
Geosci. Model Dev., 8, 3033–3053, 2015

www.geosci-model-dev.net/8/3033/2015/

doi:10.5194/gmd-8-3033-2015

© Author(s) 2015. CC Attribution 3.0 License.

Impact of climate, vegetation, soil and crop management variables

on multi-year ISBA-A-gs simulations of evapotranspiration over a

Mediterranean crop site

S. Garrigues1,2, A. Olioso1,2, D. Carrer3, B. Decharme3, J.-C. Calvet3, E. Martin3, S. Moulin1,2, and O. Marloie4

1INRA, UMR1114 EMMAH, 84914 Avignon CEDEX 9, France
2Université d’Avignon et des Pays de Vaucluse, UMR1114 EMMAH, 84000 Avignon, France
3CNRM-GAME, UMR3589, Météo-France, CNRS, Toulouse, France
4URFM, INRA, Avignon, France

Correspondence to: S. Garrigues (sebastien.garrigues@paca.inra.fr)

Received: 19 December 2014 – Published in Geosci. Model Dev. Discuss.: 26 February 2015

Revised: 24 July 2015 – Accepted: 25 August 2015 – Published: 2 October 2015

Abstract. Generic land surface models are generally driven

by large-scale data sets to describe the climate, the soil

properties, the vegetation dynamic and the cropland man-

agement (irrigation). This paper investigates the uncertain-

ties in these drivers and their impacts on the evapotranspi-

ration (ET) simulated from the Interactions between Soil,

Biosphere, and Atmosphere (ISBA-A-gs) land surface model

over a 12-year Mediterranean crop succession. We evaluate

the forcing data sets used in the standard implementation of

ISBA over France where the model is driven by the SAFRAN

(Système d’Analyse Fournissant des Renseignements Adap-

tés à la Nivologie) high spatial resolution atmospheric re-

analysis, the leaf area index (LAI) time courses derived from

the ECOCLIMAP-II land surface parameter database and the

soil texture derived from the French soil database. For cli-

mate, we focus on the radiations and rainfall variables and

we test additional data sets which include the ERA-Interim

(ERA-I) low spatial resolution reanalysis, the Global Precipi-

tation Climatology Centre data set (GPCC) and the MeteoSat

Second Generation (MSG) satellite estimate of downwelling

shortwave radiations.

The evaluation of the drivers indicates very low bias

in daily downwelling shortwave radiation for ERA-I

(2.5 W m−2) compared to the negative biases found

for SAFRAN (−10 W m−2) and the MSG satellite

(−12 W m−2). Both SAFRAN and ERA-I underestimate

downwelling longwave radiations by −12 and −16 W m−2,

respectively. The SAFRAN and ERA-I/GPCC rainfall are

slightly biased at daily and longer timescales (1 and 0.5 %

of the mean rainfall measurement). The SAFRAN rainfall

is more precise than the ERA-I/GPCC estimate which

shows larger inter-annual variability in yearly rainfall error

(up to 100 mm). The ECOCLIMAP-II LAI climatology

does not properly resolve Mediterranean crop phenology

and underestimates the bare soil period which leads to an

overall overestimation of LAI over the crop succession. The

simulation of irrigation by the model provides an accurate

irrigation amount over the crop cycle but the timing of

irrigation occurrences is frequently unrealistic.

Errors in the soil hydrodynamic parameters and the lack of

irrigation in the simulation have the largest influence on ET

compared to uncertainties in the large-scale climate reanal-

ysis and the LAI climatology. Among climate variables, the

errors in yearly ET are mainly related to the errors in yearly

rainfall. The underestimation of the available water capacity

and the soil hydraulic diffusivity induce a large underestima-

tion of ET over 12 years. The underestimation of radiations

by the reanalyses and the absence of irrigation in the sim-

ulation lead to the underestimation of ET while the overall

overestimation of LAI by the ECOCLIMAP-II climatology

induces an overestimation of ET over 12 years.

This work shows that the key challenges to monitor the

water balance of cropland at regional scale concern the repre-

sentation of the spatial distribution of the soil hydrodynamic
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parameters, the variability of the irrigation practices, the sea-

sonal and inter-annual dynamics of vegetation and the spa-

tiotemporal heterogeneity of rainfall.

1 Introduction

Evapotranspiration (ET) is a key component of the water bal-

ance and the energy budget of land surfaces. It is essential

information to represent air temperature and air humidity of

the surface boundary layer (Noilhan et al., 2011) and to mon-

itor river discharge (Habets et al., 2008). ET can be estimated

from a land surface model (LSM) which describes the verti-

cal exchange of energy and mass between the soil, the vege-

tation and the atmosphere at an hourly timescale. LSMs have

been designed to be coupled to atmospheric or hydrology

models for large-scale studies. Uncertainties in LSM sim-

ulations of ET can be attributed to (i) model structure and

parameters (referred hereafter as model uncertainties) and

(ii) errors in the forcing variables used to drive the model

and to integrate it spatially. The forcing variables concern the

climate and the land surface characteristics. They are gener-

ally provided by large-scale data sets which are characterized

by coarse spatial resolution (10–50 km). These data sets may

not be accurate enough to resolve the spatial and temporal

variability of ET at regional scale. Long-term prediction of

surface fluxes and water balance requires characterizing the

impact of forcing variables on LSM simulations at seasonal

and multi-annual scales.

Atmospheric reanalysis results from the combination of

coupled atmosphere–ocean–land models and meteorologi-

cal observations. One challenge concerns the evaluation of

their representativeness of regional climates (Bosilovich et

al., 2013). Large differences among reanalysis data sets and

between these data sets and in situ observations are reported

in Zhao et al. (2012). The errors are the greatest at hourly and

daily time steps and generally decrease at longer timescales

(Zhao et al., 2012). They can be large in mountainous re-

gions due to unresolved topography variability and lack of

dense network of measurements (Zhao et al., 2008; Wang

and Zeng, 2012). Air temperature is generally a robust es-

timate (Quintana-Seguí et al., 2008; Decker et al., 2012).

Zhao et al. (2012) evaluated four reanalysis data sets over

six French sites. For air temperature, they found mean ab-

solute errors (MAEs) which range from 0.5 to 2 ◦C. Rain-

fall and radiation, which are two key external drivers of ET

(Teuling et al., 2009; Miralles et al., 2011), are frequently

reported as the most uncertain variables (Szczypta et al.,

2011; Bosilovich, 2013). For rainfall, Zhao et al. (2012)

found MAEs which range from 1.8 to 4 mm day−1. The er-

rors in precipitation particularly affect the simulation of sur-

face flux, soil moisture and vegetation growth, which can

have large impact on the simulation of hydrological vari-

ables (Decharme and Douville 2006; Maggioni et al., 2012;

Anquetin et al., 2010). Regarding radiations, their estimates

are frequently inaccurate due to the few number of in situ

observations used to constraint the radiative transfer model

used in the reanalysis (Carrer et al., 2012). Zhao et al. (2012)

report daily MAEs ranging from 20 to 60 W m−2 for down-

welling shortwave radiations (referred as shortwave radiation

or SWdown hereafter) and from 10 to 20 W m−2 for down-

welling longwave radiations (referred as longwave radiation

or LWdown). Underestimations in SWdown are frequently

reported over Mediterranean regions (Quintana-Seguí et al.,

2008; Szczypta et al., 2011). New radiation products derived

from satellite observations such as MSG/SEVIRI (MeteoSat

Second Generation/Spinning Enhanced Visible and Infrared

Imager) can advantageously be used over these areas that

lack high resolution meteorological measurements in order

to simulate the energy budget (Carrer et al., 2012).

The representation of the surface characteristics concerns

all the variables used to force the model in terms of land

cover type and use, vegetation dynamic and soil properties.

