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Abstract. Fire provides an impulsive and stochastic path-

way for carbon from the terrestrial biosphere to enter the

atmosphere. Despite fire emissions being of similar magni-

tude to net ecosystem exchange in many biomes, even the

most complex dynamic vegetation models (DVMs) embed-

ded in general circulation models contain poor representa-

tions of fire behaviour and dynamics, such as propagation

and distribution of fire sizes. A model-independent method-

ology is developed which addresses this issue. Its focus is

on the Arctic where fire is linked to permafrost dynamics

and on occasion can release great amounts of carbon from

carbon-rich organic soils. Connected-component labelling is

used to identify individual fire events across Canada and Rus-

sia from daily, low-resolution burned area satellite products,

and the obtained fire size probability distributions are val-

idated against historical data. This allows the creation of a

fire database holding information on area burned and tem-

poral evolution of fires in space and time. A method of as-

similating the statistical distribution of fire area into a DVM

whilst maintaining its fire return interval is then described.

The algorithm imposes a regional scale spatially dependent

fire regime on a sub-scale spatially independent model; the

fire regime is described by large-scale statistical distributions

of fire intensity and spatial extent, and the temporal dynam-

ics (fire return intervals) are determined locally. This permits

DVMs to estimate many aspects of post-fire dynamics that

cannot occur under their current representations of fire, as

is illustrated by considering the modelled evolution of land

cover, biomass and net ecosystem exchange after a fire.

1 Introduction

Despite the high uncertainties in estimates of global biomass

stocks, analysis of carbon stock studies (Keith et al., 2009)

shows that the boreal regions hold considerable biomass per

unit area, arising not only from the extent of boreal ecosys-

tems but also from the observed greening of the Arctic (Jia

et al., 2003; Xu et al., 2013); indeed, shrub communities

have expanded during the 20th century (Sturm et al., 2001),

while tundra biomass has increased by almost 20 % over the

past 3 decades (Epstein et al., 2012). Furthermore, due to low

temperatures and consequent low decomposition rates, enor-

mous stocks of soil carbon exist in the Arctic (Ping et al.,

2008; Schepaschenko et al., 2013), some locked in and un-

der permafrost, with the soil organic carbon in the circumpo-

lar permafrost region accounting for approximately 50 % of

the global soil organic carbon pool (Tarnocai et al., 2009).

Changes and feedbacks in the fluxes of carbon between the

land surface and the atmosphere are of utmost importance in

the context of global warming. The need to gain quantitative

understanding of such processes has encouraged the use of

dynamic vegetation models (DVMs), often coupled to atmo-

spheric models. DVMs simulate a host of mechanisms linked

to the terrestrial carbon and water cycles, with the aim of re-

producing the present status of the terrestrial carbon pools

and fluxes and predicting their trends. An influential and dy-

namic pathway by which terrestrial carbon enters the atmo-

sphere is through burning of vegetation and carbon-rich soils;

its implementation in DVMs is investigated in this study.

Key characteristics of fires include their inter-annual vari-

ability, size distribution and intensity, which differ between
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regions of the Arctic (Wooster and Zhang, 2004). Fieldwork

and Earth Observation (EO) data show that larger fires con-

tribute most to the total area burned, despite being much

rarer. From 1959–1999, out of the 1000–14 000 forest fires

that occur every year in Canadian forests, only 3 % exceeded

2 km2 in area but these accounted for 97 % of the total area

burned (Stocks et al., 1998). Such fires usually last for sev-

eral days or even weeks, and extend over large areas and

across biomes; in their central areas nearly all the vegetation

is burnt, with reducing degree of burn towards the fire scar

edges.

Advances in EO sensors have contributed greatly to the

information available on a variety of fire characteristics, be-

ginning with the detection of gas flares from oilfields in im-

ages obtained from the AVHRR sensor on board the TIROS-

N satellite (Matson and Dozier, 1981). In the 21st century,

images acquired from the MODIS instrument are routinely

used to identify fire scars at 500 m resolution (Roy et al.,

2008) and examine global trends in burned area (Giglio et al.,

2010); by measuring thermal anomalies the ATSR instrument

can locate active fires and construct time series monitoring

their annual evolution (Arino et al., 2012); and measurements

of fire radiative power from geostationary and polar orbiting

EO sensors allow the amount of biomass lost to fires to be

estimated (Wooster et al., 2012; Wooster and Zhang, 2004).

Nonetheless, the representation of fire in most DVMs does

not utilize EO information and fails to capture many of the

key fire characteristics (Kantzas et al., 2013). A typical DVM

will estimate a fraction of area burned for each grid cell based

on climate data (e.g. temperature and precipitation), vege-

tation characteristics (e.g. plant-specific fire resistance) and

other simulated variables (e.g. litter moisture), so the outputs

are deterministic and without any random component. Never-

theless, it is well established that the size distribution of for-

est fires at continental scale follows the law of small numbers

and can be simulated stochastically with a Poisson model pa-

rameterized with climate data (Jiang et al., 2012; Podur et

al., 2010; Wiitala, 1999). This heavily skewed distribution

assigns high probability to small fires and lower probability

to bigger ones.

