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Abstract. This work is an extended evaluation of near-

surface ozone as part of the global reanalysis of atmo-

spheric composition, produced within the European-funded

project MACC (Monitoring Atmospheric Composition and

Climate). It includes an evaluation over the period 2003–

2012 and provides an overall assessment of the modeling

system performance with respect to near-surface ozone for

specific European subregions. Measurements at rural loca-

tions from the European Monitoring and Evaluation Program

(EMEP) and the European Air Quality Database (AirBase)

were used for the evaluation assessment. The fractional gross

error of near-surface ozone reanalysis is on average 24 %

over Europe, the highest found over Scandinavia (27 %) and

the lowest over the Mediterranean marine stations (21 %).

Near-surface ozone shows mostly a negative bias in winter

and a positive bias during warm months. Assimilation re-

duces the bias in near-surface ozone in most of the European

subregions – with the exception of Britain and Ireland and the

Iberian Peninsula and its impact is mostly notable in winter.

With respect to the seasonal cycle, the MACC reanalysis re-

produces the photochemically driven broad spring-summer

maximum of surface ozone of central and south Europe.

However, it does not capture adequately the early spring peak

and the shape of the seasonality at northern and north-eastern

Europe. The diurnal range of surface ozone, which is as an

indication of the local photochemical production processes,

is reproduced fairly well, with a tendency for a small overes-

timation during the warm months for most subregions (es-

pecially in central and southern Europe). Possible reasons

leading to discrepancies between the MACC reanalysis and

observations are discussed.

1 Introduction

The European projects MACC (Monitoring Atmospheric

Composition and Climate) and MACC-II (Interim Imple-

mentation) were established under the umbrella of the Eu-

ropean Copernicus programme, formerly known as GMES

(Global Monitoring for Environment and Security), to build

and demonstrate a core capability for providing a compre-

hensive range of services related to the chemical and partic-

ulate composition of the atmosphere (Hollingsworth et al.,

2008; Flemming et al., 2009; Inness et al., 2013). Within

MACC operational forecasts of atmospheric composition on

global (Stein et al., 2012) and regional scale are produced.

Furthermore, the MACC reanalysis (Inness et al., 2013) pro-

vides global atmospheric composition fields which can be

used to serve as boundary conditions for regional air quality

models over Europe and world-wide.

The MACC global model used for both reanalysis and

forecasts consists of the European Center for Medium-Range

Weather Forecasts’ (ECMWF) Integrated Forecast System

(IFS) coupled to the MOZART-3 (Kinnison et al., 2007)
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chemistry transport model. The ECMWF modeling system

makes use of its data-assimilation capabilities to combine

observations of atmospheric composition with the numeri-

cal model in order to produce a reanalysis of atmospheric

composition (Inness et al., 2009, 2015). ECMWF has many

years of experience in producing reanalysis products, start-

ing from ERA-40 (Dethof and Holm, 2004) and continuing

with ERA-Interim (Dragani, 2010, 2011).

Evaluation of MACC data is being done on a regular basis

(Eskes et al., 2015) and specifically for trace gases in the

global troposphere (e.g. Stein et al., 2014) and the strato-

sphere (e.g. Lefever et al., 2014). The global reanalysis prod-

ucts are mostly used as a reference data set for specific case

studies (e.g. Knowland et al., 2014) or as boundary condi-

tions for international activities, like the Air Quality Model-

ing Evaluation International Initiative-AQMEII (Air Quality

Modeling Evaluation International Initiative) starting from

phase I (e.g. Schere et al., 2012) up to its current phase III.

It is therefore useful to have a systematic analysis on a key

atmospheric species of the global reanalysis product (i) as a

reference for those wishing to use it in their studies and (ii) as

a general assessment of the system performance, identifying

potential issues needing further improvement.

In this work special emphasis is given on the evaluation

of near-surface ozone over Europe for the whole reanalysis

period produced within MACC (2003–2012). Near-surface

ozone is one of the main pollutants affecting both human

health and vegetation (Fuhrer and Booker, 2003; Scebba

et al., 2005; Schlink et al., 2006). Sources of tropospheric

ozone can be either the stratosphere-troposphere transport

or the photochemical production through oxidation of VOCs

(volatile organic compounds) and CO in the presence of ad-

equate NOx (NOx =NO2+NO) concentrations (Lelieveld

and Dentener, 2000). Ozone can be destroyed photochem-

ically or by dry deposition at the surface. Ozone precur-

sors have natural as well as anthropogenic sources, the most

important of which are emissions from soil, vegetation and

fossil fuel combustion. Ambient ozone concentrations de-

pend strongly on availability and relative abundance of those

precursors but they are also modulated by the meteorologi-

cal conditions (Davies et al., 1992; Bloomfield et al., 1996;

Baertsch-Ritter et al., 2004; Hegarty et al., 2007; Kalabokas

et al., 2008).

The issue of the short-term and long-term ozone variabil-

ity is complex, being related to changes of anthropogenic

and natural emissions, meteorological conditions, atmo-

spheric boundary layer mixing processes and stratosphere-

troposphere exchange. Although a number of measures

aimed at reducing NOx and VOC emissions have been effec-

tive in reducing concentration of precursor species (Vestreng

et al., 2009) and peak ozone values in Europe (EMEP/CCC-

Report 1/2005, 2005), there are many studies suggesting that

background tropospheric ozone levels (even near the surface)

are increasing (Chevalier et al., 2007; Ordóñez et al., 2007;

Hess and Zbinden, 2013; Wilson et al., 2012; Akritidis et al.,

2014). However, Parrish et al. (2012) reported a slower rate

of increase over the last decades at European sites, to the ex-

tent that at present O3 is decreasing at some sites, mostly in

summer.

