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Abstract. In this paper we propose a probabilistic framework

for an uncertainty quantification (UQ) study of a carbon cy-

cle model and focus on the comparison between steady-state

and transient simulation setups. A global sensitivity analy-

sis (GSA) study indicates the parameters and parameter cou-

plings that are important at different times of the year for

quantities of interest (QoIs) obtained with the data assimila-

tion linked ecosystem carbon (DALEC) model. We then em-

ploy a Bayesian approach and a statistical model error term

to calibrate the parameters of DALEC using net ecosystem

exchange (NEE) observations at the Harvard Forest site. The

calibration results are employed in the second part of the pa-

per to assess the predictive skill of the model via posterior

predictive checks.

1 Introduction

Climate studies strongly depend on the modeling of the car-

bon cycle. Carbon cycle models, in turn, strongly depend on

the capability of current land models to simulate the terres-

trial ecosystem and to capture carbon exchanges between

land and atmosphere. There have been a significant num-

ber of studies looking to leverage the increasing number of

experimental observations and calibrate parameters in sev-

eral terrestrial ecosystem models. These studies have faced a

number of challenges related to handling data and measure-

ment errors from multiple sources, formalizing model error,

and dealing with parameter observability and data sparsity to

name a few. In this paper we propose a probabilistic frame-

work to estimate parameters for a process-based ecosystem

model. Representative studies, both probabilistic and non-

probabilistic, are reviewed below.

Over the past 2 decades several studies employed data as-

similation techniques to calibrate carbon cycle models. Here

we briefly discuss the works that motivated the current study.

Kaminski et al. (2002, 2012) used an adjoint approach to in-

fer model parameters for a terrestrial biosphere model based

on observational data streams. The variational data assim-

ilation problem was formulated based on Bayes’ theorem

with both the likelihood and the prior presumed Gaussian.

It was found that models employing optimized parameters

show clear improvements when checked against independent

observations compared to non-optimized parameters. Similar

approaches were employed by Rayner et al. (2005), Tjiputra

et al. (2007), and Kuppel et al. (2012) to estimate parameters

of ecosystem models.

Some of the above studies start from a Bayesian frame-

work when setting the cost function for a least-square fitting

procedure. The resulting probability densities for model pa-

rameters are approximated as multivariate Gaussian densi-

ties near the maximum a posteriori (MAP) estimate of the

parameter values. This assumption is valid only in the vicin-

ity of MAP values, unless the model is linear in all parame-

ters. Several studies in the past decade, some of which men-

tioned below, employed sampling techniques to explore non-

Gaussian posterior distributions for parameters in ecosystem

models.

Knorr and Kattge (2005), Braswell et al. (2005), and Xu

et al. (2006) employed Bayesian frameworks to estimate

parameters of terrestrial ecosystem models. These studies

employed Metropolis–Hastings Markov chain Monte Carlo

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Figure 1. Schematic of parameter estimation, on yellow back-

ground, and forward UQ workflows, on green background. For this

work DALEC is used as both “measurement model”, m, and as

“computational model”, f . In the Bayesian framework, parameter

estimation depends both on the model error εm and on the measure-

ment error εd.

(MCMC) techniques to sample the posterior density of model

parameters constructed based on eddy covariance measure-

ments of carbon fluxes as well as based on synthetic data

sets. Tang and Zhuang (2009) employed both global sensi-

tivity analysis (GSA) and a Bayesian framework to improve

parameterization of a terrestrial ecosystem model. This study

employed Latin hypercube sampling from the prior density

of model parameters, and a sampling-importance resampling

method to construct posterior densities for model parameters.

Ricciuto et al. (2008) employed an MCMC approach to sam-

ple the posterior densities of key parameters for combined

global-scale terrestrial and ocean carbon cycle models. The

study found that temporal correlation has a significant impact

on the calibrated parameters and subsequently on model pre-

dictions. A recent review by Zobitz et al. (2011) provides a

primer on data assimilation studies with MCMC.

Several studies compared several parameter estimation

methods for terrestrial biogeochemical models. Partici-

pants in the OptIC (Optimisation InterComparison) project

(Trudinger et al., 2007) presented results employing opti-

mization, variational, and sampling methods. Similarly, the

REFLEX (REgional FLux Estimation eXperiment) project

(Fox et al., 2009) selected the data assimilation linked

ecosystem carbon (DALEC) v1 model (Williams et al., 2005)

to assess the performance of several parameter estimation al-

gorithms, using both synthetic and observed net ecosystem

exchange (NEE) and leaf area index (LAI) data. More re-

cently, Ziehn et al. (2012) compared variational and sampling

techniques to estimate parameters for BETHY (Biosphere

Energy Transfer and Hydrology), a process-based model of

the terrestrial biosphere.

From this review, we noted a set of critical outstanding

research questions in the context of constraining carbon cy-

cle models. First, few, if any, calibration studies have investi-

gated steady-state/transient assumptions. It is also important

for the ecological community to understand how information

content depends on model assumption, e.g., steady state vs

transient. Second, carbon cycle models require a complete

parameter sensitivity analysis, particularly with respect to

temporal dynamics. Such analyses are vital for organizing

effective parameter calibration followed by an estimation of

the predictive skill of ecosystem models.

In this paper we propose a Bayesian framework for the es-

timation of uncertainties in ecosystem land model parameters

followed by a forward uncertainty quantification (UQ) study

to examine the predictive capabilities of the model given the

calibrated set of parameters. The Bayesian formulation pro-

vides a flexible framework for handling heterogeneous infor-

mation, and allows for sequential updates of posterior distri-

butions as the prior information is revised.

Figure 1 shows a schematic of this framework, consisting

of two intrinsically connected workflows, for parameter es-

timation and forward UQ. In this schematic, the data assim-

ilation linked ecosystem carbon (DALEC) model (Williams

et al., 2005) is used for both the “measurement model” m()

and the “computational model” f (). We employ two model

setups in our analysis. In the first approach, DALEC is run in

a spin-up mode until the carbon pools reach a quasi-steady

state. In the second approach, each ecosystem model run con-

sists of one cycle only. In this approach the carbon pools are

part of the investigation on model parameters, either for the

purpose of estimating densities of model inputs or to propa-

gate these densities forward to model outputs. More details

on the steady-state/transient model setups are provided in

Sect. 2.

To facilitate the estimation of a high-dimensional posterior

density for model parameters, we first rank the importance

of specific model parameters on model outputs via GSA.

Specifically we employ variance-based decomposition tech-

niques to compute Sobol indices (Sobol, 1993; Campolongo

et al., 2000). Posterior densities are estimated first for the

most important parameters, while less important parameters

are fixed at their nominal values. This constraint is subse-

quently relaxed to arrive at a joint posterior distribution over

the entire parameter space. Finally, we undertake a Bayesian

posterior predictive check (Lynch and Western, 2004) to as-

sess the adequacy of the calibrated carbon model to pre-

dict the experimental observations. The predictive skill of

this model is further assessed via continuous rank predictive

score (CRPS) (Gneiting and Raftery, 2007) computations.

The analysis steps mentioned here are undertaken with the

help of the UQ toolkit (UQTk)1. UQTk is a collection of soft-

ware libraries and tools for the quantification of uncertainty

in numerical model predictions. A self-contained package

containing specific UQTk libraries and scripts tailored for the

1http://www.sandia.gov/UQToolkit
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Figure 2. Schematic of processes, shown with green boxes, in DALEC with associated parameters, listed in orange boxes. The blue arrows

indicate how internal parameters and QoIs, shown with blue circles, impact DALEC processes, while the green arrows show the impact of

processes on the QoI and other internal parameters.

workflows presented is this paper is available in the Supple-

mental material.