Most DVMs are unable to simulate large fires that occupy

significant fractions of a model grid cell (which for a typi-

cal DVM resolution of 0.5◦ has dimensions of around 56 km

by 28 km at 60◦ N). In addition, most DVMs are essentially

point-based, with no interaction between neighbouring grid

cells, so cannot simulate the propagation of fire across sev-

eral grid cells. Instead, each grid cell is assigned a small

amount of fire each year, with very little inter-annual vari-

ability (Kloster et al., 2010; Li et al., 2014; Prentice et al.,

2011; Thonicke et al., 2010, 2001). As an example, for a

typical year over the Arctic, in the LPJ-WM model (Wania

et al., 2009a, b), which is a version of the influential LPJ

DVM (Sitch et al., 2003) tailored for high-latitudes, the aver-

age fractional area burned per grid cell is 0.3 % with a vari-

ance of 0.045 %, and it rarely exceeds 1 % in any grid cell.

This weakness in fire representation is hidden when only the

average fraction of area burned over a long period (whose re-

ciprocal is the Fire Return Interval or FRI) is reported. For

example, if a DVM represents fire by burning 0.5 % of each

grid cell every year, the FRI will be 200 years, but this com-

pletely fails to capture the highly episodic nature of boreal

fires, in which severe fire years may give emissions many

times greater than the average (van der Werf et al., 2010). In

reality, observed FRI data from many small and some rarely

occurring big fires generally have a significantly higher vari-

ance than that produced by DVMs. Correct simulation of the

FRI is insufficient for DVMs to make accurate predictions

under changing climate scenarios.

The treatment of fire in DVMs also prevents them from

capturing post-disturbance dynamics (e.g. permafrost thaw-

ing and carbon fluxes) from large fires which remove a con-

siderable fraction of vegetation and soil carbon (Kantzas et

al., 2013), like the unprecedented 2007 Anaktuvuk River

fire (Mack et al., 2011). Post-fire carbon fluxes exhibit com-

plicated dynamics (Amiro et al., 2003, 2006), with conse-

quences for the extent to which vegetation recovery eventu-

ally turns a region burned in a large fire from a carbon source

into a sink, and how long, if ever, it takes for carbon stocks

to return to previous levels under a changing climate (Amiro

et al., 2001a).

The amount of litter removed in a fire is a key quantity

controlling post-disturbance permafrost degradation (Harden

et al., 2006; Yoshikawa et al., 2003) while the water cycle is

also affected by large fires, and regional models have showed

that changing fire regimes cause changes in evapotranspira-

tion in boreal forests (Bond-Lamberty et al., 2009). Field data

show that a substantial loss of canopy will decrease evap-

otranspiration (Amiro et al., 2006) and canopy interception

and consequently increase groundwater recharge (Clark et

al., 2012), but vegetation succession would further compli-

cate water dynamics, especially when forests stands are suc-

ceeded by grass/shrubs for a number of years or indefinitely

(Dore et al., 2010, 2012). The DVMs would also be better

coupled with atmospheric models and provide a more real-

istic gas exchange interface if their simulations were capa-

ble of producing large fires, with effects ranging from re-

alistically simulating the carbon and trace gasses fluxes of

big disturbances (van der Werf et al., 2010) to how smoke

affects cloud formation over the boreal forests (Sassen and

Khvorostyanov, 2008) and the Amazon (Koren et al., 2004).

Hence there are pressing reasons to improve the fire rep-

resentation in the DVMs, but these models are complex, in-

volve highly coupled internal processes, operate on a grid

cell basis, and are often embedded in climate models. In ad-

dition, significant resources have been spent to calibrate fire

processes so that the FRI compares well (in some cases) with

data (Prentice et al., 2011; Thonicke et al., 2010). Hence it is

desirable to keep model restructuring to a minimum and pre-

serve its estimate of FRI, while ensuring that fire character-
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istics, such as structure and size distribution, are consistent

with observational data.

The first step towards this goal is to obtain realistic sta-

tistical information on fire at spatial scales appropriate to

the models, i.e., 0.5–1◦, for example the number of fires per

year, their size distribution and their spatial characteristics.

Currently, historical information on wildfires in the Arctic,

such as their number, area burned and boundaries, is com-

piled in databases by fire agencies in Canada (Canadian Na-

tional Fire Database) and Alaska (Alaska Interagency Coor-

dination Centre); these consist mostly of ground observations

supplemented by EO data. Due to the remoteness of much of

the boreal zone, there are large data gaps, and similar data

do not exist for the much larger area of the Russian Arc-

tic. In Sect. 2.1 we show how readily available image anal-

ysis tools, specifically connected component labelling, can

be employed to identify individual fires in EO burned area

data and extract the information needed to characterize fires

in the Arctic statistically. We then exploit this information in

Sect. 2.2 to develop a model-independent methodology for

creating fires with a realistic size distribution in DVMs while

maintaining their FRI and involving little model restructur-

ing. In Sect. 3 we verify both methodological approaches

and demonstrate some of the consequences for post-fire dy-

namics, while in Sect. 4 we discuss the limitations of the ap-

proach and possible ways to address them.

2 Methodology

2.1 Connected component labelling

Connected component labelling (CCL) (Gonzalez et al.,

2003) or “blob detection” in the context of image processing

is a method where unique clusters in a binary image are iden-

tified based on the connectivity of their sides and/or edges.

