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Abstract. Global gridded maps (a.k.a. Level 3 products) of

Earth system properties observed by satellites are central to

understanding the spatiotemporal variability of these prop-

erties. They also typically serve either as inputs into bio-

geochemical models or as independent data for evaluating

such models. Spatial binning is a common method for gen-

erating contiguous maps, but this approach results in a loss

of information, especially when the measurement noise is

low relative to the degree of spatiotemporal variability. Such

“binned” fields typically also lack a quantitative measure of

uncertainty.

Geostatistical mapping has previously been shown to

make higher spatiotemporal resolution maps possible, and

also provides a measure uncertainty associated with the grid-

ded products. This study proposes a flexible moving window

block kriging method that can be used as a tool for creat-

ing high spatiotemporal resolution maps from satellite data.

It relies only on the assumption that the observed physical

quantity exhibits spatial correlation that can be inferred from

the observations. The method has several innovations rela-

tive to previously applied methods: (1) it provides flexibil-

ity in the spatial resolution of the contiguous maps, (2) it

is applicable for physical quantities with varying spatiotem-

poral coverage (i.e., density of measurements) by utilizing

a more general and versatile data sampling approach, and

(3) it provides rigorous assessments of the uncertainty associ-

ated with the gridded products. The method is demonstrated

by creating Level 3 products from observations of column-

integrated carbon dioxide (XCO2) from the GOSAT (Green-

house Gases Observing Satellite) satellite, and solar induced

fluorescence (SIF) from the GOME-2 (Global Ozone Moni-

toring Experiment-2) instrument.

1 Introduction

Satellite measurements of Earth’s surface and atmospheric

quantities have enormous benefits for Earth system science

due to their global coverage and near-real-time availability.

They provide key constraints for developing models repre-

senting our understanding of the functioning of the Earth

system. However, due to orbit geometries and geophysical

limitations, a uniform or contiguous global coverage of these

observations in space and/or time is not possible. This neces-

sitates creation of contiguous maps for obtaining measure-

ments at unsampled times and locations for understanding

overall patterns, driving biogeochemical or physical models,

and/or validating model predictions. Due to their widespread

utility, global gridded maps are often part of the standard

suite of satellite data products and are often termed “Level

3” data (e.g., NASA, 2014).

In the case of column-integrated carbon dioxide (XCO2)

and solar induced fluorescence (SIF) observations, the two il-

lustrative applications that will be used in this work, gridded

products have been used, for example, to evaluate the rep-

resentation of water stress in models of photosynthesis (Lee

et al., 2013), to assess the performance of a terrestrial bio-

sphere model in representing global CO2 distributions (Ham-

merling et al., 2012b), and to constrain a model to assess

the relative roles of variations in atmospheric transport and

carbon exchange in explaining atmospheric CO2 variability

over the Amazon (Parazoo et al., 2013). The generation of

Level 3 products is also often part of the standard processing

sequence of observations (e.g., GOSAT Project, 2014; CO2

DAAD, 2014).

Presently, “binning” is the most widespread method for

creating such contiguous maps of satellite data. Such bin-

ning typically involves computing the mean of the observa-
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tions that fall within a grid cell (a.k.a. “bin”) of an appro-

priate geographic size and time window (for applications of

binning in the context of satellite retrievals of atmospheric

concentration of carbon dioxide see Kulawik et al., 2010, and

Crevoisier et al., 2009). However, this simplicity comes with

some limitations such as (1) the mean being computed from

a different number of measurements across grid-cells, (2) the

inability to take into account any redundancy among nearby

observations in computing the mean, and (3) the lack of gap

filling properties for grid cells that may contain no observa-

tions for a given time window.

