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Abstract. An established one-dimensional (1-D) model of

Shelf Sea Physics and Primary Production (S2P3) is adapted

for flexible use in selected regional settings over selected

periods of time. This Regional adaptation of S2P3, the

S2P3-R framework (v1.0), can be efficiently used to inves-

tigate physical and biological phenomena in shelf seas that

are strongly controlled by vertical processes. These include

spring blooms that follow the onset of stratification, tidal

mixing fronts that seasonally develop at boundaries between

mixed and stratified water, and sub-surface chlorophyll max-

ima that persist throughout summer. While not representing

3-D processes, S2P3-R reveals the horizontal variation of the

key 1-D (vertical) processes. S2P3-R should therefore only

be used in regions where horizontal processes – including

mean flows, eddy fluxes and internal tides – are known to ex-

ert a weak influence in comparison with vertical processes.

In such cases, S2P3-R may be used as a highly versatile

research tool, alongside more complex and computationally

expensive models. In undergraduate oceanography modules

and research projects, the model serves as an effective prac-

tical tool for linking theory and field observations. Three dif-

ferent regional configurations of S2P3-R are described, il-

lustrating a range of diagnostics, evaluated where practical

with observations. The model can be forced with daily me-

teorological variables for any selected year in the reanalysis

era (1948 onwards). Example simulations illustrate the con-

siderable extent of synoptic-to-interannual variability in the

physics and biology of shelf seas. In discussion, the present

limitations of S2P3-R are emphasised, and future develop-

ments are outlined.

1 Introduction

In a global context, the shelf seas are disproportionately pro-

ductive due to the continuous supply of nutrients (Holt et

al., 2009a, and references therein). A variety of models have

been developed to explore the processes that shape and main-

tain productivity. Operational biogeochemistry and ecosys-

tem models typically represent the system with relatively

high complexity and resolution, e.g. the 7 km Atlantic Mar-

gin Model NEMO-ERSEM (AMM7-NE) system (Edwards

et al., 2012) – see also http://www.metoffice.gov.uk/research/

news/marine-predictions. Such models may perform well

alongside observations, but simulations rely on high perfor-

mance computing resources such that extensive experimental

work is consequently not practical.

In contrast to complex models, the Shelf Sea Physics and

Primary Production (S2P3) model (Simpson and Sharples,

2012) exploits the dominance of vertical processes over hori-

zontal processes in shelf seas. S2P3 explicitly represents ver-

tical heat fluxes, vertical mixing of momentum and vertical

mixing of heat and tracers (nitrate and chl a concentrations).

Central to the model physics is a turbulence closure scheme,

determining the light environment and nutrient fluxes that

drive a simple primary production (nutrient phytoplankton

– NP) model. Phytoplankton growth responds to changes in

stratification and mixing. In this way, S2P3 can efficiently

simulate the seasonal cycle of stratification and primary pro-

duction at a selected location, characterized by a local depth

and tidal current amplitude. In particular, S2P3 has been used

(e.g. Sharples, 2008) to simulate idealized seasonal tidal mix-

ing fronts (TMFs), analogous to the observed discontinuities
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between mixed and seasonally stratified water in mid-latitude

shelf seas (Simpson and Hunter, 1974). While controlled to

the first order by vertical processes, the transition from mixed

to stratified water across a TMF typically occurs on a hori-

zontal scale of ∼ 10–20 km (e.g. Moore et al., 2003); there-

fore, for clear resolution of associated physical and biogeo-

chemical structures, TMFs are ideally simulated at high hor-

izontal resolution (1–2 km).

S2P3 was introduced as “PHYTO-1D” and originally de-

scribed in Sharples (1999). An updated version of PHYTO-

1D was described in Sharples (2008). The model is designed

for use as an investigative (and educational) tool (see zipped

material at http://pcwww.liv.ac.uk/~jons/model.htm). S2P3

has been used as a research tool to establish the varying in-

fluence of winds and air–sea heat fluxes on inter-annual vari-

ability in the timing of stratification and the spring bloom in

the northwestern North Sea (Sharples et al., 2006), and to

quantify the impact of spring–neap tidal cycles on biological

productivity at TMFs (Sharples, 2008). In educational con-

texts, S2P3 and forerunner models have been used for around

10 years in year 3 undergraduate and masters level postgrad-

uate teaching at the Universities of Southampton and Liver-

pool, in the UK.

In spite of potential for widespread application, S2P3 has

not been extensively used and tested across real transects or

in limited regions, where the model can be appropriately used

for investigating time-evolving stratification and biological

productivity. Introduced here, S2P3-R is a framework for us-

ing S2P3 to efficiently model physical and biological struc-

tures in shelf seas, for selected years during the reanalysis era

(Kalnay et al., 1996). The development of S2P3-R has facili-

tated the simulation of vertical processes and their horizontal

variability in real time, for quick investigation of ongoing

changes and detailed fieldwork planning.

In the remainder of the paper, we first outline the S2P3-R

framework. We start with a brief description of the physical

and biological components of S2P3, followed by details of

the modified source code, model performance and diagnostic

options. This is in turn followed by details on model set-up in

different domains (horizontal meshes and tidal forcing), and

the specification of meteorological forcing. We then evaluate

model simulations for three different regions, undertaken and

diagnosed using the new framework. In discussion, some im-

portant caveats are emphasised, and we outline the prospects

for development of the S2P3-R framework.

2 The S2P3-R framework

2.1 S2P3

Here, we provide a brief description of the physical and bio-

logical components of S2P3, emphasising key equations. For

a more detailed model description, the reader is referred to

Sharples (1999, 2008).

2.1.1 Physical model

Central to the physics of S2P3 is a turbulence closure

scheme, for which the prognostic variable is turbulent kinetic

energy (TKE), formally defined as q2/2, where q is the tur-

bulent intensity, or velocity scale (m s−1). For a tidal current

with x and y components u and v, the tendency of TKE is

expressed as

∂

∂t

(
q2

2

)
=
∂

∂z

(
Kq

∂

∂z

(
q2

2

))
+Nz

[(
∂u

∂z

)2

+

(
∂v

∂z

)2
]

+Kz

(
g

ρ

∂ρ

∂z

)
−
q3

B1l
, (1)

where ρ is density, quadratic in temperature T (ρ =

1028.11− 6.24956×10−2 T − 5.29468×10−3 T 2, assuming

a constant salinity of 35.00), B1 is a constant of the clo-

sure scheme, Kq is the vertical eddy diffusivity for TKE,

Kz is the vertical eddy diffusivity for other scalar proper-

ties, Nz is vertical eddy viscosity, and l is an eddy length

scale (l = κz(1− z/h)0.5, at depth z, given total depth h and

von Karmen’s constant κ = 0.41). Forward time stepping is

explicit throughout, with time steps, 1t , constrained by the

diffusive stability criterion, 1t <1z2/2Nz, given depth in-

tervals, 1z.