Furthermore, although the current consensus view is that

photochemistry is the major contributor to the observed

background ozone levels in the troposphere, there is still no

consensus as to the mechanisms that lead to the formation

of the spring ozone maximum observed in certain locations

of the Northern Hemisphere, distant from nearby pollution

sources (Crutzen et al., 1999; Lelieveld and Dentener, 2000;

Monks, 2000; Zanis et al., 2007). The spring ozone maxi-

mum observed in certain locations of the Northern Hemi-

sphere, distant from nearby pollution sources, has mainly

two contributions; (i) the stratosphere to troposphere trans-

port (STT) (Stohl et al., 2003 and references therein) and

(ii) ozone production in the troposphere on a hemispherical

scale, related to photochemical processing of precursor tro-

pospheric trace gases (CO, NOx , VOCs) built up in winter

(Penkett and Brice, 1987) and the longer lifetime of ozone

during winter that allows anthropogenically produced ozone

to accumulate (Lie et al., 1987; Yienger et al., 1999).

In this paper we evaluate near-surface ozone of the MACC

reanalysis over Europe from 2003 to 2012. We provide an

overall assessment of the model performance, putting special

emphasis on the reproduction of annual and diurnal cycles.

When possible, we provide potential explanations for model

inabilities to reproduce specific observational characteristics

of certain subregions and finally we suggest points of future

work.

2 Methodology

2.1 Global model

The IFS includes greenhouse gases (Engelen et al., 2009)

and aerosols (Benedetti et al., 2009; Morcrette et al., 2009).

In MACC, the MOZART-3 chemistry transport model has

been coupled to the IFS to provide chemical tendencies for

ozone, carbon monoxide, nitrogen oxides and formaldehyde

(Flemming et al., 2009), while chemical data assimilation for

these species takes place in IFS (Inness et al., 2009, 2015).

MOZART-3 as used in the MACC reanalysis system is de-

scribed in Stein et al. (2012, 2013).

A data assimilation system for aerosol, greenhouse gases

and reactive gases is in place based on ECMWF’s 4D-VAR

data assimilation system. The fields of MACC reanalysis

(hereafter MRE) are available globally at a horizontal res-

olution of ∼ 80 km (T159 spectral resolution) and 60 hybrid

sigma-pressure levels from the surface up to 0.1 hPa. More

details on the CTM and the IFS configurations and the data

assimilation system are provided by Inness et al. (2015) and

references therein. A combination of profile and total column

ozone retrievals was assimilated in MRE, namely GOME,

Geosci. Model Dev., 8, 2299–2314, 2015 www.geosci-model-dev.net/8/2299/2015/



E. Katragkou et al.: Evaluation of near-surface ozone over Europe 2301

Table 1. Ozone satellite retrievals that were assimilated in the MACC reanalysis. PROF denotes profile data, TC total columns, PC partial

columns, and SOE solar elevation. PC SBUV/2 data consist of six layers between the surface and 0.1 hPa. NRT (near-real time) data are

available within a few hours after the observation is made, and are being used in operational forecast systems. For periods towards the end

of the MACC reanalysis period, NRT data were used for some of the species when no offline products were available.

Sensor Satellite Provider Version Period (yyyy/mm/dd) Type Data usage criteria Reference

GOME ERS-2 RAL 2003/01/01–2003/05/31 O3 PROF Used if SOE> 15◦ and

80◦ S< lat< 80◦ N

Siddans et al. (2007)

MIPAS ENVISAT ESA 2003/01/27–2004/03/26 O3 PROF All data used Carli et al. (2004)

MLS AURA NASA V02 2004/08/08-2009/03/15,

NRT data from 20090316

O3 PROF All data used Waters et al. (2006)

OMI AURA NASA V003 From 2004/10/01, NRT data

2007/03/21–2007/12/31

O3 TC Used if SOE> 10◦ Bhartia et al. (2002);

Levelt et al. (2006)

SBUV/2 NOAA-16 NOAA V8 From 2004/01/01 O3 PC Used if SOE> 6◦ Bhartia et al. (1996)

SBUV/2 NOAA-17 NOAA V8 From 2003/01/01 O3 PC Used if SOE> 6◦ Bhartia et al. (1996)

SBUV/2 NOAA-18 NOAA V8 From 2005/06/04 O3 PC Used if SOE> 6◦ Bhartia et al. (1996)

SCIAMACHY ENVISAT KNMI From 2003/01/01 O3 TC Used if SOE> 6◦ Eskes et al. (2005)

MIPAS, MLS, OMI, SBUV/2, SCIAMCHY (Table 1) us-

ing ECMWF’s 4D-Var assimilation algorithm (Courtier et

al., 1994). For a more detailed description of the assimila-

tion setup see Inness et al. (2013). It should be noted that

no tropospheric ozone data were assimilated, so that the im-

pact of the assimilation on near-surface ozone comes from

the residual of assimilating stratospheric and total column

ozone. More details on the impact of stratospheric ozone as-

similation in tropospheric ozone is provided by Lefever et

al. (2014).

Since several satellite instruments are used to assimilate

one parameter in the data assimilation system, a bias correc-

tion method is applied to the data to account for the instru-

mental inconsistencies. In MRE a variational bias correction

scheme for radiance data has been extended to atmospheric

composition data (Inness et al., 2013). In the variational

scheme biases are estimated during the analysis by including

bias parameters in the control vector. The bias corrections

are continuously adjusted to optimize the consistency with

all information used in the analysis. The impact of assimila-

tion on near-surface ozone is only the residual of correcting

the stratospheric and total ozone column, plus the assimila-

tion of other relevant gases that impact ozone chemistry (CO,

NO2) (Inness et al., 2013). The impact of the assimilation of

tropospheric NO2 columns from the Ozone Monitoring In-

strument (OMI) is small because of the short lifetime of NO2

(Inness et al., 2015).

