/5, where T = 2.6376. The solutions of the

Walcek scheme were computed on a structured uniform mesh

with h= 1/200 and 1t = 0.003297. For FEM_Adapt_128

schemes (see Table 1), they were computed on dynamic

adaptive mesh with constant 1t = 0.006594. The minimum

mesh size is 7.8125×10−6 while the maximum mesh size is

0.2.

It can be observed the initial c field is split into two ro-

tations within the areas of the two central vertices as time

evolves. Since the spatial gradient of solutions increases as

time evolves especially at the boundaries of the central vor-

tices, high resolution of meshes around the boundaries is

needed to present the sharp shape accurately. Due to lack

of high resolution of meshes, the solutions using the Wal-

cek scheme fail to represent the analytical one and maintain
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Figure 19. Case four – power plant plumes: the evolution of the adaptive mesh coloured with SO2 concentrations (µgm−3), using the

CV_Adapt scheme.

the shape distribution. For the Walcek scheme, at time t =

3T/20 (see Fig. 11), the gradients of numerical distribution

begin to disappear at the upper and middle boundaries of the

central vortices and nearly completely disappear at time t =

T/5 (Fig. 12). By adapting the mesh in time and space, the

mesh resolution increases around the boundaries of each ver-

tices, thus improving the accuracy of results. There is close

agreement between the adaptive mesh modelling results and

the analytical ones although the gradients for CV_Adapt_128

scheme are not as strong as the exact solution.

The sequence of triangulations presented in Fig. 13

demonstrates that the dynamic mesh adaptation algorithm

succeeds in locally refining the mesh in the vicinity of steep

fronts; therefore reducing the amount of numerical diffusion

and follow steep fronts as time evolves. To further reduce

the number of elements, the anisotropic adaptive algorithm

has been used for all the above adaptive mesh scheme, al-

lowing the mesh to be adapted along different directions. As

shown in Fig. 14, which depicts a close up view of locally

adapted mesh, the adapted mesh size across the boundaries

is small enough to capture the sharp fronts while large along

the boundaries since the c field does not change much. There-

fore, the mesh sizing desired in anisotropic adaptive algo-

rithm is not only a function of space but also a function of

direction. At a given point, the desired mesh sizing differs in

different directions.

Figure 15 shows the number of nodes required for

CV_Adapt_128 scheme is less than the node number

(15 808) for fixed Walcek scheme during most of the sim-

ulation period. However, as local mesh resolution increases

with time, the max CFL number of CV_Adapt_128 scheme

exceeds 10 and even reach 80. To keep the stabilization of

solutions, the time stepping θ scheme is used to eliminate

the time-step restrictions and maintain high accuracy as far

as possible, where θv (1/2≤ θv ≤ 1) is chosen at 0.5 for

most of the elements while being big enough (close to 1)

for a small fraction of individual elements with a large CFL

number (see Fig. 16). In this way, the use of a large time

step is acceptable when applying adaptive mesh techniques

into comprehensive air quality models, which can make the

computation much more efficient. As shown in Figs. 11–12,

in combination with the time stepping scheme, the adaptive
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Figure 20. Case four – power plant plumes: the evolution of 3-D plumes visualization, surface SO2 concentrations (µgm−3) and the corre-

sponding adaptive mesh.

mesh CV modelling solutions can stay stable and accurate

without reducing the time step size, even if the max CFL

number of CV_Adapt_128 exceeds 80. All of these can fur-

ther illustrate the efficiency and the potential of dynamic

mesh adaptation for future real applications in air quality

model.

5.4 Case four: power plant plumes

In this case, the anisotropic adaptive mesh model is applied

to an advection–diffusion problem (Eq. 2): atmospheric dis-

persion of emissions from power plants. This is a first step

towards applying the adaptive mesh model to realistic cases.

The SO2 emission of power plants was obtained from the

Regional Emission inventory in ASia (REAS 2.1) data de-

veloped by National Institute of Environmental Sciences of

Japan. As shown in Fig. 17a, the simulated domain covers

the whole Shanxi–Hebei–Shandong–Henan region of China

with 1090km× 1060km, and there are about 100 power

plants in this area. The meteorological fields are provided by

the mesoscale meteorological model WRF (v3.5) with a hor-

izontal resolution of 5km× 5km and 20 vertical sigma lay-

ers. The simulation started at 00:00 UTC on 10 January 2013

and ran through to the 15 January 2013. In this case, the CV

method is used for simulation of power plant plumes.

