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Abstract. This paper describes the assimilation of trace

gas observations into the chemistry transport model SILAM

(System for Integrated modeLling of Atmospheric coMpo-

sition) using the 3D-Var method. Assimilation results for

the year 2012 are presented for the prominent photochemi-

cal pollutants ozone (O3) and nitrogen dioxide (NO2). Both

species are covered by the AirBase observation database,

which provides the observational data set used in this study.

Attention was paid to the background and observation er-

ror covariance matrices, which were obtained primarily by

the iterative application of a posteriori diagnostics. The di-

agnostics were computed separately for 2 months represent-

ing summer and winter conditions, and further disaggregated

by time of day. This enabled the derivation of background

and observation error covariance definitions, which included

both seasonal and diurnal variation. The consistency of the

obtained covariance matrices was verified using χ2 diagnos-

tics.

The analysis scores were computed for a control set of ob-

servation stations withheld from assimilation. Compared to a

free-running model simulation, the correlation coefficient for

daily maximum values was improved from 0.8 to 0.9 for O3

and from 0.53 to 0.63 for NO2.

1 Introduction

During the past 10–15 years, assimilating observations into

atmospheric chemistry transport models has been studied

with a range of computational methods and observational

data sets. The interest has been driven by the success of ad-

vanced data assimilation methods in numerical weather pre-

diction (Rabier, 2005), as well as by the development of op-

erational forecast systems for regional air quality (Kukko-

nen et al., 2012). Furthermore, the availability of remote

sensing data on atmospheric composition has enabled con-

struction of global analysis and forecasting systems, such

as those described by Benedetti et al. (2009) and Zhang et

al. (2008). Assimilation of satellite observations into strato-

spheric chemistry models has been demonstrated, e.g. by Er-

rera et al. (2008).

Data assimilation is defined (e.g. Kalnay, 2003) as the

numerical process of using model fields and observations

to produce a physically and statistically consistent repre-

sentation of the atmospheric state – often in order to ini-

tialise the subsequent forecast. The main techniques used in

atmospheric models include the optimal interpolation (OI,

Gandin 1963), variational methods (3D-Var and 4D-Var, Le

Dimet and Talagrand, 1986; Lorenc, 1986), and the stochas-

tic methods based on the ensemble Kalman filter (EnKF,

Evensen, 2003, 1994). Each of the methods has been ap-

plied in air quality modelling. Statistical interpolation meth-

ods were used by Blond and Vautard (2004) for surface ozone

analyses and by Tombette et al. (2009) for particulate matter.

The EnKF method has been utilised by several authors (Con-

stantinescu et al., 2007; Curier et al., 2012; Gaubert et al.,

2014) especially for ozone modelling. The 3D-Var method

has been applied in regional air quality models by Jaumouillé

et al. (2012) and Schwartz et al. (2012), while the computa-

tionally more demanding 4D-Var method has been demon-

strated by Elbern and Schmidt (2001) and Chai et al. (2007).

Partly due to its significance in relation to health effects, the

most commonly assimilated chemical component has been

ozone.

The performance of most data assimilation methods de-

pends on correctly prescribed background error covariance
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matrices (BECM). This is particularly important for 3D-Var,

where the BECM is prescribed and fixed throughout the

whole procedure, in contrast to the EnKF based assimilation

methods, where the BECM is described by the ensemble of

states, and to the 4D-Var method, where the BECM is pre-

scribed but evolves implicitly within the assimilation win-

dow.

A range of methods of varying complexity have been em-

ployed to estimate the BECM in previous studies on chemi-

cal data assimilation. The “National Meteorological Centre”

(NMC) method introduced by Parrish and Derber (1992) is

based on using differences between forecasts, with differ-

ing lead times as a proxy for the background error. Kah-

nert (2008), as well as Schwartz et al. (2012), applied the

NMC method for estimating the BECM for assimilation of

aerosol observations. Chai et al. (2007) based the BECM

on a combination of the NMC method and the observational

method of Hollingsworth and Lönnberg (1986). This obser-

vational method was also used by Kumar et al. (2012) the in

assimilation of NO2 and O3 data.

The BECM can also be estimated using ensemble mod-

elling; this approach was taken by Massart et al. (2012) for

global and by Jaumouillé et al. (2012) for regional ozone

analyses. Finally, Desroziers et al. (2005) presented a set of

diagnostics, which can be used to adjust the background and

observation error covariances. This method has been previ-

ously applied in chemical data assimilation for example by

Schwinger and Elbern (2010) and Gaubert et al. (2014).