To investigate the impact of assimilation on key atmo-

spheric species, a control run was also performed (hereafter

CTRL), using the same reanalysis settings without assimila-

tion. As explained in Inness et al. (2013) (Sect. 2.5), it would

have been computationally too expensive to produce a con-

trol analysis experiment that was identical to the MACC re-

analysis, but did not actively assimilate observations of re-

active gases. Instead, a MOZART-3 stand-alone run was car-

ried out that applied the same settings (model code, resolu-

tion, emissions) as MOZART in the MACC reanalysis. The

meteorological data for the stand-alone run were taken from

the reanalysis, but the control run had free-running chem-

istry. The results from this control run can be used to detect

the impact of the assimilation of greenhouse reactive gases

observations in the MACC reanalysis. Since the meteorolog-

ical input data were derived from interpolation of archived

6-hourly output from the MACC reanalysis, and not through

an hourly exchange as in the reanalysis, the stand-alone run

was not a completely clean control run. However, these dif-

ferences would be small. The comparison between the MRE

and the CTRL is confined to the time period 2003–2010,

when both time series are available.

2.2 Observations

Measurements from ground based European stations were

used for the evaluation of modeled surface ozone, from the

European Monitoring and Evaluation Programme (EMEP)

and the European Environment Agency databases (AirBase)

covering the time period from 2003 to 2012. The observa-

tions used for this evaluation are independent from the as-

similated ones. EMEP is appropriate to evaluate coarse res-

olution simulations, as it is fitted to catch background air

pollution patterns with stations at a considerable distance

from source areas in rural or remote regions (Schaap et al.,

2015). Only background rural stations have been used from

the AirBase database for comparisons with the coarse reso-

lution model surface ozone. These include stations class 1–3

according to the Joly-Peuch classification methodology for

surface ozone (Joly and Peuch, 2012). There is a total of 138

stations included in the current analysis, fulfilling the above-

mentioned criteria. This selection ensures that all stations

are adequate for comparisons with coarse resolution (80 km)

model data.

Observed data from the EMEP and AirBase database were

available in hourly resolution, while model values were avail-

able in 3-hourly intervals. The corresponding observational

data were extracted with a 3-hourly interval, to be compa-
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rable with modeled time-series. The modeled data were ex-

tracted from the coupled system by means of interpolating

surface ozone into each station location. Different model lev-

els were used for comparison with ground-based stations.

The rationale behind the selection of different model level se-

lection instead of extracting time series from the first model

level (surface) is that in coarse resolution grids, areas with

anomalous terrain (e.g. mountainous areas) are represented

with an average elevation, which is less than the actual station

elevation. Based on the difference between the actual station

altitude and the average grid-cell elevation, the correspond-

ing model level is selected, using atmospheric pressure as the

correction criterion. We have used only those stations that

fulfil the criteria of 75 % data availability for near-surface

ozone.

In order to acquire a more detailed view of model per-

formance, eight European subregions have been defined as

shown in Fig. 1. These regions fit data coverage and avoid

overlapping between each subregion. The eight European

subregions are: Britain and Ireland (BI), France (FR), Iberian

Peninsula (IP), Eastern Europe (EA), middle Europe (ME),

Mediterranean (MD), south-middle Europe (SME) and Scan-

dinavia (SC). Furthermore, the Mediterranean region was

further split into the continental part (MDc) and the marine

part (MDm), according to their spatial location (coastal or

interior continental), since each type of station has different

characteristics.

Additional NO and NO2 data are included in the analysis,

in order to assess the potential of the photochemical ozone

production. The NO and NO2 were extracted from EMEP

and AirBase. Unfortunately the number of EMEP stations

that provide NO and NO2 measurements – besides ozone

– for the whole reanalysis period (2003–2012) is limited

(30 stations). After application of the station type classifi-

cation for ozone and the data availability criteria, only three

subregions with both O3 and NOx measurements remained,

namely Britain and Ireland (BI) with 10 stations, Iberian

Peninsula (IP) with eight stations and Middle Europe (ME)

with 12 stations. The plots referring to ozone and nitrogen-

species comparison correspond to a smaller number of the

common stations mentioned above, always being a subset of

the total.

We have also to take into consideration that the NOx
observations are affected strongly by local emissions. Fur-

thermore, there are known issues with interference by oxi-

dized nitrogen compounds (e.g. HNO3, PAN and other or-

ganic nitrates) for ground-based NO2 measurements by most

commercially available NO2 instruments using molybdenum

converters, hence leading to an overestimation of NOx con-

centrations (Steinbacher et al., 2007).

Ozonesondes are used to validate ozone MRE profiles into

the troposphere at six European stations: Haute-Provence

(43.9◦ N, 5.7◦ E), Hohenpeissenberg (47.8◦ N, 11◦ E), Le-

gionowo (52.4◦ N, 20.9◦ E), Payerne (46.8◦ N, 6.9◦ E), So-

dankyla (67.4◦ N, 26.6◦ E) and Uccle (50.8◦ N, 4.3◦ E). The

Figure 1. The European subregions that were used in the analysis

and the corresponding EMEP and AIRBASE stations. The num-

bers denote the number of stations taken into consideration for ev-

ery subregion. The subregions are: Britain and Ireland (BI), France

(FR), Iberian Peninsula (IP), Eastern Europe (EA), middle Europe

(ME), Mediterranean (MD), south-middle Europe (SME) and Scan-

dinavia (SC).

sondes used for the validation come from Network for the

Detection of Atmospheric Composition Change (NDACC;

ftp://ftp.cpc.ncep.noaa.gov/ndacc/station). The precision of

electrochemical concentration cell ozonesondes in the tropo-

sphere is between −7 and +17 % below 200 hPa (Komhyr et

al., 1995).

2.3 Metrics and intercomparison methodology

For the current evaluation study we use statistical metrics to

quantify the bias, gross error and temporal correlation of the

model with regards to observational surface ozone. Compar-

isons of the diurnal ranges and cycles are also performed, as

indices of photochemical processes. As is also discussed by

Savage et al. (2013), spatial and temporal variations in chem-

ical composition, including tropospheric ozone, can be large,

while also differences between model and observed values

are frequently much larger in magnitude than usual for me-

teorological variables. Therefore, mean error and root mean

square error, even though being important metrics for esti-

mating model errors, are not optimal when assessing model

performance at different chemical regimes as found over Eu-

rope.