We started with a numerical investigation of a simplified

2-D test. The mixing layer height is 600 m and the turbu-

lent horizontal diffusivity is 100 m2 s−1. The horizontal wind

fields are obtained by averaging the lowest five layers of

WRF’s meteorological fields and stored at hourly intervals

during 5-day period. For fixed mesh schemes, three mesh res-

olution levels in horizontal are used: 10km×10km (level 1),

5km×5km (level 2) and 2.5km×2.5km (level 3). For coarse

meshes (level 1), there are 110× 107 nodes and 23 108 ele-

ments. The total number of fixed elements increases by a fac-

tor of 4 when doubling the horizontal mesh resolution. For

adapt mesh schemes, the minimum (maximum) mesh size is

set to be 2 km (30 km), and the maximum number of nodes is

set to be 12 000, which is the same as that of the fixed coarse

mesh scheme (level 1). To represent the emission sources ac-

curately, the fixed mesh with a high resolution of 2 km is used
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around the power plant points within a radius of 6 km (see

Fig. 17b).

Figure 18 shows SO2 concentrations at 21:00 UTC on

12 January after spin-up of simulations. An artificial dilu-

tion effect can be seen when coarse meshes are used in mod-

elling. This can be improved by increasing the mesh resolu-

tion or applying an adaptive mesh scheme. The results us-

ing adaptive meshes are in agreement with those using fixed

meshes with a high mesh resolution of 2.5km while the num-

ber of nodes decreases by a factor of 16 with use of adap-

tive meshes. The evolution of adaptive meshes displayed in

Fig. 19 illustrates that the adaptive algorithm is able to cap-

ture not only the detailed small-scale plume structures near

the point sources, but also the regional high concentrations at

large downwind distances.

To further demonstrate the adaptive mesh model’s abil-

ity in 3-D modelling, we extended the above 2-D case to

3-D dispersion of plumes. According to the terrain data of

the modelling domain, the initial 2-D adaptive mesh (see

Fig. 17b) can be extruded to create a layered 3-D mesh from

the top 20km (above sea level) to the terrain surface, with

11 terrain-following layers. There are seven layers within

the lowest 1km above the terrain surface (see Fig. 20a). The

power plant emissions were injected into the third layer about

200m above the surface. Similarly, the 3-D velocity fields

produced by WRF were interpolated from the fixed mesh in

WRF onto the adaptive mesh. The vertical eddy diffusivity

is parameterized based on a scheme by Byun and Dennis

(1995). Figure 20 shows the evolution of 3-D SO2 concen-

tration visualization, which includes surface concentrations

and the corresponding adaptive mesh, as well as the 3-D pol-

lutant plumes defined as a constant concentration surface for

concentrations greater than 100µgm−3. It can be seen that

full 3-D mesh adaptivity has been used to improve the abil-

ity of the model to capture the details of flow dynamics and

follow the evolution of power plant plumes.

6 Conclusions

In this paper, a new anisotropic adaptive mesh technique has

been introduced and applied to modelling of multiscale trans-

port phenomena, which is a central component in air quality

modelling systems. The first two benchmark test cases using

the fixed mesh and adapted mesh schemes have been set up

to illustrate the efficiency and accuracy of anisotropic adap-

tive mesh technique, which is an important means to improve

the competitiveness of unstructured mesh air quality mod-

els. The third case presents the irreplaceable advantage of

this new adaptive mesh method to reveal detailed small-scale

plume structure (large gradients) that cannot be resolved with

static grids, using comparable computational resources. Dis-

persion of power plant plumes, as a real model problem, has

been simulated in the last case to illustrate that the adaptive

algorithm is able to capture the detailed small-scale plume

structures near each point source as well as the regional high

concentrations at large downwind distances.

It is demonstrated that the dynamic anisotropic adaptive

mesh technique can be used to automatically adapt the mesh

resolution to follow the evolving pollutant and transient flow

features in time and space, thus reducing the CPU time

and memory requirement significantly. In combination with

the time stepping θ scheme based on the Crank–Nicolson

method, the adaptive mesh air pollution model is able to

maintain the stability and accuracy of results without reduc-

ing the time step size when the minimum mesh size is getting

smaller. This is of great significance for the future applica-

tions in multiscale modelling.