The methodological deficiencies of binning can be over-

come by using kriging, a geostatistical interpolation ap-

proach that takes into account the spatial and/or temporal cor-

relation in the observations. Kriging is a best linear unbiased

estimator, with the various implementations of ordinary krig-

ing relying on the assumption of intrinsic stationarity. More

typically, a covariance function is used to represent spatial

correlation, and second-order stationarity is assumed, i.e.,

that the mean is constant and the covariance is only a func-

tion of the distance between observations (for kriging see

Chiles and Delfiner, 2012). Because the mean and covariance

of Earth system observations vary substantially, the kriging

tools need to be modified to reflect this nonstationarity. One

such method is moving window kriging, in which kriging

is performed locally and the covariance parameters are de-

termined locally within pre-specified spatial and/or tempo-

ral subdomains (e.g., Haas, 1990). The ability of the moving

window kriging to reflect local uncertainty has been empha-

sized to be the most important advantage over kriging meth-

ods relying on the global covariance models (e.g., Harris et

al., 2010; Walter et al., 2001; Van Tooren and Haas, 1993).

Due to this advantage, the moving window kriging has been

previously used for creating contiguous maps of satellite re-

mote sensing observations of column-averaged CO2 (XCO2)

(e.g., Hammerling et al., 2012a and b).

This work proposes a further development of the moving

window kriging method for application with satellite obser-

vations of Earth system properties. Whereas Hammerling et

al. (2012a, b) used ordinary kriging as the basis for obtain-

ing estimates at the spatial support (i.e., resolution or spatial

footprint size) of observations, we propose a moving win-

dow block kriging method that can yield estimates at any

resolution equal to or greater than that of the observations

(for discussions on change of support in the context of re-

mote sensing see Atkinson and Curran, 1995, Collins and

Woodcock, 1999, and Braverman, 2011). The main advan-

tages of the proposed tools are that they make it possible to

(1) select the spatial support/resolution of the mapped quan-

tities, (2) handle large volumes of data by developing sub-

sampling techniques that can make moving window block

kriging computationally feasible for a large number of satel-

lite measurements, and (3) provide rigorous assessments of

the uncertainty associated with the contiguous maps.

2 Methods

The proposed approach builds on the work of Hammerling

et al. (2012a, b), with the goal of increasing the applicabil-

ity and the flexibility of the nonstationary local kriging ap-

proach presented therein. The main innovations are twofold.

The first is to allow for flexibility in the spatial support of the

estimates (i.e., the spatial resolution at which the mapping is

conducted). The second is to provide a general approach for

subsampling available observations in a manner that (i) cap-

tures the local correlation structure in the vicinity of each es-

timation grid cell and (ii) makes the statistical mapping ap-

proach computationally feasible in the case of applications

with a very large number of observations.

The mapping proceeds in three steps for each grid cell and

each estimation time on a regular grid, in order to create

a contiguous map of the satellite observations. These steps

are outlined in the subsections below and include subsam-

pling of the observations, characterization of the local spa-

tial covariance structure, and interpolation at the desired spa-

tial resolution. In Sect. 3, the new mapping approach is ap-

plied to two prototypical examples of satellite observations,

namely observations of column-integrated concentration of

atmospheric CO2 concentrations (XCO2) and observations

of surface solar induced fluorescence (SIF), measured by

the GOSAT (Greenhouse Gases Observing Satellite) satel-

lite, and by the GOME (Global Ozone Monitoring Experi-

ment) instrument, respectively.

2.1 Subsampling of observations

The goal of the subsampling strategy is to preferentially sam-

ple observations in the vicinity of a given estimation grid cell,

such that both the characterization of the local spatial covari-

ance structure and the ultimate mapped estimate and its asso-

ciated uncertainty are representative of local variability. This

is accomplished by selecting the total number of observa-

tions to be used, N, where N is selected to be large enough

to yield a representative sample but small enough to make

mapping computationally feasible on a given computational

platform. For the applications presented in Sect. 3, N = 500

and N = 1000 for the XCO2 and SIF mapping, respectively.

