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Abstract. Karst develops through the dissolution of carbon-

ate rock and is a major source of groundwater contributing up

to half of the total drinking water supply in some European

countries. Previous approaches to model future water avail-

ability in Europe are either too-small scale or do not incor-

porate karst processes, i.e. preferential flow paths. This study

presents the first simulations of groundwater recharge in all

karst regions in Europe with a parsimonious karst hydrology

model. A novel parameter confinement strategy combines a

priori information with recharge-related observations (actual

evapotranspiration and soil moisture) at locations across Eu-

rope while explicitly identifying uncertainty in the model pa-

rameters. Europe’s karst regions are divided into four typ-

ical karst landscapes (humid, mountain, Mediterranean and

desert) by cluster analysis and recharge is simulated from

2002 to 2012 for each karst landscape. Mean annual recharge

ranges from negligible in deserts to > 1 m a−1 in humid re-

gions. The majority of recharge rates range from 20 to 50 %

of precipitation and are sensitive to subannual climate vari-

ability. Simulation results are consistent with independent

observations of mean annual recharge and significantly better

than other global hydrology models that do not consider karst

processes (PCR-GLOBWB, WaterGAP). Global hydrology

models systematically under-estimate karst recharge imply-

ing that they over-estimate actual evapotranspiration and sur-

face runoff. Karst water budgets and thus information to sup-

port management decisions regarding drinking water supply

and flood risk are significantly improved by our model.

1 Introduction

Groundwater is the main source of water supply for billions

of people in the world (Gleeson et al., 2012). Carbonate rock

regions only constitute about 35 % of Europe’s land surface

(Williams and Ford, 2006), yet contribute up to 50 % of the

national water supply in some European countries (COST,

1995) because of their high storage capacity and permeabil-

ity (Ford and Williams, 2007). Climate conditions have a pri-

mary control on groundwater recharge (de Vries and Sim-

mers, 2002). Climate simulations suggest that in the next 90

years Mediterranean regions will be exposed to higher tem-

peratures and lower precipitation amounts (Christensen et al.,

2007). In addition, shifts in hydrological regimes (Milly et

al., 2005) and hydrological extremes (Dai, 2012; Hirabayashi

et al., 2013) can be expected. To assess the impact of cli-

mate change on regional groundwater resources as ground-

water depletion or deteriorations of water quality, large-scale

simulation models are necessary that go beyond the typical

scale of aquifer simulation models (∼ 10–10 000 km2) Addi-

tionally, we expect the future variability of climate to be be-

yond that reflected in historical observations, which means

that model predictions should derive credibility via more in-

depth diagnostic evaluation of the consistency between the

model and the underlying system and not from some calibra-

tion exercise (Wagener et al., 2010).

Currently available global hydrology models discretize the

land surface in grids with a resolution down to 0.25–0.5◦.

Parts of the vertical fluxes are well represented, e.g. the en-

ergy balance (Ek, 2003; Miralles et al., 2011). But groundwa-
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ter recharge and groundwater flow are represented simply by

heuristic equations (Döll and Fiedler, 2008) or assumptions

of linearity (Wada et al., 2010, 2014). They do not explic-

itly simulate a dynamic water table or regional groundwa-

ter flow. Global models also assume homogenous conditions

of hydrologic and hydraulic properties in each of their grid

cells, rather than variable flow paths, and they completely

omit the possibility of preferential flow. This was criticized in

the recent scientific discourse about the need for large-scale

hyper-resolution models (Beven and Cloke, 2012; Wood et

al., 2011).

The assumption of homogeneity is certainly inappropriate

for karst regions. Chemical weathering of carbonate rock and

other physical processes develop preferential pathways and

strong subsurface heterogeneity (Bakalowicz, 2005). Flow

and storage are heterogeneous ranging from very slow diffu-

sion to rapid concentrated flow at the surface, in the soil, the

unsaturated zone and the aquifer (Kiraly, 1998). A range of

modelling studies have developed and applied karst specific

models at individual karst systems at the catchment or aquifer

scale (Doummar et al., 2012; Fleury et al., 2007; Hartmann

et al., 2013b; Le Moine et al., 2008) but a lack of a priori in-

formation of aquifer properties and observations of ground-

water dynamics have prohibited their application on larger

scales (Hartmann et al., 2014a).

Compared to the limited information about the deeper

subsurface there is much better information about the sur-

face and shallow subsurface, including maps of soil types

and properties (FAO/IIASA/ISRIC/ISSCAS/JRCv, 2012),

observations of soil moisture (International Soil Moisture

Network; Dorigo et al., 2011) and of latent heat fluxes

(FLUXNET; Baldocchi et al., 2001), as well as river dis-

charge (GRDC, 2004). Surface and shallow subsurface infor-

mation is used for the parameterization and evaluation of the

surface routines of present large-scale models. But, although

these data also cover Europe’s karst regions, it has not been

used for the development of large-scale models to simulate

karstic surface and shallow subsurface flow and storage dy-

namics.

The objective of this study is to develop the first large-

scale simulation model for karstic groundwater recharge over

Europe and the Mediterranean. Despite much broader def-

initions of groundwater recharge (e.g. Lerner et al., 1990),

we focus on potential recharge, that is, vertical percolation

from the soil below the depth affected by evapotranspira-

tion. We use a novel type of model structure that considers

the subgrid heterogeneity of karst properties using statistical

distribution functions. To achieve a realistic parameterization

of the model we identify typical karst landscapes by cluster

analysis and by a combined use of a priori information about

soil storage capacities and observations of recharge-related

fluxes and storage dynamics. Applying a parameter confine-

ment strategy based on Monte Carlo sampling we are able to

provide large-scale simulation of annual recharge including

a quantification of their uncertainty.

Figure 1. (a) Schematic description of the model for one grid cell

including the soil (yellow) and epikarst storages (grey) and the sim-

ulated fluxes, (b) its gridded discretization over karst regions and

(c) the subsurface heterogeneity that its structure represents for each

grid cell.