The third test case serves as a proof-of-concept to further

illustrate the capability of anisotropic mesh adaptivity tech-

niques. In this case, the swirling deformation flow exhibits

very high aspect ratios (1000, for example), which means that

the pollutant distribution can possess very strong anisotropies

as time evolves. Hence, the anisotropic mesh adaptation pro-

vides a very useful and effective way to simulate and repre-

sent this special atmospheric phenomena.

In summary, the results obtained in this work show the ca-

pability and potential of adaptive mesh methods to simulate

multiscale air pollutant transport problems (spanning a range

of scales) with higher numerical accuracy. The mesh adap-

tation can be used to improve the mesh resolution when and

where it is needed without performing successive global re-

finement, which is prohibitively expensive, and therefore, not

feasible for realistic applications. Future work will consider

chemical reactions to further demonstrate the capability of

dynamic adaptive mesh techniques.

Code availability

Fluidity code developed by the Applied Modelling and Com-

putation Group (AMCG) at Imperial College London is

available under the GNU General Public License (https:

//github.com/FluidityProject/fluidity). The user manual and

examples are also available. We offer all set-up files of the

first three test cases in the Supplement (available on the GMD

journal website) so that users can run these test cases after

installing Fluidity. If anyone is interested in the last case,

please contact Fangxin Fang (email: f.fang@imperial.ac.uk)

to obtain the set-up files and the corresponding meteorologi-

cal data from WRF.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-3421-2015-supplement.

Acknowledgements. This work was carried out under fund-

ing from the Chinese Academy of Sciences (CAS) Strate-

gic Priority Research Program (grant no. XDB05030200),

Geosci. Model Dev., 8, 3421–3440, 2015 www.geosci-model-dev.net/8/3421/2015/

https://github.com/FluidityProject/fluidity
https://github.com/FluidityProject/fluidity
http://dx.doi.org/10.5194/gmd-8-3421-2015-supplement


J. Zheng et al.: A new multiscale air pollutant transport model using anisotropic adaptive mesh methods 3439

the UK’s Natural Environment Research Council (projects

NER/A/S/2003/00595,NE/C52101X/1 and NE/C51829X/1), the

Engineering and Physical Sciences Research Council (GR/R60898,

EP/I00405X/1 and EP/J002011/1) and the Imperial College High

Performance Computing Service. The authors would like to

thanks to J. Percival for many helpful discussions and support

from others in AMCG. The research leading to these results has

received funding from the European Union Seventh Framework

Programme (FP7/2007–2013) under grant agreement no. 603663

for the research project PEARL (Preparing for Extreme And

Rare events in coastaL regions). Pain is grateful for the support

of the EPSRC MEMPHIS multi-phase flow programme grant.

The authors acknowledge the reviewers and Editor for their in

depth perspicacious comments that contributed to improving the

presentation of this paper.

Edited by: P. Jöckel

References

Alapaty, K., Mathur, R., and Odman, T.: Intercomparison of spa-

tial interpolation schemes for use in nested grid models, Mon.

Weather Rev., 126, 243–249, 1998.

AMCG: Fluidity Manual, Applied Modelling and Computation

Group, Imperial College London, 2014.

Baker, C., Buchan, A., Pain, C., Farrell, P., Eaton, M., and

Warner, P.: Multimesh anisotropic adaptivity for the Boltzmann

transport equation, Ann. Nucl. Energy, 53, 411–426, 2013.

Behrens, J.: Adaptive Atmospheric Modeling: Key Techniques in

Grid Generation, Data Structures, and Numerical Operations

with Applications, Springer Science & Business Media, vol. 54,

1–22, 2007.

Bott, A.: A positive definite advection scheme obtained by nonlin-

ear renormalization of the advective fluxes, Mon. Weather Rev.,

117, 1006–1016, 1989.

Bott, A.: The monotone area-preserving flux-form advection algo-

rithm: reducing the time-splitting error in two-dimensional flow

fields, Mon. Weather Rev., 121, 2637–2641, 1993.

Bott, A.: Improving the time-splitting errors of one-dimensional ad-

vection schemes in multidimensional applications, Atmos. Res.,

97, 619–631, 2010.

Burbeau, A., Sagaut, P., and Bruneau, C.-H.: A problem-

independent limiter for high-order Runge–Kutta discontinuous

Galerkin methods, J. Comput. Phys., 169, 111–150, 2001.

Byun, D. W. and Dennis, R.: Design Artifacts in Eulerian Air Qual-

ity Models – Evaluation of the Effects of Layer Thickness and

Vertical Profile Correction on Surface Ozone Concentrations, At-

mos. Environ., 29, 105–126, 1995.