N observations are selected for each estimation grid cell

by assigning a relative selection probability to each observa-

tion based on that observation’s separation distance from the

centroid of the grid cell. This selection probability could be

application specific, but for the applications presented here

we selected

Ps ∝ 1/h2, (1)

where Ps is the relative probability of a given observation

being selected, and h is the great circle distance between the

location xi of an observation and the centroid xj of the esti-

mation grid cell:

h
(
xi ,xj

)
= rcos−1(sinϕi sinϕj + cosϕi cosϕj cos(λi − λj )), (2)
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where r is the radius of the Earth and ϕi and λi are the lati-

tude and longitude of location xi .

The form of Ps in Eq. (1) ensures that a comparable num-

ber of observations is selected within any equal-area concen-

tric band around an estimation grid cell, thereby also ensur-

ing that observations that are at close distances to one another

are preferentially close to the estimation location. This is a

desirable feature because observations that are close to one

another define the shape of the variogram at short separation

distances (Sect. 2.2), and the variogram should reflect vari-

ability in the vicinity of the estimation grid cell. Different

forms of Ps could also be used, for example if more/fewer

observations along a given direction were desirable in order

to better represent expected correlations along a given direc-

tion.

In previous work (Alkhaled et al., 2008; Hammerling et

al., 2012a, b), a fixed application-specific window size was

instead defined within which all available observations were

used, together with a user-defined fraction of observations

outside of the window. The window size was based in part

on expected scales of variability in the satellite observations.

The updated approach presented here reduces the number

of user-selected parameters and explicitly provides a mech-

anism for ensuring the computational feasibility of mapping

in the case of very large data sets, such as the SIF example

examined here.

2.2 Characterization of spatial covariance

The characterization of the local covariance structure of the

observations around each estimation grid cell, based on the

subsampled observations, proceeds as described in Hammer-

ling et al. (2012a, Sect. 2.1), except that (1) all possible pairs

of observations are included in the formulation of the raw

variogram and the nugget-effect variance, representative of

the retrieval/measurement errors, is not spatially uniform.

The reader is referred to that earlier publication for additional

details.

Briefly, for each estimation grid cell, a raw variogram is

calculated based on the subsampled observations:

γ (h)=
1

2
[y (xi)− y(xj )]

2, (3)

where γ is the raw variogram value for a given pair of ob-

servations y(xi) and y(xj ), and h is the great circle distance

between the locations (xi and xj ) of these observations, as

defined in Eq. (2).

A parametric function, the theoretical variogram, is fitted

to the raw variogram using non-linear least squares. For the

prototypical applications presented here, an exponential var-

iogram function with a nugget effect was used, because it

yields a valid covariance function on a sphere (Huang et al.,

2011), provided a good match to the known physical charac-

teristics of the observations, and fit the observed variability

well:

γ (h)=

{
0, for h= 0

σ 2(1− exp
(
−
h
l

)
+ σ 2

nug, for h > 0,
(4)

where σ 2 and l are the variance and correlation length of the

quantity being mapped, and σ 2
nug is the nugget variance, typ-

ically representative of measurement and retrieval errors in

the case of satellite observations. The nugget component can

be either prescribed (as in the XCO2 example in Sect. 3) or

estimated (as in the SIF example in Sect. 3), depending on the

availability of information about measurement and retrieval

errors.

The variogram parameters can be used to define a corre-

sponding local spatial covariance structure for the mapped

quantity (XCO2 or SIF, in the prototypical examples pre-

sented here). For the variogram function in Eq. (4) this be-

comes

q (h)= σ 2exp

(
−
h

l

)
. (5)

The nugget effect is correspondingly used to define the co-

variance structure of the measurement and retrieval errors:

R(h)=

{
σ 2

nug, for h= 0

0, for h > 0.
(6)

2.3 Mapping using moving window block kriging

Ordinary kriging, a minimum variance linear unbiased map-

ping method for spatial data, was used in Hammerling et

al. (2012a, b) to create contiguous maps of XCO2. In this

approach, the spatial support (i.e., footprint) of the estimates

corresponds to that of the observations. Although the map-

ping can be performed at any spatial interval (e.g., once per

1◦× 1◦ grid cell), the estimates remain representative of the

variability at the scale of the observations.