In contrast to short and medium range weather prediction,

the influence of initial condition on an air quality forecast has

been found to diminish as the forecast length increases. For

ozone, Blond and Vautard (2004) and Wu et al. (2008) found

that the effect of the adjusted initial condition extended for up

to 24 h. Among other reactive gases, NO2 has been a subject

for studies of Silver et al. (2013) and Wang et al. (2011).

However, the shorter lifetime of NO2 limits the timescale for

forecast improvements especially in summer conditions.

An approach for improving the effectiveness of data as-

similation for short-lived species is to extend the adjusted

state vector with model parameters. Among the possible

choices are emission and deposition rates (Bocquet, 2012;

Curier et al., 2012; Elbern et al., 2007; Vira and Sofiev,

2012).

The aim of the current paper is to describe and evaluate

a regional air quality analysis system based on assimilat-

ing hourly near-surface observations of NO2 and O3 into the

SILAM chemistry transport model. The assimilation scheme

was initially presented by Vira and Sofiev (2012); in the cur-

rent study, the scheme is applied to photochemical pollu-

tants and moreover, we discuss how its performance can be

improved by introducing statistically consistent background

and observation error matrices. The analysis fields are pro-

duced for the assimilated species at an hourly frequency us-

ing the standard 3D-Var assimilation method (Lorenc, 1986).

The diagnostics of Desroziers et al. (2005) are applied in

this work for estimating the background and observation er-

ror standard deviations, notably resolving their seasonal and

diurnal variations. The evaluation is performed for the year

2012 using stations withheld from assimilation. In addition

to assessing the analysis quality, the effectiveness of assimi-

lation for initialising the model forecasts is evaluated.

The following Sect. 2 presents the model setup and briefly

reviews the 3D-Var assimilation method. The procedure for

estimating the background and observation error covariance

matrices is discussed in Sect. 3. The assimilation results for

O3 and NO2 for the year 2012 are discussed in Sect. 4. Sec-

tion 5 concludes the paper.

2 Materials and methods

This section presents the SILAM dispersion model, the ob-

servation data sets used, and describes the assimilation pro-

cedure.

2.1 The SILAM dispersion model and

experiment setup

This study employed the SILAM chemistry transport model

(CTM) version 5.3. The model utilises the semi-Lagrangian

advection scheme of Galperin (2000) combined with the ver-

tical discretisation described by Sofiev (2002) and the bound-

ary layer scheme of Sofiev et al. (2010). Wet and dry deposi-

tion were parameterised as described in Sofiev et al. (2006).

The chemistry of ozone and related reactive pollutants

was simulated using the carbon bond 4 chemical mecha-

nism (CB4, Gery et al., 1989). However, the NO2 anal-

yses were produced with separate simulations employing

the DMAT chemical scheme of Sofiev (2000). This follows

the setup used in operational air quality forecasts with the

SILAM model, where the two model runs are necessary since

the primary and secondary inorganic aerosols are only in-

cluded in the DMAT scheme. The SILAM model has been

previously applied in simulating regional ozone and NO2

concentrations (Huijnen et al., 2010; Langner et al., 2012;

Solazzo et al., 2012), for global-scale aerosol simulations

(Sofiev et al., 2011), as well as for simulating emission and

dispersion of allergenic pollen (Siljamo et al., 2013). The

daily, European-scale air quality forecasts contributing to the

MACC-II project are publicly available at http://macc-raq.

gmes-atmosphere.eu.

In this study, the model was configured for a European do-

main covering the area between 35.2 and 70.0◦ N and −14.5

and 35.0◦ E with a regular long–lat grid. The vertical dis-

cretisation consisted of eight terrain-following levels reach-

ing up to about 6.8 km. The vertical coordinate was geomet-

ric height. The model was driven by operational ECMWF

IFS forecast fields, which were initially extracted in a 0.125◦

long–lat grid and further interpolated to the CTM resolution.

Chemical boundary conditions were provided by the MACC
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reanalysis (Inness et al., 2013), which uses the MOZART

global chemistry-transport model.

The emissions of anthropogenic pollutants were provided

by the MACC-II European emission inventory (Kuenen et

al., 2014) for the reference year 2009. The biogenic isoprene

emissions, required by the CB4 run, were simulated by the

emission model of Poupkou et al. (2010).

Three sets of SILAM simulations were carried out in this

study. First, the background and observation error covariance

matrices were calibrated using 1-month simulations for June

and December 2011. The calibration results were used in re-

analysis simulations covering the year 2012. Finally, a set of

72 h hindcasts was generated for the period between 16 July

and 5 August 2012, to evaluate the forecast impact of assim-

ilation. The hindcasts were initialised from the 00:00 UTC

analysis fields. The timespan included an ozone episode af-

fecting parts of southern and western Europe (EEA, 2013).