2 Data and methods

Due to chemical weathering (karstification) karst systems

have a strong subsurface heterogeneity of flow and storage

processes (Bakalowicz, 2005) that have to be considered to

produce realistic simulations (Hartmann et al., 2014a). In

this study, large-scale karst recharge is estimated by a modi-

fied version of the VarKarst model (Hartmann et al., 2013a,

2014b). The model has shown to be applicable at various

scales and climates over Europe (Hartmann et al., 2013b). To

simulate karst recharge we discard the groundwater routines

but we use exactly the same surface and shallow subsurface

routines. The resulting recharge simulation model, VarKarst-

R, is described in the proceeding subsection. The new feature

of the large-scale application of the VarKarst-R model is the

estimation of its parameters. While previous applications of

the model could rely on calibration by observations at the

karst system outlet the simulation of large-scale recharge re-

quires a different approach. We developed a new parameter

estimation procedure that separates the study area into four

karst landscapes by cluster analysis and estimates model pa-

rameters and their uncertainty by a step-wise parameter con-

finement process (explained in Sect. 2.3).

2.1 The model

The structure of the VarKarst-R model (Fig. 1a) is based on

the conceptual understanding of the surface and shallow sub-

surface processes of karst regions (Fig. 1c). Their most char-

acteristic feature is the existence of the epikarst that evolves

close to the surface because of stronger carbonate rock dis-

solution. It can be seen as a temporal storage and distribution

system for karst recharge (Aquilina et al., 2006; Williams,

1983a). Depending on the rates of infiltration, variability of

soil thicknesses and hydraulic conductivities, it can produce

slow and diffuse vertical percolation into the carbonate rock

or it can concentrate infiltration laterally towards dissolution-

widened fissures or conduits (Hartmann et al., 2012). Ap-

Geosci. Model Dev., 8, 1729–1746, 2015 www.geosci-model-dev.net/8/1729/2015/



A. Hartmann et al.: A large-scale simulation model to assess karstic groundwater recharge 1731

plied on a 0.25× 0.25◦grid (Fig. 1b), VarKarst-R simulates

potential recharge, which is the water column vertically per-

colated from the soil and epikarst. Hence, the previous ver-

sion of the model is reduced to include only the soil and the

epikarst simulation routines but still using the same statisti-

cal distribution functions that allow for variable soil depths,

variable epikarst depths and variable subsurface dynamics

(Fig. 1). This leads to a parametrically efficient process repre-

sentation. Comparisons with independently derived field data

showed that these distribution functions are a good approxi-

mation of the natural heterogeneity (Hartmann et al., 2014b).

Heterogeneity of soil depths is represented by a mean soil

storage capacity Vsoil [mm] and a variability constant a [–].

The soil storage capacity VS,i [mm] for every compartment i

is defined by

VS,i = Vmax,S ·

(
i

N

)a
, (1)

where Vmax,S [mm] is the maximum soil storage capacity and

N is the total number of model compartments. For the appli-

cation of a priori information on mean soil storage capacities

(Sect. 2.3) Vmax,S has to be derived from the mean soil stor-

age capacity Vsoil by (Hartmann et al., 2013b)

Vmax,S = Vsoil · 2

(
a
a+1

)
. (2)

Preceding work (Hartmann et al., 2013a) showed that the

same distribution coefficient a can be used to derive the

epikarst storage distribution VE,i from the mean epikarst stor-

age capacity Vepi [mm] (via the maximum epikarst storage

Vmax,E, likewise to Vmax,S in Eq. 2):

VE,i = Vmax,E ·

(
i

N

)a
. (3)

At each time step t , the actual evapotranspiration from

each soil compartment Eact,i is derived by reducing poten-

tial evaporation according the soil moisture deficit:

Eact,i (t)= Epot (t)

·
min

[
VSoil,i (t)+Peff (t)+QSurface,i (t) , VS,i

]
VS,i

, (4)

where Epot [mm] is the potential evapotranspiration de-

rived by the Priestley–Taylor equation (Priestley and Tay-

lor, 1972), Peff [mm] is the sum of liquid precipitation and

snowmelt,Qsurface,i [mm] is the surface inflow arriving from

compartment i− 1 (see Eq. 9), and Vsoil,i [mm] the wa-

ter stored in the soil at time step t . Snowfall and snowmelt

are derived from daily snow water equivalent available from

GLDAS-2 (Global Land Data Assimilation System; Table 1).

During days with snow cover we set Eact(t)= 0. Flow from

the soil to the epikarst Repi,i [mm] takes place when the soil

storages are fully saturated. It is calculated by

Repi,i (t)=max
[
VSoil,i (t)+Peff (t)+QSurface,i (t)

−Eact,i (t)−VS,i, 0
]
. (5)

The temporal water storage of the epikarst is drained fol-

lowing an assumption of linearity (Rimmer and Hartmann,

2012), which is controlled by the epikarst storage coefficients

KE,i [d]:

Qepi,i (t)=
min

[
Vepi,i (t)+Repi,i (t) ,VE,i

]
KE,i

·1t (6)

KE,i =Kepi ·

(
N − i+ 1

N

)a
, (7)

where Vepi,i [mm] is the water stored in compartment i of

the epikarst at time step t . Again, the same distribution co-

efficient a is applied to derive KE,i from the mean epikarst

storage coefficientKepi. The latter is obtained from the mean

epikarst storage coefficient Kepi using

N ·Kmean,E =

N∫
0

Kmax,E

( x
N

)a
dx,

m

Kmax,E =Kepi · (a+ 1) .

(8)

When infiltration exceeds the soil and epikarst storage

capacities, surface flow to the next model compartment

QSurf,i+1 [mm] initiates:

QSurf,i+1 (t)=max
[
VEpi,i (t)+REpi,i (t)−VE,i, 0

]
. (9)

To summarize, the model is completely defined by the four

parameters a, Kepi, Vsoil, and Vepi (Table 2).