Cockburn, B. and Shu, C. W.: Runge–Kutta discontinuous Galerkin

methods for convection-dominated problems, J. Sci. Comput.,

16, 173–261, 2001.

Cockburn, B., Karniadakis, G. E., and Shu, C. W.: The Develop-

ment of Discontinuous Galerkin Methods, Springer, Berlin Hei-

delberg, 1–20, 2000.

Colella, P. and Woodward, P. R.: The piecewise parabolic method

(PPM) for gas-dynamical simulations, J. Comput. Phys., 54,

174–201, 1984.

Constantinescu, E. M., Sandu, A., and Carmichael, G. R.: Model-

ing atmospheric chemistry and transport with dynamic adaptive

resolution, Computat. Geosci., 12, 133–151, 2008.

Debreu, L. and Blayo, E.: Two-way embedding algorithms: a re-

view, Ocean Dynam., 58, 415–428, 2008.

Donea, J. and Huerta, A.: Finite element methods for flow problems,

John Wiley Sons, New York, 2003.

Fang, F., Pain, C., Navon, I., Gorman, G., Piggott, M. D., Allison, P.,

and Goddard, A.: A POD goal-oriented error measure for mesh

optimization, Int. J. Numer. Meth. Fl., 63, 185–206, 2010.

Farrell, P., Piggott, M., Pain, C., Gorman, G., and Wilson, C.: Con-

servative interpolation between unstructured meshes via super-

mesh construction, Comput. Method. Appl. M., 198, 2632–2642,

2009.

Flaherty, J. E., Krivodonova, L., Remacle, J.-F., and Shep-

hard, M. S.: Aspects of discontinuous Galerkin methods for hy-

perbolic conservation laws, Finite Elem. Anal. Des., 38, 889–

908, 2002.

Frohn, L. M., Christensen, J. H., and Brandt, J.: Development of

a high-resolution nested air pollution model: the numerical ap-

proach, J. Comput. Phys., 179, 68–94, 2002.

Garcia-Menendez, F. and Odman, M. T.: Adaptive grid use in air

quality modeling, Atmosphere, 2, 484–509, 2011.

Hesthaven, J. S. and Warburton, T.: Nodal discontinuous Galerkin

methods: algorithms, analysis, and applications, vol. 54, Springer

Science & Business Media, Berlin Heidelberg, 2007.

Hoteit, H., Ackerer, P., Mosé, R., Erhel, J., and Philippe, B.: New

two-dimensional slope limiters for discontinuous Galerkin meth-

ods on arbitrary meshes, Int. J. Numer. Meth. Eng., 61, 2566–

2593, 2004.

Krivodonova, L.: Limiters for high-order discontinuous Galerkin

methods, J. Comput. Phys., 226, 879–896, 2007.

Krivodonova, L., Xin, J., Remacle, J. F., Chevaugeon, N., and Fla-

herty, J. E.: Shock detection and limiting with discontinuous

Galerkin methods for hyperbolic conservation laws, Appl. Nu-

mer. Math., 48, 323–338, 2004.

Kühnlein, C.: Solution-adaptive moving mesh solver for geophys-

ical flows, PhD thesis, lmu, Ludwig-Maximilians-Universität,

München, 1–14, 2011.

Kühnlein, C., Smolarkiewicz, P. K., and Dörnbrack, A.: Modelling

atmospheric flows with adaptive moving meshes, J. Comput.

Phys., 231, 2741–2763, 2012.

Kuzmin, D.: Explicit and implicit FEM-FCT algorithms with flux

linearization, J. Comput. Phys., 228, 2517–2534, 2009.

Kuzmin, D.: A vertex-based hierarchical slope limiter for p-

adaptive discontinuous Galerkin methods, J. Comput. Appl.

Math., 233, 3077–3085, 2010.

Lagzi, I., Turányi, T., Tomlin, A. S., and Haszpra, L.: Modelling

photochemical air pollutant formation in Hungary using an adap-

tive grid technique, Int. J. Environ. Pollut., 36, 44–58, 2009.

LeVeque, R. J.: High-resolution conservative algorithms for advec-

tion in incompressible flow, SIAM J. Numer. Anal., 33, 627–665,

1996.