Based on the evaluation guidelines and previous work

within GEMS/MACC (Seigneur et al., 2010; Elguindi et al.,

2010; Ordonez et al., 2010; Eskes et al., 2015) we use the

Geosci. Model Dev., 8, 2299–2314, 2015 www.geosci-model-dev.net/8/2299/2015/
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Modified Normalized Mean Bias (MNMB) as a measure

of the bias of modeled versus observed values. This metric

treats over- and underprediction in a symmetric manner rang-

ing between −2 and 2, in contrast to normalized mean bias

that can grow to very high values much greater than unit. The

MNMB is calculated from Eq. (1) as follows:

MNMB=
2

N

N∑
i

fi − oi

fi + oi
, (1)

where fi and oi are the mean monthly modeled and observed

values, respectively, and N is the sample size. Seasonal aver-

ages are calculated as: winter (DJF), spring (MAM), summer

(JJA) and autumn (SON).

Furthermore, as a measure of the overall model error we

use the Fractional Gross Error (FGE) calculated from Eq. (2),

with its values ranging between 0 and 2. The advantage of

this measure is the linear dependence on the departure, which

makes this measure less sensitive to outliers and tails in the

distribution as compared to the more standard root-mean

square.

FGE=
2

N

N∑
i

∣∣∣∣fi − oifi + oi

∣∣∣∣ . (2)

The Pearson correlation (R) is used for the quantification of

the temporal agreement (interannual variability), between the

mean monthly observational and simulated data, where σf
and σo in Eq. (3) denote the standard deviation of the mod-

eled and observed values, respectively:

R =

1
N

∑
i

(
fi − f

)
(oi − o)

σf σo
. (3)

The annual cycle of the diurnal range was calculated from the

mean diurnal cycle of each station. The confidence interval

for each month was derived using the values of the diurnal

range for the stations that reside in the same subregion.

In the following section we present a thorough evalua-

tion of surface ozone covering the years from 2003 to 2012,

including the three basic validation metrics, analysis of di-

urnal/annual cycles and diurnal ranges. Seasonal averages

are calculated as: winter (DJF), spring (MAM), summer

(JJA) and autumn (SON). Additionally, surface ozone data

are discussed along with nitrogen oxides, wherever data al-

lows comparisons, in order to characterize different chem-

istry regimes above Europe, with respect to photochemical

production.

Figure 2. Average 2003–2012 seasonal FGE (top), MNMB (mid-

dle) and annual R (bottom) of near-surface ozone for the different

European subregions of the MACC reanalysis. The color dots cor-

respond to means. The bottom and top of the box are the first and

third quartiles (Q1 or 25th percentile and Q3 or 75th percentile) and

the vertical horizontal line in the box is the median (Q2 or 50th per-

centile). The colored points on each box indicate the mean value.

3 Evaluation of the 2003–2012 MACC reanalysis

near-surface ozone

3.1 Validation metrics

The annual statistics of surface ozone are shown in Table 2.

The FGE for the whole reanalysis period (2003–2012) ranges

mostly from 21 % in Mediterranean marine stations to 27 %

in Scandinavia. Figure 2 shows the basic validation metrics

on a seasonal basis for the MACC reanalysis. The Iberian

Peninsula and mid-Europe have a more stable performance

with respect to FGE, with an average 20 % for all seasons. All

www.geosci-model-dev.net/8/2299/2015/ Geosci. Model Dev., 8, 2299–2314, 2015
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Table 2. Annual statistics of near-surface ozone for the MACC re-

analysis (2003–2012) over the different European subregions. FGE

and MNMB are expressed in %.

Region FGE MNMB R

BI 23 12 0.51

IP 25 14 0.72

FR 26 −2 0.73

ME 22 3 0.74

SC 27 −13 0.26

SME 24 2 0.74

MDc 24 20 0.71

MDm 21 −12 0.54

EA 25 −9 0.66

other regions have errors ranging from 10 to 30 % depending

on season. A more thorough analysis on the seasonal behav-

ior of surface ozone is provided in the following section.

The seasonal MNMB in Fig. 2 (middle panel) is close

to zero for most subregions. The final MRE surface ozone

product exhibits its highest MNMB for Scandinavia and

East Europe in winter (−20 %). In summer the MNMB is

mostly positive and remains <±20 % for most sub-regions,

with the exception of Britain and Ireland (+30 %). Transi-

tional season (spring/autumn) biases follow the patterns of

the preceding season (winter/summer), since the atmospheric

trace gases need some time to adjust from the winter to the

summer-time chemistry regime.

Figure 2 (bottom panel) shows the temporal correlation

of the 2003–2012 near-surface ozone time series, built upon

mean monthly values, and therefore providing a clue on the

representation of ozone seasonality. The lowest correlation is

found over Scandinavia (0.26), followed by Britain and Ire-

land (0.51) and the Mediterranean marine stations (0.54). All

other regions have correlations ≥ 0.7.

To investigate the impact of assimilation on near-surface

ozone we compare the MRE and CTRL simulations with

the observations. Table 3 shows the annual statistics of the

MRE and the CTRL simulation. The greatest improvement

in the MACC reanalysis because of the assimilation is noted

over Scandinavia, where the annual FGE is reduced from

40 to 27 %, Eastern Europe (FGE drops from 38 to 25 %),

Mediterranean continental stations (from 43 to 29 %) and

mid-Europe (from 31 to 24 %). In the same areas the MNMB

is also reduced by up to 23 % (SC). In France and the Iberian

Peninsula there seems to be a small increase in the FGE (6

and 8 % respectively) and a small change in the MNMB (re-

duced to zero in FR and increased by 5 % in IP). Over south-

middle Europe and the Mediterranean marine stations the

change in FGE and MNMB is negligible on an annual ba-

sis.

The temporal correlation of monthly mean time series

from 2003 to 2010 is reduced in the MRE, especially over

the Mediterranean marine stations (drops from 0.74 to 0.49)

Table 3. Annual statistics of near-surface ozone for the MACC re-

analysis (MRE) and the control run (CTRL) over the different Eu-

ropean subregions for the common period from 2003 to 2010. FGE

and MNMB are expressed in %.

