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Abstract. Here we present the online meteorology and

chemistry adjoint and tangent linear model, WRFPLUS-

Chem (Weather Research and Forecasting plus chemistry),

which incorporates modules to treat boundary layer mixing,

emission, aging, dry deposition, and advection of black car-

bon aerosol. We also develop land surface and surface layer

adjoints to account for coupling between radiation and ver-

tical mixing. Model performance is verified against finite

difference derivative approximations. A second-order check-

pointing scheme is created to reduce computational costs and

enable simulations longer than 6 h. The adjoint is coupled

to WRFDA-Chem, in order to conduct a sensitivity study of

anthropogenic and biomass burning sources throughout Cali-

fornia during the 2008 Arctic Research of the Composition of

the Troposphere from Aircraft and Satellites (ARCTAS) field

campaign. A cost-function weighting scheme was devised to

reduce the impact of statistically insignificant residual errors

in future inverse modeling studies. Results of the sensitiv-

ity study show that, for this domain and time period, anthro-

pogenic emissions are overpredicted, while wildfire emission

error signs vary spatially. We consider the diurnal variation

in emission sensitivities to determine at what time sources

should be scaled up or down. Also, adjoint sensitivities for

two choices of land surface model (LSM) indicate that emis-

sion inversion results would be sensitive to forward model

configuration. The tools described here are the first step in

conducting four-dimensional variational data assimilation in

a coupled meteorology–chemistry model, which will poten-

tially provide new constraints on aerosol precursor emissions

and their distributions. Such analyses will be invaluable to as-

sessments of particulate matter health and climate impacts.

1 Introduction

Fine particulate matter impacts human health (Schwartz

et al., 2007; Krewski et al., 2009) and climate (Myhre et al.,

2013). Atmospheric climate forcing from aerosols is not only

potentially large, but also highly uncertain owing to a com-

plex spatial–temporal distribution of concentration, mixing

state, and particle size for multiple species, each emitted

from varying precursor sources, both anthropogenic and nat-

ural (Textor et al., 2006; Schulz et al., 2006). Depending

on the species and quality of records, a nation’s annual

aerosol precursor and primary emissions have uncertainties

anywhere between 7 % and a factor of 4, with larger vari-

ation on seasonal to diurnal scales for particular sectors

(Streets et al., 2003; Suutari et al., 2001). Over these shorter

timescales, aerosols impact meteorology through the semi-

direct (Hansen et al., 1997; Koch and Del Genio, 2010) and

indirect (Twomey, 1977; Lohmann and Feichter, 2005) cloud

effects, which are both dependent on aerosol vertical profiles

(e.g., Samset et al., 2013) governed by mixing.

Atmospheric models are used to improve our understand-

ing of aerosol sources, distributions, and processes. On-

line numerical weather prediction and chemistry (NWP-

chemistry) models integrate dynamic and chemical equations

simultaneously, whereas offline chemical transport models

(CTMs) interpolate meteorological fields from 3 to 6 h re-

analyses. Grell et al. (2004) used the Weather Research

and Forecasting Model with chemistry (WRF-Chem) (Ska-

marock et al., 2008; Grell et al., 2005) to show that vertical

mass transport of chemical tracers is highly sensitive to the

choice of online vs. offline modeling methodologies due to

variations in boundary layer mixing strength. Additionally,

NWP-chemistry models account for moisture and tempera-

ture perturbations to dynamics due to aerosol microphysics
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and radiative forcing, while CTMs cannot account for these

feedbacks.

There are numerous online models with aerosol-

meteorology feedbacks (e.g., WRF-Chem, COSMO-ART –

Vogel et al., 2009; GEM-AQ – Kaminski et al., 2008; and

IFS-MOZART – Kinnison et al., 2007; Flemming et al.,

2009; Morcrette et al., 2009). Better descriptions of sources,

loss mechanisms, and vertical transport in coupled models

are needed to increase accuracies in short-term climate mod-

eling (Baklanov et al., 2014). To address this, chemical data

assimilation can be used to improve short-term forecasts.

Bocquet et al. (2015) review methods and applications of

chemical data assimilation in CTMs and NWP-chemistry

models. In WRF, three-dimensional variational data assim-

ilation (3D-Var) (Pagowski et al., 2010; Liu et al., 2011;

Schwartz et al., 2012; Saide et al., 2012, 2013), ensemble

Kalman filter (EnKF) (Pagowski and Grell, 2012), and hy-

brid approaches (Schwartz et al., 2014) have all been used to

improve chemical initial conditions. The limitation of these

studies, using sequential methods, has been the decay of

chemical concentrations back to the emissions-driven values

following the characteristic loss rate of each species, necessi-

tating periodic re-initialization with new observations. Using

data assimilation solely to perturb initial conditions leaves

behind underlying deficiencies in model description, emis-

sions, or other input parameters.

In contrast to 3-D approaches, 4-D data assimilation at-

tempts to minimize the discrepancy between model predicted

values and observations at the same time observations are ac-

quired. Variational 4-D data assimilation (4D-Var) requires

an adjoint, which calculates the sensitivity of a model met-

ric to all input parameters, such as resolved aerosol precur-

sor emissions. Several offline CTMs already have adjoints

for constraining aerosol and aerosol precursor emissions, in-

cluding GEOS-Chem (Henze et al., 2007), Sulfur Transport

dEposition Model (STEM) (Sandu et al., 2005; Hakami et al.,

2005), Community Multi-scale Air Quality Model (CMAQ)

(Turner et al., 2015), Goddard Chemistry Aerosol Radiation

and Transport model (GOCART) (Dubovik et al., 2008), and

Laboratoire de Météorologie Dynamique (LMDz) (Huneeus

et al., 2009). Inverse modeling has been used to constrain

aerosol emissions with 4D-Var, but only in offline models

(e.g., Hakami et al., 2005; Dubovik et al., 2008; Henze et al.,

2009; Wang et al., 2012). In addition to inverse modeling,

derivatives calculated from CTM adjoints have been used to

analyze sensitivities of model estimates to emissions (e.g.,

Turner et al., 2012). Online chemical 4-D variational data as-

similation (4D-Var) has been performed with the global Inte-

grated Forecast System coupled to the Model for OZone and

Related chemical Tracers (IFS-MOZART) model, although

without two-way coupling, to improve aerosol (Benedetti

et al., 2009) and gas-phase (Inness et al., 2013) initial con-

ditions. To our knowledge, 4D-Var still has not been used

in a regional NWP-chemistry model with online coupling

to constrain aerosol precursor emissions or other important

model parameters, such as vertical mixing coefficients.

Here we present the first such system, building on existing

capabilities of the WRF data assimilation (WRFDA) frame-

work. WRFDA includes both 3D-Var (Barker et al., 2004)

and incremental 4D-Var (Barker et al., 2005; Huang et al.,

2009) algorithms, which are designed for constraining me-

teorological initial conditions (e.g., wind fields, temperature,

moisture). For WRFDA v3.2 and later, WRF-4DVar requires

calling the WRFPLUS (Weather Research and Forecasting

plus) forward (FWM), tangent linear (TLM), and adjoint

(ADM) models. These models include adiabatic WRF dy-

namics, along with simplified surface friction (i.e., boundary

layer), cumulus, and microphysics packages (Zhang et al.,

2013). Here we integrate aerosol chemistry and vertical mix-

ing from WRF-Chem into WRFPLUS, including comple-

mentary TLM and ADM components. While existing CTMs

are capable of aerosol emission inversions, this develop-

ment promises to introduce new insights into meteorology–

chemistry couplings. We apply this system to black carbon

(BC) aerosol, because of its important implications for cli-

mate (Bond et al., 2013) and health (Grahame et al., 2014).

Additionally, the widespread use and development of WRF

furthers the potential for continued model improvement and

a community of future users.

BC is emitted from incomplete combustion of fuels. Major

anthropogenic sources include residential cookstoves in de-

veloping countries, open crop burning, diesel transportation,

and coal power plants with poor emission controls. Wildfires,

or biomass burning, are the largest natural source. The ma-

jor limitations to devising accurate bottom-up emissions in-

ventories are poor activity data in developing countries and

difficulty parameterizing complex biomass burning sources.