Tides and winds force the TKE profile for given boundary

conditions:
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where τs is the surface (z= h) stress due to the wind, and τb

is the near-bottom (z= 0) stress due to tidal currents. The x

and y components of wind stress are obtained as

τsx =−cdρauw
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given a drag coefficient cd (cd = (0.75+0.067w)×10−3, for

wind speedw), air density ρa (= 1.3 kg m−3), and uw and vw,

the x and y components of wind. The x and y components of

near-bottom stress are obtained as

τbx =−kbρ0u1

√(
u2

1+ v
2
1

)
, (4a)

τby =−kbρ0v1

√(
u2
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2
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)
(4b)

given a drag coefficient kb (= 0.003), representative den-

sity for seawater ρ0 (= 1025 kg m−3), and u1 and v1 (the x

and y components of the current 1m above the seabed); see

Sharples (1999) for further details on the subsequent calcu-

lation of Kz, Kq and Nz.
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In addition to mixing, the water column is locally heated

and cooled. The tendency of temperature (T ) is obtained at

each depth level as

∂T

∂t
=
∂

∂z

(
Kz
∂T

∂z

)
+Qh (z) , (5)

where z is height above the seabed andQh(z) is the net heat-

ing at z.

Heat fluxes are formulated as follows. We first define a

surface net heat flux (Qnet) as the sum of incoming shortwave

radiation (QSW), long-wave back radiation (QLW), and latent

and sensible heat exchange with the atmosphere (Qsens and

Qlat):

Qnet =QSW− (QLW+Qsens+Qlat) . (6)

Incoming shortwave radiation, irradiance in the presence of

clouds, is calculated as

QSW =

(
1.0− 0.004C− 0.000038C2

)
QSW,c-s, (7)

where C is cloud fraction, and clear-sky irradiance, QSW,c-s,

is obtained as

QSW,c-s = S (1−α)f (θ, t) (1− κSW) , (8)

where S is the solar constant (= 1368 W m−2), α is an at-

mospheric albedo (= 0.24), f (θ, t) is a function represent-

ing the daily and seasonal variation in day length at latitude

θ , and κSW is a shortwave absorption coefficient (= 0.06).

Long-wave radiation is calculated as

QLW =

εLW

(
1.0− 0.6× 10−4C2

)(
0.39− 0.05q0.5

)
σT 4, (9)

where εLW is long-wave emissivity (= 0.985), q is vapour

pressure (q = Rqs, given saturated vapour pressure qs(T )

and relative humidity R), and σ is the Stefan–Boltzmann

constant (σ = 5.67× 10−8 W m−2 K−4). Sensible heat flux

is calculated using the bulk formula

Qsens = ρacpChU (Ts− Ta) , (10)

where cp is the specific heat capacity of air (cp =

1004 J kg−1 K−1), Ch is a transfer coefficient (Ch = 1.45×

10−3), U is surface wind speed, Ts is the sea surface temper-

ature, and Ta is surface air temperature. Latent heat flux is

calculated using the bulk formula

Qlat = ρaLvCeU (qs− q), (11)

where Lv is the specific heat capacity of air (Lv = 2.5×

106
− 2.3× 103Ts), and Ce is a transfer coefficient (Ce =

1.5× 10−3).

The surface net heat flux is partitioned down the water col-

umn as follows. The red end of the spectrum, 55 % of short-

wave radiation, is assumed to be absorbed at the top depth

level; hence, the surface heating,Qh,0 = 0.55QSW−(QLW+

Qsens+Qlat). The remaining 45 % of insolation is available

for heating at lower levels, distributed exponentially through-

out the water column as a heating rate Qh(z), according to

∂Qh

∂z
=−Qh (z)(λ0+ εXT (z)) , (12)

where λ0 is an attenuation coefficient (λ0 = 0.1 m−1) and

ε is a pigment absorption cross section (ε = 0.012 m2

(mg chl)−1), accounting for shading due to XT (z), the lo-

cal chlorophyll a (chl a) concentration (mg chl m−3), tak-

ing XT (z)= q
chlPC, for the cell chl a : carbon ratio, qchl

(0.03 mg chl (mg C)−1), and carbon concentration, PC (see

below).

2.1.2 Biological model

Phytoplankton is modelled in terms of an equivalent carbon

concentration (PC; units mg C m−3) and internal cellular ni-

trogen (PN). In each grid cell, PC tendency is due to the net

effect of vertical mixing, growth and grazing, according to

∂PC

∂t
=
∂

∂z

(
Kz
∂PC

∂z

)
+µPC−GPC (13)

given a grazing impact rate,G, and a growth rate, µ, that is a

function of photosynthetically active radiation:

µ= µm

(
1− e−(αIPARθ/µm)

)
− rB , (14)

where α is the maximum quantum yield, IPAR is the light

availability, θ is the chl a : carbon ratio, rB is the respiration

rate, and the maximum growth rate, µm, is given by

µm = 1.16× 10−5

(
Q−Qsub

Qm−Qsub

)
0.59e0.0633T , (15)

whereQ= PN/PC is the cell nitrogen quota,Qsub is the sub-

sistence nutrient : carbon quota, andQm is the maximum cell

quota. The tendency for phytoplankton nitrogen (PN) is sim-

ilarly described as

∂PN

∂t
=
∂

∂z

(
Kz
∂PN

∂z

)
+ uPC−GPN, (16)

where the uptake rate u is obtained as a Michaelis–Menton

function of the dissolved inorganic nitrogen (DIN) concen-

tration:

u=

[
um

(
1−

Q

Qm

)
DIN

(ku+DIN)

]
+

{
µQ, µ < 0

0, µ≥ 0
(17)

given ku, a half saturation coefficient for nutrient uptake, and

um, a maximum nutrient uptake rate. The uptake of nitrogen

leads to a tendency in DIN:

∂DIN

∂t
=
∂

∂z

(
Kz
∂DIN

∂z

)
−µPC+ eGPN, (18)
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Table 1. Boundaries, resolution, tidal forcing, initial temperature and meteorological forcing for each domain (POLCOMS is Proudman

Oceanographic Laboratory Coastal Ocean Modelling System; OTPS is OSU Tidal Prediction Software).