Region FGE MNMB R

MRE CTRL MRE CTRL MRE CTRL

BI 24 22 13 −7 0.51 0.59

IP 25 17 15 10 0.70 0.79

FR 28 22 0 −5 0.73 0.79

ME 24 31 4 −17 0.73 0.80

SC 27 40 −12 −35 0.23 0.39

SME 25 22 3 −5 0.73 0.78

MDc 29 43 26 42 0.71 0.74

MDm 21 19 −10 −12 0.49 0.74

EA 25 38 −8 −28 0.64 0.70

and Scandinavia (from 0.39 to 0.23). The temporal correla-

tion over Scandinavia is very low, because the MRE cannot

capture the spring maximum, as it will be shown in Sect. 3.2.

Moreover, the issue of the MLS bias correction in the assim-

ilation procedure has caused drifts in the tropospheric ozone

concentrations between August 2004 and December 2007 (a

detailed explanation of this issue can be found in Inness et

al., 2013). The problem was tracked down and alleviated af-

ter year 2008 of the MRE. The deterioration of the temporal

correlation in the MRE in comparison to the control simula-

tion can be attributed to the assimilation procedure followed

up to MRE year 2008. Calculation of temporal correlation

coefficients before (2003–2007) and after (2008–2012) indi-

cates that R increases in all subregions after removal of MLS

bias correction. Figure 3 shows the comparison of the sea-

sonal FGE, MNMB and R for the MRE and the CTRL near

surface ozone over the different European subregions for the

common time period 2003–2010. On a seasonal basis the

greatest improvement due to assimilation is seen during the

winter months, when the CTRL suffers from the largest nega-

tive bias. The impact on surface ozone is smaller in summer,

eventually because near-surface ozone is largely controlled

by photochemical processes.

3.2 Annual cycle of near-surface ozone

The average 2003–2012 observed and MRE annual cycle

of near-surface ozone is shown in Fig. 4. With the only

exception of the Mediterranean region (MDc and MDm),

the modeled annual cycles of ozone have differences in the

shape from the observed ones. The most striking disagree-

ment is seen over Scandinavia (SC), where the MRE captures

the annual range (13 ppb: the monthly maximum minus the

monthly minimum of the year), but completely fails to repro-

duce surface ozone seasonality. While observations indicate

a clear spring maximum (40 ppb), a characteristic ozone be-

havior in very clean and remote atmospheres in the Northern

Hemisphere (Volz and Kley, 1988), no indication of spring
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Figure 3. Average 2003–2010 seasonal FGE (top), MNMB (mid-

dle) and annual R (bottom) of near-surface ozone for the different

European subregions of the MACC reanalysis (green) and the con-

trol run (blue).

ozone maximum is evident in the MRE surface ozone; on the

contrary, a clear lower maximum (35 ppb) is found in late

summer.

Over Britain and Ireland (BI) we also note striking differ-

ences in the shape of the annual cycle. Specifically, there is

disagreement (a) in the timeliness of the early spring max-

imum, which is seen in April for observed ozone and the

late spring–early summer for the MRE, and (b) in the an-

nual ozone range, which is overestimated by about 7 ppb. The

overestimation occurs mainly during the summer/autumn

season. We should note that, even though the MRE near-

surface ozone at SC and BI does not capture the observed

spring maximum peaking in April, this spring ozone maxi-

mum is better seen in the lower free troposphere at 850 and

700 hPa vertical levels of MRE (not shown here).

Figure 4. Mean 2003–2012 annual cycle of near-surface ozone for

the different European subregions of the MACC reanalysis and ob-

servations. The shading areas denote 95 % confidence interval of

the mean values.

In mid-Europe (ME), the observational broad spring-

summer maximum (April–July) is captured by the MRE,

with a month’s time-lag (May to August) causing an under-

estimation in MRE of 2–3 ppbv from January to April and an

overestimation from May to November (Fig. 4). The highest

overestimation (ranging from 5 to 9 ppbv) in MRE is seen

during the warm months from June to September. This be-

havior results in an overestimated annual amplitude in MRE

in comparison to observations.

Over the Iberian Peninsula (IP) there is an agreement in the

seasonal cycle of MRE near-surface ozone with observations,

with a broad spring-summer maximum but MRE misses the

April peak shown in observations. The amplitude of the MRE

annual cycle is also overestimated by roughly 4 ppbv in com-

parison to observations, mostly stemming from the MRE

summer O3 overestimation, with the MRE June-maximum

reaching up to 50 ppbv, while the observed to 40 ppbv. We

should also take into consideration that the seasonal cycle

of MRE at 700 hPa shows a broad spring-summer maximum

with a peak in April as in near-surface observations (dis-

cussed in Sect. 4.1).

A similar pattern of differences between MRE and ob-

servations are found for France (FR), south-middle Europe

(SME) and Eastern Europe (EA) although over EA the dif-

ferences are smaller.

Overall, the annual cycles of the observed data reflect the

specific subregional characteristics, namely the broad spring-

summer maximum at Mediterranean (MDc and MDm) and

south-middle Europe (SME), the broad spring-summer max-
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imum peaking in April at Eastern Europe (EA), mid-Europe

(ME), France (FR) and Iberian Peninsula (IP) and the early

spring maximum over northern latitudes at Scandinavia (SC)

and Britain and Ireland (BI). MRE near-surface ozone repro-

duces fairly well the photochemically driven broad spring-

summer maximum of surface ozone of the sub-regions at

central and south Europe, however, fails to capture the early

spring peak in most of these subregions. This shortfall of

MRE to capture the early spring peak has also been noted by

Inness et al. (2013) and it is further discussed in the follow-

ing sections. Furthermore, there is generally a tendency for

overestimating the annual amplitude in MRE in comparison

to observations.