Even in developed countries, changing economic landscapes

affect real year-to-year emissions. BC is unique among at-

mospheric aerosols as being radiatively absorptive, relatively

inert, primary emitted, and having potentially complex cloud

interactions. BC is possibly the second most important hu-

man emitted pollutant in terms of climate forcing in the

present-day atmosphere, with a net forcing of +1.1Wm−2,

but with 90 % uncertainty (+0.17 to +2.1Wm−2) (Bond

et al., 2013). Also, reductions in BC emissions have been

shown to reduce fine particulate health impacts (e.g., Anen-

berg et al., 2011).

The new TLM and ADM – referred to collectively herein

as “AD/TL models” – aerosol treatments lay the ground-

work for constraining aerosol precursor emissions using 4D-

Var in a NWP-chemistry model. In Sect. 2, we describe the

WRFPLUS-Chem and WRFDA-Chem model architectures.

In Sect. 3, we describe the construction and verification of

the AD/TL models of specific WRF-Chem forward model

components. In Sect. 4, we describe a special checkpointing

scheme that enables adjoint and tangent linear simulations

longer than 6 h which are required for accumulating sensi-

tivities of sparse chemical observations with respect to emis-
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sions. In Sect. 5, we demonstrate the capability of the adjoint

model to calculate sensitivities of BC observation errors in

WRFDA-Chem. Finally, we discuss future developments for

WRFPLUS-Chem and WRFDA-Chem.

2 Methods

Creating the foundation for WRFDA-Chem required man-

aging relationships between five related but separate mod-

els. These include (1) WRF, (2) its “-Chem” variant, and

the (3, 4) WRFPLUS AD/TL models. Finally, (5) WRFDA

4D-Var requires communication of critical name list and

state variables to the FWM, TLM, and ADM. Table 1 lists

the WRF-Chem components that previously had AD/TL de-

scriptions in WRFPLUS, those with new code developed for

WRFPLUS-Chem, and those that need future development

to enable fully coupled chemical 4D-Var.

2.1 Forward model

For this work, we use WRF version 3.6. The WRFPLUS-

Chem code repository (https://svn-wrf-model.cgd.ucar.edu/

branches/WRFPLUSV3-Chem) contains the most current

version. Interested users can contact National Center for At-

mospheric Research (NCAR) or the authors for access to

the code. WRF contains multiple non-hydrostatic dynamic

cores and parameterization options for modeling unresolved

physical processes. The FWM is identical in WRF and WRF-

PLUS. The simplified treatments for unresolved physics are

typically only used in the AD/TL models. In addition, WRF-

Chem simulates the emission, deposition, transport, turbulent

and cumulus mixing, wet scavenging, cloud interactions, and

chemical transformation of trace gasses and aerosols. All of

these processes are modeled at the same spatial and temporal

resolution, which enables coupling WRF radiation and mi-

crophysics calculations directly with chemical processes.

The forward model configuration for which we have de-

veloped the corresponding TLM and ADM will be referred

to as the “adjoint model configuration,” because we use

the same settings when running the adjoint. We use GO-

CART aerosols (chem_opt= 300), wherein the chem array

has 19 aerosol (e.g., SO2, sulfate, black carbon, dust, sea

salt) and zero gas-phase members. This option includes bulk

mass sulfate chemistry and black carbon oxidative aging. We

employ combined local and non-local Asymmetric Convec-

tive Model (ACM2) planetary boundary layer (PBL) mixing

(Pleim, 2007b, a), with surface interactions handled by the

Pleim–Xiu (PX) land surface model (LSM) (Xiu and Pleim,

2001; Pleim and Xiu, 2003; Pleim and Gilliam, 2009) and

surface layer (Pleim, 2006) mechanisms (all options seven).

Soil moisture and temperature nudging are not used within

the PXLSM. Prior to version 3.6, the WRF-Chem vertical

mixing scheme solely carried out PBL mixing and dry de-

position for chemical species. That vertical mixing depended

on a (local) turbulent-eddy mixing coefficient from a user-

selected PBL scheme and a dry deposition velocity. There is

new capability to calculate tracer turbulent mixing and dry

deposition within the ACM2 subroutine itself, enabling non-

local mixing. Trace gas and particle deposition velocities are

calculated using characteristic resistances found using meth-

ods from Wesely (1989). Microphysics and radiation AD/TL

models with aerosol feedbacks have not been incorporated

into WRFPLUS-Chem yet. These crucial components will be

partially adapted from previous work (e.g., Saide et al., 2012,

2013), while others still need to be developed. Both micro-

physics and radiation are turned off for Sect. 3.3 verification

simulations. In order to ensure appropriate radiative fluxes at

the land–air boundary, the GSFCSW and Goddard LW radia-

tion compute ground-incident radiation for the Sect. 5 adjoint

sensitivity demonstration. However, online coupling between

radiation and chemical species is deactivated.

2.2 Incremental 4D-Var

WRFDA uses an incremental 4D-Var method (Courtier et al.,

1994) for finding the minimum of the cost function, J , by

adjusting control variables (CVs), x. As described by Huang

et al. (2009), the WRFDA cost function has three terms

J = Jb+ Jo+ Jc, (1)

where Jb, Jo, and Jc are the background, observation, and

balancing cost functions, respectively. Jc is not relevant to the

current work. The background and observation cost functions

are

Jb =
1

2

[
δx+

n−1∑
i=1

(
xi − xi−1

)]>
B−1

[
δx+

n−1∑
i=1

(
xi − xi−1

)]
, (2a)

and

Jo =
1

2

K∑
k=1

{
Hk
[
Mk

(
xn
)]
− yk

}>
R−1
k{

Hk
[
Mk

(
xn
)]
− yk

}
≈

1

2

K∑
k=1

[HkMkδx− dk]
>R−1

k

[HkMkδx− dk] . (2b)

The background cost function is a penalty term, which en-

sures the departure of the posterior, xn, from the prior, x0
=

xb, remains within the bounds justified by the background

error covariance, B. The observation cost function measures

the distance between the 4D-Var model solution, xn, and the

observations, y.M andH are the nonlinear model and obser-

vation operators, while M and H are their linearized forms,
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Table 1. Status of AD/TL development for WRF-Chem processes.

WRFPLUS WRFPLUS- Future

Chem work

solve_em

Subgrid processes

Radiation X

SFCLAY (options 91 & 7) X

LSM (options 1 & 7) X

Dry dep. velocity only X

PBL (NEW: option 7 w / dry dep) X X

Cumulus convection X X

Advection X

Microphysics (need aerosols) X X

chem_driver

Emissions X

Aerosol optical obs. operators X

Dry dep. velocity and vertical mixing

Cumulus convection of chem. species X

Gas chem. (sulfate precursors) X

Aerosol chem. (GOCART) X

Sum PM X

or tangent linear operators, used to propagate analysis incre-

ments δx = xn− xn−1 from earlier simulation times to the

kth observation. R is the observation error covariance ma-

trix. The innovation,

dk = yk −Hk

[
Mk

(
xn−1

)]
, (3)

is the residual error between the real and modeled observa-

tions k at the end of 4D-Var iteration n− 1.

For each iteration of incremental 4D-Var, the model is lin-

earized about a trajectory, which is a collection of stored val-

ues of all model state variables at all time steps within the

assimilation window. This trajectory enables propagation of

sensitivities forward and backward in time within the TLM

and ADM. Each of these models are called in an inner loop to

calculate the gradient of the observation cost function, ∇xJo.

An optimization algorithm uses the gradients to calculate op-

timal analysis increments to the CVs, which minimize the ob-

servation cost function. If the CVs, xn, depart too much from

the initial guess for the current outer loop iteration, xn−1, the

model must be re-linearized about the new state, xn, using

M . The purpose of the two-level optimization is that approx-

imating M with M simplifies the full problem to a quadratic

problem, and guarantees a unique solution to the minimiza-

tion (Courtier et al., 1994). Refer to Huang et al. (2009) for

more details on the WRFDA incremental method, including

a full expression for ∇xJ given by Eq. (7) of that article. The

main purpose of this work is to introduce the AD/TL model

components of the WRFPLUS-Chem.

3 Tangent linear and adjoint model construction and

verification

We have developed and tested adjoint and tangent linear code

to represent aerosol-relevant processes in WRFPLUS-Chem.

