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Abstract. A numerical model based on radial basis function-

generated finite differences (RBF-FD) is developed for sim-

ulating the global electric circuit (GEC) within the Earth’s

atmosphere, represented by a 3-D variable coefficient linear

elliptic partial differential equation (PDE) in a spherically

shaped volume with the lower boundary being the Earth’s to-

pography and the upper boundary a sphere at 60 km. To our

knowledge, this is (1) the first numerical model of the GEC

to combine the Earth’s topography with directly approximat-

ing the differential operators in 3-D space and, related to this,

(2) the first RBF-FD method to use irregular 3-D stencils for

discretization to handle the topography. It benefits from the

mesh-free nature of RBF-FD, which is especially suitable for

modeling high-dimensional problems with irregular bound-

aries. The RBF-FD elliptic solver proposed here makes no

limiting assumptions on the spatial variability of the coef-

ficients in the PDE (i.e., the conductivity profile), the right

hand side forcing term of the PDE (i.e., distribution of cur-

rent sources) or the geometry of the lower boundary.

1 Introduction

The global electric circuit (GEC) is a system of currents

within Earth’s atmosphere. The system is defined by the vol-

ume between two highly conductive shells, one for the sur-

face of the Earth and the other for the lower ionosphere.

These two highly conductive shells can be thought of as a

leaky capacitor. The currents in the system are driven by elec-

trified clouds that produce a source current, which then holds

the ionosphere at a fixed potential relative to the Earth. Far

away from storm clouds, into the so-called fair weather re-

gion, this potential difference between the ionosphere and

ground produces an electric current that is ∼ 2 pAm−2 glob-

ally. This global return current can be measured by current

probes and electric field mills on the ground to estimate its

strength as well as global distribution of thunderstorms.

The first modeling efforts focused on decomposing the

domain into separate regions and solving the problem an-

alytically with a spherical harmonics decomposition (Hays

and Roble, 1979; Roble and Hays, 1979). However, in or-

der to obtain solutions, these models needed to impose con-

straints on the source and conductivity distributions. Further

advancements have focused on modeling the system with an

electrical engineering approach of resistors and capacitors

aligned in series and parallel (Rycroft et al., 2008; Odzimek

et al., 2010). Other models have focused on how individ-

ual aspects of the system change, such as how aerosols and

clouds influence the resistivity within the domain and what

effect that has globally on the solution (Tinsley and Zhou,

2006). All of these previous modeling efforts have had to

either make assumptions on the solution or simplify the do-

main, omitting topography, to obtain a feasible solution. For

an excellent overview of the GEC and recent progress made

we refer readers to Williams and Mareev (2014).

The RBF-FD (radial basis function-generated finite dif-

ferences) GEC (global electric circuit) model proposed here

solves the full three-dimensional problem with the Earth’s
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real topography as the bottom boundary, without making any

limiting assumptions on the conductivity (the coefficients of

the partial differential equation (PDE)) or source distribution

(the right hand side forcing term of the PDE). The struc-

ture of the paper is as follows. Section 2 introduces the PDE

with its corresponding boundary conditions that will be dis-

cretized and solved. Section 3 gives a brief introduction to

the RBF-FD discretization of differential operators with ref-

erences for more in-depth study. Section 4 is the core of the

paper, describing the numerical implementation. Section 5

gives a test case with a known solution for method validation,

using an analytic conductivity profile (i.e., coefficients of the

PDE). Section 6 builds on Sect. 5, using the same conduc-

tivity profile but changing the forcing term to actual obser-

vational data. Section 7 is the hardest case in which discrete

data is used for all inputs into the PDE, i.e., both coefficients

and the right hand side forcing term. Lastly, Sect. 8 gives

some timing results, followed by conclusions.

2 Global electric circuit model

2.1 Formulation

The 3-D electric potential for a given conductivity distribu-

tion and electrified cloud current sources can be determined

by the equation

−∇ · (σ (r,θ,λ)∇u)= S(r,θ,λ), (1)

where σ is the conductivity, u is the electric potential and S is

the source distribution. This equation is derived by applying

Ohm’s law to the steady-state current continuity equation.

The 3-D domain is defined as−90◦ ≤ θ ≤ 90◦,−180◦ ≤ λ <

180◦,k(θ,λ)≤ r ≤ rb, where k(θ,λ) is the Earth’s surface

(i.e., topography) and rb is the altitude from sea level where

the top boundary is enforced. In this paper, the mean radius

of the Earth is set to rearth = 6400 km and rb = 60 km. As

boundary conditions, zero electrostatic potential is enforced

along the Earth’s surface,

u(k (θ,λ),θ,λ)= 0, (2)

and zero net current at the upper boundary, which leads to

the potential

u(rb,θ,λ)= RIs, (3)

where R is the global resistance and Is is the upward current

at the top boundary generated by the electrified clouds.

Since Eq. (1) is linear, the electrostatic potential u can be

split as u= uf+ us, where uf is the fair weather potential,

−∇ · (σ∇uf) = 0, (4)

uf|r = k(θ,λ) = 0,

uf|r = rb = RIs,

and us the source potential,

−∇ · (σ∇us) = S(r,θ,λ), (5)

us|r = k(θ,λ) = 0,

us|r = rb = 0.