Here, we instead use block kriging (e.g., Webster, 2000),

an approach that yields estimates that represent an average

within a specified area. This makes it possible to disassociate

the native footprint of the observations from the resolution of

the mapped product, thereby making it possible to create con-

tiguous maps at any desired spatial resolution equivalent to

or greater than the size of the observation footprints. As with

moving window ordinary kriging, block kriging provides an

optimal estimate of the quantity being mapped (XCO2 and

SIF, in the prototypical examples presented here) for each

estimation location, based on the subsampled observations

(Sect. 2.1) and the local covariance structure (Sect. 2.2), to-

gether with a rigorous assessment of the uncertainty associ-

ated with the estimate.

The linear system of equations that is solved to obtain the

N weights λ assigned to the subsampled observations for a

given estimation grid cell is[
Q+R 1

1T 0

][
λ

−ν

]
=

[
qA
1

]
, (7)
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where Q is a N ×N covariance matrix among the N obser-

vations with individual entries as defined in Eq. (5), R is a

N ×N diagonal measurement and retrieval error covariance

matrix among the N observations as defined in Eq. (6), 1 is a

N× 1 unity vector, T denotes the vector transpose operation,

and qA is an N× 1 vector of the spatial covariances between

the estimation grid cell and the N observation locations, de-

fined as

qA,i =
1

n

n∑
j=1

q
(
hi,j

)
, (8)

where qA,i is the covariance between the grid cell and ob-

servation i, and q
(
hi,j

)
is defined as in Eq. (5) based on the

distance hi,j between observation i and n regularly spaced

locations within the grid cell. In general, the larger the n the

better the representation of the area (i.e., grid cell) to obser-

vation covariance. For practical purposes, in the applications

presented here, n is defined based on the relative footprint

of the observations compared to that of the estimation grid

cells.

The system in Eq. (7) is solved for λ and the Lagrange

multiplier ν. These parameters are then used to define the

estimate (ẑ) and estimation uncertainty variance (σ 2
ẑ
) for the

grid cell as

ẑ= λT y, (9)

σ 2
ẑ
= σAA− λ

T qA+ ν, (10)

where y is the N× 1 vector of subsampled observations, and

σAA is the variance of the mapped quantity (XCO2 or SIF, in

the prototypical examples presented here) at the resolution of

the estimation grid cell, defined as

σAA =
1

n2

n∑
j=1

n∑
k=1

q
(
hj,k

)
, (11)

where q
(
hj,k

)
is defined as in Eq. (5) based on the distance

hj,k between any combination of the n regularly spaced lo-

cations within the grid cell defined previously.

3 Example applications

The mapping approach described in Sect. 2 is demonstrated

using two prototypical examples of satellite observations: (1)

observations of column-integrated concentrations of atmo-

spheric CO2 (XCO2) from the GOSAT satellite, and (2) ob-

servations of surface solar-induced fluorescence (SIF) from

the GOME-2 instrument. These applications differ in the spa-

tial footprint (i.e., support) of the observations (nadir foot-

print of about 10.5 km diameter at sea level (Kuze et al.,

2009) and 40 km× 80 km (Joiner et al., 2013), respectively),

the volume of available data (approximately 2× 103 and

2× 105 observations per week, respectively), the timescales

of variability, and the degree of spatial variability and non-

stationary in the observed quantity.

Figure 1. ACOS v3.4 release 3 XCO2 Level 2 data (“observations”)

for 2–7 August 2009.