In two dimensions, two categories exist: 4-connected and 8-

connected. In 4-connected labelling, each pixel with coordi-

nates (x, y) can be connected to those pixels with which it

shares an edge, i.e. the pixels with coordinates (x±1, y) and

(x, y± 1). In 8-connected labelling, pixels with a common

vertex are also included, so there are extra possible connec-

tions to the pixels at positions (x± 1, y± 1). Thus in a bi-

nary image, CCL would label or cluster connected blobs of

1s against a background of 0 s. Two-dimensional CCL has

numerous applications in image analysis, and has been used

for clustering pixels in fire scars in single images (Koltunov

et al., 2012; Morisette et al., 2005). CCL can also be applied

in three dimensions, where the third dimension can be time,

and we exploit this capability to determine the growth of fire

scars in sequences of daily EO images of burned area. For

each image, pixels identified as burned are assigned the value

1 and the rest are given the value 0. Additionally, each image

and its pixels are labelled by the associated day of the year, t ,

Figure 1. 6- and 18-connected pixel connectivity in 3-dimensional

CCL analysis; the axes are image row, image column and day of the

year.

to yield a 3-dimensional data set (x, y, t) on which we apply

the CCL algorithm.

Three-dimensional CCL has 6, 18 and 26-connected cat-

egories, defined respectively at a given voxel by those vox-

els having a common face, plus those with a common edge,

plus those with a common vertex; the first 2 categories are

depicted in Fig. 1. Assuming the accuracy of the underly-

ing daily burned area images, CCL should be able to track

the progress of a particular fire from its ignition, through its

temporal and spatial propagation to its extinction, by follow-

ing the connections between burned pixels. As fire scars are

continuous in both space and time, individual fires will be

labelled and subsequently categorized based on burned area.

It should be noted that the labelling of an individual fire may

depend on the spatial resolution of the EO sensor, since what

is seen as a single burned pixel at lower resolution may in fact

be resolved as several fires when imaged at higher resolution.

However, this does not cause problems when assimilating the

data, as the model used will have the same spatial resolution

as the fire database created.

In principle, the 6-connected variety of CCL should be suf-

ficient to capture fire spread as a fire could not propagate di-

agonally in space without affecting the adjacent pixels. For

example, a fire at (x, y, t) propagating to (x+ 1, y+ 1, t)

would most likely affect (x+ 1, y, t) and/or (x, y+ 1, t).

However, in some cases the fire may propagate diagonally
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with no detectable effect on the adjacent pixels, for example,

because of sensor detection sensitivity, so 6-connected CCL

would detect it as two independent fires instead of a single

event. It is also possible that two fires occurred on the same

day in diagonal grid cells with independent ignition sources,

whether natural or anthropogenic. Weather conditions con-

ducive to lightning can cover large areas and lead to light-

ning igniting more than one fire in a wide front, so whether

these fires are independent smaller fires or a single larger one

is a matter of interpretation. Hence we applied both the 6 and

18-connected CCL algorithm and compared the results with

available data on fire statistics in order to determine which

was more appropriate.

Following the approach of Jiang el al. (2012), the individ-

ual fires obtained by CCL-6 and CCL-18 were assigned to

five categories according to fire size: (1) 2 to 10 km2, (2) 10

to 30 km2, (3) 30 to 100 km2, (4) 100 to 500 km2, (5) greater

than 500 km2; the aggregate of (1) to (5) is defined as a

sixth category. We then applied two non-parametric statisti-

cal tests to test the null hypothesis that the fire sizes obtained

from CCL and from a reference data set detailed below rep-

resent samples from the same distribution. The two-sample

Kolmogorov-Smirnov (KS) test uses a statistic that quanti-

fies the distance between the cumulative distribution func-

tions of the two samples; small values of this statistic indi-

cate that the samples originate from the same distribution.

The two-sample Mann-Whitney-Wilcoxon (MWW) test ex-

amines whether two independent samples originate from dis-

tributions with equal medians. Both tests were performed at

a 90 % confidence interval with results shown in Fig. 2.

Data sets

The CCL algorithm was applied to the latest version (v.4.0)

of the influential Global Fire Emissions Database (GFED4)

(Giglio et al., 2013). This is based on the algorithm of Giglio

et al. (2009) and provides two products: burned area (GFED-

BA), which gives the area burned within each grid cell, and

fire emissions, which gives fire-induced emissions of various

chemical species, such as CO2, CH4 and NOx (van der Werf

et al., 2010). For the period used in this study, from the mid-

2000s to the present day, the GFED-BA is derived daily from

the MODIS MCD64A1 500 m burned area product (Roy et

al., 2008), which is based on changes in reflectance in the

visible channels of MODIS, but the GFED-BA also takes

into account information on active fire counts (Giglio et al.,

2009). It is not offered at the MODIS 500 m resolution but

instead is aggregated to a resolution of 0.25◦ to facilitate in-

terfacing the fire data to biochemical and atmospheric mod-

els which run at such resolutions (Castellanos et al., 2014;

Kaiser et al., 2012; Valentini et al., 2014).