2.2 Integrated quantities

In this paper, we are also interested in integrated quantities

derived from the fair-weather and source potential. Scaling

the fair-weather potential in Eq. (4), as ûf = uf/RIs, leads

to solving it with the boundary condition ûf

∣∣
r=rb
= 1. Then,

the atmospheric resistance R is computed from ûf as

R =

∫
6

σ
∂ûf

∂r
d6

−1

. (6)

The upward current Is is computed from the solution of

Eq. (5) as

Is =−

∫
6

σ
∂us

∂r
d6. (7)

In both Eqs. (6) and (7),6 is the surface of the sphere that en-

closes the domain at the top boundary. As a result, the GEC

solution is equal to u= RIs ûf+us, from which we can com-

pute the net current at the top boundary,

Itop =−

∫
6

σ
∂u

∂r
d6, (8)

and the net charge within the domain,

Q=−

∫
V

∇ · (σ ∇u) dV, (9)

where both quantities must be conserved.

3 RBF-FD method

The radial basis function-generated finite differences (RBF-

FD) method can be considered a natural generalization of

classical finite differences (FD) (Shu et al., 2003; Tolstykh

and Shirobokov, 2003; Wright and Fornberg, 2006). As in

FD, RBF-FD approximates a linear differential operator Lu
at node xk ∈ Rd as a linear combination of the values of the

function at the n closest nodes,

Lu|xk ≈
n∑
i=1

wiui . (10)

The main difference lies in how the differentiation weights

wi are computed. While FD enforces Eq. (10) to be exact for
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Table 1. Some commonly used infinitely smooth radial functions

φ(εr).

Infinitely smooth RBFs

GA Gaussian e−ε
2r2

MQ Multiquadric
√

1+ ε2r2

IMQ Inverse multiquadric
1√

1+ ε2r2

IQ Inverse quadratic
1

1+ ε2r2

polynomials evaluated at the node xk , RBF-FD enforces it

for RBF interpolants:

s(x)=

n∑
i=1

λiφ (‖x− xi‖) , (11)

where φ(r) is a radial basis function, ‖·‖ is the Euclidean

distance, and λi are the RBF coefficients. Some examples of

smooth RBFs are listed in Table 1. Unlike FD, in which the

interpolation problem is not guaranteed to be non-singular

for scattered nodes in n dimensions (n≥ 2), RBF-FD is guar-

anteed to be non-singular no matter how the n nodes (as-

sumed distinct) are scattered in any number of dimensions

(Fasshauer, 2007; Fornberg and Flyer, 2015b).

Augmenting RBF interpolants with polynomials can be

beneficial. In this work, MQ-RBF interpolants augmented

with a constant are used,

s(x)=

n∑
i=1

λiφ (‖x− xi‖)+ λn+1, (12)

so that the constraint
∑n
i=1wi = 0 can be satisfied and the

solution exactly reproduces a constant (Lehto, 2012; Flyer

et al., 2012, 2015b; Fornberg and Flyer, 2015b, a). This re-

sults in a less oscillatory interpolant and thus more accurate

derivative approximations. Further augmentation with more

polynomials is currently being studied in Flyer et al. (2015a)

and Bayona et al. (2015). As a result, the system of equa-

tions that determines the RBF-FD differentiation weight wi
to approximate Lu is
φ1 (‖x1− x1‖) . . . φ1 (‖x1− xn‖) 1

...
. . .

...
...

φn (‖xn− x1‖) . . . φn (‖xn− xn‖) 1

1 . . . 1 0




w1

...

wn
wn+1



=


Lφ1 (‖x− x1‖)|xk

...

Lφn (‖x− xn‖)|xk
L1|xk

 . (13)

The weight wn+1 is discarded after the system is solved.

Some of the main features of RBF-FD (Bayona et al.,

2010; Bayona and Kindelan, 2013; Stevens et al., 2009;

Lehto, 2012; Flyer et al., 2012, 2015b; Fornberg and Flyer,

2015b, a) have proven to be very beneficial in modeling the

GEC. For instance, RBF-FD is a meshless local method that

only depends on the Euclidean distance between neighbor-

ing nodes. From the implementation point of view, this fea-

ture makes the method independent of the number of dimen-

sions and, as a result, it is straightforward to program even

for three-dimensional domains such as the one considered in

this work. In addition, RBF-FD approximations can achieve

high-order accuracy, at the same time yielding highly sparse

differentiation matrices. This is specially important when ap-

plied to this kind of elliptic problem where there are millions

of unknowns and a large linear system of equations must be

solved.

4 Numerical implementation

As described in Sect. 2, the solution of the GEC

model Eq. (1) is given by u= uf+us, where uf = ûfRIs and

us are the solutions of Eqs. (4) and (5), respectively. The dif-

ferential operatorLu=−∇·(σ∇u)might be numerically ill-

conditioned due to the highly variable and exponential nature

of the conductivity σ . To overcome this issue, it is possible

to take advantage of the fact that σ > 0 and improve the con-

ditioning by rewriting the PDE Eqs. (4) and (5) as

1u+ (∇ logσ) · ∇u= 0, (14)

and

1u+ (∇ logσ) · ∇u=−
S(r,θ,λ)

σ
, (15)

respectively. In the following subsections, the numerical im-

plementation is explained in detail.