2.2 Data availability

Forcing for the VarKarst-R model is derived through

GLDAS-2, which assimilates satellite- and ground-based ob-

servational data products to obtain optimal fields of land sur-

face states and fluxes (Rodell et al., 2004; Rui and Beau-

doing, 2013). While precipitation, temperature and net ra-

diation are mainly merged from satellite and gauge obser-

vations, snow water equivalent is derived using data assim-

ilation as well as the snow water equivalent simulations of

the NOAH land surface model v3.3 (Ek, 2003) driven by

GLDAS-2 forcing. Europe’s and the Mediterranean’s carbon-

ate rock areas are derived from a global map (vector data)

of carbonate rock (Williams and Ford, 2006). Each cell of

the 0.25◦simulation grid intersecting a carbonate rock re-

gion was considered a karst region. The model was calibrated

and evaluated with observations of actual evapotranspiration

from FLUXNET (Baldocchi et al., 2001) and with soil water

content data from the International Soil Moisture Network

(ISMN; Dorigo et al., 2011). Only stations within carbonate
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Table 1. Data availability, data properties and sources.

Variable Spatial resolution Time period Frequency Source Reference

Precipitation 0.25◦ 2002–2012 daily GLDAS-2 Rodell et al. (2004), Rui and Beaudoing (2013)

Temperature 0.25◦ 2002–2012 daily GLDAS-2

Net radiation 0.25◦ 2002–2012 daily GLDAS-2

Snow water equivalent 0.25◦ 2002–2012 daily NOAHv3.3/GLDAS-2 Ek (2003), Rodell et al. (2004)

Carbonate rock areas vector data – – Williams and Ford (2006)

Elevation 3′′ – – SRMT V2.1 USGS (2006)

Rock permeability vector data – – Gleeson et al. (2014a)

Actual evaporation individual locations individual periods daily FLUXNET Baldocchi et al. (2001)

Soil moisture Individual locations individual periods daily ISMN Dorigo et al. (2011)

Table 2. Parameter description and initial ranges for Monte Carlo sampling based on previous field studies and large-scale model applications.

Parameter Unit Description Lower Upper References

limit limit

a [–] Variability constant 0 6 Hartmann et al. (2013b, 2014b, 2015)

Vsoil [mm] Mean soil storage capacity 0 1250 Miralles et al. (2011),

FAO/IIASA/ISRIC/ISSCAS/JRCv (2012),

Ek (2003)

Vepi [mm] Mean epikarst storage capacity 200 700 Perrin et al. (2003), Williams (2008)

Kepi [d] Mean epikarst storage coefficient 0 50 Gleeson et al. (2014b), Hartmann et al. (2013b)

Figure 2. Carbonate rock areas over Europe and the Mediterranean,

and location of the selected FLUXNET and ISMN stations.

rock regions and with ≥ 12 months of available data were

used (Fig. 2). Months with < 25 days of observations were

discarded. In addition, months with≥ 50 % mismatch in their

energy closure were discard from the FLUXNET data set

(similar to Miralles et al., 2011).

2.3 Parameter estimation

A lack of a priori information and observations of discharge

and groundwater levels that can be used for calibration are

the primary reasons why karst models have not been applied

on larger scales yet (Hartmann et al., 2014a). The parame-

ter assessment strategy we present in the following is meant

to overcome this problem by using a combination of a priori

information and recharge-related variables. We define typi-

cal karst landscapes over Europe and the Mediterranean and

apply this combined information to a large initial sample of

possible model parameter sets. In a stepwise process we then

discard all parameter sets that produce simulations inconsis-

tent with our a priori information and our recharge-related

observations.

2.3.1 Definition of typical karst landscapes

Our definition of typical karst landscapes is based on the

well-known hydrologic landscape concept (Winter, 2001),

which describes hydrological landscapes based on their ge-

ology, relief and climate. Constraining ourselves to karst re-

gions that mainly develop on carbonate rock, we assume that

differences among the karst landscapes are due to differences

in relief and climate, and the consequent processes of land-

scape evolution including the weathering of carbonate rock

(karstification). The carbonate rock regions in Europe and

the Mediterranean are divided into typical landscapes using

simple descriptors of relief (range of altitude RA) and cli-

mate (aridity index AI and mean annual number of days with

snow cover DS) within each of 0.25◦grid cells and a standard

cluster analysis scheme (k means method). We test the qual-

ity of clustering for 2–20 clusters by calculating the sums of

squared internal distances to the cluster means. The so-called

“elbow method” identifies the point where adding additional

clusters only leads to a marginal reduction in the internal

distance metric, i.e. the percentage of variance explained by

adding more clusters would not increase significantly (Seber,

2009).
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2.3.2 Model parameters for each karst landscape

We initially sample 25 000 possible model parameter sets

from independent uniform distributions using parameter

ranges derived from previous catchment-scale applications

of the VarKarst-R model over Europe and the Mediterranean

(Table 2). We use a priori information and recharge-related

observations to assess parameter performance for each karst

landscape. A priori information consists of spatially dis-

tributed information about mean soil storage capacities as

provided by several preceding mapping and modelling stud-

ies (Ek, 2003; FAO/IIASA/ISRIC/ISSCAS/JRCv, 2012; Mi-

ralles et al., 2011). Recharge-related variables are (1) soil

moisture observations and (2) observations of actual evap-

oration at various locations over the modelling domain (Ta-

ble 1, Fig. 2). Soil moisture is related to recharge because it

indicates the start and duration of saturation of the soil dur-

ing which diffuse and preferential recharge can take place.

Actual evaporation is related to recharge because usually no

surface runoff occurs in karst regions due to the high infil-

tration capacities (Jeannin and Grasso, 1997). The difference

of monthly precipitation and actual evaporation is therefore a

valid proxy for groundwater recharge at a monthly timescale

or above. The new parameter confinement strategy is applied

to each of the karst landscapes in three steps:

1. Bias rule: retain only the parameter sets that produce a

bias between observed and simulated actual evaporation

lower than 75 % at all FLUXNET locations within the

chosen karst landscape:

min
i
(biasi)=min

i

(
µsim,i −µobs,i

µobs,i

)
!
< 75 %, (10)

where msim,i and mobs,i are the sum of simulated and

observed actual evapotranspiration at location i, respec-

tively. The value 75 % was found by trial-and-error,

which reduced the initial sample to a reasonable num-

ber. The bias rule was not applied on the soil moisture

since porosities of the soil matrix were not available,

prohibiting a comparison of simulated and observed soil

water contents.