This development required a four step process:

1. automatically differentiate specific WRF-Chem mod-

ules using TAPENADE (Hascoët and Pascual, 2013)

version 3.6;

2. verify stand alone TLM and ADM derivatives against fi-

nite difference approximations and debug as necessary;

3. incorporate code manually into WRFPLUS;

4. repeat step 2 for fully integrated WRFPLUS-Chem

model.

TAPENADE takes discrete Fortran or C source code as in-

put, then generates either TLM or ADM code using a user-

generated list of independent and dependent parameters. In

addition to creating the differential code, TAPENADE re-

duces adjoint computational cost by eliminating unneces-

sary lines of code. Similar to Xiao et al. (2008) and Zhang

et al. (2013), integrating the automatically differentiated ad-

joint code into WRFPLUS required significant manual in-

tervention and debugging. Methods for constructing discrete

adjoints are well-documented (Giering and Kaminski, 1998;

Hascoët and Pascual, 2013). For the remainder of this sec-

tion, we discuss the particular mechanisms for which we

have created AD/TL models, and then we provide verifica-

tion results for WRFPLUS-Chem.

Geosci. Model Dev., 8, 1857–1876, 2015 www.geosci-model-dev.net/8/1857/2015/



J. J. Guerrette and D. K. Henze: Online chemistry adjoint and assimilation system 1861

3.1 Transport mechanisms

PBL physics and dry deposition in a column are handled

by ACM2. The simple surface friction previously developed

for WRFPLUS does not perform vertical mixing of tracers,

which is a minimum requirement of any PBL scheme used

in WRFPLUS-Chem. The ACM2 PBL depends on ground–

atmosphere interactions that necessitate additional surface

layer and LSM AD/TL code. For example, the ACM2 PBL

scheme depends on the friction velocity, U∗, calculated in

a surface layer scheme, which itself depends on wind speed,

and the state variables u and v. ACM2 also depends on

surface heat (HFX) and moisture (QFX) fluxes, which can

be calculated within the surface layer or LSM code, but

also depend on U∗. The dependence of HFX and QFX on

ground-incident shortwave radiation (GSW) is calculated in

the LSM. GSW is calculated in the radiation scheme, and

depends on the aerosol composition and atmospheric mois-

ture phase and distribution. Because we have not developed

radiation AD/TL code, this coupling is not represented in

WRFPLUS-Chem yet. The dependencies themselves are il-

lustrative of how ACM2, and indeed most any other PBL

scheme available in WRF, is appropriate for representing

chemistry–meteorology interactions critical to understanding

short-term climate impacts from aerosols. ACM2 is compat-

ible with the Monin–Obukhov and PX (options 91 and 7)

surface layer options, as well as the SLAB and PX (options 1

and 7) LSM options. TLM and ADM code is developed for

all of these choices, and have been tested in stand alone ver-

ification tests. In the interest of brevity, complete model ver-

ification in Sect. 3.3 has been limited to the two PX options.

Advection of inert tracers was added to WRFPLUS by

X. Zhang (2012, personal communication). The same treat-

ment has been applied to the “chem” array, with additional

checkpointing and parallel communications. We generated

stand alone TLM and ADM code for deep cumulus convec-

tion as handled by the Grell–Freitas cumulus scheme (Grell

and Freitas, 2014). One of the major benefits of this cumulus

scheme is the ability to use online-calculated cloud conden-

sation nuclei (CCN) to account for the effect of aerosols on

liquid and vapor water mass fractions. These parameters di-

rectly impact convection, including tracer transport. The abil-

ity of the stand alone AD/TL codes to produce the relevant

members of the Jacobian has been verified for a single set

of column conditions using similar methods as described in

Sect. 3.3. However, the FWM, TLM, and ADM do not yet

account for vertical transport of chemical tracers, and thus

have not been integrated into WRFPLUS-Chem.

3.2 Aerosol-specific components

GOCART is a bulk aerosol scheme that treats reactive

species (BC, OC, sulfate) using a total mass approach and

divides non-reactive species (dust, sea salt) into multiple

size bins (Chin et al., 2000). Oxidative aging for both BC

and OC is handled by a first-order decay from hydropho-

bic to hydrophilic forms using a time constant of 2.5 days.

Sulfate (SO2−
4 ) is produced from SO2 and dimethyl sulfide

precursor gasses in GOCART. Sulfate chemistry also re-

quires offline-calculated values for nitrate and OH radical,

which are taken from climatologies available from the PREP-

CHEM-SRC preprocessor (Freitas et al., 2011). WRFPLUS-

Chem includes both the carbon and sulfate chemistry AD/TL

codes, but only the BC component is tested and applied here.

Emissions of aerosol precursors in WRF-Chem is a linear

process corresponding to specific chemistry and emission in-

ventory options. Emission magnitudes are calculated, then

distributed spatially and temporally, in offline preprocessors.

Typically, emissions are read in hourly following some diur-

nal pattern. In order to make the emissions code easily dif-

ferentiable, scaling factors are added to the emissions such

that

Ec,isc = αc,isc Ẽc. (4)

At any simulation time, Ẽc are the emissions most recently

read in from file for chemical species c. αc,isc and Ec,isc are

the emission scaling factors and effective emissions, respec-

tively, during scaling period isc. For emission inversions, the

CVs, x, are spatial–temporal resolved emission scaling fac-

tors. At the beginning of 4D-Var or during an adjoint sensi-

tivity study, the scaling factors are set to unity. The scaling

factors are applied in the FWM if the environment variable

WRPLUS is set equal to 1 during compilation.

Dry deposition velocities are calculated in WRF-Chem

within the dry deposition driver. In order to ease adjoint code

construction and reduce checkpointing requirements, the dry

deposition velocity calculation is moved to immediately pre-

cede the PBL driver as depicted in Table 1. The new source

code is similar to the dry deposition driver, except that only

code corresponding to the GOCART aerosol option remains.

The dry deposition AD/TL code accounts for dependencies

of the dry deposition velocity on physical parameters (e.g.,

temperature, water vapor, U∗). As mentioned previously, the

chemical concentrations are sensitive to dry deposition ve-

locity within the PBL scheme.

3.3 Verification and linearity test

WRFPLUS FWM, TLM, and ADM performance were pre-

viously verified by Zhang et al. (2013). Here we use an al-

ternative approach based on Taylor series derivative approxi-

mations, and similar to that used by, e.g., Henze et al. (2007),

to verify WRFPLUS-Chem. We define a new cost function

equal to a single predicted state variable, locally defined in

grid cell p and at the end of time step f , J = SVp,f . We use

the TLM, ADM, and a centered finite difference approxima-

tion from the FWM to evaluate derivatives

χp,q =
∂J

∂xq,0
, (5)
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with respect to some CV at location q and the initial time, 0.

The finite difference derivatives are calculated from

χNL
p,q ≈

J
(
xq,0+ δx

)
− J

(
xq,0− δx

)
2δx

, (6)

where each evaluation of J results from a FWM simulation

with some perturbed value of xq,0. δx varies between 0.1

and 10% of the value of xq,0. The adjoint and tangent linear

derivatives are found by forcing the model gradient fields, λ∗

and λ, at J and xq , respectively. The tangent linear gradient

and adjoint gradient variables are analogous to state variables

in the FWM. We force gradients of 1.0, indicating a 100%

perturbation of the variable, and the resulting derivatives are

retrieved from the model output gradient fields, such that

χTL
p,q = λp,f =M

(
λq,0

)
, (7)

and

χAD
p,q = λ

∗

q,0 =M>
(
λ∗p,f

)
, (8)

where M> is the adjoint operator.

In order to evaluate our additions to WRFPLUS-Chem,

we test cost functions equal to hydrophobic (BC1) and hy-

drophilic (BC2) black carbon concentrations in 100 different

grid cells. We evaluate derivatives with respect to five CVs

at three initial locations for each of those 200 cost functions.

The CVs include BC emission scaling factors (αBC) and ini-

tial conditions for BC1, zonal wind (U ), perturbation poten-

tial temperature (δ2), and water vapor mixing ratio (Qv).

All sensitivities apply over a 3 h duration for a domain cov-

ering the southwest USA. For a full domain and model setup

description refer to Sect. 5.1.1. Figure 1 shows that the max-

imum relative error between the TLM and ADM is in the 8th

significant digit. Thus, we only need to compare the nonlin-

ear model to the TLM to verify both the TLM and ADM.