4.1 Change of variable

Figure 1 shows the Earth’s topography used in the numerical

model. The left side of the figure shows the height above sea

level averaged for a 1.9◦×2.5◦ grid in latitude and longitude,

with the actual scaling of the problem r ∼ rearth. Since the

highest averaged region is 5 km, as seen in Fig. 1a, compared

to rearth ≈ 6400 km this scaling misses all the topographical

features with the Earth appearing flat. In order to increase the

topographical resolution of the model, a change of variable

is considered:

r (ξ)= Aeβ(ξ−ξ0)+B, (16)

where A and B are constants determined by enforcing the

conditions

r(ξ0)= r0 and r(ξb)= rb, (17)
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Figure 1. Earth’s topography: (a) actual scale of the problem (the color bar is the grid-averaged altitude above sea level in kilometers).

(b) Result of the change of variable (Eq. 16) selecting ξ0 and ξb as in Eq. (18), where NH = 18 566, Nr = 70, hH = hr = 0.05 and β = 0.05.

and β is a parameter which controls the topography stretch-

ing. Under this change of variable, the Earth is mapped over a

sphere of radius ξ0 and the radial coordinate is exponentially

stretched, as shown in the right side of Fig. 1.

In RBF-FD modeling, there is a well-known tradeoff be-

tween accuracy and ill-conditioning, unless what is known

as a stable algorithm is used (Larsson et al., 2013; Fornberg

et al., 2013); however, these algorithms increase the compu-

tational cost by a factor of about 10. The method itself suffers

from numerical ill-conditioning for small values of εh, where

ε is the shape parameter and h the internodal distance. In or-

der to achieve the best accuracy and avoid ill-conditioning,

the RBF shape parameter ε must be selected for every reso-

lution h.

To make the method attainable to the scientific community

and overcome the necessity of selecting ε for varying h, we

have used an alternative approach in this work. We propose

to take advantage of the change of variable and select the

computational domain for every resolution such that

ξ0 =
√
NH /4π hH and ξb = ξ0+Nrhr, (18)

where NH is the number of nodes in the latitude–longitude

angular direction, Nr is the number of nodes in the radial di-

rection and hH and hr are the angular and radial internodal

distances, respectively. As a result, the extent of the compu-

tational domain changes for every NH and Nr, but εhr and

εhH are fixed and independent of the resolution. The condi-

tion number is also fixed and thus the problem of selecting

the shape parameter is bypassed. It can be selected once and

used for any resolution. Thereby, the accuracy of the solver

is also fixed, in this work at slightly greater than fourth-order

for the resolutions considered, assuming the variable coef-

ficient σ of the PDE is analytic. However, in more realistic

applications σ comes from discrete data that is never more

than C1 and thus the accuracy of the solver in such cases is a

moot point.

4.2 Spatial discretization

Spatial discretization is similar to a nested shell model

(Wright et al., 2010; Flyer and Fornberg, 2011). The majority

of the domain is discretized horizontally by using a spherical

shell formed byNH icosahedral nodes and radially by repeat-

ing this spherical shell from sea level to the top boundary at

every spacing of hr. This results in Nr radially aligned spher-

ical shells ofNH nodes. However, to incorporate topography,

the following alterations need to be incorporated.

1. An algorithm has been developed to distribute nodes

along the topography, with approximately twice as

many nodes on land as over the oceans to accommodate

the steeper gradients of the orography (see Fig. 2a).

2. When part of a spherical shell intersects land, the nodes

that fall under the Earth’s topography are discarded. For

example, the first spherical shell above sea level is at an

altitude of 500 m. In the top left panel of Fig. 4, cor-

responding to r = 500 m in the test case, the white ar-

eas show the topography and thus where the nodes have

been discarded.

3. The last item to be done is to rearrange the nodes where

a shell intersects land in order to have quasi-uniformly

distribution in that region. Thus, nodes on each shell

lying above the surface are repelled in the latitude–

longitude direction (using a charge-type repulsion algo-

rithm) while holding the nodes on the boundary fixed;

this allows the nodes near the Earth’s surface to follow

the topography more closely, yet keeping the radial dis-

tance between nodes fixed, and preserving conditioning

of the matrix system to be solved.

Consequently, there are two different regions in terms of the

structure of the node layouts and thus the shape of the sten-

cils used to approximate the differential operator on the left

hand side of Eq. (15). A near-surface region formed by the

Geosci. Model Dev., 8, 3007–3020, 2015 www.geosci-model-dev.net/8/3007/2015/
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Figure 2. Example of the discretization of the Earth’s topography under the change of variable (Eq. 16): (a) β = 0.05 and∼ 150 km resolution

at sea level. (b) β = 1 and ∼ 400 km resolution at sea level.

Figure 3. Sparsity pattern of the differentiation matrix that approximates Eq. (15) with 4◦× 1km resolution before ordering (left) and after

applying sparse reverse Cuthill–McKee ordering (right).

nodes close to the topography (< 8 km), where the differen-

tial operator Eq. (15) at any node is approximated by Eq. (13)

using the closest 56 nodes in 3-D space (found via a k-d tree

search) and forming a true 3-D stencil. In contrast, above all

topography (i.e., > 8 km), the nodes retain their nested shell

formation, resulting in a 2-D+ 1-D stencil formation. A hy-

brid FD/RBF-FD approach is implemented, where classical

5-node FD approximations in the radial direction (1-D) are

combined with 21-node RBF-FD approximations for the an-

gular derivatives (2-D).