This paper is organized as follows. Section 2 provides a

description of the processes comprising DALEC and of their

associated parameters. Section 3 presents the GSA results,

including total-order effects in Sect. 3.1 and joint effects in

Sect. 3.2. Posterior densities for model parameters are ex-

plored in Sect. 4 and the predictive capabilities are estimated

in Sect. 5. We end with conclusions in Sect. 6.

2 Description of the carbon cycle model

The schematic in Fig. 2 shows a 1-day time step consisting

of a sequence of process-based sub-models shown with green

boxes. These sub-models are connected via fluxes and inter-

act with five major carbon pools. The fluxes calculated on

any given day impact carbon pools and processes in subse-

quent days. The blue arrows in this figure indicate carbon

pools or model variables that are input parameters to specific

sub-models, while green arrows indicate the carbon pools or

model variables affected by a particular sub-process.

The version of DALEC used in this study is based on a

modified version of the DALEC v1 model (Williams et al.,

2005; Fox et al., 2009). The model has been modified to facil-

itate comparisons with the community land model (Thornton

et al., 2007), and with the Local Terrestrial Ecosystem Car-

bon Model (Ricciuto et al., 2011)2. It consists of three vege-

tation carbon pools, for leaf, stem, and root, and two soil car-

2The source code for the modified DALEC version is available

in the Supplemental material.

bon pools, for soil organic matter and litter. Photosynthesis

is driven by the aggregate canopy model (ACM) (Williams

et al., 2005), which itself is calibrated against the soil–plant–

atmosphere (SPA) model (Williams et al., 1996). ACM was

updated to employ a temperature-based deciduous phenol-

ogy used in Ricciuto et al. (2011), driven by the six param-

eters shown in Fig. 2. Spring phenology is driven by a lin-

ear relationship to growing degree days, while senescence is

driven by mean air temperature. To reduce model complex-

ity, the plant labile pool was removed and stem carbon is

used to support springtime leaf flush given the Spring phe-

nology and the maximum LAI parameter. Given the impor-

tance of maintenance respiration in other sensitivity analyses

(Sargsyan et al., 2014), this process was added along with

parameters controlling the base rate and temperature sensi-

tivity.

In this version of DALEC, ACM shares one parameter, the

specific leaf area (lma), with the deciduous phenology and

employs two additional parameters, leaf C : N ratio (leafcn)

and nitrogen use efficiency (nue). The autotrophic respira-

tion model computes the growth and maintenance respira-

tion components and is controlled by three parameters: the

growth respiration fraction (rg_frac), the base rate at 25 ◦C

(br_mr), and temperature sensitivity for maintenance respira-

tion (q10_mr). The allocation sub-model partitions carbon to

several vegetation carbon pools. Leaf allocation is first deter-

mined by the phenology sub-model, and the remaining avail-

able carbon is allocated to the root and stem pools depend-

ing on the fractional stem allocation parameter (astem). The

“litterfall” sub-model redistributes the carbon content from

vegetation pools to soil pools and is based on the turnover

www.geosci-model-dev.net/8/1899/2015/ Geosci. Model Dev., 8, 1899–1918, 2015
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Table 1. Description of model parameters.

Param. Nom. val. Range Description Units
D

ec
id

.
P

h
en

. gdd_min 100 10–250 threshold for leafout [◦C day]

gdd_max 200 50–500 threshold for max. LAI [◦C day]

tsmin 5 0–10 temperature for leaf fall [◦C]

laimax 4 2–7 seasonal max. LAI [m2 leaf/m2]

leaf fall 0.1 0.03–0.95 rate of leaf fall [day−1]

lma 80 20–150 specific leaf area [g C/m2 leaf]

A
C

M leafcn 25 fixed leaf C : N ratio [gC/gN]

nue 7 1–20 nitrogen use efficiency [ ]

A
.R

. q10_mr 2 1–4 maintenance resp. T-sensitivity [ ]

br_mr 10−4 10−5–10−2 base rate for maintenance resp. [g C m−2 day−1/g C biomass]

rg_frac 0.2 0.05–0.5 growth respiration fraction [ ]

A
.

astem 0.7 0.1–0.95 allocation to plant stem pool [ ]

L
it

te
r. tstem 1

50×365
1

250×365
−

1
10×365

stem turnover time [day−1]

troot 1
5×365

1
25×365

−
1

365
root turnover time [day−1]

tleaf 10−2 10−3–10−1 leaf turnover time [day−1]

D
ec

o
m

p
. q10_hr 2 1–4 heterotrophic resp. T-sensitivity [ ]

br_lit 1
2×365

1
5×365

−
10

5×365
base turnover for litter [g C m−2 day−1/g C litter]

br_som 1
30×365

1
100×365

−
1

10×365
base turnover for SOM [g C m−2 day−1/g C SOM]

dr 10−3 10−4–10−2 decomposition rate [day−1]

times for stem (tstem), root (troot), and leaves (tleaf). The

sequence of sub-models concludes with the “decomposition”

which models the heterotrophic respiration component and

the decomposition of litter into soil organic matter (SOM).

This sub-model is driven by temperature sensitivity for het-

erotrophic respiration (q10_hr), the base turnover times for

litter and SOM at 25 ◦C (br_lit, br_som, respectively), and

by the decomposition rate (dr) from litter to SOM.

Model parameters and their nominal values are provided

in Table 1. These parameters are grouped according to the

sub-model that employs them. Except for leaf mass per unit

area (lma) which impacts both the deciduous leaf phenology

and ACM, all other parameters are employed in single sub-

models. The numerical ranges and nominal values for these

parameters are provided in the table, and are designed to re-

flect average values and broad uncertainties associated with

the temperate deciduous forest plant functional type that in-

cludes Harvard Forest (Fox et al., 2009; White et al., 2000;

Ricciuto et al., 2011). In addition to the model parameters,

several processes are driven by the observed air temperature,

solar radiation, vapor pressure deficit, and CO2 concentration

at the flux tower site.

As mentioned in the Introduction, for this study we con-

sider two approaches for running DALEC. The first approach

employs a steady-state assumption, with DALEC run in a

spin-up mode until it reaches a quasi-steady state. For this

study we declare the model to be in a quasi-steady state when

the relative L2 error between successive cycles becomes less

than a threshold value of 10−6 for select model outputs. For

the range of parameters employed in the runs presented here,

the model spin-up takes typically 30–50 cycles of the 1992–

2006 meteorology (450–750 total years) depending on the

parameter values, especially the turnover time of slow car-

bon pools. In this context, each cycle corresponds to run-

ning the model for 15 years with the meteorology inputs of

1992–2006. At the start of the first cycle, the carbon pools are

initialized to zero with the exception of stem carbon, which

is set at a value to “seed” leaf growth in the following sea-

son. For subsequent cycles, the carbon pools are initialized

with the final state from the previous cycle. The daily quan-

tities of interest (QoIs) output by DALEC in the first cycle

after the system reaches a steady state are used for several

analyses presented in this paper. This approach follows the

protocol for the North American Carbon Program (NACP)

interim synthesis simulations, but fails to capture, for exam-

ple, the large negative NEE observed at Harvard Forest. In

the second approach, the initial values of the carbon pools

in January 1992 are added to the set of model parameters to

be estimated. This approach employs transient assumptions

and, for any given set of parameter values, DALEC is run one

cycle only, for 1992–2006. The resulting model output val-

ues are then used to study the model behavior under transient

conditions. The model evaluations are cheaper compared to

the first approach; however, the dimensionality of the param-

eter space of DALEC is increased by 5, with 3 vegetation car-

bon pools and 2 soil carbon pools, from 18 to 23 parameters.