Those results are given in Fig. 2. The slope and R2 statis-

tic for a linear fit of those comparisons are very nearly unity

for all CVs tested. Each of the plots in Figs. 1 and 2 depicts

600 derivative evaluations. A range of finite difference per-

turbations δx is used for U , δ2, and Qv control variables

in order to find a value of χNL with the best compromise

between truncation and roundoff error. We test derivatives

with respect to meteorological variables in order to show the

AD/TL models will be functional in a setting with coupled

chemistry and physics. In such a system, the emissions will

impact meteorology, which in turn impacts concentrations.

These results illustrate the capability of the AD/TL models

to represent the latter part of that relationship. All of the ver-

ification results apply to a 3 h simulation period, but longer

simulations are needed to calculate the average influence of

emissions on the modeled state space.
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Figure 1. Comparison of ADM to TLM evaluations of
∂[BC1]
∂x and

∂[BC2]
∂x for 300 derivatives for each denominator variable.
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Figure 2. Comparison of nonlinear finite difference approxima-

tions to TLM evaluations of
∂[BC1]
∂x and

∂[BC2]
∂x for 300 deriva-

tives for each denominator variable. The different markers for x =

[U,T ,Qv] indicate the δx percentage that yielded a finite difference

derivative closest to the tangent linear value. The slope (m) and R2

statistic for the linear fit are shown for each CV.

4 Second-order checkpointing

As discussed in Sect. 2.2, the nonlinear model trajectory is an

integral component for propagating gradients in the AD/TL

models. As one might imagine, the trajectory contains a large

amount of information. WRFPLUS stores the entire double

precision trajectory in memory in order to eliminate expen-

sive I/O time. This is very helpful with regards to storage,

but presents a challenge in terms of memory. The system is

designed for 6 h operational assimilation windows. In a typ-

ical WRFPLUS-Chem simulation there are at least 28 three-

dimensional state variables (8 physical, 1 to 3 moisture, and

19 GOCART species), and numerous other two- and one-

dimensional state variables that must be included in the tra-

jectory. For an illustrative domain, simulating 3 h with a 90 s

time step (18 km resolution), 79× 79 columns, 42 levels, a 5

cell boundary width, and 28 3-D state variables, the trajec-
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tory would require 1.46 GB per core on 64 cores. This final

cost per core includes a 50 % storage growth per doubling of

the number of cores. Because the trajectory is stored for all

time steps, required memory scales linearly with simulation

duration and the number of simulated chemical species. For

multi-day and multi-week inversions, as is typical in non-

operational chemical data assimilation, the memory require-

ments become impractical for most cluster computing sys-

tems.

To solve this problem we implement a second-order

checkpointing scheme that shares the storage burden be-

tween the hard disks and memory. In a standard WRFPLUS

adjoint simulation, the FWM is called first in order to calcu-

late the trajectory. The FWM integrates the nonlinear equa-

tions from the initial to the final time, and stores the model

trajectory at each time step. The ADM integrates the trans-

pose of the linearized model equations backward in time, and

at each time step reads the trajectory previously stored by the

FWM. This process is depicted as “first-order checkpoint”

in Fig. 3. Since the storage limitation is driven by the du-

ration of a simulation, we break the simulation into smaller

segments, while maintaining continuity in the adjoint deriva-

tives. The checkpointed adjoint simulation begins with a full

FWM simulation beginning at the initial time, t0, and end-

ing at the final time, tf. WRF restart files are written at time

intervals equal to the checkpoint interval,1tc. Once the sim-

ulation is completed, the FWM is restarted at initial time

equal to tf−1tc. During that simulation, the trajectory is

stored in memory. The trajectory is then recalled in an adjoint

simulation that proceeds backward toward the current initial

time. The checkpoint system alternately calls the FWM and

ADM until returning to t0. The major hurdle to integrating

this second-order checkpointing system into WRF-4-DVar is

that the trajectory is no longer readily available to WRFDA

for calculating modeled observations,Hk
[
Mk (x

n)
]
, between

the calls to the forward and adjoint models. Instead, these

values must be calculated during either the full FWM (step 1)

or checkpoint FWM (steps 2, 4, 6, etc.) simulations. We take

the former approach. A similar checkpointing system is also

implemented for the TLM in order to enable long duration

incremental 4D-Var.

In order to ensure the checkpointing method delivers con-

sistent derivatives to the non-checkpointed version, we again

compare AD/TL derivatives to finite difference approxima-

tions. Because of the wall time required to calculate deriva-

tives across extended time periods, we limit our tests to 14

pairs of initial and final locations, q and p. For all of the J

and x pairs tested in Sect. 3.3, the ADM and TLM agree to

13 or more digits over a 9 h test. The improved performance

relative to the previous 3 h test came about after increasing

the precision of several variables in the TLM dry deposition

subroutine. Because of this machine precision AD/TL agree-

ment, we only compare the finite difference approximations

to the TLM. For these checkpointed simulations, we analyze

the derivative of a time variant cost function with respect to

t0	

 tf	

t0+Δtc	

 tf - 2Δtc	

 tf - Δtc	



Full FWM simulation 
Checkpoint FWM 
Checkpoint ADM 

…	



RESTART file read 

2nc	
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checkpoint interval Δtc=	
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1	
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5	



1st-order checkpoint 

store trajectory in memory 
read trajectory from memory 

Figure 3. Second-order checkpointing scheme implemented in

WRFPLUS-Chem.

multiple control variables

χp,q (t)=
∂Jp (t)

∂xq,0
. (9)

Doing so ensures that the derivatives are continuous across

multiple checkpoint intervals and we are able to see the tran-

sient behavior of multiple finite difference perturbation sizes

at times when there are large discrepancies with the TLM.

The finite difference approximations of derivatives of BC

with respect to the physical variables grow more unstable

with time. Thus, we calculate those derivatives only for a 6 h

period, while we test derivatives with respect to emissions

for 48 h. Here we also include derivatives of U , δ2, and Qv

with respect to U and Qv to ensure that those relationships

are represented properly in the surface layer, LSM, and PBL

AD/TL schemes, so that they may be used in a meteorologi-

cal 4D-Var setting.

Figure 4 shows the resulting derivatives for nine different

pairs of J and x for a single pair of q and p. Most importantly

for multi-day 4D-Var emissions inversions, and as would be

expected, BC concentrations respond linearly to a 1 % per-

turbation of emissions for at least 48 h. Next, it becomes

apparent why derivatives with respect to U and Qv require

multiple finite difference perturbation sizes to ensure one of

them matches the TLM at a particular cost function evalua-

tion time. There are times when either the smallest, largest,

or no value for δx agrees with the TLM. However, the TLM

has inflection points at the same times as the finite difference

approximations, including during fast transient periods, such

as for ∂U
∂U

and ∂U
∂Qv

. The duration over which the tangent lin-

ear assumption is valid for chemical responses to U and Qv

depends on the size of the perturbation and on the local me-

teorological regime. For instance, the test results shown here

are for a response location very near the California coast, but

better agreement was found farther inland. Further testing of

the coupled derivatives will be necessary to determine over

what time period they are suitable for inverse modeling, and

under what conditions the model nonlinearities cease to be

a limiting factor. Future inversions with coupled physics and

www.geosci-model-dev.net/8/1857/2015/ Geosci. Model Dev., 8, 1857–1876, 2015



1864 J. J. Guerrette and D. K. Henze: Online chemistry adjoint and assimilation system

0 12 24 36 48

−0.02

0

0.02

0.04

0.06

∂
J
(
t)

∂
x
q
,
0
·

x
q
,
0

J
(
t)

 

 

J ≡ [BC1] , x ≡ αB C

0 1.5 3 4.5 6

−15

−10

−5

0

5

x 10
−3

J ≡ [BC1] , x ≡ Q v

0 1.5 3 4.5 6

−4

−2

0

2

4

6

x 10
−3

J ≡ [BC1] , x ≡ U

0 1.5 3 4.5 6

−1.5

−1

−0.5

0

0.5

1

1.5

∂
J
(
t)

∂
x
q
,
0
·

x
q
,
0

J
(
t)

J ≡ U , x ≡ Q v

0 1.5 3 4.5 6

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

J ≡ Q v, x ≡ Q v

0 1.5 3 4.5 6

−60

−40

−20

0

20

J ≡ δΘ , x ≡ Q v

0 1.5 3 4.5 6

−0.2

−0.1

0

0.1

0.2

t (hr)

∂
J
(
t)

∂
x
q
,
0
·

x
q
,
0

J
(
t)

J ≡ U , x ≡ U

0 1.5 3 4.5 6

−5

0

5

10

x 10
−4

t (hr)

J ≡ Q v, x ≡ U

0 1.5 3 4.5 6
−5

0

5

10

t (hr)

J ≡ δΘ , x ≡ U

TL

0.1%

1%

10%

Figure 4. Fully normalized time variant sensitivities calculated with the TLM with second-order checkpointing and with multiple finite

difference perturbation sizes. Each plot is for a single pair of source and receptor locations, q and p.

chemistry will need to verify that ∂J
∂α

has a near-linear re-

sponse over the time frame considered. The behaviors noted

here are similar or improved across the other 13 pairs of q

and p.