3.1 Global land XCO2 fields observed by GOSAT

The Japanese GOSAT (e.g., Kuze et al., 2009) was launched

in 2009 and is the first satellite dedicated to global green-

house gas monitoring, including CO2 and CH4. GOSAT flies

in a polar, sun-synchronous orbit with a 3-day repeat cy-

cle and an approximately 13:00 LT overpass time. GOSAT

XCO2 data are being used to examine a number of questions

in carbon cycle science, including comparing observed and

modeled XCO2 fields (Hammerling et al., 2012b), quantify-

ing sources and sinks of CO2 (e.g., Deng et al., 2014; Basu et

al., 2013, 2014; Chevallier et al., 2014; Takagi et al., 2014),

detecting perturbations in the carbon cycle (Guerlet et al.,

2013), and interpreting seasonal changes in the carbon bal-

ance (Parazoo et al., 2013).

Measurements of XCO2 (a.k.a. “Level 2” data) are derived

using a number of retrieval algorithms, among them NASA’s

Atmospheric CO2 Observations from Space (ACOS) algo-

rithm (e.g., O’Dell et al., 2012; Crisp et al., 2012). Filtered

and bias-corrected data from the most up to date version

of this algorithm (ACOS v3.4 release 3) are used here to

demonstrate the mapping approach presented in Sect. 2. Ap-

proximately 900 successful retrievals are available per 3-day

repeat cycle, with the majority of observations being over

land. These data have substantial retrieval uncertainties (e.g.,

O’Dell et al., 2012) and include large gaps (e.g., Fig. 1).

These features prevent the application of simple spatial and

temporal binning techniques for generating XCO2 maps at

spatiotemporal scales that are directly useful for addressing

existing uncertainties in carbon cycle science.

The approach described in Sect. 2 is used to create con-

tinuous maps, a.k.a. Level 3 data, based on XCO2 observa-

tions obtained over two repeat cycles, namely 2–7 August

2009 (Fig. 1). A 6-day period is used to balance the com-

peting goals of including as many observations as possible,

while avoiding time periods over which the XCO2 field itself

would change substantially (see discussion in Hammerling et

al., 2012a). Maps of XCO2 and associated uncertainties are

created at native (Fig. 2a, b) and 1◦× 1◦ (Fig. 2c, d) reso-

lutions, in order to examine and demonstrate the impact of
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Figure 2. XCO2 Level 3 maps (a, c) and associated uncertainties (b, d) based on ACOS 3.4 release-3 retrievals (“estimates”) for 2–7 August

2009 at (a, b) native resolution and (c, d) 1◦× 1◦ resolution, obtained using the proposed mapping approach.

Figure 3. Reduction in estimation uncertainties between the na-

tive estimation resolution and the 1◦× 1◦ estimation resolution for

XCO2 Level 3 maps based on ACOS 3.4 release-3 retrievals for 2–7

August 2009.

resolution on mapping uncertainty. Targeting different reso-

lutions is made possible by the use of the moving window

block kriging approach presented here. N = 500 subsampled

observations are used per estimation location. These maps

can also be compared to those presented for an equivalent

period in Hammerling (2012b, Auxiliary Figs. 2 and 3), with

methodological differences as described in Sect. 2 and rep-

resentative of the estimated XCO2 at the native resolution

of sounding footprints (nadir footprint ∼ 10.5 km diameter)

with estimates at 1◦× 1.25◦ intervals.

Results show that, because of the information content of

the sparse observations, the estimated fields (Fig. 2a, c) are

similar at native and 1◦× 1◦ resolutions; however, estimat-

ing directly at the coarser 1◦× 1◦ resolution yields lower un-

certainties as observations become more informative for spa-

tially averaged quantities (Fig. 3).

3.2 Global land solar-induced fluorescence fields

observed by GOME-2

A series of recent studies has demonstrated the potential

use of satellite observations of SIF for understanding and

quantifying photosynthetic CO2 uptake at large scales, us-

ing data from the GOSAT satellite (e.g., Joiner et al., 2011;

Frankenberg et al., 2011; Guanter et al., 2012; Joiner et

al., 2012; Lee et al., 2013; Frankenberg et al., 2012), the

SCIAMACHY (SCanning Imaging Absorption spectroMe-

ter for Atmospheric CHartographY) instrument on board

Envisat (e.g., Joiner et al., 2012), the GOME-2 instrument

on board MetOp-A (Meteorological operational satellite-A;

e.g., Joiner et al., 2013), and the Orbiting Carbon Obser-

vatory (OCO-2) (e.g., Frankenberg et al., 2014). Satellite

measurements of fluorescence can be used with land surface

models to improve the representation of GPP (gross primary

production) and to understand the GPP response to environ-

mental stress (e.g., Lee et al., 2013). Among available data

sets, GOME-2 provides the highest spatial and temporal den-

sity of data.