To compute the RBF-FD differentiation weights for the

3-D Laplacian and gradient that appear in the PDE, the sys-

tem of Eq. (13) must be solved for at each node in the do-

main. By using the chain rule and taking the derivatives with

respect to the square of the Euclidean distance (the argu-

ment of the RBF), it is possible to write the action of the

differential operator on the RBF in a very elegant way. If

d =
∥∥x− xj

∥∥2
is the square of the Euclidean distance be-

tween an RBF centered at the node xj = {rj ,θj ,λj } and

evaluated at x = {r,θ,λ}, the three-dimensional Laplacian

and gradient can be written in the scattered-node region as

1φ(d)=1d
∂φ

∂d
+‖∇d‖2

∂2φ

∂d2
(19)

and

∇φ(d)=∇d
∂φ

∂d
. (20)

In the structured nested-shell region above 8 km, the angular

terms of the differential operators can be written following

the procedure described in Wright et al. (2010), where the

author noticed that the approximation is invariant under rota-

tions. In this case, the square of the Euclidean distance takes

the form d = 2(1− sinθ) and the surface Laplacian 1s on a

spherical shell can be written as

1sφ(d)= 2(2− d)
∂φ

∂d
+ (4− d)d

∂2φ

∂d2
. (21)

Since the same spherical node layout is repeated in the struc-

tured region, the angular derivatives are computed once on a

unitary sphere and scaled by 1/r(ξ)2 for every layer, where

r(ξ) is the radius of each layer.

www.geosci-model-dev.net/8/3007/2015/ Geosci. Model Dev., 8, 3007–3020, 2015



3012 V. Bayona et al.: GEC-RBFFD v1.0

Figure 4. Left: numerical solution at different distances from the origin. Right: corresponding error.

4.3 Handling topography: ghost nodes

The stencils that incorporate boundary nodes will be more

one-sided and might have skew shapes due to terrain. The

weights that approximate the differential operators on those

stencils might lose some properties, such as the positiveness

in the case of the Laplacian. As a consequence, the stabil-

ity of the numerical solver may be affected. The spectrum

of the eigenvalues can behave oddly as the shape parame-

ter decreases, with some eigenvalues crossing the imaginary

axis and the differentiation matrix becoming unstable. Nat-

urally, these eigenvalues do not have physical meaning and

are only a numerical artifact. In order to avoid this issue, the

concept of “ghost nodes” is implemented. The name comes

from the fact that these nodes are used in Eq. (13) to approx-

imate the differential operator on near-boundary/boundary

nodes, making the stencils more symmetric, but no equations

are ever enforced at these nodes as they are outside the do-

main. For most boundary nodes, a ghost node is introduced

directly outside the domain, i.e., under the topography or di-

rectly above 60 km (the only caveat to this is when the terrain

becomes to steep, as in the Andes or Himalayas, making the

ghost nodes close to overlapping; in these cases a smaller

one-sided stencil is used to maintain stability of the solver).

To determine the value of the function at the ghost nodes, the

PDE is enforced on the boundary, in addition to the Dirichlet

boundary conditions. Hence, the resulting system of equa-

tions has as many unknowns as equations and preserves uni-

solvency. In addition, the interior stencils near the irregular

boundary recover a more symmetrical shape and the stability

of the solver improves. This procedure is also used at the top

boundary to enable the use of 5-node stencils in the radial

direction.

4.4 The elliptic solver

Once the differentiation weights are computed according to

Eq. (13), they are assembled into a matrix that approximates

the left hand side of the PDE. Each row of the matrix rep-

resents the discretized PDE at a single node. The left panel

of Fig. 3 shows the sparsity pattern of the assembled ma-

trix for a 4◦× 1km resolution (a total of ≈ 154 000 nodes).

One immediately notices that two different stencils have been

used. The rows in the upper left corner where the pattern is

much denser and unstructured corresponds to the 3-D 56-

node stencils below 8 km. The rest of the matrix, with its

pentadiagonal-type pattern, corresponds to the 21+ 5-node

stencil in the structured region above 8 km. Drastic changes

in the pattern of a matrix generally impede iterative solvers,

making for much poorer and slower convergence. The panel

on the right of Fig. 3 shows the same matrix but after ap-

plying reverse Cuthill–McKee reordering, giving a consis-

tent sparsity pattern with a nicer bandwidth for the iterative

solver. Even though only 0.016 % of the entries are nonzero,

the bandwidth of the matrix is about 5NH ≈ 12 000 nodes,

much too large to use Gaussian elimination (i.e., the “\”

Geosci. Model Dev., 8, 3007–3020, 2015 www.geosci-model-dev.net/8/3007/2015/
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operator in MATLAB). However, due to the high sparsity

of the resulting differentiation matrix, the iterative method

GMRES(20) (generalized minimal residual method) proved

ideal for solving the linear system of equations, where the

restarting parameter is set to 20. In order to greatly decrease

the number of iterations necessary for convergence, GMRES

must be preconditioned with a solution that results from a

simplified version of the PDE yet captures the main fea-

tures. Since the conductivity increases exponentially with

altitude and varies by orders of magnitude less in the an-

gular directions, a simple exponential conductivity profile

σ(r)= σ0e
r/c is a good first approximation and leads to a

spatial operator,

Lu=1u+
1

c

∂u

∂r
, (22)

that can be solved extremely fast. As a result, Eq. (22) leads

to a good preconditioner which is (1) repeatedly called a

function file by the GMRES solver for the original problem

and (2) itself solved with GMRES(20) using incomplete LU

factorization as preconditioner. The residual tolerance is set

to 10−9 and the maximum number of outer iterations is set to

10. Runtimes for solving the problem at different resolutions

are listed in Sect. 8.