5 Sensitivities to BC emissions in California

Here we demonstrate the new WRFPLUS-Chem capabilities

in an adjoint sensitivity study. For the present example, the

4D-Var cost function is the model response metric and the

biomass burning, and weekday and weekend anthropogenic

emissions are the model parameters of interest. This frame-

work is used to analyze where and when these parameters

most impact the model performance and are thus in need of

improvement.

5.1 Approach

For this demonstration, we calculate the sensitivity of the 4D-

Var cost function in the first iteration. The background term is

zero and there has been no prior CV increment (i.e., δx = 0).

Therefore, the cost function, Eq. (1), simplifies to

J =
1

2

K∑
k=1

{Hk [Mk (xb)]− yk}
>R−1

k

{Hk [Mk (xb)]− yk}. (10)

All off-diagonal covariances in R are assumed to be zero in

order to enable timely matrix inversion.

5.1.1 Model configuration

The model domain encompasses California and other south-

west US states from 20 June 2008, 00:00:00 UTC to

27 June 2008, 09:00:00 UTC. We generated chemical initial

conditions by running WRF-Chem for 5 days prior to the

adjoint time period. We used the default WRF-Chem bound-

ary condition for BC concentration of 0.02 µgkg−1. This is

consistent with a single upwind Pacific Ocean transect taken

during the 22 June flight. Meteorological initial and bound-

ary conditions are interpolated from 3 h, 32 km North Amer-

ican Regional Reanalysis (NARR) fields. The horizontal res-

olution is 18 km throughout, and there are 42 vertical levels

between the surface and model top at 100 hPa. The η levels

are 1.000, 0.997, 0.993, 0.987, 0.977, 0.967, 0.957, 0.946,

0.934, 0.921, 0.908, 0.894, 0.880, 0.860, 0.840, 0.820, 0.800,

0.780, 0.750, 0.720, 0.690, 0.660, 0.620, 0.570, 0.520, 0.470,

0.430, 0.390, 0.350, 0.310, 0.270, 0.230, 0.190, 0.150, 0.115,

0.090 , 0.07 , 0.052, 0.035, 0.020, 0.010, and 0.000. For a col-

umn where the ground is at sea level, there are 13 levels be-

low 1 km and an additional 5 levels below 2 km. The subgrid

physics options used are described in Sect. 2.1.

Anthropogenic emissions are taken from the US EPA (En-

vironmental Protection Agency) 2005 National Emissions
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Figure 5. Surface site residual model error, rk , overlaid on MODIS Aqua true color images and active fire retrievals. Observations with a bias

less than 1 SD are also indicated.

Inventory (NEI2005). Fire emissions are provided by the

Fire INventory from NCAR (FINN Version 1) (Wiedinmyer

et al., 2011, 2006). FINN uses Moderate Resolution Imaging

Spectroradiometer (MODIS) active fire locations and radia-

tive power from NASA Terra and Aqua satellites, as well as

speciated emission factors for four vegetation types, to cal-

culate daily total 1 km resolution emissions. Burned areas are

scaled to the combined fractional coverage of each 1 km2 fire

pixel by tree and herbaceous vegetation types assigned by the

MODIS vegetation continuous fields product (Hansen et al.,

2003). Repeated fire detections in a single fire pixel are re-

moved according to Al-Saadi et al. (2008). Plume rise injec-

tion heights are calculated in WRF-Chem by an embedded

one-dimensional cloud-resolving model (Freitas et al., 2007,

2010; Grell et al., 2011).

5.1.2 Model-observation comparison

We compare the model to observations in individual time

steps, which differs from previous data assimilation ap-

proaches with WRF. In the standard WRFDA 4D-Var archi-

tecture, observations are binned over intervals, or windows,

typically of 1 h or longer duration. Whereas WRFDA typi-

cally has k observation windows, here WRFDA-Chem and

WRFPLUS-Chem handle k observation time steps, each of

which might have multiple measurements available. In order

to reduce memory requirements, the adjoint forcing is stored

in a column array, instead of the 2-D and 3-D arrays that

were required for each state variable for each window, k in

WRFDA. Also, while WRFDA includes meteorological ob-

servation operators to be called offline, the new fine tempo-

ral resolution observation operator is called directly within

WRFPLUS. The traditional approach not only made com-

munication between WRFDA and WRFPLUS less cumber-

some, but also limited the ability to use dynamic observations

recorded across broad temporal scales in an inversion.

In situ observations were collected throughout Califor-

nia during the June 2008 portion of the Arctic Research

of the Composition of the Troposphere from Aircraft and

Satellites field campaign in collaboration with the Califor-

nia Air Resources Board (ARCTAS-CARB) (Jacob et al.,

2009). Instruments aboard the DC-8 aircraft measured trace

gas and aerosol concentrations over 4 days, including ab-

sorbing carbonaceous aerosol from the single particle soot

photometer (SP2) at 10 s intervals (Sahu et al., 2012). Addi-

tionally, 41 Interagency Monitoring of Protected Visual En-

vironments (IMPROVE) sites measured daily average sur-

face light absorbing carbon (LAC) on 20, 23, and 26 June

by thermal/optical reflectance (TOR) analysis of quartz fil-

ters (Malm et al., 1994). Surface and aircraft observation lo-

cations during the campaign are indicated in Figs. 5 and 6.

The aircraft trajectories are overlaid on MODIS Aqua true

color images (Gumley, 2008), and locations of MODIS ac-

tive fires (NASA , 2014). While we use IMPROVE elemental

carbon (EC) and SP2 absorbing carbon as equivalents herein,

Yelverton et al. (2014) found that the former is approximately

7 % higher than the latter, but that their error bars overlap. For

the qualitative analysis performed in this demonstration, bias

correction would not change any of the final conclusions.

The observation operators for aircraft and surface observa-

tions require temporal averaging. The 10 s resolution ARC-

TAS observations of BC concentration, pressure, latitude,

and longitude are averaged to the 90 s model time step, which

is approximately the time the DC-8 would take to traverse

a single 18km× 18 km column. However, the 10 s resolu-

tion ARCTAS BC concentrations are revision 2 (R2), while

a later revision 3 (R3) product was released at 60 s resolu-

tion only. The later revision includes additional mass in the

50–900 nm size range as a result of applying a lognormal fit.

In order to utilize this improved product, as well as lever-

age the finer resolution observations, the 10 s BC mass is

scaled by the mass ratio between the 60 s R3 and the 60 s

average R2 data sets. The scaled 90 s average observations

are compared directly with the nearest model grid cell so that

the model values are not interpolated. The pressure measure-

ments are compared to online model pressures to determine

the model level of each observation. For 24 h average sur-

face measurements from IMPROVE, the observation opera-

tor averages the nearest model surface grid cell concentration
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Figure 6. Aircraft residual model error, rk , with indication for the observation height relative to the model PBL height overlaid on MODIS

Aqua true color images and active fire retrievals. Observations with a bias less than 1 SD are also indicated.

over all time steps within the observation period. For the few

surface sites that have two air samplers measuring simulta-

neously, they are averaged together to prevent non-zero cor-

relation in the cost function (i.e., off-diagonal terms in R).

After all averaging, there are 995 aircraft observations and

107 surface observations.