The reanalysis and hindcasts use identical meteorological

and boundary input data, and hence, the hindcasts only as-

sess the effect of chemical data assimilation.

The analysis and forecast runs were performed at a hor-

izontal resolution of 0.2◦. The setup for calibrations runs

(June and December 2011) was identical except that a coarser

horizontal resolution of 0.5◦ was chosen in order to reduce

the computational burden. The model time step was 15 min

for both setups.

2.2 Observations

This study uses the hourly observations of NO2 and O3 at

background stations available in the AirBase database (http:

//acm.eionet.europa.eu/databases/airbase/) maintained by the

European Environmental Agency. Separate subsets are em-

ployed for assimilation and evaluation.

Two sets of stations were withheld for evaluation. The first

set, referred to here as the MACC set, had been used in the re-

gional air quality assessments within the MACC and MACC-

II projects (Rouïl, 2013, also Curier et al., 2012). The second

set consisted of the stations reported as EMEP stations in

the database. The MACC validation stations included about

a third of the available background stations for each species,

and were chosen with the requirement to cover the same area

as the assimilation stations. The EMEP network is sparser

and has no particular relation to the assimilation stations. It

can be noted that the EMEP stations included in AirBase do

not comprise the full EMEP monitoring network.

The in situ data are used for assimilation and evaluation

under the assumption that they represent the pollutant lev-

els in spatial scales resolved by the model. We expect this

assumption to be violated, especially at many urban and sub-

urban stations due to local variations in emission fluxes. For

this reason, only rural stations were used for evaluation of

the 2012 reanalysis. The NO2 assimilation set also excluded

both urban and suburban stations. For ozone, the data from

suburban stations were assimilated, however, the observation

errors were assessed separately for suburban and rural sta-

tions, as outlined in Sect. 3. The station sets are presented on

a map in Fig. 1.

The statistical indicators used for model evaluation were

correlation, mean bias and root mean squared error (RMSE).

Since air quality models are frequently used to evaluate daily

maximum concentrations, the indicators were evaluated sep-

arately for the daily maximum values.

2.3 The 3D-Var assimilation

In the 3D-Var method, the analysis xa minimises the cost

function:

J (x)=
1

2
(y−H(x))TR−1 (y−H(x))

+
1

2
(x− xb)

TB−1 (x− xb) , (1)

where xb is the background state, y is the vector of observa-

tions, and H is the possibly nonlinear observation operator.

The uncertainties of the background state xb and the obser-

vations y are described by the background and observation

error covariance matrices B and R, respectively. In this study,

the control variable x consisted of the three-dimensional air-

borne concentration for either NO2 or ozone. The m1qn3

minimisation code (Gilbert and Lemaréchal, 1989) was used

for solving the optimisation problem Eq. (1).

For the surface measurements, the operator H was linear

and consisted of horizontal interpolation only, since the sur-

face concentrations were considered to be represented by the

lowest model level. Following the hourly observation fre-

quency, the analysis was performed every hour followed by

a 1 h forecast. The forecast provides the background field for

the subsequent analysis.

In the current study, only a single chemical component

was assimilated in each run. Since O3 is not a prognostic

variable in the DMAT scheme, it cannot be assimilated into

the NO2 simulation. Assimilating NO2 observations into the

CB4 simulation would be technically feasible; however, si-

multaneous assimilation of NO2 and O3 would require care

due to the strong chemical coupling between the species. The

background and observation error covariance matrices would

also need to be jointly estimated.

3 Background and observation error

covariance matrices

The numerical formulation of the BECM in the current work

follows the assumptions made by Vira and Sofiev (2012).

We assume that the background error correlation is homo-

geneous in space, and its horizontal component is described

by a Gaussian function of distance between the grid points.

Furthermore, we assume that the background error standard

deviation σb is independent of location. This allows writing

www.geosci-model-dev.net/8/191/2015/ Geosci. Model Dev., 8, 191–203, 2015

http://acm.eionet.europa.eu/databases/airbase/
http://acm.eionet.europa.eu/databases/airbase/


194 J. Vira and M. Sofiev: Assimilation of surface NO2 and O3 observations

Figure 1. The stations networks used for assimilation and validation for O3 (left) and NO2 (right). The assimilation stations for O3 include

rural and suburban stations, for NO2 only rural stations. For validation, only rural stations are shown. The red and blue colours refer to the

MACC validation and EMEP stations subsets.