The Canadian Large Fire Database (CLFD) (Stocks et al.,

2002) offers the best tool to test the outputs from the CCL

analysis. It reports on forest fires greater than 2 km2 in ex-

tent occurring in Canada from 1959–1999, including their

Figure 2. Histograms of area burned in each fire size category ob-

tained from the CLFD and the application of 6-connected CCL to

the GFED burned area daily product. The CLFD results only de-

scribe forest fires in Canada, while the CCL-6 results are given

separately for forests and non-forests in Canada (top) and Russia

(bottom). The limits of the x axes in each figure give the range of

burned area studied in each category; the x axis in the bottom right

figure for each region uses a logarithmic scale. A tick or cross shows

whether the CCL-derived distributions for forests and non-forests

pass or fail the Kolmogorov-Smirnov (KS) and Mann-Whitney-

Wilcoxon (MWW) test when compared to their size-respective

CLFD distributions.

date, location and size, together with metadata such as cause

of ignition, when available. The CLFD has been used ex-

tensively in various contexts, such as investigating temporal

trends in burned area (Krezek-Hanes et al., 2011), evaluating

fire emissions (Amiro et al., 2004, 2001b) and modelling fire

frequency (Jiang et al., 2012).
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In order to evaluate the CCL algorithm against the CLFD,

the 0.25◦ GFED4 grid cells that contain forest in Canada

must first be identified. Instead of utilizing a land cover prod-

uct, which would add unnecessary uncertainty, we built the

forest map by combining the CLFD and GFED4 data. To do

this, we first applied the CCL algorithm to the GFED4 data

and assigned the value 1 to a grid cell if it also contained a fire

record in the CLFD. Clearly this would omit forest grid cells

where the CLFD did record any fire over its 40-year period,

so to generate a forest mask the set of identified pixels was

morphologically closed. This assigns 1s to grid cells in close

proximity to or surrounded by grid cells already assigned the

value 1. All other pixels were considered as non-forest and

assigned the value 0.

We also applied the CCL algorithm over Russia, but here

used the GlobCover 2000 land cover map (Arino et al., 2008)

to distinguish forest from non-forest. The area of forest-

related classes within each grid cell was aggregated and if

this exceeded 50 % the grid cell was assigned as forest, oth-

erwise as non-forest.

2.2 Assimilating CCL fire products into a dynamic

vegetation model

Applying CCL to the daily GFED4 burned area images from

2001–2012 allows the creation of a database of individual fire

events that includes their geographical location, daily propa-

gation, fire size and geometry, i.e. how many grid cells were

affected and the fraction of each that was burned. We now

give details of a methodology that assimilates this informa-

tion to produce a realistic fire regime in a DVM whilst main-

taining its internally simulated FRI. The algorithm can be

applied to any sub-grid of pixels whose aggregate geograph-

ical representation is considered to have a spatially indepen-

dent fire regime in terms of size and intensity. Here it is ap-

plied separately to Canada and Russia, which are considered

to have different fire regimes.

1. A DVM calculates the annual fraction of area burned

in year y, BA(lat, long, y) for each grid cell, where

lat and long denote latitude-longitude. As described in

the Introduction, in most current DVMs only 0.1–5 % of

each grid cell burns annually. Each year we accumulate

this fractional burned area into a new cumulative array,

BAC, which gives the total fractional area per grid cell

burned after y years, and is defined as:

BAC(lat, long,y)=

y∑
n=1

BA(lat, long, n). (1)

2. For each year we integrate BA(lat, long, y) over its spa-

tial dimensions to give the aggregated fraction of area

burned in year y,

int_f (y)=

∫ ∫
lat/lon

BA(lat, long, y). (2)

As an example, in LPJ-WM the value of int_f for a rep-

resentative year is approximately 28.0 for Canada and

47.0 for Russia. Since the numbers of LPJ 0.5◦ grid

cells in the two countries are approximately 8000 and

12 500 respectively, the model burns an average frac-

tion of 0.35 % per grid cell for Canada and 0.375 % for

Russia; in both cases, northern Arctic grid cells signifi-

cantly reduce the overall average fraction burned.

3. Using CCL-6, we created a database [CCL-6] which,

as explained above, labels all grid cells belonging to a

single fire and records the fraction burned in each of

these grid cells. For each fire, we sum these fractional

areas. For the majority of the fires, e.g. a small fire over

a single grid cell, the summation will yield a percentage

close to 0.1 %, but for larger fires that spread over mul-

tiple grid cells, e.g. 15 grid cells with an average 10 %

burn, the summation can exceed 100 %. We then aver-

age these summations for all fires in the database to give

µffire. For Canada, µffire is 1.23 % and for Russia it is

0.76 %.

4. We define the total number of fires in a specific year y

to be

nofires(y)= int_f (y)µffire, (3)

which amounts to approximately 2000 fires for Canada

and 6000 for Russia, depending on year.

5. We then randomly select with replacement from the

[CCL-6] database a number of fires occurring in year

y equal to nofires (y). The total fraction of area burned

will therefore be a normally distributed random variable

with mean

µfire · nofires(y) (4)

and variance

nofires(y) · variance([CCL-6]), (5)

where variance ([CCL-6]) is 1.02 and 2.69 % for

Canada and Russia respectively. This process would

cause the total fraction of area burned for that year to

be a random variable, but we wish to fix it to int_f (y)

which is the fraction that the model wants to burn in

year y (Step 2), so we normalize the size of each fire so

that

int_f (y)= µfire · nofires(y). (6)
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6. Each fire selected from the [CCL-6] database is then

overlaid on a randomly selected subset of BAC(lat,

long, y)with the same spatial dimensions as the fire, e.g.

if the selected fire is extended over 3×1 grid cells then a

3×1 grid cell area will be randomly selected from BAC.