As depicted in Fig. 7, the WRF-Chem simulation is, on

average, biased low for both the surface and aircraft obser-

vations. The lowest biased aircraft observations tend to be at

higher altitudes, although this is not true in all cases. There

are many high-biased observations, and they tend to be at

lower altitudes and to occur earlier in the simulation period

when anthropogenic emissions dominate. Both surface and

aircraft model predictions exhibit a wide spread of positive

and negative errors. In order to determine potential causes

for bias in specific locations, we consider the model residual

errors, or simply “residuals,”

rk =Hk [Mk (xb)]− yk, (11)

for each aircraft observation k. Figure 6 shows the statisti-

cally significant (p < 0.32) residuals for observations above

and below the top of the model PBL. Section 5.1.3 describes

relevant measures of observation variance and statistical sig-

nificance.

Negative residuals, and hence low model bias, are most

prevalent in northern California on 22 and 26 June, most

likely due to underprediction of biomass burning sources.

There is also low bias above the PBL in the southern San

Joaquin Valley on 20 June and below the PBL inland from

San Diego on 24 June. Although neither case has visual

smoke in the MODIS images, there were fires detected within

300 km. The largest positive residual occurs in Palmdale,

CA, close to landing on 24 June. It could be indicative of ei-

ther an emission error or the coarse horizontal resolution that

collocates the airport with other significant nearby sources.

Other notable high model biases aloft occur near cities dur-

ing the flights on 20, 22, and 24 June. Similarly, surface site

biases are higher near cities, and along the coast. As might be

expected, proximity to sources is a strong indicator of error

magnitude, as that is where the highest concentrations occur.

The error sign and magnitude on 24 June differs in the PBL

and free troposphere. That and the spatial error pattern could

reflect some combination of meteorology and emissions de-

ficiencies. For the positive residuals off the coast of Los An-

geles on 22 and 24 June, there could be errors in predicting

vertical mixing associated with the land–sea circulation or

predominant near-surface wind direction. Discerning errors

caused by emissions from those caused by meteorological

mechanisms would require a separate in-depth study.
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Figure 7. Linear fits between model BC concentrations with slope (m) and coefficient of determination R2 for (a) IMPROVE surface and

(b) ARCTAS-CARB aircraft observations colored by model height above mean sea level (a.m.s.l.) and above ground level (a.g.l.).

5.1.3 Variance and residual error significance

When R is assumed to be diagonal, each residual in the 4D-

Var cost function is weighted inversely proportional to the

observation error variance. The form of the cost function is

based in Bayesian statistics, with an aim of converging on

posterior control variables in a maximum-likelihood sense.

However, using the variance alone to weight the residuals

may result in very large cost function terms for relatively

small residual errors. As our interest in this study is to de-

termine how errors in emission estimates may lead to model

bias, we wish to ensure the largest residuals have the great-

est weight, while also accounting for differences in statistical

significance of particular errors. Thus, we define the diagonal

terms of R as

Rk,k =
wk

σ 2
k,k

, (12)

wherewk is an additional weighting term and σ 2
k,k is the vari-

ance.

The variance is comprised of components due to both ob-

servation and model uncertainty as

σ 2
k,k = σ

2
k = σ

2
k,m+ σ

2
k,o. (13)

The model variance at each observation location is found

from an ensemble of Nc = 156 WRF-Chem configurations

during the modeling period. Each ensemble member, c, uses

a different combination of PBL, surface layer, LSM, and

long-wave and shortwave radiation options. Also, there are

configurations both with and without microphysics and cu-

mulus convection. From the ensemble, we use the population

of residuals at each observation, k, to calculate the model

variance

σ 2
k,m =MAX

(
1

Nc− 1

Nc∑
c=1

r2
k,c,MML2

)
, (14)

where MML is the minimum model limit. The minimum pos-

sible modeled BC concentration is limited by the boundary

condition, which fills the entire model domain during the 5

day warm-up simulation. The MML is simply taken as the

minimum model concentration for all observation locations

and all model configurations, and is found to be 0.01 and

0.02 µgm−3 for aircraft and surface measurements, respec-

tively, after rounding to the observation precision.

The IMPROVE instrument variance combines both rela-

tive and absolute uncertainties, the latter of which arises due

to the minimum detection limit (MDL) (UC-Davis, 2002).

For a single filter analysis, the variance (in µg2 m−6) is

σ 2
lk,inst. =


√

342
+
[
(1000)(0.07)ylk

]2
1000

2

. (15)

The sub-observation index lk is useful at sites with more than

one air sampler. When a site has data from multiple instru-

ments in a single day, we take their average and combine

their instrument variances as

σ 2
k,o =

1

L2
k

Lk∑
lk

σ 2
lk,inst., (16)

where Lk is the observation count. We assume each IM-

PROVE measurement fully represent the encompassing grid

cell, since all sites are in remote locations and the samples

are averaged over a 24 h period.

In contrast, the aircraft variance must capture the represen-

tativeness uncertainty associated with comparing the average

of an entire model grid cell with an average of multiple short

duration segments of a sparse aircraft transect. According to

commercial literature for the SP2 device, it has an MDL of

0.01 µgm−3, which we assume applies over the 10 s observa-

tion interval used during the ARCTAS campaign. The obser-

vations available through the NASA ARCTAS data archive
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have a BC mass concentration uncertainty of ±30 %. Al-

though Sahu et al. (2012) report±10 % BC mass uncertainty,

that range is given by Kondo et al. (2011), who state their

results are applicable in regions not impacted by refractory

organic compounds, such as from biomass burning sources.

Because there are significant burning sources in this domain,

we adopt the more conservative range. We utilize the instru-

ment uncertainties in a definition for total observation vari-

ance with components due to both averaging and representa-

tiveness, such that for each average aircraft measurement,

ȳk =
1

Lk

Lk∑
lk=1

ylk , (17)

the total variance is

σ 2
k,o =MDL2

+ σ 2
k,inst.+ σ

2
k,rep.. (18)

Adding the minimum variance associated with the MDL pre-

vents the total variance from trending toward zero for any

particular observation. This is important when using the vari-

ance in the cost function to ensure that near-zero observa-

tions – which have low variances – with small residuals do

not dominate the inversion. The representative variance is the

variance of the ylk ’s that makeup ȳk , which is an attempt to

capture the spread of true concentrations in a model grid cell.

In the case that there is only a single observation, the repre-

sentative uncertainty is taken as double the instrument uncer-

tainty. Thus,

σ 2
k,rep. =

{
1

Lk−1

∑Lk
lk=1

(
ylk − ȳk

)2
if Lk > 1;(

2σk,inst.

)2
if Lk = 1.

(19)

For any time step where Lk < Lmax = 9, there is an addi-

tional variance penalty proportional to the sum of the indi-

vidual instrument variances,

σ 2
k,inst. =

√
Lmax−Lk

Lmax

1

L2
k

Lk∑
lk=1

σ 2
lk,inst., (20)

where

σlk,inst. =MAX
(
MDL,0.3 · ylk

)
. (21)

The square root term in Eq. (20) inflates the instrument error

in cases when there are fewer thanLmax samples in the mean.

In order to motivate the weight, wk , applied to each resid-

ual model error, let us consider the primary inputs to the ad-

joint simulation, which are the adjoint forcings

λ∗k,m =
∂J

∂ck

=H>k σ
−2
k {Hk [Mk (xb)]− yk}

=H>k λ
∗

k,o. (22)

ck is any state variable on which Hk depends and which

Mk (xb) predicts. For our purposes, the state variables are

modeled BC concentrations. The adjoint of the observation

operator, H>k transforms the forcing from observation space

(λ∗k,o) back to model space (λ∗k,m). Thus, the forcing in ob-

servation space is

λ∗k,o =
rk

σ 2
k

. (23)

Observations with significant model bias would require

the largest perturbation in control variables to alleviate, and

would seem to inform the inversion process the greatest.

However, they must also have low total variance to contribute

to an inversion. Figure 8 shows the surface and aircraft SD

(standard deviation) plotted vs. residual error. Also plotted

in that figure are 1 and 2 SD zones, as well as lines of con-

stant λ∗k,o for all wk = 1. Any residual falling outside the 2σ

zone has a combined model and observation SD that is small

enough to determine with 95 % confidence (p < 0.05) that

the residual error deviates from zero (i.e., the model and ob-

servation disagree). These statistically significant model er-

rors indicate that some kind of inversion is worthwhile. In

their multi-cycle 4D-Var approach, Bergamaschi et al. (2009)

eliminated observations outside 3 SDs after an initial 4D-Var

cycle, with the thought that incorrect model physics prevents

those residual errors from being fixed with 4D-Var. Thus,

while statistically significant residuals are important to driv-

ing a 4D-Var inversion, that they remain afterward is a strong

indication of errors in the model description that cannot be

fixed through adjustments to emissions. Figure 8 shows that

the relative contributions of observation and model variances

is in general proportional to the relative magnitudes of ob-

served and modeled concentration. Specifically, model (ob-

servation) variation contributes to a large fraction of uncer-

tainty in positive (negative) residuals.