Since the model parameters are generally prescribed per land

surface type, errors in land cover maps can induce large er-

rors in LSM outputs (Avissar and Pielke, 1989; Ge et al.,

2007; Pijanowski et al., 2011). The soil texture is generally

used to infer the soil hydrodynamic properties through pedo-

transfer functions (Espino et al., 1996; Baroni et al., 2010). It

is a key variable for the spatial integration of the model since

the soil properties explain a large part of ET uncertainties

(Braud et al., 1995; Garrigues et al., 2015). The vegetation

dynamic is represented by the leaf area index (LAI) cycle. It

is a key variable involved in the simulation of canopy con-

ductance. It is used to infer secondary parameters such as the

vegetation cover which controls evapotranspiration partition-

ing. The LAI cycle can be described by climatology or satel-

lite observations. Several studies have reported great discrep-

ancies between distinct LAI satellite observations (Garrigues

et al., 2008; Lafont et al., 2012). Their spatial and temporal

resolution may not be fine enough to represent the cropland

dynamic. Garrigues et al. (2015) highlight the large impact

of the succession of crop cycle and inter-crop periods on the

temporal dynamic of ET over a long period of time. Finally,

agricultural land management such as irrigation can signif-

icantly influence the surface energy and water balance (de

Rosnay et al., 2003; Olioso et al., 2005; Puma and Cook,

2010) but irrigation is rarely accounted for in land surface

modelling at large scale.

This work aims at

1. evaluating the uncertainties in the forcing data sets used

to drive land surface models at large scale,

2. assessing the relative influence of the model drivers on

the simulation of ET over a 12-year Mediterranean crop

succession.

We focus on the following drivers of ET:

– the rainfall and radiation climate variables,
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– the irrigation,

– the vegetation dynamic (LAI cycle),

– the soil properties (soil texture, hydrodynamic parame-

ters).

We use the Interactions between Soil, Biosphere, and At-

mosphere (ISBA) land surface model (Noilhan and Plan-

ton, 1989; Noilhan and Mahfouf, 1996) in its A-gs version

(coupled photosynthesis–stomatal conductance model) (Cal-

vet et al., 1998). We evaluate the forcing data sets used in

the standard implementation of ISBA-A-gs over France. This

includes the SAFRAN (Système d’Analyse Fournissant des

Renseignements Adaptés à la Nivologie) high spatial reso-

lution atmospheric reanalysis (Quintana-Seguí et al., 2008),

the LAI cycles derived from the ECOCLIMAP-II land sur-

face parameter database (Faroux et al., 2013) and the soil

texture derived from the French soil database (King et al.,

1995). These forcing data sets are operationally used in the

SIM (SAFRAN-ISBA-MODCOU) system which is dedi-

cated to hydrological monitoring (Habets et al., 2008; Vidal

et al., 2010a) and the LDAS (Land Data Assimilation Sys-

tem) which combines the ISBA-A-gs model and satellite ob-

servations to monitor vegetation and soil moisture (Barbu et

al., 2014). For the climate, additional data sets used for the

implementation of ISBA at the continental scale are tested,

which include the ERA-Interim low spatial resolution reanal-

ysis (Simmons et al., 2010), the Global Precipitation Clima-

tology Centre data set (GPCC; Schneider et al., 2011) and the

MSG satellite estimate of downwelling shortwave radiations

(Carrer et al., 2012). We chose to evaluate the forcing vari-

ables over a crop site for which the irrigation and the succes-

sion of crop and inter-crop periods are critical drivers of ET

dynamics. Besides, the impact of the forcing variables over

a crop succession has not yet been addressed. The evaluation

is done for Mediterranean climate, for which the errors in the

reanalysis estimates of radiation and rainfall were reported

to be large (Szczypta et al., 2011). The evaluation is carried

out at local scale over the Avignon “Remote Sensing and

Fluxes” crop site (southeast of France), which is represen-

tative of typical Mediterranean cropland. This site provides

12 years of continuous measurements of micrometeorologi-

cal variables and surface fluxes which allow evaluating the

forcing variables and their impact on ET for a large range

of surface and atmospheric states. We will first evaluate the

large-scale forcing data sets against the local values taken at

the Avignon site. Then, we will assess the hierarchy of the

influence of the tested drivers on ET. We finally discuss the

implications of our results with respect to the spatial integra-

tion of the model to monitor the water balance of cropland at

regional scale.

Figure 1. Map of the field site and locations of the instruments.

Image from Google Earth, 2015.

2 Site and in situ data

We provide here the main characteristic of the Avignon

experimental site, details can be found in Garrigues et

al. (2015).

2.1 Site characteristics

The forcing data sets and the ET simulations are evalu-

ated over the “Remote sensing and flux site” of INRA Avi-

gnon1 (France; 43◦55′00.4′′ N, 4◦52′41.0′′ E (WGS84 sys-

tem); 32 m a.s.l). This site is characterized by a Mediter-

ranean climate with a mean annual temperature of 14 ◦C and

a mean annual precipitation of 687 mm. It is a flat agricul-

tural field of 1.9 ha oriented north–south in the prevailing

wind direction (Fig. 1). The evaluation period comprises a

12-year crop succession from April 2001 to December 2012

(Table 1). The crop rotation consists in a succession of winter

arable crops (wheat, peas) and spring/summer arable crops

(sorghum, maize, sunflower). Periods between two consecu-

tive crop cycles are short (∼ 1–1.5 months) in the case of a

summer crop followed by a winter crop and can last up to

10 months in the reverse case (Fig. 2). During the inter-crop

periods, the soil is mostly bare. Limited wheat regrowths oc-

curred over short periods of time. Irrigation is triggered only

for summer crops (every 2 years).

The soil texture comprises 33 % clay and 14 % sand. The

in situ values of the soil water content at saturation, field ca-

pacity and wilting point are 0.39, 0.31 and 0.18.

2.2 Field measurements

Half-hourly observations of the main climatic variables, the

shortwave and longwave radiation fluxes, the turbulent heat

1https://www4.paca.inra.fr/emmah_eng/Facilities/

In-situ-facilities/Remote-Sensing-Fluxes
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Table 1. Definition of symbols and acronyms.

BS Bare soil

C3 C3 type of crop

C4 C4 type of crop

d2 Rooting depth (m)

ERA-I ERA-Interim reanalysis climate data set (spatial resolution of 0.5◦ and time step of 3 h )

ERA-I/GPCC ERA-I climate where rainfall was corrected using the GPCC rainfall data set

GPCC Global Precipitation Climatology Centre data set (version 6, Schneider et al., 2011) which gives monthly

quality-controlled precipitation totals

ECOCLIMAP-II Land surface parameter database (spatial resolution of 1 km) used to run the SURFEX/ISBA model at global

scale (Faroux et al., 2013)

ET Evapotranspiration (given in cumulative value in millimetres at daily or multi-year timescales)

fclay Clay fraction

fsand Sand fraction

FSDB French Soil DataBase (King et al., 1995) which provides soil texture over the SAFRAN grid at a spatial resolu-

tion of 8 km

ISBA Interactions between Soil, Biosphere, and Atmosphere (ISBA) Land surface model

ISBA-A-gs A-gs version of ISBA. A-gs indicates that ISBA includes a coupled stomatal conductance–photosynthesis

scheme

LAI Leaf area index (m2 m−2)

LE Latent heat flux (W m−2)

LSM Land surface model

MaxAWC Maximum available water content. It represents the maximum water stock available for the crop’s growth

MD Mean deviation

MSG MeteoSat Second Generation satellite. We used the downwelling shortwave radiation derived from MSG obser-

vations

r Correlation coefficient

RMSD Root mean square of differences (between two simulations)

SAFRAN Système d’Analyse Fournissant des Renseignements Adaptés à la Nivologie providing data for the snow model.