Table 1. Correlation length scales L (km) diagnosed from the NMC

data set.

UTC hour

Species 00:00 06:00 12:00 18:00

O3 45.5 51.0 57.6 59.5

NO2 35.8 39.0 41.1 42.3

the BECM as B= σ 2
b C, where C is the correlation matrix

and σb is the background error standard deviation.

For estimation of the parameters for the covariance matri-

ces B and R, we combined the NMC method, which is used

for determining the correlation matrix C, and the approach

of Desroziers et al. (2005), which is used for diagnosing the

observation and background error standard deviations.

In the NMC method, the difference between two forecasts

valid at a given time is taken as a proxy of the forecast error.

In this work, the proxy data set was extracted from 24 and

48 h regional air quality forecasts for the year 2010. The fore-

casts are generated with the SILAM model in a configuration

similar to the one used in this study. Since no chemical data

assimilation was used in the forecasts, the differences were

due to changes in forecast meteorology and boundary con-

ditions only. The lead times were chosen to allow sufficient

spread to develop between the forecasts. The forecast data

were segregated by hour, resulting in separate sets for hours

00:00, 06:00, 12:00 and 18:00 UTC, and the correlations in-

terpolated for all other times of day.

The horizontal and vertical components of the correlation

matrix C were estimated separately. The horizontal correla-

tion was determined by the length scale L, which was ob-

tained by fitting a Gaussian correlation function to the data

set. First, the sample correlation matrix C̃ of the forecast dif-

ferences was calculated. Then, the Gaussian correlation func-

tion was fitted to the empirical correlations C̃ij by minimis-

ing

Figure 2. Vertical correlation function for NO2 at 12:00 UTC.

f (L)=
∑

|ri−rj |<d

∣∣C̃ij −Cij (L)
∣∣2, (2)

where the fitted correlation function is Cij (L)= exp(−(|xi−

xj |
2
+ |yi − yj |

2)/L2) and x and y are the Cartesian co-

ordinates for each grid point. To reduce the effect of spu-

rious long-distance correlations due to the limited sample

size, the fitting was restricted to grid points ri closer than

d = 1000 km to each other. The distances, shown in Table 1,

were computed for the lowest model layer.

The vertical correlation function was obtained directly as

the sample correlation across all vertical columns for each

time of day. As an example, the correlation matrix obtained

for NO2 at 12:00 UTC is shown in Fig. 2.

Since the NMC data set includes only meteorological per-

turbations, it is expected to underestimate the total uncer-

tainty of the CTM simulations. Hence, the standard devia-

tions were not diagnosed from the NMC data set, but instead,

an approach based on a posteriori diagnostics was taken. The
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Table 2. The χ2/N consistency indicator and RMSE on rural

MACC validation stations during the first and fifth iterations for

tuning the observation and background error standard deviations.

O3 NO2

χ2/N RMSE χ2/N RMSE

June First guess 0.86 20.94 0.39 6.14

Fifth iteration 1.05 18.93 1.16 5.80

December First guess 0.74 17.39 1.20 9.91

Fifth iteration 1.05 16.89 1.14 9.54

approach, devised by Desroziers et al. (2005), is based on

a set of identities, which relate the BECM and OECM if to

expressions that can be estimated statistically from a set of

analysis and corresponding background fields.

First, the standard deviation σ
(i)
obs of the ith observation

component is equal to

E[(y(i)− y(i)a )(y
(i)
− y

(i)
b )] = σ

(i)2

obs , (3)

where E denotes the expectation, y is the observation vec-

tor and ya =H(xa) and yb =H(xb) are evaluated from the

analysis and background fields, respectively.

The background error covariance matrix cannot be

uniquely expressed in observation space. However, assum-

ing that each observation only depends (linearly) on a sin-

gle model grid cell (i.e. horizontal interpolation is neglected),

then:

E[(y(i)a − y
(i)
b )(y

(i)
− y

(i)
b )] = σ

(i)2

b . (4)

The identities (3) and (4) hold for an ideally defined anal-

ysis system, provided that the background and observation

errors are normally distributed and assuming the observation

operator is not strongly nonlinear.

Furthermore, Eqs. (3) and (4) can be used to tune the pa-

rameters σobs and σb by means of fixed point iteration. First,

a set of analyses is produced using initial parameter values.

Then, the left-hand sides of Eqs. (3) and (4) are evaluated as

averages over the analyses, resulting in new parameter val-

ues. The procedure is then repeated using the updated σb

and σobs to produce a new set of analyses. In this work, we

stopped the iteration when the RMSE at validation stations

was no longer improving. We chose this criterion to avoid

overfitting the parameters to the calibration data.