If each grid cell in the BAC(lat, long, y) subset has an

accumulated fractional area burned greater than or equal

to that of the corresponding grid cell in the selected fire,

then the fire will be accepted, i.e., considered to occur,

and the fraction of each affected grid cell as given by the

[CCL-6] overlay will be subtracted from BAC(lat, long,

y). Otherwise, a new subset will be selected at random

from BAC until a subset capable of accommodating the

fire is found.

7. The chance of finding a suitable location for a particu-

lar fire event decreases with increasing fire intensity and

extent, and such a location may not exist. In the rare

cases when this occurs the fire is forced to fit the loca-

tion that came closest to accommodating the fire and the

deficit in BAC is taken from other pixels to maintain the

regional average of FRI. These cases occur on average

once every 2 years and the BAC deficit is approximately

50 % of a grid cell.

8. Since DVM calculations of FRI differ between regions

according to climate and vegetation, the subsets of BA

with higher values will also have higher values of BAC

since the fractional burned area will accumulate there

faster. Hence these regions will be able to accept more

fires and the random process of selecting grid cells will

converge to produce an FRI equal to the reciprocal of

BA.

This methodology requires an initial run of the DVM to pro-

duce BA for each year. These values are then fed into the

above procedure to define the fires that are accepted in the

BAC array for that specific year. The grid cells which expe-

rience burn and the fraction burned are stored. The model is

then rerun but with area burned read from the outputs of the

algorithm. Even though this requires two runs, the initial run

to acquire BA is not always needed. As long as the FRI of

the model does not change significantly, either the fires pro-

duced by a previous application of the algorithm can be used

or the algorithm can be run again with BA obtained from a

previous run of the model. In the latter case, and since the

process is stochastic, a different set of fires will be produced

but the FRI will not change.

The LPJ-WM DVM used in this study calculates a daily

fire probability for each grid cell as a function of temperature

and litter moisture (Thonicke et al., 2001). The fire probabil-

ity is then summed over the course of a year, from which the

length of the fire season and fraction of area burned per grid

cell is derived; the values of the latter populate the BA array.

As DVMs are designed for global simulations, the built-in

fire probability function needs to produce FRIs that vary con-

siderably (10–1000 years) depending on the ecosystem. The

sensitivity of fire probability to driving variables is thus opti-

mized to the geographic variability of climate, which is con-

siderably higher than the temporal variability over a grid cell;

consequently the burned area of a grid cell remains largely

constant. Our approach corrects this unrealistic behaviour by

converting the fire simulations of DVMs into stochastic pro-

cesses, the random component of which provides temporal

variability with the aid of data assimilation.

3 Results

3.1 Applying connected component labelling to the

Canadian Large Fire Database

The best agreement was achieved between the CLFD and

CCL-6 on Canadian forests. Here, categories 2, 3, 4 and 5

all passed the KS test while categories 1, 2, 3 and 5 passed

the MWW test. Category 1 failed the KS test and Category 4

the MWW test. The broad category 6 passed the MWW but

not the KS test. When applied to Canadian forests, CCL-18

detected 15 % fewer fires than CCL-6 because the increased

number of connecting points in CCL-18 merged fires that

CCL-6 characterized as distinct. Nevertheless, the frequency

distributions remained largely unchanged and consequently

the results of both statistical tests were identical for every

category.

CCL identified fewer Canadian non-forest fires than forest

fires as most of the non-forest cover is in the smaller expanse

of the Great Plains in the south and in the Arctic north, where

climate causes a much smaller fire occurrence frequency. The

smaller number of fires in non-forest grid cells, in combina-

tion with the division into five categories and subdivision into

15 bins per category, reduces the size of the sample, causing

higher sample variance and a less smooth histogram than for

forests (Fig. 2). Nevertheless, categories 2 to 5 passed both

statistical tests, but the 6th aggregated fire category did not

pass any of the tests. As seen in Fig. 2, this is because in

Canada non-forest fires produced by CCL have smaller sizes

than for forest, which is also the case when CCL is applied

over Russia.

As no extensive, fire-related ground data are available for

Russia, we compared the results of the CCL algorithm over

Russia against the CLFD. For forests, the MWW test was

passed for categories 1, 4 and 5 and the KS test for cate-

gories 3, 4 and 5. Neither test was passed for the overall cat-

egory 6 for forest or non-forest. As seen in Fig. 2, this is be-

cause of the larger fraction of small forest fires compared to

Canada. Nevertheless, as noted earlier, the bigger fires con-

tribute disproportionately to the annual area burned and con-

sequently are the most important to incorporate correctly in

the DVMs. Indeed, in the CLFD, fires over 30 km2 accounted

for 30.3 % of the total number of fires but contributed 91.2 %
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of the area burned; similar results were obtained with CCL-6

for Canadian forests (30.7 and 92.5 %) and Russian forests

(19.8 and 89.6 %) despite the non-overlapping time periods

of the analysis.