Factors improving ozone seasonality could be emission

strengths and temporal profiles and dry deposition (Val Mar-

tin et al., 2014). Ongoing work on the impact of dry deposi-

tion on surface ozone indicates that the new on-line dry de-

positions schemes currently tested in the C-IFS system im-

prove the surface ozone positive bias, appearing mostly over

southern Europe in summer, but cannot completely tackle

the spring ozone maximum problem over northern Europe

(J. Flemming, personal communication, 2015).

3.3 Diurnal cycle of near-surface ozone

Figure 5 depicts the mean 2003–2012 diurnal cycle of near-

surface ozone for each season for the selected European re-

gions. All diurnal cycles have the expected behavior with

sharply increasing ozone concentrations during the daytime

hours (from 05:00–06:00 UTC in summer and 1–2 h later in

winter to 15:00–16:00 UTC) and decreasing afterwards. The

diurnal cycles are more pronounced in the summer season

and south Europe due to the more intense photochemistry.

The MRE reproduces the diurnal cycle but exhibits positive

bias in summer (except for the Mediterranean marine region),

which may be persisting during the whole day (BI, SME,

IP, ME) or occur mostly during daytime (EA, FR, MDc). In

winter there is a small negative bias in all regions, except for

MDc (positive bias) and BI (zero bias). The transitional sea-

sons have diurnal cycles that share both winter and summer-

time characteristics: the spring diurnal bias resembles winter

with respect to bias, but has the enhanced photochemical di-

urnal cycle of summer, though not fully developed.

Figure 6 shows the annual cycle of the diurnal range of

near-surface ozone over the different European subregions.

The diurnal range of ozone is a good indication of the po-

tential for the local diurnal ozone build up through photo-

chemical production processes (Zanis et al., 2000). There

is generally a good agreement with observations, suggesting

that MRE reproduces adequately the observed diurnal ozone

range with a tendency for a small overestimation during the

warm months for the subregions of central and southern Eu-

rope. More specifically, over SME, FR and MDc the diurnal

range is overestimated during the whole year but, to a lesser

extent in colder months, while over EA, ME, BI and SC the

Figure 5. Mean 2003–2012 diurnal cycle of near-surface ozone

for the different European subregions based on MRE (green line)

and observations (black line) calculated for winter (DJF), spring

(MAM), summer (JJA) and autumn (SON).

overestimation is smaller and restricted during the summer.

Hence the diurnal range is overestimated more at the south-

ern regions (SME, FR and MDc) than at the northern regions

(EA, ME, BI and SC) and more during the warm months than

during the cold months.

4 Discussion

In this section we discuss possible reasons for the differ-

ences revealed in the shape of the annual cycle of near-

surface ozone between observations and MRE and the failure

in MRE to capture the early spring peak in most of the sub-

regions. We discuss possible contributions from the above-

mentioned processes based on the comparison of MRE ozone

profiles with available ozonesonde measurements, as well as

on NOx versus O3 annual and diurnal cycles.

4.1 Ozone profiles

Comparison with ozonesonde measurements at different lo-

cations (Fig. 7) indicate that MRE ozone profiles reproduce

the basic structure of the profile, overestimating in most cases

ozone below the 850 hPa. We note positive and negative bi-
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Figure 6. Annual cycle of the diurnal range of near-surface ozone

for observations (black line) and MRE (green line) averaged over

the time period 2003–2012 for the different European subregions.

Shading areas denote the 95 % confidence interval of the mean val-

ues. The 95 % confidence interval is not displayed for the Mediter-

ranean subregions, which consist of a limited number of stations.

ases depending on the location and the altitude, but there is

a tendency for a larger positive bias during summer and au-

tumn for most locations below 850 hPa, while the % biases

in the middle and upper troposphere are generally smaller.

This is in agreement with the study of Inness et al. (2013),

who, analyzing MACC reanalysis over the time period 2003–

2010, reported a negative bias with respect to ozonesondes

above 650 hPa and the largest positive bias below 800 hPa. It

should also be considered that the range of the % biases in

the troposphere are comparable with the respective precision

of electrochemical concentration cell ozonesonde measure-

ments.

Furthermore, the shape of the observed ozone annual cy-

cle (based on the ozonesondes) in lower free troposphere at

700 hPa is reproduced rather well by the MRE (Fig. 8). The

course of the annual cycle is also reproduced for the mid-

dle troposphere at 500 hPa (not shown here). Despite the

biases, the reasonable reproduction of the shape of the ob-

served ozone seasonal cycle by MRE in the middle and lower

free troposphere is consistent with transport processes from

the lower stratosphere and the upper troposphere as well as

long-range transport being resolved adequately by the MRE.

4.2 NOx versus O3 annual and diurnal cycles

According to the analysis of ozone profiles (see Sect. 4.1) we

may assume that assimilation in MRE leads to a reasonable

Figure 7. Mean 2003–2012 ozone profiles based on MRE near-

surface ozone (green line) and ozonesonde measurements (black

line) at the stations of Sodankyla (67.4◦ N, 26.6◦ E), Legionowo

(52.4◦ N, 20.9◦ E), Uccle (50.8◦ N, 4.3◦ E), Hohenpeissenberg

(47.8◦ N, 11◦ E), Payerne (46.8◦ N, 6.9◦ E), and Haute-Provence

(43.9◦ N, 5.7◦ E). The shading areas denote 95 % confidence inter-

val of the mean values.

representation of the ozone annual cycles at the middle and

upper troposphere, thus mediating for a realistic contribution

of STT. Hence, it could be speculated that differences in the

shape of the seasonal cycle of near-surface ozone between

observations and the MRE could be also linked to the po-

tential of photochemical ozone production and the strength

of the exchange between the lower free troposphere and the

atmospheric boundary layer (ABL). Two tentative explana-
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Figure 8. Mean 2003–2012 annual cycle of lower tropospheric ozone at 700 hPa based on MRE (green line) and ozonesonde measure-

ments (black line) at the stations of Sodankyla (67.4◦ N, 26.6◦ E), Legionowo (52.4◦ N, 20.9◦ E), Uccle (50.8◦ N, 4.3◦ E), Hohenpeissenberg

(47.8◦ N, 11◦ E), Payerne (46.8◦ N, 6.9◦ E), and Haute-Provence (43.9◦ N, 5.7◦ E). The shading areas denote 95 % confidence interval of the

mean values.

tions could be provided on the mismatch between model and

observations: (a) inadequate seasonality/emission strengths

in surface emissions of precursor species (some issues dis-

cussed in Stein et al., 2014) and (b) a loose coupling of the

free troposphere to the ABL, which would be responsible for

the entrainment of the assimilated free tropospheric O3 into

the ABL.