Until now, studies of SIF have relied on spatially and tem-

porally binned average observations at monthly or coarser

timescales and 1◦ or coarser spatial scales (e.g., Fig. 4). The

coarse spatial and temporal scales were used to overcome,

through the use of simple averaging, spatial gaps in obser-

vations and the relatively high uncertainties associated with

individual retrievals. One of the limitations of such an ap-

proach is that it inherently discards information about SIF

variability at fine spatial and temporal scales, which is im-

portant for understanding the impact of transient effects such

as changes in phenology and water availability (Lee et al.,

2013), and developing biospheric models that can represent

these effects correctly. A second limitation is the lack of a

direct and robust quantification of the uncertainty associated

www.geosci-model-dev.net/8/3311/2015/ Geosci. Model Dev., 8, 3311–3319, 2015



3316 J. M. Tadić et al.: Mapping of satellite Earth observations

Figure 4. Monthly averaged binned map of GOME-2 SIF data for

1–31 August 2009 (mW m−2 sr−1 nm−1).

with the mapped products, complicating uncertainty analysis

in subsequent applications using the data.

As a second demonstration of the mapping approach pro-

posed here, we use SIF GOME-2 V.14 data (Joiner et al.,

2013) with the approach described in Sect. 2 to create con-

tiguous maps of SIF at a single spatial resolution (1◦× 1◦)

but at multiple temporal resolutions. The examination of

shorter time periods was selected in order to more directly

respond to scientific opportunities in the use of SIF data and

to complement the spatial-resolution-focused demonstration

of Sect. 3.1. Maps of SIF and associated uncertainties are

created at 1-, 6-, and 31-day temporal resolutions in August,

2009 (Fig. 5), where August 2009 was chosen for conve-

nience to correspond with the XCO2 application presented

in Sect. 3.1. N = 1000 subsampled observations are used per

estimation location. The monthly map can also be compared

to the monthly binned map presented in Fig. 4.

Results show that the proposed approach can leverage

nearby observations to create realistic contiguous maps even

at 1-day resolution (Fig. 5a, b), although, as expected, un-

certainties are reduced (Fig. 5d) at coarse temporal resolu-

tions, just as was seen for coarser spatial resolutions in the

XCO2 application. In fact, the regions with little or no SIF

data for the 1-day application are clearly visible as high-

uncertainty bands in Fig. 5b, and a user could explicitly de-

cide whether such uncertainties are acceptable or too high for

a given scientific application. When maps are intended to be

used to drive and/or validate biogeochemical models, having

the ability to choose a desirable balance between temporal

resolution and mapping, uncertainty presents a considerable

advantage.

Ideally, the temporal resolution at which maps are ob-

tained is as fine as possible so as to capture the dynam-

ics of the observed physical quantity, in this case SIF. The

choice of optimal temporal resolution thus, in general, de-

fines a trade-off between having sufficient observations for

adequate spatial coverage while minimizing the impact of

temporal variability in the quantity being examined (Ham-

merling et al., 2012a). In Fig. 6 it is apparent that the pre-

sented approach makes it possible to obtain maps at temporal

resolutions much higher than the monthly (or coarser) res-

Figure 5. Maps of global SIF (mW m−2 sr−1 nm−1) (a, c, e) and

associated estimation uncertainties expressed as standard deviations

(b, d, f), for 1 August 2009 (a, b), 2–7 August 2009 (c, d) and 1–31

August 2009 (e, f) obtained using GOME-2 observations and the

presented mapping approach at 1◦× 1◦ spatial resolution.

