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Abstract. A regional air-quality forecast system’s model of

surface ozone variability based on cloud coverage is evalu-

ated using satellite-observed cloud fraction (CF) information

and a surface air-quality monitoring system. We compared

CF and daily maximum ozone from the National Oceanic and

Atmospheric Administration’s National Air Quality Fore-

cast Capability (NOAA NAQFC) with CFs from the Mod-

erate Resolution Imaging Spectroradiometer (MODIS) and

the US Environmental Protection Agency’s AirNow sur-

face ozone measurements during May to October 2014. We

found that observed surface ozone shows a negative correla-

tion with the MODIS CFs, showing around 1 ppb decrease

for 10 % MODIS CF change over the contiguous United

States, while the correlation of modeled surface ozone with

the model CFs is much weaker, showing only −0.5 ppb per

10 % NAQFC CF change. Further, daytime CF differences

between MODIS and NAQFC are correlated with modeled

surface-ozone biases between AirNow and NAQFC, show-

ing −1.05 ppb per 10 % CF change, implying that spatial

and temporal misplacement of the modeled cloud field might

have biased modeled surface ozone level. Current NAQFC

cloud fields seem to have fewer CFs compared to MODIS

cloud fields (mean NAQFC CF= 0.38 and mean MODIS

CF= 0.55), contributing up to 35 % of surface-ozone bias in

the current NAQFC system.

1 Introduction

Ground-level ozone is a secondary pollutant resulting from

photochemical reactions between oxides of nitrogen (NOx)

and volatile organic compounds (VOCs) in the presence of

solar radiation. While local ozone production is affected by

numerous factors, including precursor emissions and me-

teorological conditions such as temperature and local cir-

culation, ozone photochemistry is photon-limited, and net

ozone production shows a direct relationship with changes

in UV actinic flux resulting from clouds and aerosols (Dick-

erson et al., 1997; He and Carmichael, 1999; Jacobson, 1998;

Monks et al., 2004). For instance, Lefer et al. (2003) showed

that without sufficient UV radiation, ozone production in

Houston is limited regardless of local circulation patterns

or emission sources. Studies in the urban cities of Los An-

geles, California (Jacobson, 1998), and Mexico City (Cas-

tro et al., 2001; Raga et al., 2001) also showed that surface

ozone varies from 5 to 30 % due to light-absorbing aerosols.

Model studies have shown that surface ozone is affected by

cloud fields (Voulgarakis et al., 2009; Wild et al., 2000) or

strongly scattering aerosols (Dickerson et al., 1997; He and

Carmichael, 1999).

Since clouds play a critical role in the radiative balance

of the Earth, their impact and models’ capabilities to simu-

late clouds have been repeatedly tested from global and cli-

mate perspectives (Bergman and Salby, 1996; Eastman and

Warren, 2013; Stephens, 2005). Clouds also play an impor-

tant role in regional air quality, impacting both surface ozone

and particulate matter by regulating photochemical reaction

rates, heterogeneous chemistry, and the evolution and parti-

tioning of particulate matter. These impacts, however, still
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have high measurement uncertainties and are not well quan-

tified. While reliable estimates of photolysis rates are essen-

tial for reducing the uncertainty in air-quality modeling, most

current models use highly parameterized methods to estimate

photolysis rates. Pour-Biazar et al. (2007) argued that the un-

certainties in estimation of cloud transmissivity and errors

in the placement of clouds’ location and time could be an

important source of uncertainties in simulations of surface

ozone, demonstrating during the Texas Air Quality Study

campaign that surface-ozone modeling can be improved by

adjusting photolysis rates based on the Geostationary Op-

erational Environmental Satellite cloud product. They also

stated that the cloud-prediction problem is particularly frus-

trating when modeling air quality in State Implementation

Plans if they are not able to reproduce satellite-observed

cloud fields in a model.

In order to reduce computational cost, most regional air-

quality models, including the US Environmental Protection

Agency (EPA) Community Multi-scale Air Quality model

(CMAQ), use a two-step approach for calculating photol-

ysis rates (Byun and Schere, 2006). In preprocessing, the

clear-sky photolysis rates for a range of latitudes, altitudes,

and solar zenith angles are first computed using a radia-

tive transfer module (Madronich, 1987). Then, within the

chemical-transport model, the tabular photolysis rates are in-

terpolated for each location and then adjusted using frac-

tional cloud-coverage information. Since most early mete-

orological models did not generate the full suite of spe-

cific cloud and moisture fields required as input for the

chemical-transport model, regional air-quality models were

designed to diagnose some additional cloud-related fields

from meteorological state variables for use in the chemical-

transport model. The Meteorology-Chemistry Interface Pro-

cessor (MCIP), CMAQ’s preprocessor, diagnoses for each

horizontal grid cell the cloud coverage, cloud base and top,

and the average liquid water content in the cloud using a se-

ries of simple algorithms based on a relative-humidity thresh-

old (Otte and Pleim, 2010). For example, in CMAQ modules

the photolysis rates below clouds are calculated as

Jbelow = Jclear[1+ fc(1.6× trc cos(θ)− 1)], (1)