Geosci. Model Dev., 8, 1899–1918, 2015 www.geosci-model-dev.net/8/1899/2015/
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Henceforth, we will refer to these two approaches asDST and

DTR.

3 Global sensitivity analysis

GSA formally studies how the change in model output can

be apportioned to changes in the model inputs. Given our

focus on statistical model calibration and UQ, we employ

variance-decomposition methods where the variance of the

model output is decomposed into fractions associated with

input factors and their interactions. The primary QoI for GSA

is NEE, for which we have experimental observations avail-

able. We explore GSA for several other QoIs to understand

the role each parameter or set of parameters plays in deter-

mining other QoIs in addition to NEE. Specifically we con-

sider the gross primary production (GPP), the total vegetation

carbon (TVC), and the total soil carbon (TSC).

The effects of input parameters θ = {θ1, . . .,θNθ } and their

interactions on a model output y =m(θ), are quantified

through Sobol indices (Sobol, 1993; Campolongo et al.,

2000). The first-order Sobol indices are given by

Si =
Varθi [Eθ∼i (m(θ)|θi)]

Varθ [m(θ)]
, i = 1, . . .,Nθ , (1)

where θ∼i = {θ1, . . .,θi−1,θi+1, . . .,θNθ }, Eθ∼i [·] is the ex-

pectation with respect to θ∼i , and Varθi [·] is the variance with

respect to θi . Note that, in this context, sub-script i can de-

note one parameter or a group of parameters. Such a group,

corresponding to the phenology model, is presented below.

Similarly, the joint sensitivity indices Sij are

Sij =
Varθi ,θj [Eθ∼(i,j)(m(θ)|θi,θj )]

Varθ [m(θ)]
− Si − Sj ,

i,j = 1, . . .,Nθ . (2)

While interactions between three or more parameters can be

defined in a similar fashion, for most physical models these

higher-order interactions are negligible.

The sensitivity index Si can be interpreted as the fraction

of the variance in the QoI that can be attributed to the ith

input parameter only, while Sij is the variance fraction that

is due to the joint contribution of the ith and j th input pa-

rameters. The total sensitivity index combines the first-order

sensitivity indices with joint sensitivity and higher-order in-

teractions to yield

STi = Si +
∑
j
i 6=j

Sij +
∑
j,k

i 6=j 6=k 6=i

Sijk + . . .

=
Eθ∼i [Varθi (m(θ)|θ∼i)]

Varθ [m(θ)]
. (3)

This index measures the fractional contribution to the total

variance due to parameter θi and all interactions with all

other model parameters.

Starting from the derivation of these indices, based on the

decomposition of variance, the sum of all first-order indices

and joint and higher-order interaction indices sums to one

1=
∑
i

Si +
∑
i,j
i 6=j

Sij + . . ..

Given that all Sobol indices are greater or equal to zero, it

follows that
∑
iSi ≤ 1. The reverse is true for the total ef-

fect indices,
∑
iS
T
i ≥ 1, due to multiple counting of joint and

higher order parameter interactions.

Total effect indices are useful to ascertain which parame-

ter or group of parameters has the most impact on a particu-

lar QoI, and also decide which parameters are less important

and can potentially be fixed at their nominal value without a

significant impact on the model output. Joint sensitivity in-

dices can be used to verify or discover interactions between

the computational model components as related to a specific

model output. In this paper we will present results for to-

tal effect and joint sensitivity Sobol indices, while skipping

first-order Sobol indices for brevity.

The Sobol indices Eqs. (1)–(3) can be written in inte-

gral forms, but these integrals are not analytically tractable

when the input parameter space is high dimensional. In or-

der to evaluate these indices numerically we employ a Monte

Carlo approach enhanced by techniques described by Saltelli

(2002) and modified by Kucherenko et al. (2012) to account

for parameter dependencies. This method employs sampling

of the input parameters from their prior distributions and an

efficient re-use of model evaluations to reduce the computa-

tional cost of estimation of the above conditional variances.

We employ informative priors, described in Sect. 4.3, for

all model parameters. The prior distributions for all param-

eters are assumed independent, except for the Spring phe-

nology parameters gdd_min and gdd_max, which are bound

by the inequality constraint gdd_min< gdd_max. Conse-

quently, for these two parameters we will compute a com-

pound sensitivity index; i.e., STi for i = (gdd_min,gdd_max)

which is the total effect index based on joint prior distribu-

tion of this set of parameters, including all interactions be-

tween either gdd_min or gdd_max, or both, and the rest of

the DALEC parameters.

For each of the QoIs mentioned above, we compute

monthly averages corresponding to the entire simulation;

i.e. the January average is computed using the January daily

QoI values for all available years. The simulations are driven

by daily minimum and maximum temperatures, global ra-

diation, and CO2 concentration for years 1992–2006, at the

Harvard Forest site (Urbanski et al., 2007).

3.1 Total effect indices

Figures 3–6 show matrices of total effect indices, STi , for

the four QoIs mentioned above. Each row in these matrices

shows the indices corresponding to a particular monthly av-

erage QoI.

www.geosci-model-dev.net/8/1899/2015/ Geosci. Model Dev., 8, 1899–1918, 2015
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Figure 3. Matrices with total effect Sobol indices, ST
i

, for monthly averages of NEE for (a) DST and (b) DTR. The colormap changes from

red for large index values to blue for indices ≈ 1%. The grayscale corresponds to Sobol index values from 1% down to 0.1%, while blank

cells indicate values smaller the 0.1%.

G
D
D

T
S
M
IN

L
A
IM

A
X

L
E
A
F
F
A
L
L

L
M
A

N
U
E

Q
1
0_
M
R

B
R
_
M
R

R
G
_
F
R
A
C

Q
1
0_
H
R

B
R
_
L
IT

B
R
_
S
O
M

D
R

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

G
D
D

T
S
M
IN

L
A
IM

A
X

L
E
A
F
F
A
L
L

L
M
A

N
U
E

Q
1
0_
M
R

B
R
_
M
R

R
G
_
F
R
A
C

Q
1
0_
H
R

B
R
_
L
IT

B
R
_
S
O
M

D
R

V
C

1

V
C

2

V
C

3

S
C

1

S
C

2

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4. Matrices with total effect Sobol indices, ST
i

, for monthly averages of GPP for (a)DST and (b)DTR. The colormap setup is similar

to the one in Fig. 3.

Different parameters have larger impacts at certain times

of the year. For NEE corresponding to DST, in Fig. 3a, phe-

nology parameters tsmin and leaf fall, which control the

senescence of leaves in the Fall, have a significant impact

on NEE during this period only. Specifically, tsmin, which

is the critical temperature at which leaf fall begins, mainly

affects NEE in October. For DTR, in Fig. 3b, the base rate

of maintenance respiration br_mr, which represents a carbon

cost plants must continuously spend during their lifetime,

becomes the dominant parameter for NEE. In the transient

configuration, the autotrophic respiration sub-model controls

most of NEE variance. The total effect index for several pa-

rameters, i.e. astem, tstem, troot, and tleaf, are not shown in

this figure, since they have a negligible contribution to NEE

variance.