Even though the fire size sample distributions for Canada

and Russia were similar, the statistical tests show that they

did not originate from the same distribution. This may be

associated with the known differences in intensity between

Canadian and Russian forest fires (Harden et al., 2000;

Wooster and Zhang, 2004). However, it could also be a sam-

pling artefact arising from the small number of years for

which there are data in GFED. For example, if the data avail-

able for Russia had covered more years with large fires, the

distribution of fire sizes would be shifted to the right and

would more closely match the distribution of the Canadian

fires. Hence the lack of a database analogous to the CLFD

prevents safe conclusions to be drawn regarding the validity

of CCL results over this region.

The statistical tests show that the CCL algorithm produces

a histogram of forest fire sizes closely matching that from the

CLFD, and it also produces a similar probability function for

Canadian non-forest, especially for the categories containing

larger fires. This agreement occurs despite the CLFD record-

ing fires from 1959–1999 while the GFED4 starts in 2001.

This could indicate that, despite fluctuations in the number

of fires and area burned each year, their size distribution re-

mains essentially unchanged, an assumption implicit in the

statistical tests performed.

To simplify the assimilation of the CCL database into a

DVM we pooled forests and non-forest fires as identified by

CCL-6 together but maintained the distinction between fires

occurring in Canada and Russia.

3.2 Fire disturbance simulations with assimilated CCL

fire products

To test whether the FRI is conserved between the initial and

rerun version of the model where CCL fires are utilized, we

calculated BA from 1000 years of spin-up and 112 years of

transient runs (1901–2012) of LPJ-WM driven by CRU 3.0

climatology (Mitchell and Jones, 2005); we then ran the al-

gorithm described in Sect. 2.2 for the full 112 years and pro-

duced a set of fires for each year for both Canada and Russia.

The FRI obtained using the new algorithm, referred to here-

after as a CCL run, closely matched the FRI obtained from

the original run, demonstrating that fire can be included in

a DVM in a way that retains the model structure and FRI,

but is also consistent with the size distribution of burned area

observations (Fig. 3). Even though the CCL run adds random

spatial variability to the FRI, the average magnitude of FRI

remains largely unaffected over sub-regions of both Canada

and Russia.

We investigated whether this variability in FRI is caused

by the short spin-up time of the DVM (1000 years) compared

to the long FRI for the region (100–1000 years), which may

Figure 3. (top) Fire return interval produced by an original LPJ-

WM run over a 1000 years spin-up combined with a transient run

(1901–2012) for Canada and Russia. (bottom) FRI produced by a

LPJ-WM run over the same period with the CCL methodology.

not allow enough time for the FRI to converge to the original

model value. However, even CCL runs with over 4000 years

of spin-up failed to produce the original spatially smooth

FRI. Only after excluding the very large fires (Categories 4 &

5 in Fig. 2) from the CCL algorithm was the spatial variabil-

ity reduced: an almost exact match to the original FRI was

then achieved. This seems to indicate that the spatial vari-

ability arises from the limited number of large fires found

by CCL, both because they are rare and because GFED4 is

derived from data covering only a decade. The conditions im-

posed by the algorithm make it hard for them to be accepted

under comparison with the accumulated burned area array
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Figure 4. Fractional burned area per grid cell (%) for 2007 in an

original LPJ-WM run (top), a CCL run (centre) and GFED (bot-

tom). Note that, since the fire is stochastic in the CCL run, different

runs would produce different fires for the same year but the overall

fraction of area burned would remain equal to that of the original

run.

BAC (Sect. 2.2, Step 6). As a result, these larger fires are fre-

quently allowed to burn the same subsets of grid cells, which

hinders production of a smooth FRI across the region. Nev-

ertheless, as Fig. 3 shows, the FRI produced by the CCL run

does capture the FRI of the original run in the sub-regions

of the Arctic. Possible ways to reduce the variability are dis-

cussed in Sect. 4.

3.3 Post-fire dynamics

Of greater importance is that the CCL run produces fire

size characteristics consistent with those derived from EO

data. Figure 4 demonstrates this by comparing the fraction of

burned area over a year of the transient run (2007) obtained

from an original run of LPJ-WM, a CCL run for the same

year and GFED4. As noted in the Introduction, the original

LPJ-WM representation of fire (top) causes a very small frac-

tion of most of the grid cells to burn, and the area burned

(either per grid cell or total) remains largely unchanged in

different years; such behaviour is common to many DVMs.

In contrast, using the CCL methodology (centre) gives rise

to fires whose sizes cover the entire range of burned areas, as

shown in Fig. 2. Additionally, since the algorithm accumu-

lates grid cell fire potential and then consumes it when one

or more grid cells are chosen to accommodate a fire, regions

are prevented from unrealistic behaviour in which big fires

are separated by only a short time span. The long FRI in the

Arctic means that several decades need to pass after a big

disturbance before a grid cell has accumulated enough fire

potential in order to experience another fire.

To investigate the benefits of this new ability to simulate

large fires in DVMs, a fire occurring in northwest Canada

in simulation year 1910 is examined in Fig. 5. This particular

fire spread over 16 grid cells; the fraction burned was approx-

imately 80 % in the two central grid cells and fell off towards

the edges of the fire scar. Post-fire competition amongst

species in the CCL run gives rise to evolution of vegetation

cover that is consistent with field data (Dore et al., 2012).