where trc is cloud transmissivity, fc is the cloud fraction for a

grid cell, and θ is the solar zenith angle. Cloud fraction is es-

timated using relative humidity (RH) and critical RH (Byun

and Ching, 1999). Cloud fraction (f kc ) above the boundary

layer is

f kc =

[
RHk −RHc

1−RHc

]2

, (2)

where RHk is the relative humidity at vertical model

layer k and RHc is the critical relative humidity defined

as RHc = 1− 2σc (1− σc) [1+ 1.732(σc− 0.5)] and σc =

pk/pkPBL (Geleyn et al., 1982).

Within the convective boundary layer when RH> RHc,

f kc = 0.34
RHk −RHc

1−RHc

(3)

(Schumann, 1989; Wyngaard and Brost, 1984). See line 131–

177 of bcldprc_ak.f90 for MCIP v3.6.

Although fractional cloud coverage (i.e., cloud fraction)

thus plays a crucial role in determining the final values for

photolysis rate, it is not a well-defined physical state variable

and is mostly threshold-specific for each retrieval algorithm.

One may notice that there are two possible uncertainties in

modeling cloud fraction: (1) the model’s capability to gener-

ate the proper amount of cloud fields, both in their displace-

ment and timing; and (2) conceptual consistency in defini-

tions of cloud fraction between model and observation (i.e.,

from satellite). In this study, we present efforts to evaluate

the cloud-coverage information used in a regional air-quality

model through satellite-based cloud fraction information and

surface-monitored ozone observations. In the second sec-

tion, we introduce the observational and modeling data used

in this analysis, and results are discussed in Sect. 3. Gen-

eral performance of the contiguous United States (CONUS)-

scale air-quality forecast system and possible overestimation

of surface-ozone levels due to uncertainty in cloud fractions

will be also discussed.

2 Data and method

MODIS

The Moderate Resolution Imaging Spectroradiome-

ter (MODIS) cloud level 2 product (MOD06_L2 and

MYD06_L2, http://modis-atmos.gsfc.nasa.gov/MOD06_

L2/index.html) is used for daily cloud-coverage informa-

tion for each surface-monitoring site. We have retrieved

5 km cloud fraction data, which is based on MOD35_L2

cloud-mask information with 1 km and 250 m (nadir) spatial

resolution. Brightness temperatures (BTs) from multiple

channels and their differences (BTDs) are used in cloud-

masking algorithms, as described in the MODIS cloud-mask

product (MOD35_L2) user guide (http://modis-atmos.

gsfc.nasa.gov/_docs/CMUSERSGUIDE.pdf). For example,

daytime land-cloud maskings are determined using BTs and

BTDs from 1.38, 3.7, 3.9, 6.7, 8, 11, 12, and 13.9 µm chan-

nels. Only data from local afternoon time (∼ 13:30), when

ground-level data show high ozone-production efficiency,

are used in the analysis.

AirNow

Real-time ozone measurements across the CONUS are pro-

vided by the EPA through the AirNow network (http://www.

epa.gov/airnow). From more than 1000 Air Quality System

(AQS) sites throughout the CONUS, hourly surface ozone
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Figure 1. Spatial distributions of cloud fractions on 2 August 2014 from NAQFC (a) and MODIS (b). NOAA NCEP surface weather chart

at 18:00 UTC is overlaid. Monthly averaged distributions are also shown for NAQFC (c) and MODIS (d).

Figure 2. Occurrence frequency histogram for NAQFC cloud frac-

tions (red) and MODIS cloud fractions (blue).

data are obtained, and a daily maximum 8 h moving averaged

ozone (MDA8 ozone) value is calculated for each site.

NAQFC

The US National Air Quality Forecast Capability (NAQFC)

provides daily, ground-level ozone predictions using

the Weather Forecasting and Research non-hydrostatic

mesoscale model (WRF-NMM) and CMAQ framework

across the CONUS with 12 km resolution domain (Chai et

al., 2013; Eder et al., 2009). In our analysis, we used the ex-

perimental version of NAQFC, which uses WRF-NMM with

B-grid (NMMB) as a meteorological driver and the CB05

chemical mechanism. Meteorological data are processed us-

ing the PREMAQ, which is a special version of MCIP de-

signed for the NAQFC system. While NAQFC has shown a

tendency to overpredict MDA8 ozone (Chai et al., 2013), re-

cent updates to model processes and emission have reduced

its bias. The “CFRAC” variable from METCRO2D output

files are used for cloud fraction.