In global scales nitrogen oxides (NOx) are the limiting

precursors for O3 production throughout most of the tropo-

sphere, and also directly influence the abundance of the hy-

droxyl radical concentration in the troposphere (e.g. Crutzen,

1988). At regional scale for rural environments with NOx
values less than a few parts per billion by volume, O3 for-

mation is NOx limited (Liu et al., 1987) and therefore al-

most independent of hydrocarbon concentrations, depending

of course on the ratio of reactivity-weighted VOC mixture

to NOx , which may differ from region to region across Eu-

rope (Beekmann and Vautard, 2010). Emissions of NOx oc-

cur primarily as NO, followed by oxidation to NO2 while

O3 is photochemically produced as NOx are consumed in

favor of their atmospheric oxidation products NOz (Liu et

al., 1987; Zanis et al., 2007). NOz comprises mostly of per-

oxyacetyl nitrate (PAN) and nitric acid (HNO3), along with

HNO4, N2O5, NO3 and other Acyl-peroxy nitrates (APNs)

and organic nitrates (Emmons et al., 1997). The lifetime of

NOx before photochemical conversion to NOz is less than a

day in summer at mid-latitudes (Logan, 1983).

Here, in order to assess the potential of the photochemical

ozone production related to NOx emissions, we have looked

at the annual cycle of NOx versus the respective annual cycle

of O3, as well as the summertime diurnal cycle of O3 along

with the diurnal cycle of NOx at the different sub-regions

of our domain. As mentioned in Sect. 2.2, after our station-

filtering, only three sub-regions remained, with a consider-

able number of stations having both O3 and NOx measure-

ments; Britain and Ireland (BI), Iberian Peninsula (IP) and

mid-Europe (ME).

Figure 9 shows the annual cycle of O3 and NOx for BI,

IP and ME. At the BI the NOx levels are overestimated in

MRE throughout the year by up to 2 ppbv in comparison to

the observations while ozone is overestimated from May to

November. The overestimation of NOx concentrations at BI

may partially account for the positive ozone bias during the

warm period of the year, through overestimated photochemi-

cal ozone production. At IP and ME, NOx levels are system-

atically underestimated in MRE throughout the year, and still

ozone is overestimated in MRE – especially during the warm

part of the year – despite the NOx underestimation.

Figure 10 shows the average diurnal cycle of O3 and NOx
during summer for BI, IP and ME. Discarding any biases in

the level of O3 and NOx concentrations, it is shown that O3

builds up during the daytime, while NOx is consumed in both

MRE and observations. This daytime NOx decrease can be

attributed to chemical loss through oxidation to NOz. Nev-

ertheless, diurnal meteorological patterns of wind speed and

boundary layer height, that lead to higher dilution of primary

pollutants at daytime rather than at nighttime, may also con-

tribute to the diurnal pattern of NOx in Fig. 10 (see Fig S1

in the Supplement). This is supported by the fact that CO in

MRE, which is a species with a much longer chemical life-

time than NOx , has a similar diurnal pattern with NOx .
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Figure 9. Mean annual cycle of near-surface O3 (top panel) and NOx (bottom panel) based on observations (solid black line) and MRE

(green line) for the subregions BI, IP, ME over the period 2003–2012.

Based on the diurnal amplitudes of O3 (1O3 increased

over the day) and NOx (1NOx decreased over the day)

shown in Fig. 10, we have calculated the ratio 1O3 /1NOx
values for both MRE and observations. The 1O3 /1NOx
ratio values for near surface based on MRE are estimated

roughly to 3 for BI, 3.5 for ME and 10 for IP. The respective

1O3 /1NOx values based on the observed diurnal ampli-

tudes are roughly 10 for BI, 6 for ME and 10 for IP. Addition-

ally, we have also estimated 1O3 /1NOx ratio values based

on MRE at 925 hPa (above near surface but within the atmo-

spheric boundary layer) being roughly 3.5 for BI, 3 for ME

and 4 for IP. These ratio values reflect the ozone production

efficiency, if we assume that daytime NOx loss is through ox-

idation to NOz. In order to compare these1O3 /1NOx ratio

values with theoretical calculations of ozone production effi-

ciency, a zero dimension box model with the CBIV chemical

mechanism was implemented to calculate ozone production

efficiencies for typical summer conditions using initial con-

ditions for NOx and other gaseous species from MRE at BI,

IP and ME. These box model calculations indicated that 3

to 4 molecules of O3 produced for every molecule of NOx
oxidised at BI and ME and up to 5 at IP. The above values

agree well with ozone production efficiency estimates from

previous studies for summer at rural semi-polluted sites with

NOx more than a few ppbv in Europe and US (Chin et al.,

1994; Derwent and Davis, 1994; Rickard et al., 2002). The

1O3 /1NOx ratio values based on MRE are comparable

with the box model calculated ozone production efficiency

values.

The amplitude of the diurnal cycle of NOx is much

stronger in the MRE than at observations for BI and ME,

which indicates that in MRE we presumably have a more in-

tense local oxidation from NOx to NOz. This more intense

local oxidation from NOx to NOz at BI and ME can lead

to higher local photochemical ozone production, which may

account for the slightly higher amplitude of the diurnal cy-

cle of O3 for the MRE than the observations (by roughly

2 pppv at BI and 1 ppbv at ME) and partially for the gen-

erally higher O3 levels of the MRE compared to the ob-

served. The differences in local photochemical ozone pro-

duction at BI and ME versus IP are consistent with the

chemical regime indicator analysis for near-surface ozone

over Europe by Beekmann and Vautard (2010), who defined

three particular regions: (a) the region in north-western Eu-

rope with a pronounced VOC sensitive regime (1◦W–6◦ E,

50–53◦ N), (b) the Mediterranean region (6◦W–20◦ E, 38–

43◦ N) with an average NOx sensitive chemical regime and c)

north-eastern Germany (9–14◦ E, 50–54◦ N) which is a tran-

sition region between both regimes. Comparing this chemical

regime analysis with our selected sub-regions BI, ME and IP,

we note that BI and ME sub-regions are a mixture of a VOC

sensitive regime and an NOx sensitive regime, while IP is a

NOx sensitive regime.