Domain Boundaries Resolution Tidal Forcing Initial temperature field Meteorological forcing

Northwest

European shelf

14.917◦W–

1.917◦ E

48.056◦ N–

61.944◦ N

0.167◦ (longitude)

0.111◦ (latitude)

(∼ 12 km)

M2, S2, N2

(POLCOMS)

10.1 ◦C everywhere

(default)

Daily climatology for the

Celtic Sea (Sharples, 2008)

Western

English Channel

4–6◦W

49.5–50.5◦ N

1′× 1′

(∼ 1 km)

M2, S2, N2

(POLCOMS

interpolated)

10.1 ◦ C everywhere Daily NCEP reanalysis data

for grid square centred on

5◦W, 50◦ N

East China and

Yellow seas

112–130◦ E

21–42◦ N

0.083◦× 0.083◦

(∼ 6 km)

M2, S2, N2, O1,

K1 (OTPS)

After 1-year started

from 15.1 ◦C

everywhere

Daily NCEP reanalysis data

for grid square centred on

125◦ E, 32.5◦ N

where e is the fraction of grazed phytoplankton cellular ni-

trogen recycled immediately back into the dissolved nitrogen

pool.

Water column nitrogen is constantly restored towards an

initial winter concentration, DIN0 (mmol m−3), by a flux of

inorganic nitrogen from the seabed:

∂DIN1

∂t
=
fDIN

1z

(
1−

DIN1

DIN0

)
, (19)

where DIN1 is the dissolved nitrogen in the bottom depth cell

of the model grid, 1z (m) is the thickness of the model grid

cell, and fDIN (mmol m−2 s−1) is the maximum flux of dis-

solved nitrogen from the seabed into the bottom depth cell.

The values of biological parameters (G, µm, θ , rB , Qsub,

α, um, Qm, ku, e, DIN0, fDIN) are as listed in Table I of

Sharples (2008).

2.2 Modified S2P3 source code, performance and

diagnostics

For the S2P3-R framework, we modified the Fortran 90

source code of S2P3 v7.0, which includes additional com-

mands and sub-routines to facilitate the Winteracter Fortran

graphical user interface (GUI) toolset (Interactive Software

Services Ltd., www.winteracter.com), the model being sup-

plied with a text book (Simpson and Sharples, 2012) as an ex-

ecutable application that runs under the Windows operating

system. This source code was modified for compilation and

execution in a Unix environment by removing GUI-related

lines of code. These changes are solely to facilitate compi-

lation and execution in Unix environments, and S2P3 is thus

far unchanged as a scientific tool.

Within the new framework, S2P3 can be used to generate

geographically specific maps, sections and time series, with

varying run-time implications on a single processor. Maps

typically comprise 5000–20 000 grid points, while sections

comprise 10–100 grid points. For a given year (see below),

maps can take over a day to generate (depending on the ex-

tent of shallower water, where shorter time steps are neces-

sary), while sections typically take a few minutes, and annual

time series at a single location typically take a few seconds.

Default mapped variables are the mid-summer surface–

bottom temperature difference, annual-mean surface heat

flux, and annual net production. Other quantities, such as the

mid-summer sub-surface chl a maximum (SCM) and SCM

depth, can also be mapped. The option for simulating sec-

tions is motivated by opportunities for direct comparison

with measurements obtained through surveys and cruises. In

selecting to simulate section data, constant depth intervals

are specified for plotting on a regular distance–depth mesh

without the need for interpolation. The option for time series

at single locations is motivated by the availability of time

series at repeat conductivity–temperature–depth (CTD) sta-

tions and moorings. Finally, we save daily horizontal distri-

butions of physical and biological variables for selected peri-

ods, to generate animations that yield a range of insights not

so easily appreciated with individual maps or sections.

FORTRAN programmes are used to post-process model

data for plotting, and MATLAB scripts are used to plot model

variables (as used to prepare the figures and animations pre-

sented here). Example MATLAB plotting scripts are pro-

vided together with the source code and other ancillary pro-

grammes and data files in s2p3-reg.zip (see “Code availabil-

ity”).

2.3 Regional configurations

Three domains have been developed and tested here, for rea-

sons that are outlined in turn. Figure 1 shows the bathymetry,

while Table 1 specifies the boundaries, resolution, tidal forc-

ing and initial temperature field, for each domain. In an initial

stage of development, S2P3-R was developed for the north-

west European shelf domain. Development of the two other

domains has been motivated by the extent to which the differ-

ent climatological and tidal forcings can be accommodated

(in the shelf seas around China) and by ongoing fieldwork

Geosci. Model Dev., 8, 3163–3178, 2015 www.geosci-model-dev.net/8/3163/2015/
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Figure 1. Bottom depth (relative to sea surface) in the three S2P3-R

domains: (a) northwest European shelf; (b) western English Chan-

nel; (c) East China and Yellow seas.

(annual surveys south of Cornwall) in a smaller region where

the tidal mixing front is particularly sharp.

Bathymetry is typically in the range 50–100 m across most

of the northwest European shelf (Fig. 1a). However, some

important details are emphasised for the other two domains:

a shallower inshore zone (depths< 30 m) in the western En-

glish Channel (Fig. 1b); a secondary shelf break (descend-

ing 50–100 m) in the East China Sea (Fig. 1c). At very high

resolution, some artefacts of bathymetric surveying are ap-

parent as linear features in the bathymetry south of Cornwall

(Fig. 1b).

For the northwest European shelf, bathymetry and current

amplitudes for the leading three tidal constituents (M2, S2,

N2 – see Fig. S1 in the Supplement) were obtained from the

Proudman Oceanographic Laboratory Coastal Ocean Mod-

elling System (POLCOMS) model (e.g. Holt et al., 2009b).

For the western English Channel, bathymetry is extracted

from the ETOPO1 global relief model (Amante and Eakins,

2009) and tidal current amplitudes are interpolated from

the POLCOMS data set. For the East China and Yellow

seas, current amplitudes for the leading 13 tidal constituents

were generated using OTPS (OSU Tidal Prediction Soft-

ware), based on the inverse method developed by Egbert et

al. (1994) and Egbert and Erofeeva (2002), and bathymetry is

selected within the OTPS system. Opting to use the leading

five constituents for this region, S2P3 was adapted to include

the two diurnal constituents, O1 and K1, in addition to the

semi-diurnal constituents S2, M2 and N2 (see Fig. S2).

One further distinction in regional set-up concerns initial

temperatures. At 1 January of each year, the water column

across the European shelf seas is presumed mixed every-

where. In the default model, initial temperature is 10.1 ◦C

at all depths, appropriate for the Celtic Sea. This initial tem-

perature is also appropriate for the western English Channel,

although we specify simulated 31 December temperatures

(constant through the fully mixed water column) for subse-

quent 1 January dates in the case of simulations at the West-

ern Channel Observatory (see Sect. 3.2). Elsewhere, alterna-

tive values for initial temperature are appropriate, consistent

with local climate. Consider as an example the northeast sub-

region of our northwest European shelf domain. Sensitivity

tests illustrate the importance of specifying an appropriate

initial temperature – see Fig. S3. If the initial temperature in

this region is too high (Fig. S3a), the net heat fluxes will fall

below −10 W m−2 across much of the domain, especially to

the north (i.e. annual net cooling from a “warm start”), while

if the temperature is too low (Fig. S3b), heat fluxes will ex-

ceed 10 W m−2 at most locations (i.e. annual net warming

from a “cold start”). Only if the initial temperature is ac-

curate to within around 1 ◦C do we avoid strong annual net

cooling or heating (Fig. S3c). For the China seas, we specify

a higher initial temperature of 15.1 ◦C and simulate 2 con-

secutive years, accounting for weak wintertime stratification

in this region. We analyse only the second year, for which

more realistic initial conditions are thus established across

the wider domain (on 1 January of the second year).