In this work, the observation error covariance matrix R

was assumed diagonal. The initial values for σobs and σb were

set to 11.2 and 20.6 µg m−3 for O3, and 4.0 and 8.0 µg m−3

for NO2. The values corresponded to typical mean-squared

errors for a free-running model, which were attributed to the

model and observation error variances in the ratio of 80/20,

respectively. The standard deviations, together with the cor-

relation matrices obtained with the NMC procedure, were

then employed in the iterations to calculate a set of hourly

analyses for the two calibration periods spanning June and

December 2011.

The choice of calibration periods representing both winter

and summer conditions was motivated by the strong seasonal

variations in both O3 and NO2. Both σobs and σb were seg-

regated by hour, while for O3 σobs was also evaluated sepa-

rately for suburban stations. For the reanalysis of year 2012,

the standard deviations, obtained separately for June and De-

cember, were interpolated linearly for all other months.

Finally, the overall consistency could be evaluated by

checking the identity (Ménard et al., 2000)

E(χ2)=N, (5)

where χ2
= 2J (xa) is twice the value of cost function (1) at

the minimum, and N is dimension of the observation vector

y. The identity (5) tests the overall consistency of the analy-

sis and is affected by both B and R.

4 Results and discussion

The SILAM model was run for year 2012 with and without

assimilation. Since the 3D-Var analyses require no additional

model integrations in form of iterations or ensemble simula-

tions, the hourly analyses increased the simulation runtime

by only 10–15 %.

The effect of assimilation to the yearly-mean concentra-

tions on the lowest model level is shown in Fig. 3. On av-

erage, the ozone concentrations are increased by the assimi-

lation especially around the Mediterranean Sea, which indi-

cates corresponding low bias in the free model run. The main

changes in NO2 levels are confined to somewhat more lim-

ited areas; in particular, areas near major mountain ranges

(Alps and Pyrenees) show enhanced NO2 levels in the anal-

ysis run.

4.1 Background and observation error

covariance matrices

Refining the background and observation standard deviations

iteratively both improves the consistency of the assimila-

tion setup as measured by the χ2 indicator (Eq. 5), and im-

proves the model–measurement comparison on the valida-

tion stations over the calibration period. However, after five

iterations (for both June and December), the changes in χ2

become slow and the validation scores no longer improve.

Hence, the values for σobs and σb in fifth iterations were taken

as the final values for 2012 reanalysis. The changes in χ2 and

model-measurement RMSE are summarised in Table 2.

The diagnosed observation and background error stan-

dard deviations for O3 and NO2 are shown in Fig. 4. For

June, the standard deviations for ozone range between 11

and 21 µg m−3 for rural stations. For December, the diurnal

variation is flatter, but the absolute values are generally not

reduced, in contrast to the overall seasonality of O3.
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Figure 3. Yearly mean concentration (µg m−3, left-hand panels) on lowest model layer and difference (assimilated – not assimilated, right-

hand panels) due to assimilation of O3 (top panels) and NO2 (bottom panels).

Especially for summertime night conditions, the values are

higher than the values adopted in most of the earlier stud-

ies (Chai et al., 2007; Curier et al., 2012; Jaumouillé et al.,

2012). However, the errors are comparable to the observa-

tion errors diagnosed using the CHIMERE model by Gaubert

et al. (2014). The main error component is likely to be due

to lack of representativeness: using the AIRNOW observa-

tion network, Chai et al. (2007) found standard deviations

between 5 and 13 ppb for observations inside a grid cell

with 60 km resolution. The maximum values occurred dur-

ing nighttime.

The diagnosed observation and background error param-

eters are subject to uncertainty, since they are not uniquely

determined (Schwinger and Elbern, 2010). Also, the param-

eters depend on the assumptions made regarding the correla-

tion function. Nevertheless, the relative magnitude of obser-

vation errors during nighttime is interesting for interpreting

the model-to-measurement comparisons.

The diagnosed background errors for ozone are between

5 and 9 µg m−3 depending on month and time of day. For

June, the diagnosed errors are largest between 09:00–10:00

and 21:00–22:00 UTC, which coincides with transitions be-

tween stable and convective boundary layers in summertime

conditions. For December, only minor diurnal variation is ob-

served.

The observation error standard deviation for NO2 varies

between 2.8 and 5.2 µg m−3 for rural stations. Suburban or

urban stations were not assimilated for NO2. Contrary to

ozone, the diurnal variation of background and observation

errors both positively correlate with the diurnal variation of

the pollutant.