The SAFRAN reanalysis covers France with a spatial resolution of 8 km and an hourly time step

SD Standard deviation

SDD Standard deviation of the differences

SEVIRI Spinning Enhanced Visible and Infrared Imager instrument on board the MeteoSat Second Generation satellite

SURFEX Surface externalisée in French. SURFEX is an externalized land and ocean surface platform that describes the

surface fluxes and the evolution of four types of surface: nature, town, inland water and ocean. ISBA is the land

surface model used for nature surfaces

SWdown Downwelling shortwave radiation

LWdown Downwelling longwave radiation

θfc Volumetric soil moisture at field capacity (m3 m−3)

θsat Volumetric soil moisture at saturation (m3 m−3)

θwp Volumetric soil moisture at wilting point (m3 m−3)

Figure 2. Illustration of the typical succession of winter and summer crops over the Avignon site and implementation of the crop succession

in the simulations. θ and T represent soil moisture and soil temperature transmitted from one sub-simulation to the following one.
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fluxes (eddy-covariance measurements of ET), the ground

heat flux, and the soil moisture vertical profile have been con-

tinuously monitored since 2001.

The crop characteristics (LAI, height, biomass) were reg-

ularly measured at selected phenological stages. The vegeta-

tion height was linearly interpolated on a daily basis. Daily

interpolation of LAI was achieved using a functional rela-

tionship between LAI and the sum of degree days (Duveiller

et al., 2011).

These measurements were used to drive or evaluate the

model over the crop succession.

3 The ISBA-A-gs model

The ISBA model (Noilhan and Planton, 1989; Noilhan and

Mahfouf, 1996) is developed at the CNRM/Météo-France

(National Centre for Meteorological Research/French Mete-

orological Service) within the SURFEX (Surface external-

isée) surface modelling platform (Masson et al., 2013). In

this study, we used the version 6.1 of SURFEX.

ISBA relies on a single surface energy budget of a soil–

vegetation composite. The soil water transfers are simulated

using a force–restore scheme. They are represented by the

time course of the volumetric soil moisture of three reser-

voirs: the superficial reservoir of thickness d1 = 0.01 m to

regulate the soil evaporation, the root zone and the deep

reservoir which extends from the base of the root zone to

the total soil column depth. The total latent heat flux is sim-

ulated by computing individual estimates of soil evaporation

and plant transpiration fluxes. Detailed explanations on how

soil evaporation is computed can be found in Garrigues et

al. (2015). The stomatal conductance used to compute the

plant transpiration is simulated using the A-gs version of

ISBA. The latter explicitly represents the functional coupling

between the stomatal conductance (gs) and the net assimila-

tion of CO2 (A). The stomatal conductance for water vapour

is computed as a function of the net assimilation of CO2 (Cal-

vet et al., 1998). A-gs is based on the model of Goudriaan et

al. (1985) modified by Jacobs et al. (1996). The net assimi-

lation of CO2 is first computed at the leaf scale, accounting

for the limiting effects of the air CO2 concentration and ra-

diation. The simulation of photosynthesis is mainly driven

by the CO2 mesophyll conductance which represents the re-

sponse curve of the light-saturated net rate of CO2 assimi-

lation to the internal CO2 concentration. The stomatal con-

ductance for CO2 and water vapour are derived from the net

assimilation of CO2 using a flux–gradient relationship which

accounts for the effect of air humidity deficit on stomatal

aperture. The interactions between the diffusion of CO2 and

water vapour is accounted through an iterative process. Two

types of plant response to soil water stress are represented

depending on the evolution of the water use efficiency. For

drought-avoiding plants (e.g. C3 crops), the stomatal con-

ductance and the plant transpiration are reduced by increas-

ing the sensitivity of stomatal aperture to air humidity deficit

while the net assimilation of CO2 is kept up by increasing

the mesophyll conductance. In this strategy, water stress in-

creases the plant water use efficiency. For drought-tolerant

plants (e.g. C4 crops), the stomatal conductance is increased

while the net assimilation of CO2 is depleted. In this strat-

egy, the water use efficiency is reduced. Under a critical frac-

tion of the root-zone water reservoir, severe stress is triggered

and both the net assimilation of CO2 and plant transpira-

tion are depleted. Photosynthesis and stomatal conductance

are integrated over the canopy. A spherical angular distri-

bution of leaves and homogeneous leaf vertical distribution

is assumed to compute the radiation extinction through the

canopy. While ISBA-A-gs can simulate vegetation dynam-

ics, in this work the model is forced by the LAI which is

considered an external driver. Refer to Calvet et al. (1998)

for the photosynthesis and stomatal conductance equations

and to Calvet et al. (2012) for further explanation on wa-

ter stress function parametrization. Detailed descriptions and

equations of the model can also be found in the SURFEX

scientific documentation (http://www.cnrm.meteo.fr/surfex/

IMG/pdf/surfex_scidocv2.pdf, p. 121–135).

ISBA-A-gs is also able to simulate irrigation amounts for

C4 irrigated crops. This consists in adding an amount of

30 mm to the rainfall input each time the simulated available

soil water capacity reaches a predefined threshold (Calvet et

al., 2008).

The model is parametrized and run for 12 generic land sur-

face patches which includes nine types of vegetation. Model

outputs are provided at the surface patch scale or at the grid

scale using the proportion of each land surface patch within

the simulation grid cell. In the standard implementation of

the model, the soil depths, the vegetation parameters and the

LAI cycles are given by the ECOCLIMAP-II land surface

parameter database (described below). The soil parameters

are derived from soil texture using the pedotransfer functions

embedded in the model which rely on the Clapp and Horn-

berger (1978) soil texture classification (Noilhan and Lacar-

rère, 1994).

4 Forcing data sets

4.1 Climate data sets

4.1.1 SAFRAN reanalysis

The SAFRAN data set is produced by Météo-France. It pro-

vides a reanalysis of the climate variables at 8 km hori-

zontal spatial resolution and hourly timescale over France

back to 1958 (Quintana-Seguí et al., 2008; Vidal et al.,

2010b). The reanalysis is performed over climatically homo-

geneous zones covering the French territory. Vertical profiles

(vertical resolution of 300 m) of temperature, humidity and

wind speed are computed every 6 h from optimal interpo-
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lation between the simulations from an atmospheric model

(ARPEGE, with a spatial resolution of ∼ 20–30 km; Déqué

et al., 1994) and the available in situ observations (acquired

by ∼ 600 stations over France). The downwelling shortwave

and longwave radiations are derived from a radiative transfer

scheme which is not constrained by observations (Ritter and

Geleyn, 1992). The precipitation is computed on a daily ba-

sis from optimal interpolation between a climatology and the

rain gauge observations within the climatic zone. All anal-

ysed variables are temporally interpolated to hourly values

using physical constraints. They are projected over an 8 km

Lambert grid. For temperature, humidity, wind speed and ra-

diation variables, it consists in affecting to each grid cell the

value of the vertical profile of the variable at the elevation of

the grid cell.

4.1.2 ERA-Interim reanalysis

The ERA-Interim (ERA-I) reanalysis is produced by the

ECMWF (European Centre for Medium-Range Weather

Forecasts) at a spatial resolution of 0.5◦ and 3 h time step.

The reanalysis is based on a 4D-VAR (4-D variational) data

assimilation scheme using the meteorological observations

within a 03:00:00–15:00:00 UTC window (Simmons et al.,

2010). Poor performances have been reported for ERA-I

rainfall (Szczypta et al., 2011). The bias in ERA-I rainfall

is corrected using the Global Precipitation Climatology Cen-

tre data set (GPCC v6; Schneider et al., 2011). The latter

provides monthly quality-controlled precipitation totals from

1901 to present which were derived from data from 67 200

rain gauge stations worldwide. The GPCC-corrected ERA-I

rainfall will be denoted ERA-I/GPCC hereafter.