Similar behavior is seen for parameters that control GPP,

in Fig. 4. Parameter gdd_min, which is part of the pair

gdd=(gdd_min,gdd_max) in this figure, is the number of

growing degree days at which leaf budbreak occurs. This pa-

rameter has the most impact in March and April. The strong

dependence of these fluxes on phenology parameters high-

lights the importance of an accurate phenology model, as

has been shown in other modeling studies, (e.g., Richardson

et al., 2012). On the other hand, the nitrogen use efficiency

nue, which controls the amount of GPP per unit leaf nitrogen,

is important throughout most of the growing season (June–

September). This is broadly consistent with other sensitivity

studies that have shown strong sensitivity to leaf nitrogen,

e.g., Sargsyan et al. (2014). Unlike for NEE, the GPP fluxes

exhibit a similar dependence on the parameters controlling

the phenology and aggregate canopy modes for bothDST and

DTR.

TVC and TSC are carbon pools and tend to vary on a

much larger timescale than GPP or NEE, which are fluxes.

Therefore, the Sobol indices do not exhibit significant sea-

sonal variability. TVC is a sum of three carbon pools, vc1

(for leaf C), vc2 (for stem C), and vc3 (for root C). For both

DST and DTR, in Fig. 5, this QoI is most strongly controlled

by the base rate of maintenance respiration br_mr. For DTR,

the initial value of vc2 exhibits a small, but non-negligible,

total effect index of about 10 % on the total variance of TVC.

TSC corresponding toDST, in Fig. 6a, is mostly controlled

by both br_mr and the base rate of decomposition for soil or-

ganic matter br_som, which effectively determines the pool
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Figure 5. Matrices with total effect Sobol indices, ST
i

, for monthly averages of TVC for (a)DST and (b)DTR. The colormap setup is similar

to the one in Fig. 3.
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Figure 6. Matrices with total effect Sobol indices, ST
i

, for monthly averages of TSC for (a)DST and (b)DTR. The colormap setup is similar

to results in Fig. 3.

residence time. Given the same inputs, a pool with a longer

residence time will contain more carbon. ForDTR, in Fig. 6b,

the initial value of soil organic matter pool (sc2) becomes

dominant and exhibits a total effect index of about 50 %. For

this setup, the impact of br_mr and br_som on the total vari-

ance of TSC is about 40 %, down from about 80 % for the

quasi-steady-state setup for DST.

The total sensitivity index results indicate that, for some

quantities of interest like GPP and TVC, the simulation

setup, i.e. DST vs. DTR, does not change significantly the

effect of model parameters on the model outputs. For these

two model outputs the dominant parameters are similar for

both setups, given the priors employed for the model param-

eters, including the carbon pools for DTR. Unlike for GPP

and TVC, the simulation setup changes the relative impor-

tance of model parameters on NEE and TSC. This takes place

either through a change in the relative importance of phenol-

ogy and ACM model parameters (for NEE) or by bringing a

significant contribution from the carbon pools (for TSC). In

the next section we examine joint effect indices for parame-

ter pairs to determine what fraction of the total effect indices

is due to interactions between model parameters.

3.2 Joint effects

Figures 7–9 show relevant joint sensitivity indices corre-

sponding to the four QoIs examined in this study. In these

figures, each node shows relevant parameters while the label

on each link corresponds to the joint Sobol index Sij , in %

units. The joint sensitivity Sobol index values are rounded to

the nearest integer for clarity.

Both NEE and GPP exhibit seasonal variability for the to-

tal effect Sobol indices. For these parameters the joint pa-

rameter interactions are only relevant during Fall, accounting

for about 10–15 % of the total variance in the corresponding

QoI, and play an important role in determining the evolution

of the carbon cycle during the senescence period. Figures 7

and 8, showing these interactions during October, are repre-

sentative of results throughout Fall. For both NEE and GPP,

the interaction tsmin and leaf fall is significant during Fall,

while interactions between other phenology, ACM, and AR

parameters are negligible. In general joint sensitivity maps

for NEE and GPP are similar between DST and DTR.

Similar to the total effect index results for TVC and TSV,

the joint sensitivity indices display little seasonal variabil-

ity. The results shown in Fig. 9 for these QoIs correspond

to September and are representative of all monthly averages
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show the magnitude, in %, of Sobol indices for the corresponding

parameter pairs.

(results not shown). Moreover, only DST results are shown

in this figure since the corresponding DTR results are al-

most identical to DST. For TVC the data in Fig. 9a indicates

that the interaction between AR (through br_mr) and ACM

(nue) and litterfall (tstem) sub-models contribute about 10 %

to TVC variance. In fact these joint interactions represent

about half of the total effect index of nue and tstem, shown

in Fig. 5. The results in Fig. 9b show that the interactions

between model parameters are important for TSC as well.

For this QoI, the interaction AR (br_mr) and decomposition

(br_som) sub-models account for about 10–30 % of the cor-

responding total effect index values, shown in Fig. 6.

The GSA results can be used to understand the effect of

model parameters on particular QoIs and discard, from the

analysis, parameters that have a negligible impact. In this

study, we will use the GSA results to facilitate the calibration

of model parameters, by grouping parameters into subsets ac-

cording to their effect on the relevant QoIs. More details are

presented in the following section.

4 Parameter calibration

We employ a Bayesian framework to compute posterior

probabilities for model parameters discussed in the previ-

ous sections. This framework is well-suited for dealing with

uncertainties from different sources, including parametric

4
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Figure 9. Relevant joint Sobol indices, Sij , corresponding to

September averages for (a) TVC and (b) TSC. Both sets of results

are based on DST. The labels on each line show the magnitude, in

%, of Sobol indices for the corresponding parameter pairs.

and model uncertainty as well as experimental errors (Sivia,

1996). Bayes’ rule is given as

p(θ |D)= LD(θ)p(θ)/p(D), (4)

where p(θ) and p(θ |D) are the prior and posterior proba-

bility densities, respectively, for model parameters θ . These

densities represent our knowledge of θ before and after

learning from the data D. The likelihood function LD(θ)=
p(D|θ) is the likelihood of the data D for a particular in-

stance of model parameters θ . The denominator in Eq. (4),

p(D), is the “evidence”, computed by integrating the numer-

ator over the support of p(θ). It plays the role of a normal-

izing constant in the parameter estimation context, and is not

computed here.

4.1 Calibration data

The data available for the calibration of model parameters

consist of the Harvard Forest’s daily NEE values processed

for the NACP site synthesis study (Barr et al., 2013) based

on flux data measured at the site (Urbanski et al., 2007). Hill

et al. (2012) estimated that daily NEE estimates follow a nor-

mal distribution. The daily observations cover a period of

15 years starting with year 1992. A snapshot of these ob-

servations, including the magnitude of the observation error,

is provided in Fig. 10. The standard deviations for the daily

NEE values were estimated using a bootstrapping technique

using half-hourly NEE data (Papale et al., 2006; Barr et al.,

2009). The mean standard deviation is about 0.7, with a range

of variation between 0.2 and 2.5.

4.2 Likelihood construction

In general, the discrepancy between model predictions and

the data can be formalized as

z=m(t;θ)+ εm+ εd. (5)

Here, t is the time in day units and z is the daily NEE ob-

servation described above. Further, εm is the discrepancy be-

tween the model prediction m(t;θ) and the physical truth,
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Figure 10. Snapshot of NEE observations (with red line) for the Harvard Forest site. The light-blue region, bordered by thick blue lines

corresponds to ±2σ around the daily NEE values.

while εd denotes the experimental error. In general it is not

straightforward to disambiguate between these two sources

of error. For the present study, we presume the experimen-

tal error to be known (Papale et al., 2006; Barr et al., 2009).