The BECM and OECM were adjusted to optimise self-

consistency for 2 months in 2011. To assess the robustness

of the obtained formulations, the χ2 indicator was also com-

puted for all analysis steps for the 2012 reanalysis simulation.

As seen in Fig. 5, the analyses using the adjusted BECM

and OECM generally satisfy the consistency relation better

throughout the year, when compared to the first guess values.

The yearly-mean values for χ2 are 1.05 and 0.97 for ozone

and NO2, respectively.

Overall, the assimilation system is based on rather simplis-

tic assumptions regarding the background and observation

error statistics. In addition to computational efficiency, this

approach benefits from having few tuning parameters, and

the remaining parameters (σobs, σb and L) can be estimated

using an automated procedure. As shown in the following

Geosci. Model Dev., 8, 191–203, 2015 www.geosci-model-dev.net/8/191/2015/
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Figure 4. Diagnosed background (dashed) and observation error (solid lines) standard deviations (µg m−3) on rural stations for O3 (left) and

NO2 (right). Red lines correspond to the calibration made for June 2011, blue lines correspond to calibration for December 2011.

section, the refined background and observation error defini-

tions provide a clear improvement on analysis scores at the

control stations, despite the rather limited training data sets.

4.2 Evaluation against independent observations

Tables 3 and 4 present the analysis skill scores for runs with

both first guess and final BECM and OECM, and for the free-

running model with no assimilation.

In terms of correlation and RMSE, both analysis and free

model runs show better performance for predicting the daily

maximum than hourly values. This applies to both O3 and

NO2, although the difference is more marked for ozone. The

opposite holds true for bias, which tends to be higher when

calculated for daily maxima.

The comparison reveals a number of contrasts between the

“MACC” and “EMEP” validation stations. First, the free-

running model shows better performance for NO2 on the

EMEP stations, while for ozone, the performance is better

on the MACC stations. On the other hand, the data assim-

ilation has a stronger impact on the scores for the MACC

validation stations. This is especially visible in the case for

NO2, a result that is consistent with the shorter lifetime of

NO2 compared to O3.

The differences largely originate from the different rep-

resentativeness and coverage of the MACC and EMEP sta-

tion sets. As seen in Fig. 1, the EMEP network covers the

computational domain more evenly than the MACC valida-

tion stations, which are concentrated in central Europe. Since

the coverage of assimilation and MACC validation stations is

similar, the average impact of assimilation is stronger on the

MACC than EMEP stations.

For the free-running simulations, the better performance

for O3 at the MACC stations is consistent with the geograph-

ical variations in the model skill; the densest coverage of the

MACC validation stations coincides with the parts of Eu-

rope where many regional air quality models perform best

for ozone (e.g. Vautard et al., 2009). The scores for NO2 also

vary by region, however, due to the shorter chemical life-

time, the forecasts of NO2 are more sensitive to unresolved

variations in local emissions. This probably explains the bet-

ter scores for NO2 on the EMEP stations, since the EMEP

network is specifically aimed at monitoring the background

levels of pollutants.

For ozone, the assimilation had a variable effect on the

model bias. While the correlation and RMSE were always

improved by assimilation, the analyses have slightly larger

negative mean bias (−4.6 vs. −4.0 µg m−3 on MACC sta-

tions) than the free model. This is confirmed by the average

diurnal profile shown in Fig. 6. However, the diurnal vari-

ation of analysis errors is flatter, and the strongest bias no

longer coincides with the afternoon hours, when the highest

O3 concentrations are typically observed.

For NO2, the analyses have only slight negative bias

(−0.38 µg m−3) on the MACC stations, which turns positive

(about 1 µg m−3) for the more remote EMEP sites. As seen

in Table 4, the difference between the station sets is similar

to that of the free-running model. Given the differences be-

tween the MACC and EMEP station sets, this suggests that

the model overestimates the lifetime of NO2, which in turn

results in the positive bias in the analyses. The long lifetime

of NO2 in the SILAM DMAT chemistry scheme was also

noticed by Huijnen et al. (2010).