2.4 Meteorological forcing

In addition to tidal mixing, S2P3 is forced with surface heat

fluxes and wind stirring. Heat is gained by shortwave radia-

tion and lost via long-wave back-radiation, sensible and la-

tent heat fluxes – see Eq. (6). Shortwave radiation varies with

latitude and time of year, and decreases with fractional cloud

cover – see Eqs. (7) and (8). Long-wave radiation varies with

sea surface temperature and cloud cover – see Eq. (9). Sen-

sible and latent heat losses vary with air temperature, wind

www.geosci-model-dev.net/8/3163/2015/ Geosci. Model Dev., 8, 3163–3178, 2015
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Figure 2. Daily meteorological data: climatological for the northwest European shelf (Sharples, 2008), and for 2013 in the western English

Channel, and in the East China and Yellow seas: (a) air temperature; (b) wind speed; (c) cloud fraction; (d) relative humidity.

speed and relative humidity according to bulk formulae – see

Eqs. (10) and (11).

Daily values for the four necessary meteorological vari-

ables are provided in a single ASCII file. Sharples (2008)

uses climatological meteorological data for the Celtic Sea,

while Sharples et al. (2006) use meteorological data for

1974–2003 from weather stations in the vicinity of a study

site in the northwestern North Sea. Here, we use NCEP

reanalysis data provided by the NOAA/OAR/ESRL PSD,

Boulder, Colorado, USA, from their website at http://www.

esrl.noaa.gov/psd/. These data are routinely updated to

within a day or so of the present time, and span the period

from 1948. The data are provided on a 2.5◦ global mesh, so

each domain is forced everywhere with meteorological data

from a single 2.5◦ grid square, central to that region. Coordi-

nates of selected grid squares are listed in Table 1.

Figure 2 illustrates time series of meteorological variables

for the three domains. In initial testing, for the northwest Eu-

ropean shelf, we use the “default” Celtic Sea climatology

(Sharples, 2008). For the other two domains, data for 2013

are shown for example. Note the extent of high-frequency

synoptic variability in these cases, in particular for relative

humidity, cloud fraction and wind speed. Also note that the

UK spring of 2013 was exceptionally cold, hence air temper-

atures for the western English Channel sub-domain consider-

ably below the Celtic Sea climatological average. Also note

considerable contrast between the maritime and continental

climates, for the European shelf and China seas, respectively.

3 Model evaluation in the new framework

3.1 Northwest European shelf

Figure 3 shows a summary of fields obtained for a sim-

ulation using the northwest European shelf domain. Fig-

ure 3a shows the annual-mean Hunter–Simpson parameter,

log10(h/u
3), where h is the local depth and u is the am-

plitude of the local tidal current. Previous studies (starting

with Simpson and Hunter, 1974) have established a thresh-

old value of around 2.7, below (above) which the water col-

umn is well-mixed (stratified); log10(h/u
3) is generally be-

low 2.7 throughout the southern North Sea, and across much

of the eastern English Channel and the Irish Sea. These re-

gions are indeed well-mixed throughout summer, as evident

Geosci. Model Dev., 8, 3163–3178, 2015 www.geosci-model-dev.net/8/3163/2015/

http://www.esrl.noaa.gov/psd/
http://www.esrl.noaa.gov/psd/


R. Marsh et al.: Efficient modelling of shelf seas 3169

1.5

2

2.5

3

3.5

4

4.5

5

5.5
(b) day 190 stratification (oC)

0

1

2

3

4

5

6

7

8

(c) annual−net heat flux (W m-2)

−20

−15

−10

−5

0

5

10

15

20
(d) annual net production (g C m-2)

40

45

50

55

60

65

70

75

80

C

F
B

A

D

E

(a) Hunter-Simpson parameter

60oN

54oN

51oN
12oW 6oW 0o

60oN

54oN

51oN
12oW 6oW 0o

60oN

54oN

51oN
12oW 6oW 0o

60oN

54oN

51oN
12oW 6oW 0o

Figure 3. For the northwest European shelf domain: (a) Hunter–Simpson parameter, highlighting the contour delineating log10(h/u
3)= 2.7;

(b) day 190 surface–bottom temperature difference; (c) net surface heat flux; (d) annual net production. In (a), we label fronts as in Fig. 8.1

of Simpson and Sharples (2012): the Islay front (A); the western Irish Sea front (B); the Cardigan Bay front (C); the St. Georges Channel

front (D); the Ushant and western English Channel front (E). We additionally label the Flamborough frontal system (F).

in near-zero surface–bottom temperature differences for mid-

July, shown in Fig. 3b. Elsewhere, stratification is estab-

lished, and the model hence simulates a set of fronts between

mixed and stratified water that are clearly observed in satel-

lite data (see Fig. 8.1 in Simpson and Sharples, 2012 – also

indicated in Fig. 3a): the Islay front between Northern Ire-

land and Scotland (A); the western Irish Sea front enclos-

ing a seasonally stratified region of the Irish Sea (B); part of

the Cardigan Bay front (C); the St George’s Channel front

between Wales and Ireland (D); and the Ushant and west-

ern English Channel front between southwest England and

Brittany, France (E). The model also simulates a front ob-

served between the seasonally stratified northern North Sea

and the permanently mixed southern North Sea, including the

Flamborough frontal system (Hill et al., 1993, and references

therein), also indicated (F) in Fig. 3a.

A limitation of the simulation presented in Fig. 3 is the

use of default climatological meteorological forcing, origi-

nally set up for simulating tidal mixing fronts in the Celtic

Sea. This has important consequences for local heat balances,

evaluated here with the annual-mean surface net heat flux,

shown in Fig. 3c. In the central Celtic Sea (south of Ireland),

the net heat flux is slightly positive, in the range 0–5 W m−2.

Elsewhere, one might expect that a warmer (cooler) sea sur-

face will lead to stronger net heat loss (gain), via sensible and

latent heat fluxes. However, the imbalance reaches a max-

imum of 10 W m−2 in the warm southwest English Chan-

nel (net heating) and a minimum of −10 W m−2 in the cool

northern North Sea (net cooling). This is consistent with in-

solation levels at these latitudes that are respectively higher

and lower than that for the Celtic Sea. Such imbalances are

also a consequence of specifying the same initial temperature

everywhere (see Sect. 2.2), such that the northern North Sea

is initially too warm (so must lose heat over the seasonal cy-

cle), and the southwest English Channel is initially too cool

(so must gain heat). Net heat fluxes are also notably positive

in some regions that are well-mixed all year round, in par-

ticular the Irish Sea and parts of the English Channel. This is

consistent with enhanced heat storage due to mixing through-

out the water column of heat gained in summer (Simpson and

Bowers, 1984).