In the case of IP, the amplitude of the diurnal cycle of NOx
is similar for both observations and MRE, while the ampli-

tude of the diurnal cycle of O3 is slightly underestimated in

the MRE, indicating that local photochemical ozone produc-

tion is captured adequately or slightly underestimated. Nev-

ertheless, the ozone levels are generally overestimated for the

MRE, implying other processes than local photochemistry as

a reason for the positive bias.
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Figure 10. Mean diurnal cycle of near-surface O3 (top panel) and NOx (bottom panel) based on observations (solid black line) and MRE

(green line) for the subregions BI, IP, ME during summer over the period 2003–2012.

5 Summary and conclusions

In the current work we evaluate the MACC-II reanalysis

(MRE) near-surface ozone for the time period 2003–2012

using rural stations of the EMEP and AirBase monitoring

networks. Overall, the evaluation of MRE near-surface ozone

with station based observations shows a negative bias in win-

ter over northern Europe and generally positive bias during

warm months. With respect to the seasonal cycle, MRE re-

produces the photochemically driven broad spring-summer

maximum of near-surface ozone at central and south Europe.

However, it does not adequately capture the shape of the sea-

sonality with a characteristic early spring maximum at north-

ern and north-eastern Europe. The diurnal range of surface

ozone, which is an indication of the local photochemical pro-

duction processes, is reproduced fairly well in the MACC re-

analysis, with a tendency for a small overestimation during

the warm months for the subregions of central and south Eu-

rope. Comparison of MRE ozone profiles with ozonesonde

profiles revealed reasonable reproduction of the shape of the

observed ozone seasonal cycle in the middle and lower free

troposphere, despite the biases. This suggests that transport

processes from the lower stratosphere and the upper tropo-

sphere are resolved acceptably by MRE with the aid of the

assimilation.

More specifically, the characteristics of near-surface ozone

in the MACC reanalysis 2003–2012 can be summarized as

follows for the different sub-regions:

a. At Britain and Ireland and Scandinavia, the observed

near-surface spring ozone maximum peaking in April

is not reproduced by MRE. However, this spring ozone

maximum is better seen in the lower free troposphere

(at 850 and 700 hPa) implying adequate vertical trans-

port within the free troposphere, as was also indicated

by the good comparison with ozonesonde data. The pos-

sibility of insufficient entrainment and mixing from the

lower free troposphere into the atmospheric boundary

layer should be further investigated. MRE diurnal range

of near-surface ozone compares relatively well with the

observed diurnal range with a slight overestimation dur-

ing summer. Analysis of the average MRE diurnal cy-

cle of O3 versus NOx during summer for the BI could

possibly indicate, among other reasons, more intense lo-

cal oxidation from NOx to NOz than the observed and

a systematic positive bias in NOx which can lead to

higher local photochemical ozone production.

b. The ozone summer maximum of the Mediterranean

area is captured by the MRE, with a slight overesti-

mation during summer and autumn for the continental

stations (MDc). The MRE near-surface ozone diurnal

range compares well with the observed one throughout

the year for the marine stations (MDm) and is slightly

overestimated during the warm months for the conti-

nental stations (MDc). This implies that part of the

MRE overestimation of near surface in summer and

autumn for MDc may be associated with an overes-

timation of local photochemical production. Zanis et

al. (2014) also noted for the Mediterranean an overes-

timation of near-surface ozone during summer by an-

other global chemistry–climate model, due to overesti-

mated photochemical ozone production within the at-

mospheric boundary layer.
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c. In Eastern Europe, mid-Europe, south-mid Europe and

France, MRE near-surface ozone reproduces the photo-

chemically driven broad spring-summer maximum, but

fails to capture the early spring peak in April. Further-

more, there is a slight shift of the seasonal cycle towards

summer in MRE compared to observations, with a ten-

dency for an underestimation of ozone levels in cold

months (from January to April) and an overestimation in

summer and autumn. The diurnal range of near-surface

ozone in the MRE is overestimated during summer. This

maybe implies an overestimated local photochemical

ozone production, which can partially account for the

summer overestimated MRE near surface ozone levels

(similarly to MDc). Further analysis of the average di-

urnal cycle of O3 versus NOx during summer for Mid-

Europe, gives some indication for more intense local ox-

idation from NOx to NOz for the MRE than the obser-

vations, which can lead to higher local photochemical

ozone production despite the systematic negative bias

in NOx .

d. At the Iberian Peninsula there is a positive bias through-

out the year and the MRE does not capture the April

peak shown in the observed seasonal cycle. The MRE

diurnal range compares relatively well with the ob-

served diurnal range, maybe indicating that local pho-

tochemical production is captured adequately through-

out the year. This is also supported from the analysis

of the average diurnal cycle of O3 versus NOx during

summer. The seasonal cycle of MRE at 700 hPa shows

a broad spring-summer maximum with a peak in April

as in near-surface observations. This feature could pos-

sibly indicate a loose coupling of the free troposphere

with atmospheric boundary layer.

Our analysis suggests that in order to understand better the

behavior of near-surface ozone, further analysis is needed

for firm conclusions, including model diagnostics for pho-

tochemical production and loss terms, as well as the mix-

ing between ABL and free troposphere. Improvement in the

dry-deposition scheme – which is fixed in the current imple-

mentation – would also contribute to improvement of model

performance (bias/seasonality) with respect to near-surface

ozone.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-2299-2015-supplement.
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