The analysis scheme assumes an unbiased model, and

hence, the negative bias present in the free-running simula-

tions is reduced but not removed in the analysis fields. The

assimilation setup including tuned OECM and BECM pro-

duces more biased analyses compared to the first guess setup,

as seen in Fig. 6. This is a consequence of the differences be-

tween the diagnosed and first guess background and obser-

vation error standard deviations. Contrary to the tuned setup,

the first guess attributes most of the model-observation dis-

crepancy to the background error, which results in stronger

increments towards the observed values. Consequently, the

analysis bias is smaller. However, the tuned assimilation

setup has consistently better RMSE and correlation than the

first guess assimilation setup.
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Table 3. Comparison of performance indicators for ozone in the 2012 reanalysis. The scores are given for station sets “MACC” and “EMEP”

as defined in Sect. 2.2. For the analysis runs, scores are shown for the different background error covariance matrices discussed in Sect. 3.

The unit of bias and RMSE is µg m−3.

Hourly Daily maximum

Corr Bias RMSE Corr Bias RMSE

MACC No assimilation 0.67 −4.00 24.91 0.80 −11.39 22.09

Assimilation, first guess B 0.77 −4.62 21.35 0.86 −2.71 15.51

Assimilation, final B 0.8 −4.64 19.2 0.9 −7.4 14.52

EMEP No assimilation 0.58 −6.32 24.06 0.71 −12.11 22.00

Assimilation, first guess B 0.66 −5.79 21.83 0.77 −5.32 17.96

Assimilation, final B 0.68 −6.00 20.22 0.8 −9.57 17.15

Table 4. Comparison of performance indicators for NO2 in the 2012 reanalysis. The station sets MACC and EMEP and assimilation options

are as in Table 3.

Hourly Daily maximum

Corr Bias RMSE Corr Bias RMSE

MACC No assimilation 0.50 −1.18 9.01 0.53 −3.41 13.58

Assimilation, first guess B 0.58 −0.25 8.6 0.61 −0.96 12.78

Assimilation, final B 0.6 −0.38 8.04 0.63 −2.35 12.01

EMEP No assimilation 0.52 0.47 6.19 0.55 −0.02 9.17

Assimilation, first guess B 0.55 1.17 6.45 0.59 1.75 9.63

Assimilation, final B 0.57 0.99 5.92 0.6 0.74 8.66

Since the analysis bias is mainly a consequence of a bias

in the forecast model, the bias should be addressed primarily

by improving the model. As shown by Dee (2005), model

biases can, in principle, also be addressed by the assimilation

system. However, a possible bias correction scheme should

be implemented with care, since due to representativeness

errors, also observational biases could arise.

In addition to computing the regular statistical indicators

for daily maxima, we evaluated the hit rates (the number of

correctly predicted exceedances divided by the number of

observed exceedances) for the 180 µg m−3 threshold for O3,

with and without assimilation. Assimilation also turns out to

improve the hit rate, albeit only slightly: from 0.25 to 0.26 on

average for rural MACC validation stations, and from 0.13

to 0.15 for EMEP stations. If the averaging is restricted to

the stations with more than 10 exceedances during 2012, the

values change from 0.32 to 0.36 for MACC and from 0.21

to 0.43 for the EMEP stations. Obviously, the hit rates are

sensitive to the low bias in the daily maxima.

For NO2, a specific source of observational errors is due

to the molybdenum converters used in the chemilumines-

cence technique, which is the most common measurement

technique for monitoring NO2. As discussed by Dunlea et

al. (2007) and Steinbacher et al. (2007), this technique is sub-

ject to positive interference by the NOz species such as PAN,

HNO3 and HONO.

The interference can lead to overestimation of NO2 by

up to factor of two, however, the error varies by location

and time, and may depend on the features of the instrument

(Steinbacher et al., 2007). We estimated the magnitude of this

effect from the free-running CB4 simulation. On most conti-

nental EMEP sites, the contribution of the NOz species to the

total NOz + NO2 was about 10–20 % of the simulated yearly

mean. However, for a few sites the contribution could reach

50 %.

The O3 and NO2 observations were assimilated into sepa-

rate model runs. Assimilation of O3 had only a minor influ-

ence on NO2 in the CB4 simulation; however, the mean bias

was reduced by about 5 % on average for the MACC valida-

tion stations. Because the DMAT simulation does not include

ozone as a tracer, the impact of NO2 assimilation on ozone

fields was not evaluated in this study.

4.3 Forecast experiments

In order to quantify the usefulness of data assimilation in

forecast applications, a set of simulations without data assim-

ilation were generated using the analysis fields at 00:00 UTC

as initial conditions. The forecast experiment covered the

time period between 16 July and 5 August 012.

The effect of chemical data assimilation on forecast per-

formance was assessed as a function of the forecast lead time.

Figures 7 and 8 present the correlation and bias for the O3
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Figure 5. The χ2/Nobs consistency indicator for hourly analyses of O3 (left) and NO2 (right). The values in blue and green are shown for

the first guess and final assimilation setups, respectively. Note the different scales for O3 and NO2.