Given that measurements are taken at different times, we fur-

ther assume that daily measurement noise/errors, εd, are in-

dependent; hence,

εd ∝N(0,6d), 6d = diag[σ 2
d,1,σ

2
d,2, . . .︸ ︷︷ ︸
Nd

], (6)

where Nd is the number of days. Next we will focus our at-

tention on modeling εm. We propose a multivariate Gaussian

distribution, employing a constant bias µ= [µ,µ, . . .,µ]T

and aNd×Nd square exponential covariance matrix6m with

6mi,j = σ
2
m exp

(
−(ti − tj )

2/l2c

)
. (7)

Given that ti is simply a notation for day no. i, the covariance

matrix entries are given by 6mi,j = σ
2
m exp

(
−(i− j)2/l2c

)
,

where lc is a correlation length. This analytical expression

for6m is adopted based on the intuition that model errors for

successive days are highly correlated while model errors for

days that are far apart are uncorrelated. The magnitude of lc
controls the rate of decrease of daily model error correlations.

Given the above formulations of model and data errors,

one can group these two into one multivariate normal error

term

ε = εm+ εd ∝N(µ,6), 6i,i = σ
2
m+ σ

2
d,i,

6i,i±k = σ
2
m exp

(
−k2/l2c

)
(8)

and the likelihood LD(θ) is written as

LD(θ)= (2π)
−Nd/2|6|−1/2

exp
(
−(z−m−µ)T6−1 (z−m−µ)

)
. (9)

Here, z= [z1,z2, . . .] is the vector of NEE observations,

m= [m(t1,θ),m(t2,θ), . . .] is the vector of model NEE pre-

dictions, and µ is the model bias vector described above. All

these vectors are Nd long. In addition to the model parame-

ters θ , we now have three additional hyperparameters char-

acterizing the model error: the model bias µ, model error

standard deviation σm, and correlation length lc. Unlike for

DALEC parameters, for which we employ informed priors

described in the next section, for these hyperparameters we

employ uninformed priors.

In practice, estimating the likelihood LD(θ) can be costly,

and prone to numerical instabilities when considering the full

Nd×Nd covariance matrix 6. Therefore, we will work with

band-diagonal covariance matrices, obtained by setting the

diagonals of the model error covariance matrix 6m to zero

beyond a certain bandwidth kb

6i,i±k = 0 for k > kb. (10)

The effect of covariance matrix bandwidth on the model er-

ror terms {µ,σm, lc} and DALEC parameters is studied in

Sect. 4.4.1.

4.3 Parameter priors

Following LeBauer et al. (2012), we proceed to construct in-

formed priors for the DALEC model parameters as well as

for the initial carbon pool amounts employed in DTR. Con-

sidering the nominal values and bounds presented in Table 1,

we separate model parameters into two categories. In the first

category we place parameters with a range that spans approx-

imately 1 order of magnitude or less. For these parameters we

employ truncated normal densities as priors, with the mode

set at the nominal values and standard deviations set to one-

eighth of the range of variation for each parameter.

In the second category we place parameters for which the

range of variation spans more than 2 orders of magnitude.

For these parameters we set truncated lognormal density pri-

ors. Similarly to the first set of parameters, the parameters of

these densities are set such that the mode occurs at the nom-

inal value and the standard deviation is set to one-eighth of

the range of variation for each corresponding parameter in
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Table 2. Prior setup for the initial carbon pool amounts employed

in DTR.

Name ID Mean SD Constraints

leaf C vc1 0 20 0< vc1

stem C vc2 9000 1800 0< vc2

root C vc3 1500 300 0< vc3

litter C sc1 10 25 0< sc1< 1000

som C sc2 8800 1760 0< sc2

this category. For both normal and lognormal densities, we

truncate the priors based on the ranges presented in Table 1.

For all parameters, except the pair gdd_min, gdd_max,

we consider independent prior distributions. For the grow-

ing degree days parameters, given the inequality constraint

gdd_min< gdd_max, we employ a truncated joint normal

density setup as a product of one-dimensional normal den-

sities for both gdd_min and gdd_max. This joint density is

appropriately scaled so that it integrates to one over non-

rectangular space (due to the inequality constraint) for these

two parameters. Similarly, the truncated normal and lognor-

mal densities for the other model parameters are appropri-

ately scaled to account for the finite parameter ranges.

For DTR, the initial carbon pool amounts (representing

values on 01 January 1992) are also estimated in addition to

the DALEC parameters and the hyperparameters defining the

model error. For the carbon pool initial values we also em-

ploy truncated normal and lognormal densities. These prior

distributions are informed by site observations (Table 2). The

initial leaf carbon (vc1) is set to zero with a small stan-

dard deviation because of the starting date of the simulation,

which is in mid-winter well after leaf fall. Initial litter and

soil organic mean (sc1, sc2) values and standard deviations

are taken from Gaudinski et al. (2000), while stem carbon is

estimated from Urbanski et al. (2007). Specifically, we em-

ploy truncated normal densities for all carbon pools except

litter carbon (sc1). For sc1, the mean and the range differ by

2 orders of magnitude; hence, we employ a truncated lognor-

mal density for this pool.

4.4 Posterior distributions via MCMC

A MCMC algorithm is used to sample from the posterior

probability density p(θ |D) in Eq. (4). MCMC is a class of

techniques that allows for sampling from a probability den-

sity by constructing a Markov chain that has the target den-

sity as its stationary distribution (Gamerman, 1997; Gilks

et al., 1996). In particular, we employ an adaptive Metropo-

lis algorithm (Haario et al., 2001), which uses the covariance

of the previously visited chain states to find better proposal

distributions, allowing it to explore the posterior distribu-

tion in an efficient manner. Haario et al. (2001) show that,

for Gaussian distributions, the adaptive sampling algorithm

is similar in performance to the Metropolis algorithm. For
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C(i)

θ
(i)
MAP

θ
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(i+1)
ini

MCMC

Figure 11. Schematic of the iterative process for parameter calibra-

tion. The MCMC sampling of the joint density for the set of param-

eters θ (i) starts at θ
(i)
ini

using an initial proposal covariance C
(i)
ini

. For

the following iteration, (i+1), the initial condition is constructed us-

ing the MAP estimate for θ (i), augmented with initial conditions, in

this case the nominal values, for the rest of parameters, θ (i+1)r(i).
The initial proposal covariance C

(i+1)
ini

is constructed based on the

sample covariance matrix for θ (i), augmented with an initial pro-

posal covariance for θ (i+1)r(i), C(i+1)r(i)
ini

.

non-Gaussian posterior densities, the adaptive procedure is

superior to non-adaptive procedures; however, the adaptive

procedure is challenged by the dimensionality of the param-

eter space.

To facilitate the convergence of the adaptive MCMC algo-

rithm we proceed gradually, starting with a group of parame-

ters identified as important for NEE through GSA in Sect. 3.