4.5 Conductivity

The spatially varying conductivity σ appears as the variable

coefficient in the PDE. It can be an analytic function or a

discrete data set output from a different numerical model,

such as the Whole Atmosphere Community Climate Model

(WACCM; for further details about how the conductivity is

computed see Baumgaertner et al., 2013, 2014). In the latter

case, the conductivity is interpolated to the node distribution

used in this paper.

4.6 Sources

The storm counts based on the 2-D TRMM (Tropical Rainfall

Measuring Mission) satellite data (Liu et al., 2008) provide

the radial current density averaged over a 12-year period at

20 km altitude on a 1◦×1◦ grid between −38 and 38◦ in lat-

itude. To approximate the 3-D source term of the PDE from

2-D data, two approaches are proposed.

4.6.1 Dipole approach

the first approach is to distribute 3-D dipoles over the Earth

according to the spatial distribution of the data, each one with

charge centers at altitudes rpi and rni from the surface,

Si(r,θ,λ)=
e
−
ρ(θ−θi ,λ−λi )

2

b2

ab2π3/2

[
I+e
−
(r−rpi

)2

a2 + I−e
−
(r−rni

)2

a2

]
,

(23)

where I± is the dipole’s current strength, ρ (θ − θi,λ− λi)

is the orthodromic distance from the charge center (θi,λi),

and a and b determine the widths of the dipoles in the radial

and angular directions, respectively. The source term is then

represented as the sum of these dipoles:

S =
∑
i

Si(r,θ,λ). (24)

The previous approach is commonly used in the literature

to charge the ionosphere (Tzur and Roble, 1985; Mallios

and Pasko, 2012). However, questions concerning the ac-

tual dipole’s width, the manner in which the dipoles are dis-

tributed with respect to the TRMM satellite data, and on how

to assign to the current strength I± may arise. For the pur-

pose of assessing the model with inputs obtained directly

from such 2-D satellite data, it might be more natural to use

the following approach, where the sources are enforced as a

boundary condition which is always one dimension less than

the PDE.

4.6.2 TRMM-BC approach

in this alternative approach, problem (5) is replaced by

−∇ · (σ∇us) = 0, (25)

−σ
∂us

∂r

∣∣∣∣
r=20 km

= Jr (θ,λ),

us|r=rb = 0,

where Jr (θ,λ) is the radial current density at 20 km provided

by the TRMM satellite data and the domain of the problem

is defined as −90◦ ≤ θ ≤ 90◦, −180◦ ≤ λ < 180◦, 20km≤

r ≤ rb. This approach is independent of dipole parameters

within the model.

In Sects. 6 and 7, both the dipole and TRMM-BC ap-

proaches are considered and compared in Tables 2 and 3. For

the fair weather potential, uf = RIs ûf, the two approaches

for source treatment yield fields that only differ by the scal-

ing factor Is. Thus, to observe the relative spatial variations

in the fair weather fields only one approach needs to be con-

sidered.

5 A test case for method validation

Before considering more realistic cases in terms of con-

ductivity and source terms, a simplified test case with a

known analytic solution is proposed to validate the numer-

ical scheme. A simple exponential conductivity profile that

varies only in the radial direction (a good first approximation

to real atmospheric conductivity) is considered,

σ(r)= σ0e
r/c, (26)
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Table 2. Integrated quantities for the exponential conductivity (Eq. 26) using both methods in Sect. 4.6 with and without topography.

Topo. R(�) Is (A) utop (kV) Itop (A) Q (C)

Dipoles approach
No 233 1325 308.7 −2.1× 10−8

−4.5× 10−9

Yes 223 1325 295.7 −2.6× 10−8
−4.4× 10−9

TRMM-BC approach
No 233 1693 392.8 6.2× 10−8 –

Yes 223 1693 377.5 −6.9× 10−9 –

Table 3. Integrated quantities for WACCM conductivity with clouds, aerosols, and topography.

R(�) Is (A) utop (kV) Itop (A) Q (C)

Dipole approach 193 972 187.6 3.3× 10−10
−5.6× 10−9

TRMM-BC approach 193 1712 330.4 1.7× 10−9 –

Figure 5. Radial current density (pAm−2) at 20 km from sea level obtained through TRMM satellite data for the month of April at 12:00 UT.

where c = 6 km and σ0 = 5× 10−14 sm−1. In this case,

Eq. (15) then reduces to the 3-D problem{
1u+

1

c

∂u

∂r
= f (r,θ,λ) in �

u = g(r,θ,λ) in ∂�
, (27)

where the domain �= {(r,θ,λ) : −π/2≤ θ ≤ π/2, −π ≤

λ < π, k (θ,λ)≤ r ≤ rb} and the function k (θ,λ) is the

Earth’s topography shown in Fig. 2b under the change of

variables (Eq. 16) with β = 1. This is an extreme stretching

of the topography; however, it will allow for sharp gradients

and more skewed stencils under 8 km that will test the ro-

bustness of the solver. The functions f and g are computed

by assuming the exact solution

u(r,θ,λ)=
[
0.8Y 0

7 (θ,λ)+ 0.5Y 4
5 (θ,λ)

]
sin

(
π
r − k(θ,λ)

rb− k(θ,λ)

)
.