When both the observed and modeled concentrations are

small, the total variance decreases to the minimum possible

value, governed by the MML and MDL. This generally hap-

pens in remote regions, where small concentrations result

from some combination of small nearby sources and trans-

port from many distant sources. If the total variance is small

enough relative to the residual error, λ∗k,o will be very large,

often larger than in cases with larger residual errors (see

Fig. 10a). The adjoint model propagates a relatively large

forcing from a small residual backward, resulting in large

sensitivities to emission scaling factors. These sensitivities

then translate to large emission perturbations in the optimiza-

tion process.

The residual errors in remote locations are likely within

combined model and observation uncertainty, but the model

variance at these locations is unrealistically small. The en-

semble will underestimate variance at observations near low-

biased prior sources due to the absence of tracer mass. The

opposite may be true for a high-biased prior. The challenge

then is to define the concentration uncertainty introduced by

the model physics, independent of the magnitude of emis-

sions, which we attempt to do with a weighting scheme. The
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Figure 8. Model and total observation error SD (σk,m,σk) vs. model residual error (rk) with adjoint-forcing (λ∗
k,o

) contours corresponding

to wk = 1 for (a) surface and (b) aircraft observations. 1σ and 2σ zones reflect regions of increasing statistical significance.

weights are used only to inflate variance, which when very

low is thought to misinform the adjoint about concentration

errors. Variance reduction may be necessary for observations

near high-biased sources. Also, while we apply the weights

to the total variance, they could be applied to only the model

portion. Here we are developing a philosophy for scaling the

variances, of which the following description is but one ex-

ample.

Because our goal in an emission inversion is to reduce

model bias by perturbing emissions, model bias is itself an

important characteristic. We use the ensemble of model con-

figurations to calculate the variance in all residual errors; that

is,

σ 2
r =

1

NcK − 1

Nc∑
c=1

K∑
k=1

r2
k,c. (24)

The residual SDs, σr, are 0.69 and 0.29 µgm−3 for surface

and aircraft observation populations, respectively. After con-

firming that the residual errors are approximately normally

distributed, the significance of the bias of a single observa-

tion relative to the entire population is

fPOP,k = erf

(
|̃rk|√
2σ 2

r

)
. (25)

In statistics, the ratio of
|̃rk |
σr

is called the z value, and de-

notes the number of SDs between r̃k and the expected value

of zero. The variable r̃k indicates the user must select a spe-

cific form of residual error. Two examples are the mean or

median of rk . A third approach, and the one taken here, is

to use the residual found in the first 4D-Var iteration, rk,n=0.

fPOP,k is a continuously variable p value, or the percentage

of the population of all rk,c that is less significant than r̃k .

Another measure of significance is visualized in the σ zones

of Fig. 8, and was discussed previously. That is, for an in-

dividual residual error and variance, what is the probability

that there will always be a mismatch between the model and

observation? The individual error significance is

fIND,k = erf

 |̃rk|√
2σ 2
k

 . (26)

The population and individual error significance are com-

bined to derive the adjoint-forcing weight,

wk =
[(
fPOP,k

)γ (
fIND,k

)1−γ ]β
. (27)

The weighting scheme can be tuned for a specific appli-

cation using the γ and β parameters to reshape the adjoint-

forcing contours. However, care must be taken when select-

ing γ , β, and r̃k to ensure convergence in 4D-Var. Use of

these weights may imply that residual errors do not fit a

Gaussian distribution. Here we only introduce the weighting

scheme and use it in a demonstration, but do not verify its va-

lidity. We use γ = 0.5 to provide some balance between the

two measures of significance and β = 2 to ensure the weight-

ing has a large impact. After calculating the wk’s according

to Eq. (27), the new effective adjoint forcings are compared

to the original values in Fig. 9. The weighting scheme is suc-

cessful at reducing the impact of observation errors with low

significance on the cost function.

After applying the new weighting scheme, the λ∗k,o con-

tours no longer converge on the y axis as depicted in Fig. 8.

Instead, they exit radially from the origin in all directions. As

both the population and individual z values approach zero,

the adjoint-forcing converges toward

λ∗k,o ≈
rk

σ 2
k

(
0.8

|̃rk|

σ
γ
r σ

1−γ

k

)β
= 0.64

rk r̃
2
k

σrσ
3
k

. (28)

For our specific values of σr, all residual errors within

the 2σ zone satisfy |λ∗k,o|. 5 µg−1m3 for surface, and
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Figure 10. Normalized sensitivities ( ∂ln J
∂ln Ei,j,d

) of the 4D-Var cost function (for surface and aircraft observations) with respect to anthro-

pogenic and burning emission scaling factors overlaid on MODIS Aqua true color images for 6 days during the simulation. Anthropogenic

sensitivities with magnitudes less than 1 % of the maximum anthropogenic sensitivity magnitude are removed. There is a marker for all grid

cells with non-zero burning emissions.

|λ∗k,o|. 10 µg−1m3 for aircraft observations. This is a con-

siderable change from the unity weights where |λ∗k,o| was as

large as 200 µg−1m3 in the region between the 1σ and 2σ

zones.

5.2 Results and discussion

With the weighting function applied, we calculate sensitivi-

ties of the 4D-Var cost function with respect to emissions for

determining potential sources of model bias. The weights re-

duce the cost function from 5374 to 3784, which increases

the normalized cost-function sensitivity to emission pertur-

bations. Figure 10 shows fully normalized sensitivities,

∂ln J

∂ln Ei,j,d
=

24∑
n=1

∂ln J

∂ln Ei,j,d,n
, (29)

for 6 days of the simulation. The sensitivity in a particular

grid cell is summed over the local diurnal cycle for hours

n= [1, . . ., 24] on day d. For anthropogenic emissions, the

local time is calculated for discrete 15◦ time zones, whereas

for biomass burning emissions, local time corresponds to

the continuous sun cycle. Undoubtedly, there are locations

with positive and negative sensitivities at different times of

day that will cancel, but this temporally aggregated sen-

sitivity is an attempt to obtain average daily relationships
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across the domain. Although the color bar has been satu-

rated at ±5× 10−3, the full range of sensitivities are from

−2.3×10−3 to+7.1×10−3 and−4.9×10−3 to+11.3×10−3

for anthropogenic and biomass burning emissions, respec-

tively.

The magnitude of a normalized sensitivity corresponds to

the fractional response in the cost function given a 100 % per-

turbation of emissions in a grid cell. If the model were per-

fect, the sensitivity magnitudes would be proportional to the

difference between the background emission estimate and

the true value. Thus, a negative sensitivity indicates a lo-

cation where estimated sources are too low, and vice versa.

Because the sensitivities themselves depend on the emission

magnitudes, they will change in each 4D-Var iteration, even-

tually converging on a minimum of the cost function where

the sensitivities are zero. We use the sensitivities here as

a qualitative indicator of emission errors, and not a quanti-

tative conclusion as might be provided with a complete in-

version.

The sensitivities exhibit a similar spatial–temporal pattern

as the residual errors in Figs. 5 and 6, with the exception of

sources far upwind of observations. Near observations, esti-

mated anthropogenic emissions are too high, and estimated

fire emissions are too low. Indeed, most of the non-negligible

(not black) burning sensitivities are negative on 24 June and

25 June, likely due to the high-altitude negative residuals on

26 June. The positive coastal fire sensitivities on 22 June and

23 June are attributable to positive forcing at the Point Reyes

National Seashore IMPROVE site on 23 June and along the

DC-8 flight track on 24 June. The influence of those fires

on Los Angeles BC concentrations 24 h or more after the

emission was determined through a sensitivity test where a

perturbed residual error and adjoint forcing on 24 June were

propagated through the adjoint.

The spatial variations in sensitivities reveal two phenom-

ena. First, appreciable sensitivities will only arise in emis-

sions that influence the particular observations available.