The schematic in Fig. 11 shows one iteration in the sequence

of MCMC simulations. We also add the model error hyper-

parameters, in addition to select DALEC parameters, to start

the first iteration:

θ (1)= {gdd_min,gdd_max, tsmin, leaffall,nue,q10_mr,br_mr}

+{µ,σm, lc}

with initial values θ
(1)
ini set to the nominal conditions provided

in Table 1 for DALEC parameters, and µ= 0, σm = lc = 1

for model error hyperparameters. The rest of parameters are

held constant at their nominal values. The initial covariance

matrix, C
(1)
ini , allows the MCMC algorithm to explore a num-

ber of possible states before adapting the sample covariance

based on the sample history. For this study we found that a

diagonal covariance matrix with entries set to a fraction of

about 1/16 of the variances for the corresponding prior den-

sity provided a good start for the MCMC algorithm.

The MCMC states obtained during the first iteration are

used to compute the covariance matrix corresponding to the

first set of parameters C(1) which is then used to construct

the initial covariance matrix for the second iteration, C
(2)
ini .

This process is shown schematically in Fig. 11. The initial

parameter values for the second iteration consist of the MAP

for θ (1) augmented with the nominal values for

θ (2)r(1) = {lma,rg_frac,q10_hr,br_lit}.
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Table 3. Distance correlation factors forDST. The diagonal blocks are marked according to the process the parameters contribute to; see also

Fig. 2 and Table 1. The entries in the diagonal block show dependencies between parameters from the same process, while the entries in the

off-diagonal block show dependencies between parameters from different processes.
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gdd_min 1

gdd_max 0.6 1

tsmin 0 0 1

laimax 0 0.1 0 1

leaf fall 0.1 0 0.3 0 1

lma 0 0.2 0 0.1 0.1 1

nue 0.1 0.3 0 0.1 0.2 0.9 1

q10_mr 0.1 0.2 0 0 0.1 0.5 0.5 1

br_mr 0.1 0.2 0.1 0 0.4 0 0 0.1 1

rg_frac 0.2 0.1 0 0 0.2 0.4 0.7 0.3 0.1 1

astem 0 0 0 0 0 0 0 0 0 0 1

tstem 0 0 0 0 0.2 0 0 0.1 0.1 0.1 0 1

troot 0 0 0 0 0 0 0 0 0 0 0 0.1 1

tleaf 0 0 0 0 0 0 0 0 0 0 0 0 0 1

q10_hr 0.1 0.1 0.1 0 0.2 0.2 0.1 0.2 0.2 0.2 0 0.2 0 0 1

br_lit 0.1 0.1 0.1 0 0.4 0 0.1 0.1 0.5 0.1 0 0 0 0 0.3 1

br_som 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

dr 0 0 0 0 0.1 0.1 0.1 0.1 0.2 0.1 0 0 0 0 0.1 0.2 0.1 1

The iterative process is completed after the third iteration,

with θ (3)r(2) containing the rest of the DALEC parameters.

This iterative algorithm breaks the original high-dimensional

problem into a sequence of steps of increasing dimensional-

ity, with each intermediate step starting with a better proposal

covariance compared to an approach for which this covari-

ance is empirically chosen.

We employ the Raftery–Lewis diagnostic (Raftery and

Lewis, 1992) to determine when the MCMC samples con-

verge to stationary posterior distributions. For DST, approx-

imately 4× 106 samples are necessary to predict the 5, 50,

and 95 % quantiles of all parameters to within ±1% accu-

racy with 95% probability. For DTR, the Raftery–Lewis di-

agnostic test shows that 6× 106 are necessary for converged

posterior densities. Given 5× 106 MCMC samples, the ef-

fective sample size (Kass et al., 1998) (ESS) for DST varies

between 10 000 and 15 000 samples depending on each pa-

rameter, while for DTR, ESS is between 8000 and 12 000.

This shows that there is significant autocorrelation between

chain samples, which is somewhat typical for MCMC sam-

plers in high-dimensional spaces. To ensure converged pos-

terior densities, and since the computational model is cheap,

results presented below are based on 7.5× 106 MCMC sam-

ples for both DST and DTR. When processing the MCMC

samples, we skip the first 106 samples, and then “thin” the

rest of the samples by picking every 10th sample.

4.4.1 Effect of covariance bandwidth on posterior

distributions

We performed several MCMC runs to examine the effect of

covariance bandwidth on the estimates of model parameters

and hyperparameters. The bandwidth is parameterized by kb,

in Eq. (10), which denotes the number of non-zero diagonals

on either side of the main diagonal.

Figure 12a–c show the estimated MAP values for the hy-

perparameters µ, σm, and lc, corresponding to the model er-

ror. In addition to DST and DTR, we also show results for

“D
up
TR”. This run is similar to DTR, except uniform priors

with the same range were employed for all carbon pools. The

error bars shown in this figure correspond to 2 standard devi-

ations estimated from the MCMC samples.

It seems that the model bias µ, in Fig. 12a, is not signif-

icantly affected by the band-diagonal trim of the covariance

matrix. For all runs considered here, µ is consistently nega-

tive signaling that, on average, DALEC overpredicts the NEE

data. The other two model parameters, σm and lc (in Fig. 12b,

c), are sensitive to the bandwidth setup, until they reach sta-

tistically converged values around kb = 10. The model error

standard deviation σm mean values for bothDST andDTR are

www.geosci-model-dev.net/8/1899/2015/ Geosci. Model Dev., 8, 1899–1918, 2015
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Figure 12. Convergence of model error components with increasing bandwidth of the covariance matrix: (a) µ, (b) σm, and (c) lc. The

joint 2-D marginal density of (σm, lc) for kb = 12 is shown in (d). In addition to DST and DTR setups, we also considered “D
up
TR”, a setup

equivalent to DTR, but with uniform priors assumed for the vegetation and soil carbon pools.

slightly below 0.4, compared to a mean value of 0.7 for the

NEE measurement error (in Sect. 4.1).

The 2-D joint marginal density for σm and lc, shown in

Fig. 12d for kb = 12, indicate a relatively strong dependence

and a negative correlation between these two hyperparame-

ters. Results for larger covariance bandwidths (not shown)

confirm that densities of both σm and lc exhibit converged

moments for kb > 10.

It is interesting to note the value for the converged mean

correlation length lc. It seems that this hyperparameter does

not depend on a particular model setup, at least for the site

and time range considered in this study. Further tests, with

uniform priors for all parameters, lead to similar mean val-

ues for lc. A value of lc = 4, indicating that the model error

discrepancy exhibits a timescale of about 8 days, seems to be

an intrinsic property of the model. This most likely suggests

that model errors follow the variability of NEE over synoptic

timescales associated with the periodic passage of weather

systems and precipitation events (Mahecha et al., 2010). Fur-

ther tests, with alternate model error terms, are necessary to

verify this observation.

4.4.2 Comparison between DST and DTR

We first proceed to analyze the model calibration results for

DST, when DALEC is run to a quasi-steady state for each

parameter sample. In order to measure the degree of depen-

dence in the posterior distributions for the 18 model param-

eters, we examine the “distance correlation” values (Székely

et al., 2007) estimated based on the MCMC samples. The dis-

tance correlation is a measure of dependence between two

random variables, being zero when they are independent.

Given random variables X and Y with finite first moments,

the distance correlationR(X,Y ) ∈ [0,1] is defined as

R(X,Y )= ϑ2(X,Y )√
ϑ2(X)ϑ2(Y )

, (11)

where ϑ2(X,Y ) is the “distance covariance” between X and

Y and ϑ2(X) is the “distance variance”, ϑ2(X)= ϑ2(X,X).