(28)

Due to the exponential stretching direction, the resolution in

the physical domain is variable in the radial direction, from

500 m close to the topography to 2 km near the top bound-

ary, with Nr = 60. In the angular direction the resolution is

approximately 4◦ with NH = 2562 nodes per shell. The 3-D

domain contains a total of 168 601 nodes (149 856 interior

domain nodes, 6966 nodes on the bottom boundary (topog-

raphy), 6655 ghost nodes under the topography, 2562 nodes

for the top boundary and another 2562 nodes above the top

boundary).

The solution is given in the left column of Fig. 4 at 500 m,

5 km, and 20 km above sea level and the error in the right

column. At 500 m, the first layer of nodes above the bound-

ary, all RBF-FD stencils that approximate the differentiation

operator on the right hand side of Eq. (27) involve boundary

nodes and about 30 % of those involve nodes that lie directly

on land surfaces. The importance of this is that the 3-D near-

boundary stencils are more skewed and irregular, leading to

a degradation of diagonal dominance in the matrix in Fig. 3.

This in turn would have the expectation of decreasing ac-

curacy. However, as can be seen in the error for 500 m the

solution is accurate over most of the domain to O(10−5). In

fact, the error at 5 and 20 km is almost identical (the latter

being slightly larger due to a coarser radial resolution from

the exponential stretching), showing that the numerical treat-

ment of the boundary has not impacted the accuracy of the

solver. The highest errors are at the poles due to the solution

having the steepest gradient as the poles are approached.

6 Forcing the PDE with observational data: analytic

conductivity profile

Given the validation of the numerical scheme in the previous

section, a natural progression for model performance would

be to now force the PDE with observational data sources for

Geosci. Model Dev., 8, 3007–3020, 2015 www.geosci-model-dev.net/8/3007/2015/
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Figure 6. Convergence rate when computing the integrated quan-

tities R and Is using the analytical conductivity (Eq. 26) and the

conductivity computed from discrete model data used in Sect. 7.

The dash-dot lines represent the order of convergence.

more realistic modeling, yet using the same exponential con-

ductivity profile as in Sect. 5. The forcing or source term cor-

responds with TRMM satellite data for the month of April

at 12:00 UT. In the dipole approach, dipoles are spatially

distributed according to the TRMM satellite data shown in

Fig. 5; however, the strength of the 3-D current sources can-

not be accurately represented since there is no information

in the radial direction from the TRMM data. In this case,

rn = 8 km and rp = 15 km, with I± =±4.2 A has been cho-

sen. This gives a Wilson current of 1 A at 20 km. The ra-

dial and horizontal widths are 1.5 and 150 km, respectively.

In order to resolve them numerically, a numerical resolution

smaller than the dipole’s width is required. As a result, a res-

olution of 0.5km× 0.75◦ is used, which results in 9 108 837

nodes (NH = 73 962 and Nr = 120). In the second approach

(TRMM-BC), the data is directly implemented as the lower

boundary condition, previously discussed in Sect. 4.6.

6.1 Integrated quantities

6.1.1 Dipole approach

When the dipole approach is used to spatially approximate

the current density distribution from the TRMM data, the in-

tegrated quantities obtained are listed in Table 2. Notice that

the global total resistance for the case without topography is

R = 233�, which is 10� larger than the case with topog-

raphy. This is expected as the column of air above sea level

is decreased when topography is included. The source cur-

rent at the top boundary is Is = 1325 A and is independent

of the topography. It charges the ionosphere and generates a

potential difference equal to 308.7 and 295.7 kV for the cases

Figure 7. Fair weather electric potential (kV) along the 1.5 km (top)

and 6 km (bottom) constant height surface above sea level. In the

top figure, the regions in white are the intersection of the 1.5 km

constant height surface with the Earth’s topography.

without and with topography, respectively. In both cases, the

net current at the top boundary Itop and the net charge Q

within the domain are numerically conserved, as shown in

Table 2.

6.1.2 TRMM-BC approach

For the purpose of assessing the model with inputs obtained

directly from TRMM satellite data, the alternative TRMM-

BC approach proposed in Sect. 4.6 is used, where the TRMM

satellite data is directly enforced as a boundary condition.

The corresponding integrated quantities are listed also in Ta-

ble 2. The global resistance does not change from that cal-

culated with the dipole approach because it is independent

of the source term. However, the source current Is at the top

boundary is 368 A larger than in the case based on dipoles.

To alleviate this discrepancy, one could use the TRMM-BC

approach to scale appropriately I± in the dipole approach.

The TRMM-BC approach also numerically conserves Itop.

Since there is a lack of knowledge of the charge centers, as

explained in Sect. 4.6,Q cannot be computed when using the

TRMM-BC approach.

Figure 6 displays the convergence rate when computing

the integrated quantities R and Is for both the analytic con-

ductivity profile (Eq. 26) and the discrete model data profile

that will be used in the next section. Since the conductivity

of the atmosphere naturally varies by orders of magnitude

more in the radial direction than in the angular directions,

www.geosci-model-dev.net/8/3007/2015/ Geosci. Model Dev., 8, 3007–3020, 2015



3016 V. Bayona et al.: GEC-RBFFD v1.0

Figure 8. From top to bottom, fair-weather current density

(Jr, Jθ , Jλ) (pAm−2) at 20 km above sea level. The green areas

in the middle and bottom panels correspond to (Jθ , Jλ) < 10−4

(pA m−2).

convergence is considered with respect to Nr, where the ref-

erence solution is set to Nr = 320. As can be seen, when

the variable coefficient of the PDE is an analytic function, a

slightly greater than fourth-order convergence of the elliptic

solver is achieved, as expected (see Sect. 4.1).