2. Correlation rule: retain only the parameter sets that pro-

duce a positive coefficient of (Pearson) correlation be-

tween observations and simulations of both actual evap-

oration and soil moisture, at all locations:

(
min
i

[
corr(AETsim,i ,AETobs,i

]
∧min

j

[
corr(θsim,j ,θobs,j

]) !
> 0, (11)

where AETsim,j and AETobs,j , and θsim,j and θobs,j , are

the monthly means of simulated and observed actual

evapotranspiration, and soil water content at locations

i/j , respectively.

3. Application of a priori information: retain only param-

eter sets in which Vsoil falls within the feasible ranges

that can be derived from a priori information about the

maximum soil storage capacity in different karst land-

scapes (Ek, 2003; FAO/IIASA/ISRIC/ISSCAS/JRCv,

2012; Miralles et al., 2011). We add less than the usual a

priori information at the last step to evaluate if the poste-

rior distributions of Vsoil already adapt to the ranges de-

fined in this confinement step. If they do not, we would

conclude that the recharge-related information applied

in confinement steps 1 and 2 is biased. If they do, we

have indication that the data applied in all three steps is

complementary.

Each step reduces the initial parameter sample differently

for each of the karst landscapes. The posterior parameter

distributions within the confined samples should be differ-

ent among the karst landscapes if the karst landscapes are

properly defined. The rather weak thresholds in step 1 and

2 were chosen to take into account the uncertainties result-

ing from the differences in scales of observations (point) and

simulations (grid cell), and from the indirect observation of

recharge (actual evaporation and soil moisture as recharge-

related variables).

2.4 Recharge simulations over Europe and the

Mediterranean

Recharge is simulated over the carbonate regions of Europe

and the Mediterranean from 2002/03 to 2011/12 using the

confined parameter samples for each of the identified karst

landscapes and the available forcings (Table 1). The mean

and standard deviation of simulated recharge for each grid

cell and time step are calculated by uniform discrete sam-

pling of a representative subset of 250 parameter sets from

each of the confined parameters sets which we regarded to

be large enough to provide a reliable measure of spread.

2.5 Model evaluation

To assess the realism of simulated groundwater recharge we

compare simulated with observed mean annual recharge vol-

umes derived independently from karst studies over Europe

and the Mediterranean (Table 3). In addition, we compare our

results to the simulated mean annual recharge volumes of two

well-established global simulation models: PCR-GLOBWB

(Wada et al., 2010, 2014) and WaterGAP (Döll and Fiedler,

2008; Döll et al., 2003).

We furthermore apply a global sensitivity analysis strat-

egy, called regional sensitivity analysis (Spear and Horn-

berger, 1980), to evaluate the importance of the four model

parameters at different simulation timescales ranging from 1

month up to 10 years. This analysis shows (1) which sim-

ulated process and characteristics are dominant at a given

timescale and (2) which parameters will need more careful

calibration when the model is used in future studies. We use
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Table 3. Independent observations of mean annual recharge from field and modelling studies over Europe and the Mediterranean.

Location Latitude Longitude Mean annual Method Author

recharge

(country, province) [◦] [◦] [mm]

Austria (Siebenquellen spring, Schneeaple) 47.69 15.6 694 observed water balance Maloszewski et al. (2002)

Croatia (Jadro spring, Dugopolje) 43.58 16.6 795 simulated water balance Jukic and Denic-Jukic (2008)

Croatia (St Ivan, Mirna) 45.22 13.6 386 observed water balance Bonacci (2001)

France (Bonnieure, La Rouchefoucauld-Touvre) 45.8 0.44 250 simulated water balance Le Moine et al. (2007)

France (Durzon spring, La Cavalerie) 44.01 3.16 378 observed water balance Tritz et al. (2011)

France (Fontaine-de-Vaucluse) 43.92 5.13 568 observed water balance Fleury et al. (2007)

France (St Hippolyte-du-Fort, Vidourle) 43.93 3.85 287 observed water balance Vaute et al. (1997)

Germany (Bohming spring, Rieshofen) 48.93 11.3 130 observed water balance Einsiedl (2005)

Germany (Gallusquelle spring, Swabian Alps) 48.21 9.15 351 observed water balance Doummar et al. (2012)

Germany (Hohenfels) 49.2 11.8 200 observed water balance Quinn et al. (2006)

Greece (Arvi, Crete) 35.13 24.55 241 observed water balance Koutroulis et al. (2013)

Greece (Aitoloakarnania) 38.60 21.15 484 empiric estimation method Zagana et al. (2011)

Italy (Cerella spring, Latina) 41.88 12.9 416 empiric estimation method Allocca et al. (2014)

Italy (Forcella spring, Sapri) 41.05 14.55 559 empiric estimation method Allocca et al. (2014)

Italy (Gran Sasso, Teramo) 42.27 13.34 700 observed water balance Barbieri et al. (2005)

Italy (Sanità) 40.78 15.13 974 observed water balance Vita et al. (2012)

Italy (Taburno spring) 39.9 15.81 693 empiric estimation method Allocca et al. (2014)

Lebanon (Anjar-Chamsine) 33.73 35.93 278 observed water balance Bakalowicz et al. (2008)

Lebanon (Zarka) 34.08 36.30 205 observed water balance Bakalowicz et al. (2008)

Lebanon (Afka) 34.05 35.95 842 observed water balance Bakalowicz et al. (2008)

Palestine (Mountain Aquifer) ∼ 32.00 ∼ 35.30 144 simulated water balance Hughes et al. (2008)