We have also experimented, on the northwest European

shelf domain, with spatially discriminate initial temperatures

and meteorological forcing (not shown here), the latter re-

specting variation of NCEP reanalysis data (per 2.5◦ grid

square) across the domain. While this approach has the po-

tential to restrict net heat fluxes closer to zero at all locations,

coarse-resolution data must be carefully interpolated to the

relatively fine 12 km mesh of S2P3-R in order to avoid unre-

alistic horizontal variations in forcing and simulated fields.
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Depending on temperature and the co-availability of pho-

tosynthetically active radiation (PAR) and nutrients, the

model simulates primary production. Annual net carbon pro-

duction per unit area is shown in Fig. 3d and simulated sur-

face chl a is compared to satellite observations in Figs. S4

and S5. The model broadly reproduces the temporal and

spatial variability in primary production and chl a observed

across the shelf, although considerable improvements can be

achieved through tuning of key model parameters (work in

progress).

Surface production rates (Fig. 3d) and chl a concentrations

(Fig. S4) are especially high in shallow coastal water that re-

mains well-mixed for most/all of the year, where nutrients are

consequently continuously re-supplied from the seabed, and

PAR levels are sufficient at all depths to maintain photosyn-

thesis. We have limited confidence in the simulated primary

production and chl a close to the coasts, for two specific rea-

sons. We do not account for the strong influence near many

coasts of freshwater (runoff), which has an important stratify-

ing influence on the water column. We also neglect the higher

turbidity caused by non-algal particles that can reduce PAR

below a level necessary to sustain photosynthesis, e.g. where

sediment loads are relatively high in shallow regions of vig-

orous mixing, such as the southern North Sea. Recognizing

this model limitation, we choose not to plot model output in

water shallower than 30 m in Figs. 3 and S4.

Moving towards stratified regions, annual-mean carbon

production rates generally decline, although remain above

55 g C m−2 year−1 at most locations due to the combined re-

sult of the major spring and minor autumn blooms (see be-

low). This decline is complemented by elevated productiv-

ity throughout summer at the thermocline, associated with

the development and persistence of the SCM. Primary pro-

duction rates during the spring bloom (not shown) reach

40 g C m−2 mon−1 or 1333 mg C m−2 d−1, in line with ob-

served magnitudes of the order of 1000 mg C m−3 d−1 (Rees

et al., 1999). Summertime chl a and primary production are

low in the surface mixed layer, consistent with observed val-

ues of < 1 mg chl am−3 and 5–30 mg C m−3 d−1, respec-

tively (Joint and Groom, 2000; Hickman et al., 2009). Simu-

lated surface chl a concentrations are broadly consistent with

satellite observations, although values are typically double

those observed (see Figs. S4 and S5). The model does not

reproduce the enhanced primary production and chl a ob-

served in the surface at the Celtic Sea shelf break (e.g. com-

pare Figs. S4 and S5, for April and May). This is likely be-

cause it does not include specific physical processes, such as

the internal tide, that are important for vertical nutrient sup-

ply to the surface in these regions (Sharples et al., 2007).

Following the spring bloom, surface productivity and sur-

face chl a concentrations remain elevated (above background

values) near three tidal mixing fronts in particular – the

Ushant and western English Channel front, the Islay front,

and the St George’s Channel front – for June–September in

the simulation (Fig. S4) and for May–July in the observa-

tions (Fig. S5). Surface chl a concentrations decline towards

more stratified waters, coincident with deepening of the SCM

away from fronts and associated zones of spring–neap frontal

adjustment (Pingree et al., 1978; Weston et al., 2005; Hick-

man et al., 2012). At the Ushant front, predicted peak July

primary production of 80–100 mg C m−3 d−1 is considerably

smaller than in situ measurements of 59–126 mg C m−3 h−1

(implying daily production of around 1000 mg m−3 d−1), for

surface waters at a frontal station in late July (Holligan et

al., 1984). However, the model estimates are intermediate

between corresponding surface observations for mixed and

stratified waters (reported in Holligan et al., 1984), emphasis-

ing the very localized character of frontal productivity, which

is not easily captured with our relatively coarse model reso-

lution (here around 12 km) and in the absence of horizon-

tal processes that may lead to convergence of material at the

front.

In the southern Irish Sea and south of the Islay front, sim-

ulated surface chl a concentrations are notably very low,

at around 0.1 mg chl am−3 (see Fig. S4). These low val-

ues are found in regions where the tidal current amplitude

is especially strong (see Fig. S1) in water that is sufficiently

deep (∼ 100 m, see Fig. 1a) for PAR to fall below a thresh-

old value within the well-mixed water column (Fig. 3b).

So in spite of very high nutrient levels throughout the year

(not shown), light is a severe limitation on photosynthe-

sis and hence productivity. This aspect of the simulation

is inconsistent with surface chl a concentrations of around

1 mg chl am−3 observed in this region (Fig. S5; Pemberton

et al., 2004; Moore et al., 2006). A likely explanation is that

the model does not resolve photo-acclimation, the known

ability of phytoplankton to acclimate to ambient light con-

ditions (e.g. Geider et al., 1997), and so does not resolve

the photo-physiological differences between stratified and

mixed water columns (Moore et al., 2006). DIN concentra-

tions in the northwest European shelf region during winter

and in the bottom mixed layer during summer (not shown)

are 5–6 mmol m−3, consistent with observed values around

6–9 mmol m−3 (Joint et al., 2001; Hickman et al., 2012).

To illustrate typical vertical structure across a mid-summer

tidal mixing front, Fig. 4 shows observations and correspond-

ing simulations for day 215 (3 August) of 2003, along a sec-

tion through the Celtic Sea front (Fig. 4a), located at around

52◦ N. The temperature distribution (Fig. 4b, c) illustrates

stratified water south of 52◦ N, with mixed water to the north.

DIN concentrations are high in mixed water and in the lower

layer of the stratified water, and depleted in the surface layer

of the stratified water (Fig. 4d, e). Chl a concentrations reach

a surface maximum at the front, with elevated values extend-

ing southwards in the model – the SCM supported by a weak

diffusive DIN flux across the thermocline (Fig. 4f, g).

Comparing the simulation with the observations, the

mixed water is about 1 ◦C cooler than observed, and DIN and

chl a concentrations are about 50 % higher at most depths.