4.1.3 MSG satellite downwelling shortwave radiation

In the framework of the Land Surface Analysis Satellite Ap-

plication Facility (LSA SAF), downwelling shortwave radi-

ation is derived from the SEVIRI instrument on board the

MSG satellite at a temporal frequency of 30 min and spa-

tial resolution of 3 km. This data set is available at http:

//landsaf.meteo.pt. The product characteristics and the esti-

mation method are given in Geiger et al. (2008) and Carrer

et al. (2012). Under cloudy-sky conditions, shortwave radi-

ation is estimated using the strong anti-correlation between

the reflectance measured by the satellite and the solar radia-

tion reaching the ground. Under clear-sky conditions, short-

wave radiation is estimated using an atmospheric transmit-

tance model (Geiger et al., 2008). The MSG satellite data

set is available as of 12 October 2004. Before this date, the

SAFRAN shortwave radiation is used. Missing MSG data

represent 7 % of the 12 October 2004–26 June 2012 period

and were replaced by the SAFRAN estimates. The MSG es-

timate of downwelling longwave radiation was not available

for this work. Carrer et al. (2012) showed that this product

has no significant impact on the scores of the ISBA simula-

tions and that the MSG shortwave radiation has the largest

added value.

4.2 Surface characteristic data sets

The ECOCLIMAP-II database provides the land surface pa-

rameters and the LAI cycles for ∼ 273 distinct land covers

over Europe at 1 km resolution (Masson et al., 2003; Faroux

et al., 2013). Each land cover class at 1km is characterized

by the fractions of the model land surface patch. The LAI

and the soil depths vary with both the land cover class (ge-

ographic location-dependent) and the 12-model land surface

patches while the rest of surface parameters only depend on

the model land surface patch. ECOCLIMAP-II provides a

monthly LAI climatology obtained from the analysis of the

MODIS (Moderate Resolution Imaging Spectroradiometer)

satellite observations over each land cover and land surface

patch of the model (Faroux et al., 2013). For crops, the frac-

tion of vegetation cover and the vegetation height are derived

using empirical functions of LAI (Masson et al., 2003).

In the standard implementation of the model over France,

the soil texture is provided by the French Soil DataBase

(FSDB) on a 1 : 1 000 000 scale map (King et al., 1995)

which has been resampled over the SAFRAN grid at 8 km

resolution (Habets et al., 2008).

5 Methodology

5.1 Model implementation at the Avignon site

Continuous simulations are performed from 25 April 2001

to 26 June 2012. The model is forced either by local or

reanalysis climate observations. Depending on the simula-

tion, irrigation is added or not to rainfall. The model is

driven by 10-day LAI and vegetation height derived from the

ECOCLIMAP-II climatology or local observations.

We explicitly represent the succession of crop and inter-

crop periods in the simulations by changing the model land

surface patch and the associated LAI and vegetation param-

eters accordingly to the crop schedule presented in Table 1.

The C3 crop patch was used to represent wheat, pea, and sun-

flower. The C4 crop patch was used for maize and sorghum.

Inter-crop periods are represented by the bare soil patch.

When the LAI climatology is used, we use the LAI cycle and

the derived vegetation height provided by the ECOCLIMAP-

II database for each crop patch. When the local LAI is used,

the LAI time trajectory depicts the dynamic of the crop suc-

cession. LAI is null for the inter-crop periods.

The simulations were initialized once on 25 April 2001 us-

ing in situ soil temperature and soil moisture measurements.

The 12-year period was split into sub-simulation periods cor-

responding to crop and inter-crop periods (Fig. 2). To ensure

the continuity between two contiguous sub-simulations, each

sub-simulation was initialized using the simulated soil mois-

ture and soil temperature of the last time step of the previ-
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Figure 3. Evaluation of ERA-I/GPCC (red diamond) and SAFRAN

(green circle) 10-day cumulative rainfall against local observations.

ous sub-simulation. The model was run at a 5 min time step.

The 30 min outputs of the state variables were analysed at the

model land surface patch scale (C3 crop, C4 crop, bare soil).

We do not consider the outputs aggregated at 1 km resolution

which does not match the local field scale.

5.2 Experiment design

This work aims at evaluating the forcing data sets used to

drive the model at large scale and assessing their impacts on

simulated ET. We test the following drivers of ET:

– the climate with a focus on rainfall and radiations,

– the irrigation,

– the vegetation dynamic represented by the LAI and the

vegetation height time courses,

– the soil properties (soil texture, hydrodynamic parame-

ters).

To address these issues, we designed the following simula-

tions.

5.2.1 Control run

The control run (SCTL) is performed using the local obser-

vations taken at the Avignon site for the climate, the irri-

gation, the vegetation dynamic and the soil properties. The

irrigation was accounted for by adding the actual irrigation

amount to rainfall. We use the local values of the soil mois-

ture at saturation, the soil moisture at field capacity and the

soil moisture at wilting derived from field measurements of

soil moisture (Garrigues et al., 2015) instead of the pedo-

transfer function estimates used in the standard implementa-

tion of the model. The rest of the model parameters take the

standard values given by the ECOCLIMAP-II database for

the C3 crop, the C4 crop and the bare soil patches (Gibelin et

al., 2006; Faroux et al., 2013). The root-zone depth and the

deep reservoir size are 1.5 and 0.5 m, respectively. The per-

formance of SCTL was evaluated in Garrigues et al. (2015),

who showed good agreement with eddy-covariance measure-

ments (MD in daily ET of 0.07 mm day−1). In this paper,

SCTL will thus be considered as truth to evaluate the other

experiments and eddy-covariance measurements of ET will

not be used.

5.2.2 Experiments

We designed nine experiments to test the impact of each

driver on ET. These simulations are derived from SCTL by

replacing the local values used for the tested variable by its

value used in the standard implementation of the model at

large scale (Table 3). We test the drivers one by one as fol-

lows.

Impact of climate

The local climate is replaced by the large-scale reanalysis

observations. We test the following.

– The reanalysis data set: SSAFRAN and SERA are con-

ducted using the SAFRAN and ERA-I climate, respec-

tively.

– The rainfall data set: SGPCC is achieved with the

SAFRAN climate where the SAFRAN rainfall is re-

placed by the ERA-I/GPCC rainfall.

– The satellite estimate of shortwave radiation: SMSG

is achieved with the SAFRAN climate where the

SAFRAN downwelling shortwave radiation is replaced

by the MSG estimate.

Impact of irrigation

Two aspects are tested.

– The impact of lack of irrigation in the simulation:

SNO-IRRIG is performed without accounting for irriga-

tion as it is frequently done for the standard implemen-

tation of land surface models at large scale.

– The skills of the model at representing the irriga-

tion needs for Mediterranean crops: SMODEL-IRRIG is

achieved triggering the ISBA irrigation scheme.

Impact of vegetation dynamic

SECO-LAI is achieved with the ECOCLIMAP-II LAI and veg-

etation height instead of using their local value.
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Table 2. 2001–2012 crop succession. T and rain are the mean temperature and cumulative precipitation, respectively, over the crop cycle.

Year Crop Sowing Harvest Rain T Irrigation Simulated

date date (mm) (◦C) (mm) irrigation (mm)

2001 Maize 25 Apr 2001 28 Sep 2001 232.0 20.7 375 330

2002 Wheat 23 Oct 2001 02 Jul 2002 399.0 11.6 0 NA

2003 Sunflower∗ 16 Apr 2003 26 May 2003 68.0 17.1 40 0

2003 Sunflower 02 Jun 2003 19 Sep 2003 68.5 24.8 225 300

2004 Wheat 07 Nov 2003 28 Jun 2004 422.0 11.2 0 NA

2005 Peas 13 Jan 2005 22 Jun 2005 203.5 11.9 100 60

2006 Wheat 27 Oct 2005 27 Jun 2006 256.0 10.7 20 NA

2007 Sorghum 10 May 2007 16 Oct 2007 168.5 20.6 80 330

2008 Wheat 13 Nov 2007 01 Jul 2008 502.5 11.7 20 NA

2009 Maize∗ 23 Apr 2009 15 Jun 2009 110.5 19.2 80 0

2009 Sorghum 25 Jun 2009 22 Sep 2009 89.0 23.6 245 270

2010 Wheat 19 Nov 2009 13 Jul 2010 446.5 11.6 0 NA

2011 Sorghum 22 Apr 2011 22 Sep 2011 268.5 21.4 60 120

2012 Wheat 19 Oct 2011 25 Jun 2012 437.0 12.0 0 NA

∗ These crops were interrupted and replaced by a new one.