The distance covariance ϑ2(X,Y ) is defined as

ϑ2(X,Y )= E(||X−X′||||Y −Y ′||))

+E(||X−X′||)E(||Y −Y ′||)

− 2E(||X−X′||||Y −Y ′′||)), (12)

where (X′,Y ′) and (X′′,Y ′′) are independent and identically

distributed random variables, with the same joint density as

(X,Y ). Székely et al. (2007) provide numerical algorithms

to compute R(X,Y ) given samples of random variables X

and Y . The results are shown in Table 3. In this table, param-

eters are grouped in blocks according to the sub-model they

participate in. The entries in the diagonal blocks show depen-

dencies between parameters in the same sub-model while the

entries in off-diagonal blocks indicate dependencies between

parameters from different sub-models.

The most important statistical dependencies are between

nue and lma that control the gross photosynthesis (ACM) and
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Figure 13. DST problem: 1-D marginal and 2-D joint marginal probability density functions (PDFs) for parameters showing distance corre-

lation factors above 0.4; see also Table 3. Marginal PDFs are estimated via KDE based on approximately 4× 105 MCMC samples.

between rg_frac and nue that control net photosynthesis. Rel-

evant dependencies are also observed between q10_mr, a pa-

rameter of the autotrophic respiration process, and the gross

photosynthesis parameters. In order to further understand the

dependencies between model parameters, we compute 1-D

and 2-D joint marginal densities, via kernel density estima-

tion (KDE) (Scott, 1992; Silverman, 1986), for the model pa-

rameters that exhibit at least one distance correlation factor

that is greater than 0.4. These results are shown in Fig. 13.

The statistical dependencies identified above through R are

also evident in 2-D joint marginal densities for the same pa-

rameters.

Figure 14 shows 1-D marginal densities for the rest of

the parameters. These parameters show little dependence

on other parameters and so the 1-D marginal distribution

is sufficient to characterize their density. Some parameters,

e.g., astem, tleaf, or br_mr, show little update from prior

to posterior densities. For br_som, its turnover rate is slow

enough such that the NEE data contain little useful infor-

mation. For tleaf, the lack of information is due to the fact

that the effects of leaf turnover on net fluxes are much more

strongly controlled by their timing, as determined by the phe-

nology parameters, than by the background turnover rate.

The posterior densities for other parameters, e.g., laimax, are

tilted toward one end of their prior range. This might indi-

cate that the model error term is not sufficient to describe the

discrepancy between the model and the data, and the calibra-

tion process attempts to compensate for structural discrepan-

cies between observations and model predictions by pushing

some parameters toward either the minimum or the maxi-

mum value of their prior range.

The posterior density for tsmin exhibits an interesting

piecewise quasi-linear profile. This is due to the fact that min-

imum daily temperatures, in degrees Celsius, are provided

with 1 decimal digit accuracy and this parameter is a thresh-

old for leaf drop; i.e., its participation in the computational

model is through an “if” statement. Hence, all samples be-

tween successive one-digit accurate thresholds are equally

likely during the MCMC sampling process, and the product

between piecewise uniform likelihood and the normal prior

results in the posterior density profile observed in Fig. 14.

Next, we analyze the calibration results for DTR. For this

model setup, the initial values for the carbon pools at the be-

ginning of year 1992 are part of the set of model parameters
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Figure 14. DST problem: 1-D marginal PDFs for parameters showing distance correlation factors less than 0.4 with other parameters; see

also Table 3. Marginal PDFs are estimated via KDE based on approximately 4× 105 MCMC samples.

and each DALEC simulation consists of only one cycle, for

the time span 1992–2006. The distance correlation matrix for

DTR parameters that are common to DST has entries that are

by-and-large similar to the ones shown in Table 3 indicating

that the dependence between model parameters is not altered

by the model setup. This observation is confirmed by visual

inspection of the 1-D and 2-D joint marginal densities based

on DTR results for the same parameters as the ones shown in

Fig. 13 (results not shown).

Finally, Fig. 15 shows marginal densities for two carbon

pools that were updated in the calibration exercise DTR. vc3

corresponds to the stem carbon while sc1 and sc2 correspond

to the litter carbon and soil organic matter, respectively. Both

vc3 and sc2 exhibit some dependence on the temperature sen-

sitivities for maintenance respiration and heterotrophic respi-

ration, q10_mr and q10_hr, respectively. These dependencies

are consistent with the flow of information depicted in Fig. 1.

Next we examine the departure of each parameter’s pos-

terior density from its prior density as a result of the

Bayesian update via Eq. (4). We quantify these changes via

the Kullback–Leibler (KL) divergence between prior and

marginal posterior densities,

DKL(p||q)=

∞∫
−∞

p(x) ln

(
p(x)

q(x)

)
dx, (13)

where p is the posterior density and q is the prior density. KL

divergence results are presented in Fig. 16. In this figure, pa-

rameters are sorted in ascending order based on theDKL val-

ues forDST. Parameters that exhibitDKL < 0.5 for bothDST

and DTR are excluded from this figure for clarity. Moreover,

the C pools shown in this figure are only present for DTR;

hence, there is no DST result for these parameters. The right

half of this figure contains parameters that were identified as

important for NEE in Sect. 3. These parameters are well con-

strained by the NEE data, reflecting the useful information

in the flux data, for example on the timing of phenological

events (gdd_min) and the dynamics of autotrophic respira-

tion (br_mr, q10_mr). In general DKL results are similar for

DST and DTR, perhaps with the exception of br_som. For

DST, the NEE data contain little information on the turnover

rate of SOM. For DTR, the inclusion of carbon pools, in par-

ticular the SOM pool (sc2), impacts the Bayesian update of

this parameters due to the dependencies observed in the joint

marginal densities, shown in Fig. 15.

5 Predictive assessment

In this section we explore the predictive skill given the pos-

terior distributions for the model parameters for DST and

DTR. First, we employ the Bayesian posterior predictive

distribution (Lynch and Western, 2004) to assess the ade-

quacy of the calibrated DALEC model, and the Gaussian

data noise model, for prediction of the NEE observations.

Specifically, the posterior distribution for the predicted NEE

data, p(y|D), is computed by marginalization of the likeli-

hood over the posterior distribution of model parameters and
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hyperparameters, here θ :

p(y|D)=
∫
θ

p(y|θ)p(θ |D)dθ. (14)

For the present work, (y−m) |θ ∼ εm+ εd, where y =

[y1,y2, . . .] is aNd-dimensional vector with NEE predictions

over a range of Nd days, εm is the model error term and εd is

the data noise term.
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The 1-D marginal posterior predictive density for daily

NEE values for a 2-year snapshot around 1995 are shown

in Fig. 17. These densities were computed by sampling the

posterior distribution of model parameters θ , i.e., by using

the MCMC samples that are already available. We employ

about 4000 MCMC samples, for each sample we draw 20

samples from the multivariate normal distribution εm+ εd,

and then add these samples to the model evaluations. These

results are saved into daily bins, from which we extract sev-

eral quantiles corresponding to the 1-D marginal posterior

predictive density. It is worth noting that the variance of the

posterior predictive distributions can also be estimated ana-

lytically as the sum of the measurement error variance and

the pushed-forward variance, i.e., the variance of the output

QoI with respect to posterior variability.

The top frame in Fig. 17 corresponds to DST and the bot-

tom frame to DTR. Generally, the predicted data spread cov-

ers well the observed NEE values for the entire time range.

Occasional spikes can be seen outside the 5–95 % predictive

band, shown in blue.