The fire occurred in a forest region surrounded by herbaceous

vegetation (Fig. 5 top, Fire Year−1). As expected, in the year

of the fire and that following (Fire Year 0 & +1), the domi-

nant cover switches to bare ground. By year +4, plant com-

petition processes lead to the vegetation becoming a mixture

of grass and trees, with trees, as saplings, becoming the dom-

inant species by year+5. In contrast, biomass requires much

more time to recover. In Fire Year 0 and the years immedi-

ately after (Fig. 5, middle), the biomass of the forest is simi-

lar in magnitude to that of the neighbouring grass grid cells.

As the forest regenerates, biomass slowly recovers to pre-fire

levels while the fire scar remains visible in the model calcula-

tions even 50 years after the fire. Carbon fluxes are expressed

through the annual Net Ecosystem Exchange (NEE), which

is the net flux of carbon to the atmosphere from all possible

pathways (Fig. 5, bottom). In Fire Year 0, fire emissions turn

the grid cells into strong sources whose NEE is about an or-

der of magnitude off the scale used. Even though vegetation

begins to recover, the fire scar is initially (Fire Year +2) not

a strong carbon sink, since the cover is mostly grasses and

saplings with limited carbon uptake rates. However, by Fire

Year +10 it has developed into a marked sink, even though

the surrounding region for that particular year happens to be

a source. This indicates the value of this new approach for

simulating carbon dynamics in the Arctic boreal zone, since
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Figure 5. Post-fire evolution of the carbon stocks and fluxes af-

ter the fire disturbance indicated in Fig. 4 (centre). Top: vegetation

cover in Vegetation Continuous Fields format (Green=Trees, Yel-

low=Grass, Brown=Bare Ground); middle: biomass density in

kg of carbon m−2; bottom: Net Ecosystem Exchange in g of carbon

m−2 year−1.

these effects cannot occur in the original version of the DVM.

However, as discussed in Sect. 4, it needs further extension

before being able to account for effects such as large-scale

inter-annual variability.

4 Discussion

The new methodology for simulating fire disturbance in

DVMs described in this paper significantly improves on cur-

rent model approaches by providing a representation of fire

sizes that is consistent with large-scale satellite observations

and requires minimal modifications to model structure. Hav-

ing realistic fire sizes offers scope for investigating both post-

fire carbon dynamics and effects on the water cycle caused

by large fires; this is of particular interest in the Arctic due

to the presence of permafrost, carbon-rich soils and an ex-

pected increase in fire activity caused by changing climate

(Balshi et al., 2009a, b; Krawchuk et al., 2009; Stocks et al.,

1998). However, our approach has certain limitations, which

depend on the DVM in which the methodology is applied,

the region under study and the methodology itself.

Taking advantage of this new capability requires DVMs

with sufficiently rich process representations; indeed, the

lack of such a capability has meant there has been no mo-

tivation for the DVMs to embody the process coupling that is

set in train when severe fires occur. This is particularly true

as regards the connections between fire, land cover and per-

mafrost. It is also the reason why our post-fire analysis was

qualitative and restricted to examining whether a DVM has

the capability to simulate the expected ecosystem response

following a fire; without all the necessary linked processes in

place, it is premature to attempt a quantitative comparison of

carbon and water fluxes between field data and simulations.

For example, even though LPJ-WM considers permafrost,

the upper boundary value for soil heat transfer is the daily air

temperature provided by the climatology driver. Hence, even

after a large fire that removes most of the canopy, thermal

conduction is unaffected, and no account is taken of heating

of the soil by incoming radiation. These shortcomings can be

alleviated in an ad hoc fashion by using an extinction equa-

tion parameterized by Leaf Area Index to characterize tem-

perature during canopy recovery but, as shown by Kantzas et

al. (2013), what is really required is a more sophisticated ra-

diative/heat transfer process. The JULES model (Best et al.,

2011), for example, does consider radiative transfer through

the canopy and has a recently-added permafrost representa-

tion which considers the thermal properties of organic soils

(Chadburn et al., 2015), but JULES does not contain a fire

component.

The CCL algorithm captures all the temporal character-

istics of a fire event (dates of ignition and extinction and

temporal evolution), but this information cannot be assimi-

lated in LPJ-WM because this DVM only calculates fire ef-

fects annually. This significantly weakens the ability of LPJ-

WM (and other DVMs with annual fire accounting) to model,

for example, post-fire permafrost dynamics, biomass burning

and litter/soil emissions, since the timing of a fire relative to

summer defines its effect on carbon pools and soil heat trans-

fer. Nevertheless, and since the algorithm described here is

model-independent, a DVM with a daily fire step could be

used, such as the Community Land Model (CLM) (Kloster

et al., 2010), although CLM does not currently consider car-

bon soils or specific Arctic plant functional types like LPJ-

WM. However, the temporal characteristics of fires obtained

by CCL could be assimilated into a DVM by making the

probability distribution of fire occurrence conditional on day

of the year or season, thus allowing post-fire dynamics to be

studied at higher temporal resolutions.