Figure 6. Diurnal variation of model bias (µg m−3). The first guess

assimilation setup is shown in red and the final setup in blue. The

reference run with no assimilation is drawn in green. The values are

shown for the rural MACC validation stations and averaged over

each day of year 2012 and over the stations.

and NO2 forecasts, respectively, and compare them to the

corresponding indicators for the analyses and the control run.

For ozone, the forecast improvements due to data assimi-

lation were largely limited to the first 24 h of forecast. Also,

the forecast initialised at 00:00 UTC from the analysis shows

a larger negative bias for the daytime than the free model run.

This is a result of the corresponding nighttime positive bias

of the free model run. The bias is effectively removed in the

00 analysis; however, the subsequent forecast is unable to

recover the level observed during daytime. The correlation

coefficient during daytime is nevertheless improved slightly

(from 0.75 to 0.78) by initialising from the analysis. While

the forecast shows somewhat reduced positive bias for the

hours between 18 and 30 (i.e. the following night), the sub-

sequent daytime scores are already almost unchanged by as-

similation. The results in Fig. 7 are computed for the MACC

station network; a similar impact is observed at the EMEP

stations.

Due to the shorter chemical lifetime, the effect of initial

condition on forecasts of NO2 can be expected to fall away

more quickly than for ozone. This has been confirmed in the

previous works based on the assimilation of data from the

ozone monitoring instrument (OMI). Under summer condi-

tions, Wang et al. (2011) found assimilation to provide no

improvement in RMSE with regard to surface observations,

while Silver et al. (2013) reported the NO2 concentration to

relax to its background values within 3–4 h.

In the forecast experiments performed within this study,

the effect of assimilation on NO2 forecast scores was lim-

ited to the first 6 forecast hours, which coincides with the

nighttime in most of the domain. Hence, at least under the

photochemically active summertime conditions, the analyses

are only marginally useful for improving forecasts of NO2.

The forecast for short-lived pollutants like NO2 is poorly

constrained by the initial condition, because the boundary

layer concentrations become driven mainly by local emis-

sions, chemical transformations and deposition. This lim-

its effectiveness of any assimilation scheme based updat-

ing only the initial condition. A possible way to extend the

forecast impact is to include more persistent parameters,

such as emission rates, into the state vector. This has been

demonstrated by Elbern et al. (2007) for forecasting an ozone

episode. In general, such an approach requires that the ob-

tained a posteriori emission rates can be extrapolated to the

forecast window, and that the assimilation scheme is able to

correctly attribute the observed discrepancies to the uncertain

parameters.

5 Conclusions

An assimilation system coupled to the SILAM chemistry

transport model has been described along with its application

in reanalysis of ozone and NO2 concentrations for year 2012.
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Figure 7. The model bias (µg m−3) and correlation for O3 at the MACC validation stations as a function of forecast length (blue lines). The

corresponding indicators, the analyses (black) and control run (green), are shown averaged by time of day and replicated over the forecast

window.

Figure 8. As Fig. 7, but for NO2.

Furthermore, the impact of using the O3 and NO2 analyses

to initialise forecasts has been assessed for an ozone episode

occurring in July 2012.

The assimilation consistently improves the model-

measurement comparison for stations not included in the as-

similation. For daily maximum values, the correlation coef-

ficient is improved over the free running model from 0.8 to

0.9 for O3 and from 0.53 to 0.63 for NO2 on rural validation

stations. The respective biases are also decreased, however,

a bias of −7.4 µg m−3 remains in the O3 analyses due to a

negative bias in the free-running model.

During a 3-week forecast experiment, initialising the fore-

casts from the analysis fields provided an improvement in

ozone forecast skill for a maximum of 24 h. For NO2, the

improvement was limited to a window of 6 h. The findings

for NO2 are similar to the results published in previous stud-

ies (Silver et al., 2013; Wang et al., 2011).

The diagnosed observation error standard deviations for

ozone have a strong diurnal variation, and reach up to about

21 µg m−3 at nighttime. These values are higher than usually

assumed in chemical data assimilation, but agree well with

the results obtained by Gaubert et al. (2014) with similar di-

agnostics.

The 3D-Var based assimilation has a low computational

overhead. This makes it especially suitable for reanalyses in

yearly or longer time scales, as well as for high-resolution

forecasting under operational time constraints. Future studies

will include more accurate characterisation of station repre-

sentativeness, as well as further investigation of model biases

for O3.

Code availability

The source code for SILAM v5.3, including the data assim-
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