In order to quantitatively compare the predictive capability

of the calibrated models for DST and DTR, we adopt a prob-

abilistic score based on the predictive cumulative distribu-

tion function (CDF). The CRPS (Gneiting and Raftery, 2007)

measures the difference between the CDF of the provided

data and that of the forecast/predicted data, i.e., data gener-

ated based on the posterior predictive distribution. Thus,

CRPS(F ,D)= 1

Nd

Nd∑
k=1

∞∫
−∞

(
Fk(yk|D)−HDk (yk)

)2
dyk.

(15)

Here,Fk(yk|D) is the 1-D marginal posterior predictive CDF

for day/component k computed using 1-D marginal posterior

predictive distributions

Fk(yk|D)=
yk∫
−∞

pk
(
y′k|D

)
dy′k, (16)

where

pk (yk|D)=
∫
p(y|D)dy∼k. (17)

is the 1-D marginal posterior predictive density correspond-

ing to day k, based on p(y|D) computed via Eq. (14). Here,

dy∼k = dy1· · ·dyk−1dyk+1· · ·dyNd
. The CDF of the provided

data is approximated as a Heaviside function centered at the

observation value Dk (Hersbach, 2000),HDk (yk)= 1yk≥Dk .
We employ the posterior predictive check data presented

above to compute CRPS values for both DST and DTR. For
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Table 4. CRPS and CRPSS values for DST and DTR. The CRPSS

value for DTR shows a much larger improvement in predictive ca-

pabilities for this model setup compared to DST.

Setup CRPSprf CRPSprp CRPSpsp CRPSS

DST 0.16 0.91 0.66 0.33

DTR 0.16 1.42 0.62 0.63

DST we obtain a value 0.67, while for DTR the CRPS value

is 0.60. The lower values forDTR compared toDST indicate,

on average, tighter marginal predictive CDF’s that are better

centered around the NEE data for the setup when DALEC is

run for one cycle and the carbon pools are treated as parame-

ters. This indicates a better predictive skill forDTR compared

to DST.

In order to measure the effect of calibration on the predic-

tive capability of DALEC, we employ the continuous rank

predictive skill score (CRPSS) (Wilks, 2011)

CRPSS=
CRPSpsp−CRPSprp

CRPSprf−CRPSprp

, (18)

where CRPSpsp is the CRPS computed above based on the

posterior predictive distribution, CRPSprp is based on the

prior predictive distribution, and CRPSprf is the CRPS based

on “perfect” predictions. For the current study, the “per-

fect” predictions correspond to the hypothetical case with

no model error and posterior densities for model parameters

centered on the NEE observations. The prior predictive dis-

tribution is defined analogous to the posterior predictive dis-

tribution in Eq. (14), with the posterior density p(θ |D) being

replaced by p(θ), the prior density for model parameters θ .

A CRPSS value of 0 implies no improvement of the pre-

dictive skill for the calibrated model parameters compared to

the predictions based on the prior information, while a value

of 1 can be achieved when the posterior distribution reduces

to a point and the model prediction is the same as the corre-

sponding experimental data. The CRPS values correspond-

ing to the prior (CRPSprp), posterior CRPSprp, and the ideal

case CRPSprf are presented in Table 4 for bothDST andDTR.

Based on the values in this table, the CRPSS for DTR shows

a much stronger improvement in predictive capabilities for

this model setup compared to DST.

6 Conclusions

We presented uncertainty quantification (UQ) results for a

process-based ecosystem carbon model. We assembled sev-

eral probabilistic methodologies in a framework that tack-

les the connected problems of parameter estimation and for-

ward propagation of input uncertainties. Depending on the

simulation setup, the model employs either steady-state or

transient assumptions, and it is driven by meteorological

data corresponding to years 1992–2006 at the Harvard For-

est site. Daily net ecosystem exchange (NEE) observations

were available to calibrate the model parameters and test the

performance of the model.

We first discussed global sensitivity analysis (GSA) results

for the complete set of input parameters. Based on their con-

tribution to the variance, we find that different parameters

have larger impacts for NEE at certain times of the year when

the processes they control become important. One example

is the tsmin parameter, which is the critical temperature at

which leaf fall begins, and mainly affects NEE in October.

We found that parameter interactions can also be relevant to

the variability of NEE or gross primary production (GPP).

Unlike NEE and GPP which are fluxes, the carbon pools,

either vegetation (TVC) or soil (TSC), tend to vary more

slowly and their month-to-month variability depends on a

small subset of parameters. We also found that the simula-

tion setup affects the relative importance of parameters for

NEE and TSC while GPP and TVC are less sensitive to the

change between steady and transient assumptions.

We then proceeded to calibrate the model parameters in a

Bayesian framework using informative priors for all param-

eters. In this context we examined both steady and transient

assumptions for the carbon model simulations. In the latter

approach the initial values for the carbon pools are part of

the calibration process. The discrepancy between actual and

predicted NEE values was modeled as a multivariate normal

distribution with constant mean and a square exponential co-

variance matrix. A convergence study was performed to de-

termine the effect of covariance matrix bandwidth on the pa-

rameters of the discrepancy term. It was found that the con-

verged correlation length does not depend on the simulation

setup and that the model discrepancy for NEE data exhibits

a timescale of about 1 week.

The posterior distribution of model parameters was sam-

pled sequentially by first considering the most relevant

parameters and then progressively adding less important

parameters, according to GSA-based ranking. The poste-

rior samples, obtained with a Markov chain Monte Carlo

(MCMC) algorithm, exhibit significant dependencies be-

tween some of the model parameters. Comparison of pos-

terior densities for parameters that are common to the two

model setups indicate similar calibration results.

The predictive capabilities of the model, employing the

parameters’ posterior distribution, were assessed qualita-

tively through posterior predictive checks and quantitatively

through continuous rank predictive score (CRPS) computa-

tions. Based on the CRPS values, the transient model setup,

for which carbon pools are set as simulation parameters, per-

formed better, in particular when compared to results based

on prior predictive distributions. Given similar calibration re-

sults for the parameters common to the two configurations,

we attribute the improvement in the predictive capabilities to

the calibrated carbon pools in the transient model setup.
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Table 5. Nomenclature.

ACM Aggregate canopy model

CRPS Continuous rank predictive score

CRPSS Continuous rank predictive skill score

DALEC Data assimilation linked ecosystem carbon

FIM Fisher information matrix

GPP Gross primary production

GSA Global sensitivity analysis

MCMC Markov chain Monte Carlo

NEE Net ecosystem exchange

QoI Quantity of interest

TSC Total soil carbon

TVC Total vegetation carbon

DKL(p||q) Kullback–Leibler divergence between probability densities q and p

LD = p(D|θ) Likelihood of the data D for a particular instance of model parameters θ

p(θ), p(θ |D) Prior and posterior probability densities, for model parameters θ

p(y|D) Posterior distribution for the predicted NEE data y

pk(yk |D) Marginal posterior distribution for the predicted NEE component yk
R(X,Y ) Distance correlation between random variables X and Y

Si First-order Sobol index for parameter i

Sij Joint Sobol index for parameters i and j

ST
i

Total-order Sobol index for parameter i

θ Vector of parameters for DALEC

The analysis presented in this paper considered a single

data series at one site only. However, the Bayesian frame-

work employed in the parameter calibrations is well-suited

to deal with both heterogeneous data and multiple model se-

tups. We are currently exploring avenues to extend this work

to multi-site studies together with employing multiple data

streams to better constrain the model parameters.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-1899-2015-supplement.
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