Impact of soil properties

Two aspects are investigated.

– The impact of errors in soil texture which is used as

input of the pedotransfer functions to estimate the soil

hydrodynamic parameters.

– The impact of errors in the soil hydrodynamic parame-

ters estimated from the pedotransfer function. We con-

sider the soil moisture at saturation, the soil moisture

at field capacity and the soil moisture at wilting point,

which represent the main sources of uncertainties in

simulated ET when the model is implemented at local

scale (Garrigues et al., 2015).

To investigate both issues, two simulations are performed by

replacing the local values of the soil hydrodynamic proper-

ties used in SCTL by their pedotransfer estimates:

– SLOCAL-TEXT, achieved using the local soil texture,

– SFSDB-TEXT, achieved using the texture value from the

French Soil DataBase (FSDB).

5.3 Evaluation method

We first evaluate the large-scale forcing data sets against the

local observations taken at the Avignon site. Due to the low

topographic variability of the area, the climate observations

of the Avignon site are representative of the area covered

by the reanalysis grid. This particularly holds true for radia-

tion but larger variability can be found for precipitation. The

large-scale vegetation and soil data cannot exactly match the

local ones but their evaluation at local scale brings insight

into their representativeness of typical cropland and soil type

of Mediterranean regions.

Then, we assess the influence of each driver on simu-

lated ET by comparing each experiment achieved with the

large-scale data set with the control run achieved with the

local observation. We report the scattering in LE at half-

hourly timescales and the scattering in cumulative ET at

daily, monthly, seasonal and 12-year timescales.

The scattering between the forcing data sets and the local

observations as well as the scattering between each experi-

ment and the control run are quantified using the root mean

square of difference (RMSD), the mean difference (MD), the

SD of differences (SDD), and the correlation. The RMSD

quantifies the total scattering. MD quantifies the systematic

differences and SDD represents the random component of

the RMSD.

6 Results

6.1 Evaluation of the large-scale forcing data sets

6.1.1 Climate variables

Rainfall

The evaluation of the ERA-I/GPCC and SAFRAN rainfall

against local observations are reported in Table 4 and illus-

trated by Figs. 3, 4 and 5. Table 4 shows lower correlation

and larger SDD at 3 h timescale than at longer timescales

for both data sets (Table 4). This reveals shortcomings in

the rescaling of the daily values used to build these data

sets to hourly values. At daily and longer timescales, both

data sets are lowly biased. However, the SAFRAN rainfall

is more precise than the ERA-I/GPCC rainfall which shows

lower correlation with measurements and has an SDD 3

times larger than SAFRAN (Table 4, Fig. 3). Figure 4 shows

Geosci. Model Dev., 8, 3033–3053, 2015 www.geosci-model-dev.net/8/3033/2015/
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Figure 4. Comparison of SAFRAN, ERA-I/GPCC and local mean monthly rainfall. Irrigation amount added to the local rainfall is also

presented. The vertical bars represent the inter-annual variability (± 1 standard deviation).

Table 4. Evaluation of SAFRAN and ERA-I/GPCC cumulative rainfall against measurements over the 2001–2012 period at 3 h, daily, 10-

day, 30-day and yearly timescales. SDD and MD are given in absolute value in millimetres and in percentage of the mean local measurement

in parentheses.

3 h Daily 10-day 30-day Yearly

Mean in situ

meas. (mm)

0.22 1.74 17.36 51.83 657.10

r MD SDD r MD SDD r MD SDD r MD SDD r MD SDD

SAFRAN 0.53 0.00

(1 %)

1.46

(674 %)

0.97 0.02

(1 %)

1.57

(90 %)

0.98 0.21

(1 %)

4.48

(26 %)

0.99 0.61

(1 %)

7.03

(14 %)

0.99 8.22

(1 %)

20.14

(3 %)

ERA-I/GPCC 0.46 −0.14

(66 %)

1.57

(720 %)

0.73 0.01

(0.5 %)

4.69

(270 %)

0.84 0.09

(0.5 %)

14.31

(82 %)

0.90 0.28

(0.5 %)

21.89

(42 %)

0.95 4.45

(0.7 %)

60.00

(9.1 %)

that the ERA-I/GPCC rainfall is overestimated in winter and

underestimated in spring and summer. The error in yearly

rainfall which ranges from −81 to 98 mm yr−1 for ERA-

I/GPCC (Fig. 5) shows larger inter-annual variability than for

SAFRAN which ranges from −42 to 32 mm yr−1. The use

of a dense network of rain gauges over France may explain

the higher precision of the SAFRAN data set, which resolves

the rainfall spatial variability better over France (Quintana-

Seguí., et al., 2008).

Radiations

The evaluation of SAFRAN, MSG and ERA-I shortwave

and longwave radiations are reported in Table 5. SAFRAN

and MSG shortwave radiations show similar negative MD

(∼−10 W m−2) and SDD with measurements at both half-

hourly and daily timescales (Table 5). The SAFRAN short-

wave radiation is underestimated at midday in summer while

the MSG satellite estimate is underestimated in the after-

noon. The ERA-I shortwave radiation has an absolute MD

4 times smaller than SAFRAN. It is quasi-unbiased at daily

timescale. This is related to compensation effects between an

underestimation of the shortwave radiations in the morning

and an overestimation in the afternoon (Fig. 6).

SAFRAN and ERA-I underestimate longwave radiation

by −12 and −16 W m−2 (Table 5). Figure 7 shows that

SAFRAN describes an inverse diurnal cycle of longwave ra-

diation and underestimates the maximum value in the after-

noon. The ERA-I longwave radiation shows consistent diur-

nal variations but it is underestimated through the diurnal and

the seasonal cycles.

The errors in yearly shortwave and longwave radiations

range from −661 to −21 MJ and from −548 to −107 MJ,

respectively, for SAFRAN (Fig. 5). They vary from −52 to

179 MJ and from −625 to −385 MJ, respectively, for ERA-I

which shows lower inter-annual variations than SAFRAN.

The uncertainties in the reanalysis estimates of shortwave

and longwave radiations are attributed to shortcomings in the
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Table 5. Evaluation of SAFRAN, ERA-I and MSG downwelling shortwave radiation (SWdown) and downwelling longwave radiation (LW-

down) against measurements, over the 12 October 2004–25 June 2012 period, at 3 h and daily time steps. The SWdown performances of all

the data sets were evaluated considering only the time steps with valid MSG SWdown, which represents 93 % of the period.