Luo, H., Baum, J. D., and Löhner, R.: A Hermite WENO-based

limiter for discontinuous Galerkin method on unstructured grids,

J. Comput. Phys., 225, 686–713, 2007.

Nikiforakis, N.: Mesh generation and mesh adaptation for large-

scale Earth-system modelling, Philos. T. R. Soc. A, 367, 4473–

4481, 2009.

www.geosci-model-dev.net/8/3421/2015/ Geosci. Model Dev., 8, 3421–3440, 2015



3440 J. Zheng et al.: A new multiscale air pollutant transport model using anisotropic adaptive mesh methods

Pain, C., Umpleby, A., De Oliveira, C., and Goddard, A.: Tetrahe-

dral mesh optimisation and adaptivity for steady-state and tran-

sient finite element calculations, Comput. Method. Appl. M.,

190, 3771–3796, 2001.

Pain, C., Piggott, M., Goddard, A., Fang, F., Gorman, G., Mar-

shall, D., Eaton, M., Power, P., and De Oliveira, C.: Three-

dimensional unstructured mesh ocean modelling, Ocean Model.,

10, 5–33, 2005.

Pavlidis, D., Gomes, J. L., and Xie, Z.: Compressive advection and

multi-component methods for interface-capturing, Int. J. Num.

Methods Fluids, 2015.

Piggott, M., Pain, C., Gorman, G., Power, P., and Goddard, A.: h,

r, and hr adaptivity with applications in numerical ocean mod-

elling, Ocean Model., 10, 95–113, 2005.

Piggott, M., Gorman, G., Pain, C., Allison, P., Candy, A., Martin, B.,

and Wells, M.: A new computational framework for multi-scale

ocean modelling based on adapting unstructured meshes, Int. J.

Numer. Meth. Fl., 56, 1003–1015, 2008a.

Piggott, M. D., Pain, C. C., Gorman, G. J., Marshall, D. P., and Kill-

worth, P. D.: Unstructured adaptive meshes for ocean modeling,

Geoph. Monog. Series, 177, 383–408, 2008b.

Piggott, M., Farrell, P., Wilson, C., Gorman, G., and Pain, C.:

Anisotropic mesh adaptivity for multi-scale ocean modelling,

Philos. T. R. Soc. A, 367, 4591–4611, 2009.

Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm,

SIAM J. Sci. Comput., 14, 461–469, 1993.

Srivastava, R. K., McRae, D., and Odman, M.: An adaptive grid

algorithm for air-quality modeling, J. Comput. Phys., 165, 437–

472, 2000.

Staniforth, A., Côté, J., and Pudykjewicz, J.: Comments on

“Swolarkiewicz’s Deformational Flow”, Mon. Weather Rev.,

115, 894–900, 1987.

Sweby, P. K.: High resolution schemes using flux limiters for hyper-

bolic conservation laws, SIAM J. Numer. Anal., 21, 995–1011,

1984.

Versteeg, H. K. and Malalasekera, W.: An introduction to computa-

tional fluid dynamics: the finite volume method, Pearson Educa-

tion, 243–266, 2007.

Walcek, C. J. and Aleksic, N. M.: A simple but accurate mass con-

servative, peak-preserving, mixing ratio bounded advection algo-

rithm with FORTRAN code, Atmos. Environ., 32, 3863–3880,

1998.

Wang, Y.: An explicit simulation of Tropical cyclones with a triply

nested movable mesh primitive equation model: TCM3. Part I:

Model description and control experiment, Mon. Weather Rev.,

129, 1370–1394, 2001.

Weller, H., Ringler, T., Piggott, M., and Wood, N.: Challenges fac-

ing adaptive mesh modeling of the atmosphere and ocean, B.

Am. Meteorol. Soc., 91, 105–108, 2010.

Zhang, D. L., Chang, H. R., Seaman, N. L., Warner, T. T., and

Fritsch, J. M.: A two-way interactive nesting procedure with

variable terrain resolution, Mon. Weather Rev., 114, 1330–1339,

1986.

Geosci. Model Dev., 8, 3421–3440, 2015 www.geosci-model-dev.net/8/3421/2015/


	Abstract
	Introduction
	Numerical methods for transport equation
	Spatial discretization
	Discontinuous Galerkin discretization
	Control volume discretization

	Time discretization

	Mesh adaptivity
	Introduction of a 3-D unstructured anisotropic adaptive mesh model (Fluidity, version 4.1.9)
	Numerical examples
	Case one: solid body revolution
	Case two: swirling flow
	Case three: swirling deformation
	Case four: power plant plumes

	Conclusions
	Acknowledgements
	References