Regarding structural discrepancy between observed chl a

Geosci. Model Dev., 8, 3163–3178, 2015 www.geosci-model-dev.net/8/3163/2015/
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Figure 4. Sections through the Celtic Sea front around day 215

of 2003: (a) locations of CTD stations (dots) and model grid

points (circles); (b, c) observed and modelled temperature (◦C);

(d, e) observed and modelled dissolved inorganic nitrate (units

mmol m−3); (f, g) observed and modelled chl a concentration (units

mg chl am−3). The locations of observations in profile are indi-

cated by dots in (b), (d) and (f).

concentrations in Fig. 4f and modelled chl a concentrations

in Fig. 4g, the northward-shifted surface maximum in the

model is coincident with a more northward location of the

tidal mixing front, which could be attributed to inadequacies

in meteorological and/or tidal forcing. The higher surface

maximum of chl a in the model may be in part due to ne-

glected horizontal processes, such as along-front transports

by a baroclinic jet supported by strong horizontal tempera-

ture gradients, and cross-frontal mixing processes associated

with jet instability. Higher chl a concentrations in the model

may alternatively be attributed to the relatively simple de-

scription of phytoplankton physiology, grazing and mobility

(no sinking, as default).

3.2 Western English Channel

For 1 May to 7 October of 2013, selected daily model fields

are saved and animated (see Supplement Part B, “Example

Animation”, and accompanying commentary text). A wide

range of phenomena are evident in the animation, includ-

ing the earliest establishment of stratification during May,
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Figure 5. Surface–bottom temperature differences (◦C) in the west-

ern English Channel, on day 190 of 2002–2013. Coloured circles

indicate the coincident temperature differences at L4 and E1, sub-

ject to data availability (E1 data are unavailable in 2004, 2006 and

2013).

expressed as a surface–bottom temperature difference, and

the rapid uptake of surface DIN, which declines to near-zero

concentrations with the development of a spring bloom (high

surface chl a levels) that peaks in early–mid June. We note

that the exceptionally cold spring of 2013 substantially de-

layed the onset of stratification and the spring bloom (also

suggested by satellite data – not shown). The spring–neap

cycle of stronger mixing (on spring tides) and strengthened

stratification (on neap tides) causes ∼ 14-day “beating” of

chl a concentration, between low values on spring tides and

high values on neap tides, most notably at the front between

inshore mixed and offshore stratified waters off southwest

Cornwall throughout June and July.

To illustrate the inter-annual variability of summer strat-

ification, Fig. 5 shows surface–bottom temperature differ-

ences on day 190 (8 or 9 July) of 2002–2013. The re-

gion is characterized by mixed water to the northwest as-

sociated with locally strong tidal current amplitudes (see

Fig. S1), and stratified water to the southwest (where tides

are weaker), with a secondary area of stratification cen-

tred around 4.5◦W 50.1◦ N (coincident with a local mini-

mum in tidal current amplitude). The water column remains

mixed all year round in shallow water close to the coast, at

most locations and in most years. A complex arrangement

of mixed and stratified water is simulated in the northeast

of the region, associated with highly variable bathymetry
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Figure 6. Time series of surface–bottom temperature differences observed and (daily) simulated at L4 and E1 (http://www.

westernchannelobservatory.org.uk/data.php).

(see Fig. 1b). When a cold spring is followed by a warm

summer (e.g. 2006, 2010, 2013), stratification is particularly

strong, with surface–bottom temperature differences reach-

ing almost 7 ◦C in the southwest of the region.

To locally validate the simulation, we use ob-

servations at L4 (50◦15.00′ N, 4◦13.02′W) and E1

(50◦02.00′ N, 4◦22.00′W), hydrographic stations that

have been occupied weekly and monthly, respec-

tively, as part of the Western Channel Observatory

(http://www.westernchannelobservatory.org.uk/data.php).

Here, seasonal cycles of stratification and phytoplankton

dynamics have been extensively studied (Smyth et al.,

2010). In Fig. 5, we overplot observed temperature dif-

ferences for station occupations within a few days (L4)

or 1–2 weeks (E1) of day 190. Observed differences are

generally indistinguishable from the simulated differences.

For a more comprehensive validation, Fig. 6 shows time

series of surface–bottom temperature differences observed

and (daily) simulated at L4 and E1. The temperature at the

depth of the maximum chl a concentration is also plotted

at E1, confirming the existence of an SCM within the sea-

sonal thermocline. Starting on 1 January 2002, we simulate 1

year at a time, specifying a mixed water column temperature

on, e.g. 1 January 2003 with the corresponding temperature

on 31 December 2002. This ensures continuity in tempera-

tures between years, respecting a small degree of inter-annual

variability in wintertime temperature at L4 and E1. Weak

stratification (maximum∼ 4 ◦C) typically is established over

∼ 5 months of each summer at L4, while stronger stratifi-

cation (up to ∼ 7 ◦C) develops for longer (by 1–2 months)

at E1. Model–observation agreement is remarkably good,

with close correspondence between not just surface temper-

atures, but also bottom temperatures. The seasonally vary-

ing stratification at both stations is generally reproduced to

within 1 ◦C, although high-frequency extremes are under-

sampled by weekly (monthly) occupations of L4 (E1), and

there is more disagreement at L4. This is most likely be-

cause the water column at L4 is strongly influenced by fresh-

water, with low surface salinity having a substantial effect

on stratification. The vertical salinity distribution also ex-

plains the apparent temperature instability (negative surface–

bottom temperature differences) observed at L4 in winter –

Geosci. Model Dev., 8, 3163–3178, 2015 www.geosci-model-dev.net/8/3163/2015/
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Figure 7. Sections through the developing tidal mixing front east

of Lizard peninsula, along 50.017◦ N, on days 100, 130, 160 and

190 of 2013: temperature (left column); dissolved inorganic nitrate

(mmol m−3, middle column); chl a (mg chl am−3, right column).

the water column is in fact statically stable throughout the

time series.

With some confidence in model performance, in Fig. 7 we

show temperature, DIN and chl a in sections through the de-

veloping tidal mixing front east of Lizard peninsula, along

50.017◦ N, on days 100, 130, 160 and 190 of 2013. We select

this section as representative of CTD transects undertaken

annually in late June/early July by University of Southamp-

ton fieldwork students. On day 100 (early April), the water

column is well-mixed almost everywhere, with very weak

stratification in temperature evident at 10 km along the sec-

tion. DIN concentrations are high (∼ 6 mmol m−3) through-

out the water column for bottom depths exceeding a thresh-

old value (∼ 40 m), below which PAR falls below a critical

value within the water column. As bottom depths become

shallower (progressing inshore), DIN concentrations rapidly

fall to near zero, where PAR is sufficient at all depths to

sustain plankton growth and associated DIN uptake in the

model. Inshore chl a concentrations are accordingly high

(12–13 mg chl am−3), falling rapidly with distance to back-

ground values (∼ 0.1 mg chl am−3) offshore.