Portugal (Algarve, minimum value) ∼ 37.10 ∼−7.90 130 not mentioned de Vries and Simmers (2002)

Portugal (Algarve, maximum value) ∼ 37.10 ∼−7.90 300 not mentioned de Vries and Simmers (2002)

Saudi Arabia (eastern Arabian Peninsula) ∼ 26.50 ∼ 46.50 44 natural tracers Hoetzl (1995)

Spain (Cazorla, Sierra de Cazorla ) 37.9 −3.03 244 empiric estimation method Andreo et al. (2008)

Spain (La Villa spring, El Torcel) 36.93 −4.52 463 observed water balance Padilla et al. (1994)

Spain (Sierra de las Cabras, Arcos de la Frontera) 36.65 −5.72 318 empiric estimation method Andreo et al. (2008)

Switzerland (Rappenfluh Spring) 47.87 7.67 650 simulated water balance Butscher and Huggenberger (2008)

Turkey (Aydincik, Mersin) 36.97 33.22 552 observed water balance Hatipoglu-Bagci and Sazan (2014)

Turkey (Harmankoy, Beyyayla) 40.15 30.65 32 observed water balance Aydin et al. (2013)

UK (Marlborough and Berkshire Downs and

South-West Chilterns, minimum value)

51.53 −1.15 146 simulated water balance Jackson et al. (2010)

UK (Marlborough and Berkshire Downs and

South-West Chilterns, maximum value)

51.53 −1.15 365 simulated water balance Jackson et al. (2010)

UK (Dorset) 50.75 −2.45 700 observed water balance Foster (1998)

UK (Norfolk) 52.60 0.88 260 observed water balance Foster (1998)

UK (Greta spring, Durham) 54.52 −1.87 690 observed water balance Arnell (2003)

UK (R. Teme, Tenbury Wells) 52.3 −2.58 355 observed water balance Arnell (2003)

UK (Lambourn) 51.5 −1.53 234 observed water balance Arnell (2003)

UK (Hampshire) 51.1 −1.26 348 observed water balance Wellings (1984)

the same sample of 25 000 parameter sets that was created

for the parameter estimation strategy (Sect. 2.3.2) and as-

sess the sensitivity of four model outputs representative of

different timescales: coefficient of variation (CV) of simu-

lated monthly recharge volumes (monthly), CV of simulated

3-month recharge volumes (seasonal), CV of annual recharge

volumes (annual), and total recharge over the entire 10-year

simulation period (decadal). We do not consider temporal

resolutions of less than a month given the assumption that the

difference of precipitation and actual evapotranspiration can

be a proxy for groundwater recharge and due to uncertainties

related to differences in simulation (grid cell) and observa-

tion (point).

For each of the identified karst landscapes we choose the

10 locations that are closest to their cluster means (Euclidean

distances to relief and climate descriptors; Sect. 2.3.1) as rep-

resentative locations. In the regional sensitivity analysis ap-

proach, we split the parameter sets into two groups, those

that produce simulations above the simulated median of one

of the four model outputs and those that produce simula-

tions below. We then calculate the maximum distance D(x)

between marginal cumulative distribution functions (CDFs)

produced by these two distributions for each of the param-

eters – a large distance D(x) suggests that the parameter is

important for simulating this particular output (Fig. 3).

3 Results

3.1 Parameter assessment

3.1.1 Definition of typical karst landscapes

Cluster analysis resulted in four clusters, which are generally

spatially contiguous (Fig. 4) and have quantitatively distinct

Geosci. Model Dev., 8, 1729–1746, 2015 www.geosci-model-dev.net/8/1729/2015/



A. Hartmann et al.: A large-scale simulation model to assess karstic groundwater recharge 1735

Figure 3. Schematic elaboration of the regional sensitivity analysis

procedure.

Table 4. Cluster means of the four identified karst landscapes (AI:

aridity index, DS: mean annual number of days with snow cover,

RA: range of altitudes).

Descriptor Unit Number of cluster/karst landscape

1. HUM 2. MTN 3. MED 4. DES

AI [–] 0.80 0.98 3.18 20.00

DS [a−1] 85 76 16 1

RA [m] 228 1785 691 232

cluster means (Table 4). We can attribute particular charac-

teristics to each cluster using the mean values of the cluster-

ing descriptors (Table 4): (1) humid hills and plains (HUM)

are characterized by an aridity index< 1, a significant num-

ber of days with snow cover and low elevation differences.

(2) High range mountains (MTN) have an aridity index of

∼ 1, they also have a significant number of days with snow

cover and they show very large topographic elevation differ-

ences. (3) Mediterranean medium range mountains (MED)

show high aridity index, only few days with snow cover and

high elevation differences. (4) Desert hills and plains (DES)

are described by similar altitude ranges as the humid hills

and plains but they have a high aridity indices and almost no

days with snow cover. The karst landscapes order from north

(HUM) to south (DES) based on increasing temperatures and

decreasing precipitation amounts. While HUM and DES ap-

pear to be separated clearly, MTN and MED mix in some

regions, for instance Greece and Turkey where mountainous

regions are in close proximity to the coast.

3.1.2 Model parameter estimates for each karst

landscape

The three steps of the new parameter confinement strategy re-

sulted in a significant reduction of the initial sample of 25 000

parameter sets (Fig. 5). Each step has a different impact on

the reduction among the identified landscapes. For the hu-

mid karst landscapes, the correlation rule appears to have the

strongest impact while for the mountain and Mediterranean

landscapes the bias rule results in the strongest reduction. For

the desert landscape only step 3, i.e. application of a pri-

ori information, reduces the initial sample because no data

were available to apply steps 1 and 2. Considering the pa-

rameter ranges for each landscape after the application of the

confinement strategy (Table 5), we only achieved a confine-

ment of the distribution parameter a, the soil storage capacity

Vsoil, and slight confinement of the epikarst storage coeffi-

cient Kepi.