3 h Daily

SWdown (W m−2) LWdown (W m−2 ) SWdown (W m−2) LWdown (W m−2)

r BIAS SDD r BIAS SDD r BIAS SDD r BIAS SDD

SAFRAN 0.97 −9.5 65.8 0.79 −11.9 29.4 0.95 −9.8 32.5 0.90 −11.9 19.2

ERA-I 0.97 2.5 60.8 0.93 −16.1 17.2 0.96 2.4 28.8 0.97 −16.1 11.0

MSG 0.96 −11.2 67.6 NA NA NA 0.95 −11.6 30.2 NA NA NA

radiative transfer scheme and to an insufficient number of ob-

servations to constrain the reanalysis. Our results confirm the

low bias in daily shortwave radiation reported for ERA-I in

Szczypta et al. (2011). However, our work does not show

higher levels of accuracy and precision for the MSG satel-

lite estimates of shortwave radiations as reported by Carrer et

al. (2012). This can be related to the high occurrence of clear-

sky conditions at the Avignon site for which the satellite mea-

surements are not explicitly used. The clear-sky algorithm re-

lies on an empirical parametrization of the atmospheric trans-

mittance and on a climatology for the aerosol content. This

may not be accurate enough to resolve the large variations

in the aerosol content generated by the frequent strong wind

conditions in the Avignon region. Besides, possible errors in

the cloud mask used to trigger the clear-sky/cloudy-sky re-

trieval algorithm can have a large impact on shortwave radi-

ation estimates (Geiger et al., 2008).

6.1.2 Vegetation characteristics

Figure 8 shows that ECOCLIMAP-II overestimates low LAI

during the early and late stages of the crop cycles, which re-

sults in an overall overestimation of LAI over the crop cy-

cle (positive bias of 1 m2 m−2). The maximum LAI of wheat

crops (e.g. 2002, 2004, 2006) is frequently underestimated

by ECOCLIMAP-II and its timing is late compared to mea-

surements. The timing of maximum LAI is more accurate for

summer crops (e.g. Sorghum in 2007 and 2009). An incor-

rect decrease in LAI is observed at the early stages of wheat

crops.

The ECOCLIMAP-II LAI climatology is derived from

the 2002–2006 MODIS satellite observations at 1 km spa-

tial resolution. The first explanation of the differences be-

tween the ECOCLIMAP-II LAI and the local LAI is the

spatial and temporal mismatch between the satellite obser-

vations and the local field. The 1 km satellite pixel is com-

posed of bare soil and vegetation surfaces, which reduces

the maximum LAI resolved by ECOCLIMAP-II. The satel-

lite observations comprise a mix of crops with possibly dis-

tinct cycles. Therefore, a particular crop cycle cannot be

represented, nor the local crop rotation. The monthly time

step of ECOCLIMAP-II can be too coarse to properly re-

solve the changes in crop phenology, which explains the fre-

quent inaccurate timing of the ECOCLIMAP-II maximum

LAI. The second explanation of the differences between the

ECOCLIMAP-II and the local LAI is related to the intrinsic

uncertainties of the ECOCLIMAP-II LAI. ECOCLIMAP-II

shows unrealistic crop cycles compared to the local LAI mea-

surements which are representative of typical crop cycles of

the studied region. As a climatology, it does not resolve the

inter-annual variability. The absence of discrimination be-

tween winter and summer crop patches hampers the proper

representation of the seasonal and crop succession dynam-

ics. The inter-crop periods during which the surface can be

bare during long periods of time (up to 9 months) are not

represented. This leads to an underestimation of the bare soil

surfaces and contributes to the overestimation of LAI over

the crop succession.

6.1.3 Irrigation

Irrigation represents 18 % (1295 mm) of cumulative rainfall

(7138 mm) over 12 years for this site. It concerns summer

crops and mainly occurs from May to July. It induces much

larger variation in input water for the model than the dif-

ferences in rainfall estimates between reanalysis data sets

(Fig. 4).

We evaluate here the skill of the model at simulating the

irrigation needs for the irrigated crops of the crop succession.

The total amounts of simulated irrigation over each crop cy-

cle are in close agreement with the actual values except for

sorghum in 2007 and 2011 (Table 2). MD and SDD com-

puted over eight crop cycles are 25 and 99 mm. However,

Fig. 9 highlights the inaccurate timing of simulated irriga-

tions. The latter are frequently underestimated in the early

stages of the crop cycle (April–June), overestimated during

the growing period (July) and overestimated during the crop

senescence (August–September). We observe frequent over-

estimation of the inter-annual variability in July and August.

The soil moisture thresholds used to trigger the irrigation are

probably too high for the considered crops and need to be

adapted for Mediterranean crops. The lack of constraints on

irrigation practices probably explains the inaccurate timing

of the simulated irrigations.
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a) SAFRAN
                

b)ERA-I/GPCC

Figure 5. Evaluation of yearly values of shortwave radiation

(SWdown), longwave radiation (LWdown), rainfall and simulated

evapotranspiration (ET) for SAFRAN (a) and ERA-I/GPCC (b) re-

analyses. For radiations and rainfall, the differences in yearly cu-

mulative values between the reanalysis and the local observation

are represented. For ET, the differences in yearly cumulative val-

ues between the simulation achieved with the reanalysis climate

(SSAFRAN and SERA) and the simulation achieved with the local

climate (SCTL) are shown. The radiation unit is given in 2.46×106 J

to match the water-flux scale given in millimetres.

6.2 Impact on simulated ET

Figure 10 displays the differences in cumulative ET between

each experiment achieved with the large-scale data set for

each tested driver and the control run (SCTL) achieved with

the local observations. The scattering in daily ET between

the selected experiment and SCTL is presented in Fig. 11. Ta-

ble 6 reports the scattering metrics between each experiment

and SCTL. The Taylor diagrams given in Fig. 12 summarize

the deviation between each experiment and the control run

trough the correlation and the RMSD. We first provide the

hierarchy of influence of the drivers on ET and then we anal-

yse the impact of each driver on ET.

6.2.1 Hierarchy of the influence of the drivers on ET

Soil hydrodynamic parameters and the lack of irrigation gen-

erate the largest mean deviation in ET with the control run

(Table 6, Fig. 10). The MD in cumulative ET over 12 years

represents 25 and 20 months of ET for the soil parameters

and the irrigation, respectively. The climate and the vegeta-

tion dynamic induces lower MD in ET, which ranges from 6

to 9 months of ET over 12 years. Changing the climate forc-

ing data set has little influence on ET simulation compared

to the impact of irrigation and soil properties. At a seasonal

timescale, the irrigation and the vegetation dynamic are the

drivers which induce the largest random scattering with SCTL

(see RMSD in Fig. 12).

6.2.2 Influence of soil properties

The use of the pedotransfer estimates of the soil hydro-

dynamic parameters (soil moisture at field capacity, soil

moisture at wilting point and soil moisture at saturation)

in SLOCAL-TEXT leads to substantial underestimation of ET

compared to SCTL achieved with the field estimates of these

parameters. The soil moisture at saturation is involved in the

representation of the hydraulic diffusivity of the superficial

soil layer in the ISBA model. Its overestimation by the ISBA

pedotransfer function (see values in Table 3) triggers an un-

derestimation of the soil hydraulic diffusivity and the result-

ing soil evaporation. The soil moisture at wilting point is a

key driver of the maximum available water capacity. Its over-

estimation by the ISBA pedotransfer function (Table 3) leads

to the underestimation of the plant transpiration.

While the clay and sand fractions given by the French soil

database are significantly different from the local values, the

differences between SFSDB-TEXT and SLOCAL-TEXT are low.

Table 3 shows that the use of the large-scale soil texture

and the local soil texture lead to similar values of the maxi-

mum available soil water capacity for the crop (MaxAWC).

The steady MaxAWC is a consequence of the quasi-parallel

shapes of the ISBA pedotransfer functions used to estimate

the soil moisture at field capacity and the soil moisture at

wilting point (Noilhan and Lacarrère, 1995). This highlights

the limit of these pedotransfer functions to resolve the spatial

variability of the soil hydrodynamic properties across various

soil types.

6.2.3 Influence of irrigation

Irrigation substantially influences ET although it concerns

only short periods of time during the crop succession. The

lack of irrigation in the simulation SNO-IRRIG triggers a sub-
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Figure 6. Evaluation of SAFRAN, ERA-I and MSG downwelling shortwave radiations against local measurements over the 12 Octo-

ber 2004–25 June 2012 period. Differences between the reanalysis estimates and the local measurements are computed at an hourly timescale

for SAFRAN and MSG and at a 3 h timescale for ERA-I. In the MSG figure, the white lines correspond to missing data. On the y axis, Jan

and Jul stand for January and July. The two digits indicate the year.