By day 130 (early May), the water remains well-mixed, al-

though warmer by 1–2 ◦C, and high productivity has spread

offshore, presumably due to intermittent weak stratification

during preceding days. By day 160, stratification is clearly

established beyond 4 km offshore. DIN concentrations are

now reduced to near-zero in the upper 20 m of the strati-

fied water, and high chl a concentrations are evidence of

the spring bloom. By day 190, stratification has strength-

ened and DIN concentrations in the deep layer of stratified

water columns are further depleted through vertical mixing

with the upper photic zone, although surface chl a concen-

trations have by this time substantially declined in the upper

layer. The boundary between mixed and stratified waters on

days 160 and 190 marks the position of the tidal mixing front.

The model has been further used to evaluate the extent of

inter-annual variability around the time of annual fieldwork,

in the third week of June. Temperature sections on day 169

of 2002–2013 (see Fig. S6) reveal a wide range of offshore

stratification and frontal structure in recent years, with the

strongest stratification in 2010, the weakest stratification in

2011, and a most clearly defined front in 2009.

As an example of the seasonal cycles in temperature, sur-

face DIN and surface chl a at four locations across the front

(spanning the distance range 3–7 m in Fig. S6), Fig. 8 shows

evolution of these variables through 2013. Stratification is

very marginal and intermittent at 5.033◦W, with surface–

bottom temperature differences occasionally reaching 2 ◦C.

DIN concentrations fall close to zero over days 130–300 and

chl a concentrations are high (in the range 6–8 mg chl am−3)

throughout this period. Related to the intermittent stratifica-

tion are similar fluctuations in chl a. This variability is in

part attributed to the near-fortnightly spring–neap tidal cy-

cle, which leads to periodic replenishment of nutrients, out

of phase with more favourable PAR regimes. Progressing

offshore into deeper water, the seasonal cycle transforms

towards stronger stratification, a shorter period of surface

DIN reduction, and a stronger peak in surface chl a around

day 150 that corresponds to the spring bloom, followed by

substantially lower concentrations during the rest of summer.

3.3 East China and Yellow seas

Figure 9 shows example fields for a simulation using the East

China Sea and Yellow Sea domain with 2013 forcing. Fig-

ure 9a shows the annual-mean Hunter–Simpson parameter,

log10(h/u
3), which falls below 2.7 in particularly shallow

regions (see Fig. 1c) that are also characterized by high am-

plitude tidal currents (see Fig. S2); log10(h/u
3) conversely

exceeds 5.0 in the isolated Bohai Sea, lying to the northwest

of the Yellow Sea. As for the northwest European shelf, re-

gions with log10(h/u
3)< 2.7 remain well-mixed throughout

summer (Fig. 9b). Elsewhere, stratification is stronger than

for the northwest European shelf, with surface–bottom tem-

perature differences on day 190 of ∼ 10 ◦C across much of

the stratified shelf. A major feature of Fig. 9b is the front be-

tween mixed and stratified water in the East China Sea that is

clearly observed in satellite SST data (Hickox et al., 2000).

The simulations also capture the complex system of fronts

observed in the Taiwan Strait (Zhu et al., 2013).

The specification of common meteorological variables

across ∼ 20◦ of latitude and ∼ 15◦ of longitude is a con-

siderable approximation, and the annual-mean net surface

www.geosci-model-dev.net/8/3163/2015/ Geosci. Model Dev., 8, 3163–3178, 2015
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Figure 8. Time series of surface and bottom temperature (red and blue curves), surface–bottom temperature difference, surface DIN and

surface chl a concentrations, across the tidal mixing front east of the Lizard peninsula in 2013.

heat flux field is an important measure of resulting heat

imbalances (Fig. 9c). We regard these values as not too

excessive, ranging from around 5 W m−2 (heat gain) in

the far south to around −10 W m−2 (excess heat loss) in

the far north (Bohai Sea). Annual-mean carbon produc-

tion rates in the well-mixed shallow regions of the East

China Sea range from 300 to 450 g C m−2 year−1, falling

to ∼ 100 g C m−2 year−1 in the more extensive stratified re-

gion (Fig. 9d). These predictions are similar in magnitude

to estimates of primary production based on in situ obser-

vations (e.g. 145 g C m−2 year−1 for “the entire shelf of the

East China Sea”, Gong et al., 2003). Monthly mean surface

chl a distributions are broadly comparable to satellite ob-

servations, although maximum model chl a concentrations

are generally double those observed, and the spring bloom

is ∼ 1 month late, in May rather than April (e.g. for 2013,

Figs. S7 and S8). Discrepancies between the model and ob-

servations in this region may be improved by accounting for

higher turbidity in relatively shallow water and model refine-

ments related to photo-physiology.

To complete the 3-D picture, Fig. 10 shows show tem-

perature, DIN and chl a concentration in sections through

the developing front of the central East China Sea, along

32◦ N, on days 100, 130, 160 and 190 of 2013. Bottom

depth increases considerably with distance offshore. In wa-

ter of depth < 40 m, the water column remains well-mixed

throughout the year, while in deeper water, stratification be-

comes established between days 100 and 130. In stratified

water, DIN is already depleted in the surface layer over

days 100–130, and is gradually further depleted in the lower

layer over days 130–190 through progressive mixing into the

photic zone. A local surface maximum in chl a concentration

is evident at the frontal boundary (∼ 250 km) on day 130,

while a SCM is evident in stratified water on days 160 and

190. The SCM is most clearly defined at ∼ 25 m on day 190.

4 Summary and discussion

We have developed S2P3-R, a versatile framework for effi-

cient modelling of physical and biological phenomena and

processes in shelf seas, adopting an existing 1-D model,

S2P3. Here, we complement ongoing development and use

of the 1-D model for specific research hypotheses (e.g. Bauer

and Waniek, 2013) and in educational settings, where ideal-

ized simulations (e.g. Sharples, 2008) are linked to realis-

tic situations such as fieldwork contexts – e.g. off Cornwall,

away from the lateral influences of runoff.

The realism of S2P3-R depends on the extent to which

vertical processes dominate horizontal processes. This is ev-

ident across some shelf sea regions, where we have the

high-quality observations necessary for a co-evaluation of

these processes. One way to formally quantify the domi-

nance of surface net heat fluxes and tidal plus wind mixing

(the 1-D processes) is by calculating tendencies of the po-

tential energy anomaly (PEA; see Chapter 6 in Simpson and

Sharples, 2012). PEA tendencies calculated directly from ob-

served changes of stratification at selected locations (e.g.

weekly/monthly at Western Channel Observatory stations
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Figure 9. For the East China and Yellow seas domain in 2013: (a) Hunter–Simpson parameter, highlighting the contour delineating

log10(h/u
3)= 2.7; (b) day 190 surface–bottom temperature difference; (c) net surface heat flux; (d) annual net production.