The impact of the three confinement steps becomes

more obvious when considering their posterior distributions

(Fig. 6). The distributions of parameters a, Kepi and Vsoil

evolve significantly away from their initial uniform distribu-

tions along the confinement steps. In general, changes of the

posterior distributions of each landscape’s parameter sam-

ples are in accordance with the reductions in their number

(Fig. 5), though changes are pronounced differently among

the parameters. While a and Vsoil change strongly for HUM,

MTN and MED, Vepi maintains a uniform distribution across

all steps.Kepi also exhibits strong changes for HUM but they

are less pronounced for MTN and MED. The posterior distri-

butions of the DES landscape do not change except for step

3 due to the lack of information to apply confinement steps 1

and 2. Step 3 results in a tailoring of the distribution of Vsoil

for all landscapes. For HUM, MTN and MED it can be seen

that confinement steps 1 and 2 already pushed the parame-

ter distributions towards their final shape, meaning that the

changes in parameter distributions induced by the compari-

son with observations are consistent with the a priori infor-

mation about the physical characteristics of the karst.

3.2 Recharge simulations over Europe and the

Mediterranean

The parameter confinement strategy allows us to apply

VarKarst-R over all of Europe and the Mediterranean and

to obtain recharge simulations for the hydrological years

2002/03–2011/12. Thanks to the 250 parameter sets that

we sampled from the posterior parameter distributions we

can include an estimate of uncertainty for each grid cell

(Fig. 7). Mean annual recharge ranges from almost 0 to

> 1000 mm a−1 with the highest volumes found in north-

ern UK, the Alps and former Yugoslavia. The lowest val-

ues are found in the desert regions of Northern Africa. The

vast majority of recharge rates range from 20 to 50 % of pre-

cipitation. Considering the simulations individually for each

karst landscape reveals that the mountain landscapes pro-

duce the largest recharge volumes followed by the humid

and Mediterranean landscapes (Fig. 8a). The desert land-

scapes produce the lowest recharge volumes. However, the

recharge rates reveal that on average the Mediterranean land-

scapes show the largest recharge rates, followed by the highly

variable mountains (Fig. 8c). Humid and desert landscapes

exhibit lower recharge rates. Uncertainties, expressed by the
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Figure 4. Map with clusters and typical karst landscapes that were attributed to them.

Figure 5. Evolution of the initial sample of 25 000 parameter sets

(each including the four model parameters sampled from within

their initial ranges) along the different confinement steps for the

four karst landscapes.

standard deviation of the 250 simulations for each grid cell,

are rather low, seldom exceeding 35 mm a−1 (Fig. 8b). How-

ever, expressed as coefficients of variation, most of them

range from 5 to 25 % for the humid, mountain and Mediter-

ranean landscapes but for the desert landscape they can reach

up to 50 % of the mean annual recharge (Fig. 8d).

3.3 Model evaluation

We compare the simulated recharge volumes of our model

with recharge volumes assessed from independent and pub-

lished karst studies over Europe and the Mediterranean

(Fig. 9a). Even though there is a considerable spread across

the simulations, their bulk plots well around the 1 : 1 line

achieving an average deviation of only −58 mm a−1 (Ta-

ble 6). Considering the individual karst landscapes, there

is an over-estimation of recharge for the humid landscapes

and an under-estimation for the mountain landscapes. The

best results are achieved for the Mediterranean landscapes

with only slight under-estimation (Fig. 9a). When we com-

pare the same observations to the simulated recharge vol-

umes of the PCR-GLOBWB (Fig. 9b) and WaterGAP mod-

Figure 6. Evolution of posterior probabilities of the four model pa-

rameters for the four karst landscapes along the steps of the param-

eter confinement strategy.

els (Fig. 9c) we find a strong tendency of under-estimation

that is strongest for the mountain and Mediterranean land-

scapes but still significant for the humid landscapes (Table 6).

For the humid landscapes absolute deviations are similar for

PCR-GLOBWB and VarKarst-R.

In addition to comparing simulated and observed annual

averages, sensitivity analysis on the model output gives us

insight into the realism of the model and the importance of

individual model parameters at different timescales (Fig. 10).

Our results show that parameters a and Vsoil have the overall

strongest influence on the simulated recharge from a monthly

to a 10-year timescale, but their influence decreases toward

shorter timescales. Simultaneously, the epikarst parameter

Kepi gains more importance. This behaviour is most pro-

nounced for the Mediterranean and desert landscapes. The
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Figure 7. (a) Observed precipitation and (d) potential evaporation versus the simulated (b) mean annual recharge and (e) mean annual

recharge rates derived from the mean of all 250 parameter sets, and (c) the standard deviation and (f) coefficients of variation of the simula-

tions due to the variability among the 250 parameter sets.

Table 5. Minima and maxima of the confined parameter samples for each of the identified landscapes.

Parameter Unit HUM MTN MED DES

min max min max min max min max

a [–] 1.1 3.3 0.3 2.9 0.8 6.0 0.1 6.0

Vsoil* [mm] 900.1 1248.9 500.4 899.9 51.7 498.4 0.2 49.1

(900) (1250) (500) (900) (50) (500) (0) (500)

Vepi [mm] 204.3 694.8 201.6 699.4 200.1 696.7 202.3 695.7

Kepi [d] 0.0 35.8 7.3 49.9 0.0 48.4 10.4 49.9

* in parentheses: a priori information used for step 3 of the parameter confinement strategy.

Table 6. Mean deviations of the VarKarst-R, the PCR-GLOBWB

model and the WaterGAP model from all observations and the indi-

vidual regions.

Region
Mean deviation [mm a−1]

VarKarst-R PCR-GLOBWB WaterGAP

All −58.3 −230.4 −264.2

HUM 65.5 −90.2 −151.6

MTN −202.8 −427.5 −446.4

MED −4.3 −217.3 −211.4

same is true for Vepi, but its overall importance remains much

lower, which was also found in the parameter confinement

strategy (Fig. 6).