Figure 7. Comparison of SAFRAN, ERA-I and in situ mean monthly downwelling longwave radiation (LWdown in W m−2) over the

25 April 2001–25 June 2012 period. The estimates correspond to 3 h integrated values.
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Table 6. Influence of the large-scale forcing variables on simulated evapotranspiration (ET) at half-hourly, daily, monthly, seasonal and

multi-year timescales. The mean difference (MD) and the SD of difference (SDD) between each experiment and the control run (SCTL) are

computed over the 25 April 2001–26 June 2012 period. In the last column, MD in cumulative ET over 12 years is given in absolute value

and in percentage of the 12-year cumulative ET obtained with the control run. This percentage is translated in equivalent number of months

of ET.

Half-hourly LE Daily ET Monthly ET ) Seasonal ET 12-year cumulative

(W m−2) (mm) (mm) (mm) ET (mm)

Drivers Experiment compared MD SDD MD SDD MD SDD MD SDD MD MD MD

to SCTL (mm) (%) (months of ET)

Soil parameters SFSDB-TEXT −10.23 37.30 −0.36 0.69 −10.78 10.85 −31.61 21.29 −1467.7 19.9 26.7

SLOCAL-TEXT −9.46 35.64 −0.33 0.67 −9.96 10.68 −29.20 21.21 −1355.4 18.4 24.6

Irrigation SNO-IRRIG −7.74 42.80 −0.27 0.93 −8.15 18.38 −23.75 43.52 −1117.7 15.2 20.3

SMODEL-IRRIG −0.04 47.43 0.00 1.06 −0.04 19.93 0.09 42.45 −6.0 0.1 0.1

Vegetation

dynamics

SECO-LAI 3.03 47.23 0.11 0.97 3.19 19.14 9.33 38.89 441.1 6.0 8.0

Climate SSAFRAN −3.06 45.66 −0.11 0.85 − 3.23 10.46 −9.26 20.73 −438.2 5.9 7.9

SERA −2.28 60.24 −0.08 0.83 − 2.40 9.00 −6.98 16.52 −333.4 4.5 6.0

SGPCC −3.60 49.78 −0.13 0.95 −3.80 11.26 −10.93 21.72 −516.0 7.0 9.4

SMSG −3.60 46.72 −0.13 0.80 −3.80 10.26 −11.04 19.11 −514.5 7.0 9.3

Figure 8. Comparison of the ECOCLIMAP-II LAI with the in situ

LAI over the crop cycles of the 12-year crop succession. Crop and

inter-crop periods are represented by grey and white backgrounds,

respectively.

stantial decrease in ET during the growing periods of sum-

mer crops (Fig. 10). It leads to an underestimation in ET of

1118 mm over 12 years which is 2.5 times larger than the MD

induced by the use of a reanalysis climate (Table 6).

The simulation of irrigation by the model (SMODEL-IRRIG)

leads to no bias in ET over 12 years (Table 6). The large SDD

obtained for SMODEL-IRRIG (Table 6) is due to the inaccurate

timing of the occurrences of simulated irrigation which lo-

cally triggers an overestimation or an underestimation in ET

over the crop succession (Fig. 10).

Figure 9. Comparison of the local and simulated mean monthly

cumulative irrigation amount. The vertical bars represent the inter-

annual variability (± 1 standard deviation). The total cumulative

value of in situ and simulated irrigation over 12 years are 1295 and

2070 mm, respectively.

6.2.4 Influence of vegetation dynamics

The use of the ECOCLIMAP-II LAI in SECO-LAI triggers an

overall overestimation of ET over 12 years (441 mm, 6 %).

This is related to the overestimation of the mean LAI over

the crop succession by ECOCLIMAP-II. The large scattering

observed between SECO-LAI and SCTL (Fig. 12) is mainly re-

lated to the temporal mismatch between the ECOCLIMAP-II

LAI cycle and the actual LAI cycle which leads to successive

overestimation or underestimation of LAI over the crop suc-

cession. For winter crops, ET is frequently underestimated

during the growing periods and overestimated at the end of
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Figure 10. Differences in cumulative ET between each experiment achieved with the large-scale data set and the control run (SCTL) achieved

with the local observations for each tested driver. Crop periods and inter-crop periods are represented by grey and white backgrounds,

respectively.

the crop cycle during the senescence. For summer crops, ET

is mainly overestimated. The decrease in ET observed dur-

ing some inter-crop periods (mainly 2003) is due to the oc-

currence of crop regrowths which are not represented by the

ECOCLIMAP-II LAI.

6.2.5 Influence of climate variables

The use of SAFRAN triggers an underestimation of ET

(Fig. 10, Table 6). This is mainly related to the underestima-

tion of longwave and shortwave radiations which decreases

the surface energy available for ET. Slightly better perfor-

mances scores are obtained for ERA-I which shows lower

MD and lower scattering in ET with SCTL than SAFRAN

at daily and longer timescales. This is related to the lower

bias in ERA-I shortwave radiation. The higher SDD obtained

with ERA-I at a half-hourly timescale is related to the higher

dispersion found for the ERA-I radiations (Table 5). The use

of the rainfall GPCC or the MSG shortwave radiation instead

of the SAFRAN estimates have low influence on ET. A slight

increase in SDD is obtained with the use of the GPCC rainfall

which is related to its lower precision as mentioned above.

The differences in yearly ET between the reanalyses and

the local climate simulations fall within similar range of val-

ues (from−137 to 3 mm yr−1 for SAFRAN and from−83 to

40 mm yr−1 for ERA-I/GPCC). Figure 5 shows that the evo-

lution of the error in yearly ET is mainly related to the errors

in rainfall. This particularly holds true for GPCC. The im-

pacts of radiations are smaller except in 2008 and 2010 for

SAFRAN.

7 Discussion

We discuss the implications of previous results with respect

to the spatial integration of the model to monitor the water

balance of cropland at regional scale.
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Figure 11. Scattering in daily ET between selected experiments and the control run. N in the colour bar legend is the number of points used

to represent the point density.

7.1 Soil properties

This study highlights the prevailing role of the soil hydro-

dynamic properties in retrieving the dynamics of ET. This

particularly holds true for Mediterranean regions where ET

is frequently limited by soil moisture. This supports findings

from Smiatek et al. (2015) and Guillod et al. (2013), who re-

port that differences in soil data sets can substantially affect

regional climate simulation (up to 20 % for precipitation).

Besides, Guillod et al. (2013) and Garrigues et al. (2015)

show the prevailing role of the soil parameters affecting the

maximum available soil water capacity (field capacity and

wilting point) which drives the transpiration and the param-

eters affecting the hydraulic diffusivity which influences the

soil evaporation.

Since the soil hydraulic properties are rarely known over

large areas, they are generally derived from empirical pedo-

transfer functions which relate the soil hydrodynamic proper-

ties to readily available variables such as soil texture and bulk

density (Cosby et al., 1984; Vereecken et al., 1989; Schaap et

al., 2001). Large discrepancies have been reported between

pedotransfer functions which are prone to distinct sources

of uncertainties (Espino et al., 1996; Baroni et al., 2010).

The first shortcoming concerns their representativeness of

soil property variability. The ISBA pedotransfer functions

were established based on the Clapp and Hornberger (1978)

database. These functions were calibrated using the mean

values of the soil properties over few classes of soil texture.

The variability of the soil parameters within a given soil tex-

ture class may exceed the variability between classes. Be-

sides, global maps of soil texture may not be fine enough

to describe the soil property variability at regional scale.