olution of current binned products. As expected, the more

abundant observations available at 6-day temporal resolution

(Fig. 6d) lead to decreased estimation uncertainty compared

to those at 1-day resolution (Fig. 6b). However, at monthly

temporal resolutions (Fig. 6e, f) the temporal variability in

SIF over a 31-day period increases the discrepancy among

(spatially) nearby observations, leading to increased uncer-

tainties at coarse timescales. This effect is apparent in com-

paring Fig. 6d and f, as uncertainty increases over, for ex-

ample, eastern South America. A similar trade-off was also

noted in selecting mapping timescales for XCO2 (Hammer-

ling et al., 2012a) and further speaks to the advantage of be-

ing able to select a mapping timescale based on scientific

need and uncertainty tolerance, as is possible with the ap-

proach presented here.

4 Method evaluation

Leave-one-out cross-validation is used to evaluate the perfor-

mance of the proposed method. In doing so, the goal is for the

predicted values to be as directly comparable as possible to

the observation being held back. With that goal in mind, the

cross-validation analysis is performed for maps generated at

1-day temporal resolution and at the native spatial resolution

of the sounding footprints.

We apply this strategy for both SIF and XCO2 test cases.

For SIF, for each day in 1–7 August 2009, 10 % of available

GOME-2 SIF data were randomly selected for use in leave-

one-out cross-validation and their coordinates extracted. For

XCO2, all GOSAT XCO2 observations for each day in 2–

7 August 2009 were used in leave-one-out cross-validation.

All three mapping steps (see Sect. 2.1–2.3) are repeated ab

initio during cross-validation. The performance of the map-
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Table 1. Cross-validation results of GOSAT XCO2 and GOME-2 SIF data sets, including mean absolute difference, root mean squared

difference, percent of observations lying outside of 1, 2, and 3 standard deviations (σẑ) of the mapping uncertainty and mean difference.

GOSAT XCO2 GOME-2 SIF

Estimates
Mean absolute difference 0.85 ppm 0.47 mW m−2 sr−1 nm−1

Root mean squared difference 1.15 ppm 0.61 mW m−2 sr−1 nm−1

Uncertainties

% observations falling outside 1σẑ uncertainty 10.06 % 11.23 %

% observations falling outside 2σẑ uncertainty 0.96 % 0.60 %

% observations falling outside 3σẑ uncertainty 0.18 % 0.03 %

Bias Mean difference −0.007 ppm 0.002 mW m−2 sr−1 nm−1

ping method is tested in terms of the accuracy of the best

estimates (the difference between estimates and withheld ob-

servations) and the accuracy of the uncertainty bounds (the

degree to which the reported uncertainties capture the differ-

ence between estimates and withheld observations) and bias

(the mean difference between estimates and withheld obser-

vations).

The accuracy of the maps at daily temporal resolution and

native spatial resolution is evaluated using the mean abso-

lute difference (MAD) and the root mean squared differ-

ence (RMSD) between the mapped estimates and observa-

tions held back in leave-one-out cross-validation (Table 1).

Although an absolute target value for these accuracy metrics

is not available, it is interesting to note that the MAD and

RMSD are comparable to the reported measurement uncer-

tainty in both satellite data sets (0.77 ppm for GOSAT XCO2,

0.55 mW m−2 sr−1 nm−1 for GOME-2 SIF). We also com-

pare the GOSAT XCO2 values to those obtained from by ap-

plying the method developed in Hammerling et al. (2012a),

which yielded a MAD of 0.86 ppm and a RMSD of 1.20 ppm,

demonstrating comparable performance, but with the addi-

tional benefits provided by the new method as described in

Sect. 2.

Estimation uncertainties reflect the locations and number

of observations surrounding the estimation location, the de-

gree of spatial variability in the mapped field in the vicin-

ity of the estimation location, and the spatiotemporal support

of the estimates. The accuracy of the uncertainties obtained

from the mapping method is evaluated by quantifying the re-

liability with which the uncertainty bounds associated with

the estimates capture the values of the withheld observations.