Method

For each EPA monitoring site and the corresponding model

cells, we have calculated a daily maximum of 8 h, forward-

moving, averaged concentrations. For the same locations,

we also calculated daytime (∼ 13:30 local time) cloud frac-

tions from the model and from satellite data. MODIS cloud

fractions are regridded into 12 km domain grid cells us-

ing a conservative regridding method (Kim et al., 2013).

For consistent comparisons, only valid observational data

are used, those with corresponding times and locations. We

www.geosci-model-dev.net/8/2959/2015/ Geosci. Model Dev., 8, 2959–2965, 2015
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Figure 3. Scattered plots between MODIS cloud fractions and AQS MDA8 ozone (a), between NAQFC cloud fractions and MDA8 ozone

(b), and between cloud fraction differences (NAQFC – MODIS) and MDA8 surface ozone bias (NAQFC-AQS) (c) during August 2014

across 1024 AQS monitoring site locations. Averaged O3 biases for each 0.1 cloud-fraction bin with 1 standard deviation (vertical bars) are

also shown (d).

have investigated the 6-month summer ozone season (May–

October 2014) and results are consistent for each month.

3 Results and discussion

General distributions of daily and monthly daytime cloud

fractions from the model and from satellite are compared.

Figure 1 shows the distribution of cloud fractions retrieved

from NAQFC and MODIS cloud products (MOD06 level2)

for one day (2 August 2014) in the upper panels; and the

figure shows a 1-month average (August 2014) in the lower

panels. The 2 August plot is overlaid with a NCEP surface-

analysis chart to show its association with general features

of the synoptic weather pattern. It is obvious that both model

and satellite correctly display the general features of cloud

coverage associated with the synoptic frontal activities. How-

ever, there is a serious discrepancy in their quantity; in most

cases the amount of cloud fraction used in the model is

smaller than the cloud fraction retrieved from the MODIS

cloud product. For August 2014, monthly means of daytime

cloud fractions from NAQFC and MODIS are 0.38 and 0.55,

respectively.

This discrepancy becomes even more evident from the his-

togram distribution. In Fig. 2, we present histogram distri-

butions of cloud fractions from NAQFC and from MODIS

during August 2014 for each 0.1 cloud-fraction bin. Occur-

rence frequency is shown on the y axis, so the sum of total

frequency makes 100 %. In the NAQFC model, lower cloud-

fraction numbers are more dominant, with the highest fre-

quency between 0.2 and 0.3, showing very low frequency of

high cloud fractions. On the other hand, the MODIS cloud

fraction is quite different, showing more of a bimodal dis-

tribution. Frequencies for clear sky are similar between the

model and satellite, around 12–13 %, but the satellite cloud

frequency is much lower in the 0.1–0.5 range and higher

above 0.6.

The reason for this discrepancy between the model and

MODIS is not clear and requires future investigation. As

mentioned previously, this might be a characteristic of the

meteorological model or it could be a conceptual difference

in cloud fraction between model and satellite. As cloud-

fraction field is a diagnosed variable in PREMAQ, which

uses a certain threshold of liquid-water content or relative

humidity to model the existence of clouds, it may differ from

the satellite’s measurements of cloud, which uses emissivity-

Geosci. Model Dev., 8, 2959–2965, 2015 www.geosci-model-dev.net/8/2959/2015/
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Figure 4. Spatial distributions of (a) slope and (b) correlation coefficient of linear regression between MODIS CF and MDA8 ozone.

based cloud masking using BT and BTD from multiple chan-

nels.

Figure 3a and b show scatter plots between MODIS cloud

fractions and AirNow MDA8 ozone and between NAQFC

cloud fractions and MDA8 ozone, respectively, during Au-

gust 1024 across all reporting EPA AQS monitoring sites.

As the amount of UVA (ultraviolet radiation in 315–399 nm)

strongly affects the ozone production by NO2 photodissoci-

ation (e.g., j (NO2) in λ < 420 nm) at the surface, it is ev-

ident that cloud fraction, and the eventual flux of photons

reaching the level of the surface, is a very dominant compo-

nent determining ground-level ozone concentration (Monks

et al., 2004; Seinfeld and Pandis, 2006). Scatter plots in

Fig. 3a draw data from more than 1000 sites across the

CONUS under a variety of meteorological conditions and

precursor sources. Even with the high uncertainties here,

we can see a notable separation of ground-level ozone for

each cloud-fraction bin, implying that photon flux is one of

the most dominant features determining tropospheric ozone

photochemistry. Slope and offsets for line-fitting MODIS

cloud fraction (CF) versus AirNow MDA8 ozone are−11.33

and 49, respectively, implying that 10 % of CF change can

cause around 1.13 ppb decrease in surface ozone. On the

other hand, the correlation between NAQFC CF and MDA8

ozone is slightly weaker (Fig. 3b); slope and offsets between

NAQFC CF and MDA 8 ozone are −5.0 and 50.5, respec-

tively, showing half as much sensitivity in surface ozone ac-

cording to the NAQFC CF compared to the MODIS CF.