The long FRI in the Arctic means that the 12 years of data

in the GFED4 daily product is insufficient for adequate sam-

pling of the rarer large fires. This can distort the local occur-

rence statistics and give rise to spatial variability in the sim-

ulated FRI, even though at larger scales the CCL runs agree

well with the FRI produced by the original model. The re-

stricted number of larger fires means that the algorithm tries

to accommodate the same large fires over regular time inter-

vals, which slightly alters the FRI produced by the original

model run. It seems likely that this spatial variability would

be reduced in regions and sub-regions with shorter FRI where

acquiring statistically representative data is less problematic.

Available fire data would then offer a more representative

picture of the local fire regime. Alternatively, in such regions,

at each position an empirical distribution can be fitted to the

histogram of fire sizes identified by CCL, and this probabil-

ity density function could be used for sampling; this resolves

problems associated with unoccupied bins in the histogram.

Burned area data from GFED4 over the Arctic reveals that

in a given year fires tend to cluster spatially (Fig. 4, bottom),
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presumably because of fuel availability and conditions that

locally favour fire ignition and propagation, such as high tem-

peratures and winds, low precipitation and abundance of nat-

ural or anthropogenic ignition sources. In contrast, the fires

simulated by assimilating the CCL algorithm in LPJ-WM

(Fig. 4, centre), even though they have the correct size dis-

tribution, do not appear in clusters and give a smaller IAV in

burned area than GFED4 data. This is because the assimila-

tion preserves the original annual burned area produced by

the model; since the area burned in LPJ-WM is nearly the

same area every year, the IAV for a region is therefore forced

to be small. The reason why simulated fires do not appear in

clusters is because the location of each one is decided dur-

ing assimilation based on random allocation of its point of

ignition and the FRI of the region; even though the FRI pro-

duced by a DVM for each grid cell depends on local climate

conditions, it does so on long timescales and is relatively in-

sensitive to inter-annual variations which, for example, could

cause multiple fires to ignite in close proximity.

Refining the algorithm so that it simulates fire activity in

accordance with the IAV and clustering exhibited by GFED4

is a daunting task, especially as lightning, which is not con-

sidered in most DVMs, is the main ignition source at these

latitudes (Stocks et al., 2002) and is projected to increase in

frequency (Romps et al., 2014). Furthermore, even though

it is desirable, it is not necessary for a DVM to capture the

IAV and spatial variability in annual fire locations in order

to make medium- to long-term predictions on the effects of

fire activity on net carbon and water fluxes. As long as the

FRI produced by the DVM has the correct magnitude and

captures the trend in fire activity in accordance with climate

change, and fire size is linked to a complete suite of post-fire

processes, then the model is capable of accounting for the

effects of fire activity on an ecosystem.

Nevertheless, there are possible ways to modify the spatial

distribution and IAV of fires so they are closer to what is seen

in GFED4. For example, even though LPJ-WM produces an-

nual fires whose areas rarely exceed 3 % of a grid cell, it uses

climate data and soil/litter properties to derive the fraction

of area burned; this value increases or decreases in a given

year, albeit slightly, depending on how favourable the con-

ditions are for fire. This annual fluctuation could be used as

an indicator of the magnitude of fire activity. Instead of se-

lecting a fire from the CCL pool and randomly assigning it

to grid cells that can accommodate it (Step 6, Sect. 2.2), grid

cells that experience an increase in area burned during con-

secutive years, or in the current year and a running average

of the previous ones, could be prioritized to accommodate a

fire against grid cells that experience a decrease. This would

allow the model not only to generate fires with a realistic size

distribution, as in this study, but also their location would be

linked to regional climatic conditions, thus further improv-

ing the fire representation. The accuracy of this approach de-

pends not only on the ability of the model to identify annual

fire hotspots based on climate but also on the random com-

ponent of fire activity. Regarding IAV, as mentioned in Step

5 of the methodology, all fires are normalized so the area

burned in a given year of the CCL implementation matches

the area burned in the original model run. This normaliza-

tion was performed to preserve model cohesion, but the algo-

rithm can operate with any user-defined IAV whilst maintain-

ing FRI. Unfortunately, at these latitudes we do not yet have

enough information to characterize statistically the temporal

behaviour of burned area (either its distribution or its second

order correlation properties). However, the continuing avail-

ability of suitable space-based sensors will progressively fill

this knowledge gap.

Despite the limitations described above, the assimilation

methodology described here gives DVMs hitherto unavail-

able capabilities to study post-fire behaviour under the large

climatic changes projected to occur in the Arctic. As long

as a DVM has the necessary processes to simulate post-fire

dynamics (e.g. canopy radiative transfer, vegetation succes-

sion, permafrost-related processes and parameterization) and

is correctly calibrated against field data, model runs driven

by climate scenarios can now offer insights into the role of

fire by answering questions such as: (1) Will permafrost re-

cover after a big fire when the atmospheric temperature is

rising, especially in regions where it is discontinuous, and

what will be the effect of the projected increase in precip-

itation? (2) How will post-fire vegetation succession be af-

fected at ecosystem boundaries under the greening effect

in the Arctic? (3) How will evapotranspiration be affected

under increases in fire activity and precipitation? (4) How

will the magnitude of fire emissions vary over sub-regions,

and can changes in fire activity change the sign of the land-

atmosphere net carbon exchange?
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