Thus, full observation coverage is imperative to a success-

ful inversion. Second, emission errors are heterogeneous in

space and time. For the FINN inventory, heterogeneity arises

due to missed detections in the MODIS active fire product,

as well as potential errors in vegetation classification or at-

tribution of a particular vegetation class to one of four land

cover types. Anthropogenic source error heterogeneity could

be due to a static inventory from 2005 being used to describe

emissions in 2008, or to spatial variations in BC emission

factors for a particular source sector.

All of the conclusions that might be drawn from the sensi-

tivity maps about emission errors are subject to the assump-

tion that the transport is correct in this model configuration.

The SLAB LSM scheme (option 1) is used in place of the

PX option to calculate comparative adjoint sensitivities. Rel-

ative to the PX option, these results exhibited non-negligible

negative sensitivities to fires in the Shasta–Trinity National

Forest on 23 June, but much larger positive sensitivities to

those same fires on 22 June. Sensitivities with respect to

coastal fires in the Los Padres National Forest also increased

on 22 June. The spatial sensitivity patterns between SLAB

and PX options are consistent on 25 June. The differences

are presumably due to changes in the residual error between

the two configurations. The differing spatial sensitivity pat-

terns indicate that the surface heat and moisture fluxes calcu-

lated by each LSM scheme contributes non-negligibly to the

vertical mixing of BC to aircraft measurement altitudes.

We also consider temporal sensitivity patterns to com-

pare the two LSM schemes. Figure 11 shows the diurnal

distribution of biomass burning, and weekday and week-

end anthropogenic BC emission sensitivities for both of the

LSM configurations, and for unity weights, wk = 1 and wk
from Eq. (27). Each bar in that plot represents a summa-

tion of sensitivities across the whole domain from 20 June,

00:00:00 UTC to 26 June, 23:00:00 UTC (d = [1, . . ., nd ])

within a particular local hour, n, such that

∂ln J

∂ln En
=

nx∑
i=1

ny∑
j=1

nd∑
d=1

∂ln J

∂ln Ei,j,d,n
. (30)

The signs and magnitudes of sensitivities fit the previous de-

scription for the spatially distributed temporal aggregation.

The time period of emissions to which an observation is most

sensitive depends on the altitude of that observation and the

flow mechanisms that transport emitted aerosol mass to that

observation. Thus, any conclusions drawn could be biased if

observations do not have full temporal coverage, especially

near sources. Since normalized sensitivities are proportional

to emissions, it is to be expected that sensitivities at peak

emission hours are magnified. Also, each hour of sensitiv-

ity is a sum of many diverse source locations. So while the

net sensitivity in a particular hour may be positive, the spa-

tial distribution of sensitivities is much more varied, as was

shown in Fig. 10.

The FINN biomass burning inventory applies an identi-

cal diurnal emission apportionment for all fires, regardless of

vegetation, shading due to slopes, wind speed, or relative hu-

midity. This scaling is applied in preprocessing. Both the PX

and SLAB LSM setups seem to agree that fire emissions be-

tween 10:00 and 18:00 local time are overpredicted. Without

the weighting scheme, the PX configuration indicates that the

peak should be smoothed out, while the SLAB configuration

concludes that the peak should be made sharper by reducing

off-peak emissions. With the weighting scheme applied, both

configurations agree that the peak is timed correctly. While

the two setups disagree over the magnitude of fire emission

correction required, their differences are small in compari-

son to the implied anthropogenic correction. The relative dis-

agreement in burning sensitivity magnitude between the two

LSM configurations is attributable to differences in residual

errors, rk , and the resulting adjoint forcings, λ∗k,o.

In contrast to FINN, NEI applies a variety of diurnal pat-

terns to point, area, and traffic sources. The weekend and
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Figure 11. Diurnal normalized sensitivities ( ∂ln J
∂ln En

) of the 4D-Var cost function with respect to emissions scaling factors for (a, b, and c)

wk = 1 and (d, e, and f) wk from Eq. (27). Also plotted are diurnal emission fractions. Sensitivities were calculated for two different WRF

LSM options and are shown separately for biomass burning, and weekend and weekday anthropogenic emissions.

weekday emission profiles shown in Fig. 11 are the emis-

sion weighted averages for the entire domain. Individual

sources may have a profile closer to flat, or alternatively zero

overnight, and flat during daylight hours. The weighted av-

erage profile shown is close to the one used for commercial

diesel traffic, since that is the largest BC source within the

domain. Attributing sensitivities, or errors, to specific sectors

is not straight forward and doing so may require a smaller

horizontal grid spacing to reduce the number of sectors per

grid cell. Results for the weighted and unweighted cost func-

tions are very similar. In general, anthropogenic emissions

are too high throughout all times of the day on both week-

days and weekends. Both LSM configurations indicate not

only that the weekday profile peak should be sharper near

14:00 LT, and not at 16:00 LT, but also that emissions from

06:00 to 16:00 LT should be closer to the late evening and

early morning magnitudes. The weekend sensitivities indi-

cate the evening and morning emissions are too high, and that

the daytime peak is timed about right, with the exception of

the 18:00 LT spike. However, the relatively small magnitude

of weekend sensitivities could also indicate there were not

enough observations of anthropogenic sources on 21 June

(SAT) and 22 (SUN) to draw definitive conclusions about

emission timing.

Results for the two LSM options reveal the potential for

model configuration to introduce bias in a 4D-Var inver-

sion. For these particular observations, the posterior emis-

sions from the PX option would likely be higher than those

from the SLAB option, because of their relative sensitivity

values. Model variability must be taken into consideration in

4D-Var sensitivity studies of high-resolution emissions, be-

cause model variation represents a large fractional contribu-

tion to observation error variance for positive residuals, as

shown in Fig. 8.

6 Conclusions

We have implemented, verified, and demonstrated the

WRFPLUS-Chem coupled meteorology and chemical ad-

joint and tangent linear models for PBL mixing, emis-

sion, aging, dry deposition, and advection of BC aerosol.

A second-order checkpointing scheme enables tangent lin-

ear and adjoint model runs longer than 6 h. The adjoint

was used in the first iteration of a 4D-Var inversion within

WRFDA-Chem, where model-observation residual errors are

compared for low- and high-temporal resolution IMPROVE

surface and ARCTAS-CARB aircraft observations during 1

week of June 2008. A novel cost function weighting scheme

was devised to reduce the impact of low-significance obser-

vations in future 4D-Var inversions. The adjoint sensitivities

also indicate that anthropogenic emissions are overpredicted

and biases in burning emissions are spatially and temporally

heterogenous. The diurnal sensitivities would seem to indi-

cate that burning emission profiles should be steeper midday,

while anthropogenic emission profiles should be flattened on

weekdays and sharpened on weekends. A full inversion is

necessary to quantify the magnitude of the errors in the emis-

sions. Additionally, adjoint sensitivities found using two dif-

ferent LSM options indicate that the results of such inver-

sions will be sensitive to the choice of model configuration.

The next steps are as follows. We intend to incorporate

tangent linear and adjoint observation operators for useful

remote-sensing products (e.g., aerosol optical depth (Saide

et al., 2013) and absorbing aerosol optical depth). This ad-

dition will enable WRFDA-Chem to be applied to a wider

range of domains and time periods and in operational fore-

casting. The WRFDA-Chem optimization algorithm still

needs to be applied to control variables for chemical species

initial conditions and emission scaling factors. Future de-
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velopment and incorporation of radiation and microphysics

adjoints (e.g., Saide et al., 2012) will provide coupling be-

tween aerosols and meteorology, and provide new insights

into sensitivities of direct, indirect, and semi-direct radiative

forcing to emission sectors and locations. In addition to the

aerosol applications discussed, WRFDA-Chem 4D-Var will

also be suited to emission inversions for green house gasses

and other chemical tracers.

7 Code availability

Although an annual code release may be available in the

future, WRFPLUS-Chem and WRFDA-Chem are contin-

ually being developed. A static version would not in-

clude the most recent bug fixes. Interested users can ob-

tain the code as it is by contacting the authors: J. J. Guer-

rette (jonathan.guerrette@colorado.edu) and D. K. Henze

(daven.henze@colorado.edu). Potential developers may also

contact NCAR scientist H. C. Lin (hclin@ucar.edu) for

access to the WRFPLUS-Chem repository. Any questions

should be directed to the authors.
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