4 Discussion

4.1 Reliability of parameter estimation

4.1.1 Identification of karst landscapes

The identification of different karst landscapes is a crucial

step within our new parameter estimation strategy. The four

karst landscapes we identified depend mostly on the choice

of climatic and topographic descriptors (Table 4) and the se-

lected number of clusters. Even though neglecting several

factors as depositional environments, fracturing by tectonic

processes or regional variations in rain acidity, our choice of

descriptors is well justified from our understanding of dom-

inant hydrologic process controls as formalized in the hy-

drologic landscape concept (Winter, 2001) and applied sim-

ilarly at many other studies (Leibowitz et al., 2014; Saw-

icz et al., 2011; Wigington et al., 2013). The appropriate
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Figure 8. (a) Simulated mean annual recharge, among the four karst

landscapes, (b) their standard deviations, (c) recharge rates, and

(d) coefficients of variation obtained by the final sample of param-

eters.

choice of clusters for the k means method is less unambigu-

ous (Ketchen and Shook, 1996). The change in number of

clusters when the sum of squared distances to our cluster

centres only reduces marginally was not clearly definable

(Fig. A1). However, choosing only three clusters instead of

four would have resulted in unrealistic spatial distribution of

clusters. The attribution of north African regions with north-

ern Europe to the same cluster occurred because of their sim-

ilarity of altitude ranges (Table 4). On the other hand, a se-

lection of five clusters would have resulted in a cluster with

properties just between the MTN and the MED clusters and,

because of a much stronger scattering, weaker spatial distinc-

tion between them. With four clusters, our karst landscapes

are similar to the Köppen–Geiger climate regions (Kottek et

al., 2006), in particular to the oceanic climate (HUM), the

hot and warm summer Mediterranean climate (MED), and

the hot desert climates (DES). However, we see deviations

when comparing the polar and Alpine climate regions of the

Köppen–Geiger with our high range mountain karst land-

scape, since our landscapes are also defined by their elevation

ranges.

The borders of these hydrologic landscapes are also un-

certain. Natural systems usually do not have straight borders

that fall on a grid, as assumed by this analysis. Typical tran-

sitions between landscape types are continuous and hence

transitions from a parameter set representing one landscape

to another parameter set of another cluster should be graded,

as well. This will be discussed in the following subsection.

4.1.2 Confinement of parameters

How the three steps of the parameter confinement strategy

reduce the initial sample shows which type of data provides

the most relevant information for each of the karst land-

scapes. While the timing of actual evapotranspiration and

soil saturation that is expressed by the correlation rule ap-

pears to be most relevant for the humid landscapes, the bias

rule, which represents the volumes of monthly evapotranspi-

ration, is more relevant for the mountain and Mediterranean

landscapes. Swapping the order of the correlation rule and

the bias rule would provide the same results for HUM and

MTN. But for MED the alternative order increases the impor-

tance of timing expressed by the correlation rule, indicating

the similar importance of both confinement steps.

The thresholds we set in confinement steps 1 and 2 are not

very strict, and the ranges of soil storage capacity we used as

a priori information in step 3 are quite large. This compen-

sates for the fact that (1) only recharge-related variables are

available rather than direct recharge observations, (2) these

variables are not available at the simulation scale (0.25◦grid)

but at a point scale, and (3) the transition between the land-

scapes is more continuous than discrete. Despite these rather

weak constraints, the initial parameter sample of 25 000 re-

duces to quite low numbers between 679 (HUM) and 2731

(MED). All posterior parameters overlap except for the soil

storage capacities that are tailored by the a priori informa-

tion (confinement step 3). Hence, a small number of param-

eter sets for one landscape is also acceptable for some of the

other landscapes, thereby taking into account the continuous

transition between them.

All model parameters, except for Vepi, show different

shapes in their cumulative distribution functions across the

karst landscapes. The desert landscape parameters only dif-

fer from the initial sample for the Vsoil parameter due to the

lack of information to apply confinement steps 1 and 2. The

distribution parameter a is found at the lower values of its

feasible range for the humid and mountain landscapes, in-

dicating a significant contribution of preferential recharge.

Since altitude ranges are rather low for HUM this may be at-

tributed to a significant epikarst development (Perrin et al.,

2003; Williams, 1983b). For MTN, a mixture of epikarst de-

velopment and topography driven interflow at the mountain

hill slopes and valleys can be expected to control the dy-

namics of karstic recharge (Scanlon et al., 2002; Tague and

Grant, 2009). At the Mediterranean landscapes the a param-

eter adapts to ranges that are rather found at the higher values

of its initial range, indicating that there is a stronger differen-

tiation between diffuse and concentrated recharge. This may

be due to the generally thinner soils (Table 5) that limit the

availability of CO2 for karst evolution (Ford and Williams,

2007). Instead, local surface runoff channels the water to the

next enlarged fissure or crack in order to reach the subsurface

as concentrated recharge (Lange et al., 2003). The epikarst

storage coefficient Kepi for HUM and MED is at lower val-

ues of the initial range, indicating realistic mean residence

times of days to weeks (Aquilina et al., 2006; Hartmann et

al., 2013a). The MTN landscapes show largerKepi values in-

dicating slower epikarst dynamics most probably due to the

reasons mentioned above. The application of a priori infor-

mation in confinement step 3 automatically tailors the values
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Figure 9. Observations of mean annual recharge from independent studies (Table 3) versus the simulated mean annual recharge by the

VarKarst-R and PCR-GLOBWB models (no data for the DES region available).

Figure 10. Sensitivity of simulated recharge to the model parame-

ters at different timescales and in the different karst landscapes. Sen-

sitivity is measured by the maximum distance (D) between the dis-

tribution of parameter sets that produce “low” recharge (i.e. below

the median) and the distribution producing “high” recharge (above

the median). Parameter sets are initially sampled from the ranges in

Table 2.

of Vsoil to ranges that we assume to be realistic. The fact that

confinement steps 1 and 2 already push the shape of their

posteriors towards the a priori ranges corroborates that as-

sumption.