6.2 Fair weather fields

Figure 7 shows the fair weather potential distribution uf at

1.5 km (top figure) and 6 km (bottom figure) above sea level.

The effect of the topography on the GEC modifies the col-

umn resistance over the higher elevations, as noted earlier.

Figure 8 shows the fair-weather current density (Jr, Jθ , Jλ)

at 20 km above sea level. In the top figure, notice that the

larger radial current density is localized over the higher ele-

vations. Furthermore, the topography also modifies the hori-

zontal current density, especially at higher elevations, as can

Figure 9. Analytical–exponential conductivity used in Sect. 6 com-

pared to an example of the conductivity from WACCM model out-

put with clouds and aerosols at 0◦ latitude and 180◦ longitude.

be appreciated in the middle and bottom panels of Fig. 8. No-

tice that in the horizontal components, (Jθ , Jλ), the positive

flow of current is immediately neighbored by a negative flow.

However, the strength of the horizontal components are 2–3

orders of magnitude smaller than the radial one, with much

of the Earth close to or at sea level having near-zero current

density in these directions.

7 Forcing the PDE with observational data: model data

conductivity profile

The last step to illustrate the robustness of the RBF-FD

model is to consider model data with steep gradients as op-

posed to a smooth analytic function for the conductivity,

using the two approaches for treating the TRMM source

data. In lieu of an analytical exponential conductivity pro-

file, we now consider a conductivity profile from model

data computed with WACCM (https://www2.cesm.ucar.edu/

working-groups/wawg), as described in Baumgaertner et al.

(2014). This discrete conductivity profile includes aerosols

and fair-weather clouds as well as topography, varying not

only in the radial direction but also in latitude and longitude.

An example of its radial profile at 0◦ latitude and 180◦ lon-

gitude versus the exponential profile can be seen in Fig. 9,

noting how cloud layers centered at 2 and 13 km cause steep

gradients in the conductivity. As in the previous section, the

results of the RBF-FD solver will be evaluated by noting

whether they are consistent with physical expectations, both

with regard to integrated quantities as well as to the fair-

weather fields. In the final subsection we will show a full

solution of the GEC.
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Figure 10. Logarithm of column resistance (�m2) for exponential

conductivity (top) and WACCM conductivity (bottom).

7.1 Integrated quantities

The resistance R is of course independent of the sources and

thus will be the same for the approaches of source treat-

ment. Although clouds and aerosols are known to increase

the atmospheric column resistance, as seen in Fig. 10, Ta-

ble 3 shows that the total integrated resistance is lower than

what resulted when the exponential conductivity profile was

used (see Table 2). However, it is important to note that the

color bars in Fig. 10 use the same color map, with shades

of blue being a lower column resistance than green. Thus,

from the mid-latitudes to the polar regions, the column resis-

tance is lower with the WACCM conductivity profile, with

the lowest values at 16.4�m2 as opposed to 16.8�m2 and

thus resulting in a lower total integrated resistance.

In contrast, the source current Is at the top boundary dif-

fers dramatically between the two approaches in Table 2 due

to the fact that the TRMM-BC approach does not incorporate

any of the conductivity profile below 20 km, the region in

which the conductivity is severely altered by cloud layers as

was seen in Fig. 9. In fact, using the exponential or WACCM

conductivity with the TRMM-BC approach makes little dif-

ference in Is (1693 A as opposed to 1712A). With regard to

the discrepancy between the two approaches for calculating

the potential difference at the top boundary, the TRMM-BC

approach can be used to scale the dipole source approxima-

tion to achieve the same values for utop, as noted in Sect. 6.1.

The net current at the top boundary Itop for both approaches

and the net charge Q within the domain for the dipole ap-

proach are numerically conserved, as shown in Table 3.

As noted earlier, Fig. 6 also displays the convergence rate

when computing the integrated quantities R and Is for the

discrete WACCM model data profile. Since the conductivity

data is only C0, one cannot expect greater first-order conver-

gence from any numerical method. As can be seen in Fig. 6,

this is achieved.

7.2 Fair weather fields

With regard to the fair weather fields, the best way to examine

the output of the RBF-FD solver is to see if the results are

consistent with our expectation of what the physics should

be. The two cloud layers at 2 and 13 km directly modify, at

those altitudes, the radial electric field and current density

as shown in the top row of Fig. 11, causing a jump in the

fields which would be expected. In the angular directions,

one would expect the fields to bend around the cloud layers,

increasing the divergence of those fields between the cloud

layers (Baumgaertner et al., 2014). This can in fact be seen

by the increased bulge between the cloud layers in the plots

of the latitudinal and longitudinal components of the electric

field and current density, shown by the middle and bottom

rows of Fig. 11.