Specifically, we calculate the percentage of estimation loca-

tions where the withheld observations fall outside of the 1, 2,

and 3 estimation standard deviation (σz) uncertainty bounds.

For independent, normally distributed data, these percent-

ages should be approximately 32, 5 and 0.3 %, respectively.

Although these assumptions do not hold here, these values

still provide a general indication of expected performance.

For both applications, the percentage of observations

falling outside of the uncertainty bounds is lower than would

be expected for normally distributed data (Table 1), showing

good mapping accuracy. These percentages are very similar

when the analysis is repeated using the method developed by

Hammerling et al. (2012a). The lower percentages are due to

the fact that observations are not normally distributed.

Finally, the bias of the developed method is quantified us-

ing the mean difference between estimates and the withheld

observations in the leave-one-out cross-validation. Theoret-

ically, mean difference should approach zero as the number

of cross-validation points increases if the method provides

perfectly unbiased estimates. The mean difference for both

applications (Table 1) was several orders of magnitude lower

than the observed spatial gradients in the mapped quanti-

ties (e.g., Figs. 1 and 4) and was not statistically signifi-

cant (p > > 0.05: p = 0.86 for GOSAT XCO2; p = 0.63 for

GOME-2 SIF). The approach therefore yields unbiased esti-

mates.

5 Conclusions

In this study we propose a flexible moving window block

kriging method that can be used as a tool for creating

high spatiotemporal resolution maps from satellite data. The

method can be applied in a stand-alone mode, or as a part

of broader satellite data processing package. The resulting

maps can also be incorporated into biogeochemical and phys-

ical models of the Earth system. The approach relies only

on the assumption that the observed physical quantity ex-

hibits spatial correlation that can be inferred from the obser-

vations. The method has several advantages over previously

applied methods: (1) it allows for the creation of contigu-

ous maps at varying spatiotemporal resolution, (2) it can be

applied for creating contiguous maps for physical quantities

with varying spatiotemporal coverage (a.k.a. density of mea-

surements), and (3) it provides assessments of the uncertainty

of interpolated values. The approach emphasizes the use of

local covariance structures in predictions by an arbitrary se-

lection of the sampling function, limiting the radius around

estimation locations and adjusting the number of sampled

points to a fraction of available measurements. The approach

www.geosci-model-dev.net/8/3311/2015/ Geosci. Model Dev., 8, 3311–3319, 2015
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also limits the number of partially subjective ancillary pa-

rameters required, making it applicable across a variety of

applications.

The method was demonstrated by creating Level 3 prod-

ucts from two data sets with considerably different spa-

tiotemporal properties. While the GOSAT XCO2 observa-

tions were relatively sparse, the GOME-2 SIF data had a

much higher spatiotemporal density. In the case of GOSAT

XCO2, the effects of making predictions at different spatial

supports (i.e., resolutions) were analyzed, showing that a de-

crease in the resolution slightly affects estimates (“smooth-

ing” effect) and more significantly estimation uncertainties

(reduced uncertainties at coarser resolution). In the case of

GOME-2 SIF, the focus was kept on the effect of different

aggregation time periods by creating maps at higher tempo-

ral resolutions. This example demonstrated the importance

of being able to select a mapping timescale based on sci-

entific need and uncertainty tolerance as optimal temporal

resolution results from a trade-off between having sufficient

observations for adequate spatial coverage, while minimiz-

ing the impact of temporal variability in the quantity be-

ing examined. In this it was shown that even daily Level 3

maps could be successfully created by the proposed method.

For both data sets, the method was shown to yield precise,

accurate, and unbiased estimates. The results clearly indi-

cate that contiguous maps can be created at different spatial

resolutions for time periods shorter than achievable by bin-

ning/averaging.

The resulting maps can be used to support the development

of improved models of the Earth system, both by serving as

driver data and validation data for such models.
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