L4/E1) can be compared with indirect estimates computed

from time-integrated heat fluxes, winds and tidal currents at

the same locations. If local heat fluxes and tidal/wind mix-

ing dominate the annual cycle of stratification, directly cal-

culated and indirectly estimated time series of PEA tendency

should be similar.

Where appropriate, the framework facilitates experiments

to investigate the sensitivity of measurable quantities (e.g.

chl a concentration) to a wide range of physical and biologi-

cal processes that can be adjusted with corresponding model

parameters. Where high-quality observations are available

(e.g. at E1 in the western English Channel), S2P3-R thus pro-

vides a means for improving our fundamental understanding

of the system. With tuned parameters, S2P3-R furthermore

provides the means to carry out credible multi-year simula-

tions of physical and biological processes and property dis-

tributions at appropriately high temporal, vertical and hori-

zontal resolution.

At the seasonal timescale, the most striking surface fea-

tures are TMFs. Realistic representation of TMFs, demand-

ing high horizontal resolution, amounts to first-order eval-

uation of any simulation, e.g. the UK Met Office forecast

system (O’Dea et al., 2012), which has the same relatively

coarse (12 km) resolution as our northwest European shelf

domain. The summer surface–bottom temperature differ-

ences across the northwest European shelf and the associ-

ated TMFs in S2P3-R (Fig. 3a) compare well with the 3-D

model results (O’Dea et al., 2012, their Fig. 10). Our simpler

approach thus indicates the importance of 1-D processes in

forming these features, the locations of which are consistent

with these more complex models.

It is natural to deploy S2P3 across multiple processors,

with sub-domains computed independently in parallel. This

has been trialled for twelve 1◦× 1◦ sub-domains across the

southern Celtic Sea and western English Channel at a reso-

lution of 1 km, substantially expanding our western English

Channel domain with essentially no extra computational ex-

pense. Figure 11 shows the July surface–bed temperature dif-

ference across this region, illustrating how we are able to effi-

ciently simulate regional stratification at very high horizontal

resolution.

We have evaluated the model in various ways with

available observations, specifically addressing spatial pat-

terns, vertical structures, and seasonal–interannual variabil-

ity. Temperature distributions are reproduced with consider-

able success, as are key aspects of the spatial and temporal

variability in nutrient and chl a concentrations. In particular,

we are able to accurately reproduce monthly observations of

thermal structure at station E1 in the western English Chan-

nel over 2002–2013 (Fig. 6), providing confidence in the use

of S2P3-R in this region. We therefore consider there is much

potential for S2P3-R to investigate physical and physiologi-

cal controls on primary productivity at regional scales.

Elsewhere, differences between the model and observa-

tions are informative because, for example, they identify re-

gions in which processes other than those represented in the

model are important. In particular, we note several processes

specific to coasts and shelf breaks, of relevance to several

physical aspects of the domains considered here:

www.geosci-model-dev.net/8/3163/2015/ Geosci. Model Dev., 8, 3163–3178, 2015
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Figure 10. Sections through the developing tidal mixing front of

the East China Sea, along 32◦ N, on days 100, 130, 160 and 190 of

2013: temperature (left column); DIN (mmol m−3, middle column);

chl a (mg chl am−3, right column).

– The coastal zone around Cornwall, typified by station

L4, is strongly influenced by riverine inputs that pro-

mote surface freshening and stratification and alter light

attenuation by non-algal particles and dissolved organic

matter (Groom et al., 2009; Smyth et al., 2010).

– The northern North Sea is strongly influenced by shelf

edge exchange that leads to the inflow of relatively

warm and salty Atlantic Water (Huthnance et al., 2009).

– The Yangtze River and two branches of the Kuro Shio

– the Taiwan current and the Tsushima warm current –

exert strong influences on stratification and productivity

in the East China Sea (e.g. Son et al., 2006).

Further development of S2P3-R will formally establish the

(presently prototype) option to prescribe spatially variable

initial temperatures and meteorological variables, interpo-

lated appropriately to each model mesh. As an additional

diagnostic, the thermal wind balance may be used with the

simulated density field to infer the residual flows that are as-

sociated with TMFs (e.g. Hill et al., 2008), indicating the po-

tential importance of net advection along the fronts.

In summary, the S2P3-R framework (v1.0) provides the

flexibility to undertake research experiments in finely re-

solved realistic domains where 1-D processes dominate, to

test hypotheses regarding the sensitivity of 1-D biogeochem-

ical processes to key model parameters, and/or to test the re-

sponses to variations of physical forcing on timescales rang-

ing from diurnal to inter-annual. Combining flexibility with

Figure 11. Surface–bottom temperature differences (◦C) across the

southern Celtic Sea and western English Channel, in mid-July of

2014, simulated with S2P3-R configured in twelve 1◦× 1◦ sub-

domains, as indicated.

computational efficiency, the S2P3-R framework may fur-

ther contribute to capacity building in marine monitoring

and management for individuals/organisations without the

resources to run or analyse complex models of their terri-

torial waters or exclusive economic zones.

Code availability

The S2P3-R (v1.0) framework, comprising source code

along with example scripts and output, is available online

from ftp://ftp.noc.soton.ac.uk/pub/rma/s2p3-reg.tar.gz.

Unzipped and uncompressed, the directory/s2p3_reg_v1

contains several sub-directories:

– /main contains the source code, s2p3v7_reg_v1.f90,

which is compiled “stand alone”, and executed us-

ing accompanying scripts, with examples of “map”

(the northwest European Shelf simulation, as Fig. 3),

“section” (Celtic Sea) and “time series” (E1) simula-

tions (run_map, run_section and run_timeseries, respec-

tively).

– /domain contains bathymetry and tide data

for the northwest European Shelf region

(s12_m2_s2_n2_h_map.asc), for a selected north–south

section in the Celtic Sea (s12_m2_s2_n2_h_sec.asc)

and for a selected point, E1 in the western English

Channel (s12_m2_s2_n2_h_tim.asc).

– /met contains climatological meteorological forcing

(Celtic_met.dat).

– /output contains example output data from the three runs

(map, section, time series).

– /plotting contains MATLAB scripts for plotting maps,

sections and time series (plot_map, plot_section and

plot_timeseries, respectively).

The ancillary files needed for simulations in the domains

“western English Channel” and “East China and Yellow

seas”, and for a selection of years, are available on request

from the author (e-mail rm12@soton.ac.uk).

Geosci. Model Dev., 8, 3163–3178, 2015 www.geosci-model-dev.net/8/3163/2015/

ftp://ftp.noc.soton.ac.uk/pub/rma/s2p3-reg.tar.gz


R. Marsh et al.: Efficient modelling of shelf seas 3177

The Supplement related to this article is available online

at doi:10.5194/gmd-8-3163-2015-supplement.
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