7.3 An example of the full solution for the GEC

Until now, we have only illustrated results calculated from

3-D fair weather potentials, uf, or those calculated from the

3-D source potential us. To view a full solution (u= uf+us)

of the GEC model based on the 3-D RBF-FD solver, we

plot in Fig. 12 3-D isosurfaces of the radial current density

Jr = σ∇u · r̂ corresponding to ±3.5 pAm−2. This isosurface

was chosen since it shows the clearest image of the struc-

ture of currents within the GEC, specially with regard to to-

pography. All panels in the figure are centered on the North

Pole (NP). Figure 12a shows both the positive (red) currents

flowing upward as thin column currents from the Earth to

the cloud layer as well as from the cloud layer to the iono-

sphere. The empty “ring” region corresponds with negative

currents inside the cloud layer as shown in Fig. 12b. This fig-

ure also shows the downward currents to the high elevations

such as the Rocky mountains, Greenland, and the Himalayas.

Figure 12c shows the combined isosurfaces 3.5 pAm−2 (red)

and −3.5 pAm−2 (blue) of the previous two plots.

8 Timing results of the model

In order to give the reader a feel for how long it takes to

solve the GEC model with the RBF-FD elliptic solver, Ta-

ble 4 shows some run-times at different resolutions for the

WACCM conductivity with clouds, which is the computa-

tionally most intense. All test cases were conducted on a

MacBook Pro 2.7 GHz Intel Core i7. The code was written

www.geosci-model-dev.net/8/3007/2015/ Geosci. Model Dev., 8, 3007–3020, 2015
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Figure 11. From top to bottom, fair weather plots of |Er| (left) and |Jr| (right), |Eθ | (left) and |Jθ | (right), and |Eλ| (left) and |Jλ| (right)

vs. altitude, without (dashed) and with (solid) clouds, at 180◦ longitude and 0◦ latitude.

Table 4. Runtime results for the WACCM conductivity with clouds

on a MacBook Pro 2.7 GHz Intel Core i7.

Resolution N
GMRES(20)

Iterations Runtime

4◦× 1 km 163 177 29 21 s

1.5◦× 0.75 km 1 542 715 29 5 min 55 s

1◦× 0.6 km 4 231 285 39 31 min 36 s

0.75◦× 0.5 km 9 108 837 44 4 h 24 min

in MATLAB and run under version 2013a and used a peak

of 5 GB of memory for the calculations. The results under

the GMRES(20) column show the number of iterations and

computing time that it takes to solve the resulting system of

equations.

Speeding up the algorithm is possible through parallel

implementation of the method. This would require scal-

ing GMRES across multiple CPUs or GPUs (Li and Saad,

2013), taking into consideration careful partitioning of the

nodes to ensure proper load balancing across processors.

The latter can be done using a domain partitioning library

such as ParMETIS (http://glaros.dtc.umn.edu/gkhome/metis/

parmetis/overview). However, implementation of RBF-FD

for scattered node layouts on parallel computing architec-

tures is a novel topic, only having been addressed since 2012

(Bollig et al., 2012; Erlebacher et al., 2014; Tillenius et al.,

2015).
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Figure 12. North Pole view of the Earth showing the isosurfaces 3.5 pAm−2 (red) and −3.5 pAm−2 (blue) for the global solution of the

GEC model.

9 Conclusions

This paper advances the research front in two different fields.

First, it presents a novel numerical elliptic solver based on

RBF-FD that can handle irregular boundaries, as the Earth’s

topography. This required novel developments, such as

1. an algorithm for node distribution on the Earth’s sur-

face;

2. a repelling algorithm to maintain quasi-uniformity of

nodes where stencils intersect the boundary;

3. a novel spatial discretization scheme that consists of two

types of stencils, one to handle the irregular near to-

pography regime below 8 km and the other the regular

regime above 8 km;

4. strategies to combat loss of accuracy near boundaries

and maintain stability of the solver;

5. a preconditioner especially designed to aid the elliptic

solver due to the drastic change in the sparsity pattern

of the matrix from the use of two completely different

types of stencils.

On the atmospheric science front, the new solver is the first

to make no limiting assumptions on the inputs to the PDE, in-

cluding geometry. For instance, in previous numerical mod-

els, the surface of the Earth has been assumed spherical. By

ignoring topography within the domain, the total resistance

was off by 10�. This modified resistance effects where the

currents in the domain flow. The higher elevation regions

have a lower column resistance and therefore more current

was able to return in the fair weather GEC at these loca-

tions. With complete flexibility of model inputs, two differ-

ent approaches for the treatment of current sources, given 2-

D satellite data at 20 km, were also developed to solve for

currents and electric fields within the Earth’s atmosphere.

The first approach involved placing 3-D dipoles globally to

represent individual thunderstorms, where the satellite data

provided only the spatial distribution but not the strength of

the current charges. In contrast, the alternative method im-

plemented the current density strength from the 2-D satellite

data as a boundary condition. It was shown that the latter

method, although giving better integrated quantities, as the

upward current at the top boundary (Is), might suffer from

the lack of knowledge of the conductivity distribution near

the sources which are below 20 km. Therefore, to determine

the effect that different conductivity distributions have on the

GEC one should utilize dipole sources within the model, and

then scale the current and potential at the upper boundary by

the approach that directly uses the satellite data.

To conclude, this novel solver allows for complete flexi-

bility of model inputs and thus will further investigations of

the currents and electric fields arising through different phys-

ical perturbations to the GEC. With higher fidelity data sets

being produced by global climate models and even real data,

one needs to utilize a solver that will couple these parameters

without any limitations or assumptions.

Code availability

The GEC-RBFFD code together with the instructions of use

can be found at https://bitbucket.org/vbayona/gec_rbffd.
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