The second source of uncertainty is related to the estima-

tion method. While most pedotransfer functions are based on

soil texture, improvements of the prediction equations may

require the use of additional predictors related to soil struc-

ture (Vereecken et al., 1989). Most pedotransfer functions

are based on simple statistical regressions such as the ISBA

ones (Noilhan and Laccarère, 1995). The more advanced

ROSETTA pedotransfer functions (Schaap et al., 2001) ad-

dress the uncertainty in the predicted soil parameters through

the use of an ensemble of functions calibrated over distinct

soil data sets. Such model provides essential information

on the variance and covariance of the hydraulic properties
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Figure 12. Deviations in daily and seasonal cumulative ET between

each experiment and the control run (SCTL) summarized by a Tay-

lor diagram (Taylor, 2001). The contour lines indicate the RMSD

between each simulation and SCTL. The y axis indicates the stan-

dard deviation of each tested simulation while the x axis indicates

the standard deviation of SCTL. The colours indicate the magnitude

of the MD between each simulation and SCTL. Blue indicates very

low MD close to zero. Green indicates intermediate MD and red

represents the largest MD. Numerical values are reported in Table 6.

(Scharnagl et al., 2011) which are required to propagate the

uncertainties in the LSM simulations.

7.2 Irrigation

Irrigation is a key component of the water balance of

Mediterranean cropland. It significantly modifies the sea-

sonal pattern of evapotranspiration and can affect the re-

gional climate (Puma and Cook, 2010; Leng et al., 2013).

Besides, it is a key aspect of adaptation strategies to climate

change. However, accurate information on irrigation amount

is rarely available over large areas. The strategy consists in

simulating the irrigation amount required to satisfy the crop

water needs by the land surface model but, as demonstrated

in this work, constraints on the irrigation period and the irri-

gation amount need to be incorporated to represent the actual

agricultural practices more realistically. Adding the amount

of irrigation water to rainfall may not be adapted for all types

of irrigations (pressurized vs. gravity distribution). A more

accurate description of the variability of irrigation practices

needs to be incorporated in land surface models (Ozdogan et

al., 2010; Olioso et al., 2013).

7.3 Vegetation dynamic

This work showed that the LAI climatology is not accu-

rate enough to resolve ET dynamics over the crop succes-

sion. The key aspects that are lacking in the ECOCLIMAP-

II database and need to be better represented in land surface

models are

– crop phenology, particularly the timing of maximum

LAI;

– the succession of winter and summer crops which can

lead to long periods of bare soil during inter-crop peri-

ods.

A strategy to resolve the temporal and spatial dynamics

of vegetation would consist in using satellite observations.

Recently launched satellites (e.g. next SENTINEL-2 satel-

lite) have fine enough spatial resolution (∼ 10 m) and tempo-

ral frequency (5–10 days) to resolve the LAI cycle of crops

more accurately and monitor the dynamics induced by crop

rotation.

7.4 Climate

We showed that rainfall is the main climate driver of the

errors in yearly ET. To monitor the water balance at re-

gional scale, it is of paramount importance to improve the

representation of the rainfall’s spatiotemporal heterogeneity.

While the SAFRAN rainfall is probably the most accurate

and precise reanalysis data set over France, Zhao et al. (2012)

showed that its spatial resolution may not be fine enough to

resolve rainfall spatial heterogeneity. This particularly holds

true for Mediterranean regions where rainfalls are governed

more by local convective elements and mesoscale convection

than by large-scale well-resolved dynamical processes (An-

quetin et al., 2010; Szczypta et al., 2011; Bosilovich, 2013).

The impact of the lack of irrigation on ET reported in this

work provides an indication of the errors that could be gener-

ated by the use of inaccurate rainfall forcing over large areas.

High resolution rainfall data sets derived from the combina-

tion of terrestrial rainfall radar data, in situ observations and

atmospheric models need to be developed to better resolve

rainfall spatial heterogeneity at regional scale.

8 Summary

The present study aims at evaluating the large-scale data

sets used to drive the ISBA-A-gs land surface model and

assessing their impacts on the simulation of ET over a 12-

year Mediterranean crop succession. We focus on the climate

(rainfall, radiations), irrigation, vegetation dynamic (LAI)
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and soil property (soil texture, hydrodynamic parameters)

variables. We evaluate the forcing data sets used in the stan-

dard implementation of the ISBA model over France where

the model is driven by the SAFRAN high spatial resolution

atmospheric reanalysis, the LAI time courses derived from

the ECOCLIMAP-II land surface parameter database and the

soil texture derived from the French soil database. For cli-

mate, additional data sets used to drive the model at the con-

tinental scale are tested, which includes the ERA-Interim low

spatial resolution reanalysis, the GPCC rainfall data set and

the downwelling shortwave radiation derived from the MSG

satellite. We first evaluate the large-scale data set against the

local values taken at the Avignon site. Then, we assess the

hierarchy of the influence of each driver on ET. We finally

discuss the implications of our results with respect to the spa-

tial integration of the model to monitor the water balance of

cropland at regional scale.

The main outcomes from the evaluation of the drivers are

as follows.

– SAFRAN and ERA-I/GPCC rainfall are quasi-unbiased

at daily and longer timescales (1 and 0.5 % of the mean

rainfall measurement). The SAFRAN rainfall is more

precise than the ERA-I/GPCC rainfall which shows

larger inter-annual variability in yearly rainfall error (up

to 100 mm).

– ERA-I has a very low bias (2.5 W m−2) in daily down-

welling shortwave radiation while SAFRAN and MSG

show negative biases of ∼−10 W m−2. Both SAFRAN

and ERA-I underestimate downwelling longwave radi-

ations by −12 and −16 W m−2, respectively.

– The ECOCLIMAP-II LAI climatology does not prop-

erly resolve Mediterranean crop phenology. It does not

describe the succession of winter and summer crops and

underestimates the bare soil period which leads to an

overall overestimation of LAI over the crop succession.

– Irrigation generates much larger variations in incoming

water for the model than the differences in rainfall be-

tween the reanalysis data sets. The simulation of irriga-

tion by the model provides accurate irrigation amounts

over the crop cycle but the timing of irrigation occur-

rences is frequently unrealistic.

The main results from the evaluation of the impacts on ET

are the following.

– Errors in the soil hydrodynamic parameters and the lack

of irrigation in the simulation have the largest influence

on ET compared to uncertainties in the large-scale cli-

mate reanalysis and the LAI climatology. Among cli-

mate variables, the errors in yearly ET are mainly re-

lated to the errors in yearly rainfall.

– The underestimation of the maximum soil water capac-

ity and the soil hydraulic diffusivity induce a large un-

derestimation of ET over 12 years.

– The errors in the climate data sets and the absence of

irrigation in the simulation lead to the underestima-

tion of ET while the overall overestimation of LAI by

the ECOCLIMAP-II climatology induces an overesti-

mation of ET over 12 years.

This work shows that the key challenges for the spatial inte-

gration of a land surface model over Mediterranean cropland

concern the representation of the following.

– The spatial distribution of the soil hydrodynamic pa-

rameters which control the available water capacity and

the soil hydraulic diffusivity.

– The variability of irrigation practices in land surface

models. Irrigation was proved to have large influence on

long time-series of ET although it concerns only short

periods of time during the crop succession.

– The spatiotemporal variability of rainfall, which can be

particularly important for Mediterranean climate char-

acterized by local convective elements.

– The vegetation dynamic at seasonal (phenology) and

inter-annual (crop rotation) timescales.

A strategy combining models and new remote sensing

observations with high spatial resolution (∼ 10–20 m) and

high temporal frequency (5–10 days) offers great promise for

resolving the vegetation dynamic and retrieving the spatial

distribution of soil properties for cropland and therefore

needs to be fostered in future.

Edited by: G. A. Folberth
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