Figure 3c and d are scatter plots for CF differences

(NAQFC-MODIS) and MDA8 surface ozone bias (NAQFC-

AQS; left), and averaged O3 biases for each 0.1 cloud-

fraction bin (right). Since the definition of cloud fraction in

the model and the satellite are slightly different, we choose

the term “cloud fraction difference” instead of “cloud frac-

tion bias”. Slope of the linear regression is−10.5 ppb/100 %

CF. The right-side panel shows averages of ozone biases for

each 0.1 bin. The vertical bars indicate 1 standard deviation.

It is clear that where the model underestimates cloud frac-

tion, it likely overestimates surface ozone, although there are

many intricacies of tropospheric ozone chemistry involved.

Since Fig. 3 shows data from all AQS sites, it includes

multiple uncertainties from each site’s local characteristics,

such as local emissions. We have conducted further inves-

tigation for individual AQS sites to confirm if we can find

similar MDA8 ozone to CF correlation. Figure 4 shows

spatial distributions of each site’s ozone to CF sensitivity

(e.g., regression slope of MDA8 ozone and CF) and cor-

relation coefficients during 5 months (May to September,

2014). MDA8 ozone decreases rapidly by the increase of CF

in the southern regions, especially near the coastal lines of

Gulf of Mexico, such as Texas, Louisiana and Florida, up

to −30 ppb CF−1. In the middle latitude regression slopes

are around −10 ppb CF−1, and some northern location ar-

eas show positive correlation. Mean of total regression slope

is −8.5 ppb CF−1. Correlation coefficients (R) also show

stronger (negative) correlation in southern states, especially

southeastern United States up to R =−0.7 while northeast-

ern United States shows much weaker correlation, implying

accurate CF information is important in southern US states.

Ozone overprediction

As already described, current NAQFC cloud fields seem to

have fewer clouds than MODIS by 0.2. We have further es-

timated how this difference can affect the general perfor-

mance of surface ozone forecast. Previous studies address

O3 overpredictions of global and regional chemical-transport

models during the summer daytime over the eastern United

States (Chai et al., 2013; Eder et al., 2009; Fiore et al.,

2009; Murazaki and Hess, 2006; Nolte et al., 2008; Ras-

mussen et al., 2012; Reidmiller et al., 2009). Studies have

addressed that the vertical resolution (Murazaki and Hess,

2006), the coarse representation of emissions (Liang and Ja-

cobson, 2000), along with uncertainty in the heterogeneous

reactions of aerosols (Martin et al., 2003) contribute to the

highly biased O3 of the global chemical-transport models

MOZART or GEOS-Chem over the eastern United States.

www.geosci-model-dev.net/8/2959/2015/ Geosci. Model Dev., 8, 2959–2965, 2015
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NAQFC also has a tendency to overestimate surface ozone

during ozone season. We may estimate the amount of pos-

sible overestimation of surface ozone due to the underesti-

mation of the cloud fraction and eventual overestimation of

photolysis rate. As the mean cloud fraction of model is 0.17

higher than the cloud fraction estimated from MODIS, by

applying the −10.5 ppb CF−1 estimate, we can deduce that

1.8 ppb of the surface-ozone overestimation is contributed

from the underestimation of the cloud fraction. Consider-

ing current NAQFC surface-ozone overestimation is around

5 ppb for the month of August 2014, we can roughly suggest

that almost 35 % of this overestimation is due to faulty esti-

mation of the cloud field. Though this estimate is still very

rough, this is definitely something to consider carefully in

order to improve the simulation of regional air quality and

especially the simulation of surface ozone.

Resolution issue

In utilizing satellite-based cloud-fraction information, one

concern is how to process data in terms of pixel resolution.

As already mentioned, the cloud fraction is not a state vari-

able; it is threshold- or retrieval-specific. For example, if we

consider an area with 9 pixels with cloud fraction 0.6, frac-

tional averaging of 9 cloud pixels should yield a 0.6 cloud

fraction. However, if we first perform cloud masking for each

pixel, we may have 9 cloud markings out of 9 pixels, result-

ing in 100 % cloud fraction. This might not be a critical error

on a global scale, but it is a crucial difference for regional

or local scales intended for investigating the spatial scale of

local ozone production. Since cloud fields are very localized

phenomena, this information should be processed as finely as

data are available.

To conclude, this study demonstrates that appropriate

model of CF is crucial in the modeling of surface ozone

chemistry. Further studies are needed in terms of the com-

parison of modeled- or satellite-based CF with actual surface

level photon flux, as well as enhanced parameterization of

CF in the air quality model.
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