The little changes that occur to the initial distributions of

the DES parameter sets elaborate the flexibility of our param-

eter assessment strategy. The posterior distribution evolves

only where information is available (for this landscape on

Vsoil). This is also evident in the behaviour of parameter

Vepi. The available information is just not precise enough to

achieve identification beyond its a priori ranges. For parame-

ter a in HUM, MTN and MED, a lot of information is derived

from the available data and its posteriors differ strongly from

its initial distribution, while there is less information to deter-

mine Kepi. This explicit handling of uncertainties in the pa-

rameter identification process allows us to provide recharge

simulations over Europe’s karst regions with uncertainty es-

timates that represent confidence for each of the identified

karst landscapes.

4.2 Simulation of karst recharge over Europe and the

Mediterranean

4.2.1 Realism of spatial patterns

Simulated mean annual recharge amounts for the period

2002/03–2011/12 show a wide range of values, from 0 to

> 1000 mm a−1 (Fig. 7). Total water availability (mean an-

nual precipitation) appears to be the main driver for its spa-

tial pattern in many regions, for instance in the former Yu-

goslavia or northern UK. This is consistent with findings of

other studies (Hartmann et al., 2014b; Samuels et al., 2010).

When we normalize the recharge rates by the observed pre-

cipitation amounts we find that water availability is not the

only control on mean annual recharge volumes. A strong

relation of evapotranspiration and karst characteristics and

processes was shown in many studies and is also found here

(Heilman et al., 2014; Jukic and Denic-Jukic, 2008). Poten-

tial evaporation is generally increasing from north to south

and has an important impact on recharge rates as well, for

instance in the Arabian Peninsula and the Alps.

Mountain ranges are considered to be the water towers of

the world (Viviroli et al., 2007). Here the MTN landscapes

also show the largest recharge volumes due to the large pre-

cipitation volumes they receive, though with a considerable

spread in our study. HUM and MED landscapes behave simi-

larly with significantly less recharge than MTN. Not surpris-

ingly, there is not much recharge in the desert landscapes at

all. But the differences among the clusters shift when con-
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sidering recharge rates. Due to their thin soils and therefore

low soil storage for evaporation (Table 5), the DES karst

landscapes transfer up to 45 % of the little precipitation they

receive into recharge. The MED landscapes show similarly

high recharge rates. Though since their soils are generally

thicker than the DES soils, the typical seasonal and convec-

tive rainfall patterns of the Mediterranean climate (Goldre-

ich, 2003; Lionello, 2012) might have an important impact,

too.

Even though there is still considerable spread in our con-

fined parameter sets, the uncertainty in simulated mean an-

nual recharge volumes is quite low. The uncertainties that

follow the limited information contained in the observations

are revealed more clearly when we relate the standard devia-

tion of simulated recharge to its mean volumes with the coef-

ficient of variation. The uncertainty for the DES landscape is

the largest among the clusters because a priori information is

only available for Vsoil. The uncertainty reduces for the MED

and MTN landscapes. The low uncertainties for the coeffi-

cient of variation of our recharge simulations for the HUM

landscape indicate that the available data contained signifi-

cant information for confining the model parameter ranges.

4.2.2 Relevance of different recharge processes to

simulation timescales

The mean annual water balance of a hydrological system is

dominated by the separation of precipitation into actual evap-

otranspiration and discharge (Budyko and Miller, 1974; Siva-

palan et al., 2011). Actual evapotranspiration is controlled by

the soil storage capacity Vsoil and the distribution coefficient

a within the VarKarst-R model. Regional sensitivity analysis

shows that both parameters are most sensitive to the 10-year

and annual timescales (Fig. 10). Both parameters loose some

impact at higher temporal resolutions (seasonal or monthly

timescale) in favour of the parameters that control the dy-

namics of the epikarst. This behaviour is consistent with ev-

idence from field and other modelling studies that showed

that the epikarst can be considered as a temporary storage

and distribution system for karstic recharge (Hartmann et al.,

2012; Williams, 1983b) – potentially storing water for sev-

eral days to weeks (Aquilina et al., 2006; Hartmann et al.,

2013a). Parameter Vepi does not show much sensitivity across

all landscapes as suggested by the posterior distributions of

the confinement strategy. First of all, this finding indicates

that the data we used for our confinement strategy do not

bias the general model behaviour. It also shows that for the

epikarst storage and flow dynamics, Kepi is much more im-

portant when simulating at monthly or seasonal resolutions.

Furthermore, the results of the regional sensitivity anal-

ysis show which parameters are most important at a given

timescale. Depending on the purpose, a new study may start

with the initial ranges of the model parameters or it might

continue with the confined parameter ranges that we found

here. The latter would result in slightly different sensitivities

(Fig. A2). For both cases, the epikarst parameters will require

more attention when applying the VarKarst-R model for sim-

ulations at seasonal or monthly timescales. When working

at a smaller spatial scale, combined analysis of spring dis-

charge and its hydrochemistry may provide such additional

information (Lee and Krothe, 2001; Mudarra and Andreo,

2011). When working at a timescale of > 1 year, the vari-

ability constant a and the soil storage capacity Vsoil require

most attention if one starts from the initial ranges. The dis-

tribution parameter is most important when using the con-

fined ranges. Again, spring discharge analysis may help in

understanding the degree of karstification (Kiraly, 2003) and

the distribution of concentrated and diffuse recharge mecha-

nisms that are controlled by a. In addition, more precise dig-

ital elevation models or soil maps may help in better identifi-

cation of a and Vsoil. A limitation of the regional sensitivity

analysis approach used here is that parameter interactions are

only included implicitly, considering parameter interactions

with more elaborate methods (Saltelli et al., 2008) may re-

veal even more characteristics of the VarKarst-R model at

different simulation timescales. But this is beyond the scope

of this paper.

4.3 Impact of karstic subsurface heterogeneity

Even though some deviations occur among the individual

karst landscapes, the general simulations of the VarKarst-R

model follow well the observations of mean annual recharge

rates over Europe and the Mediterranean (Fig. 9). On the

other hand, the widely used large-scale simulation models

PCR-GLOBWB (Wada et al., 2010, 2014) and WaterGAP

(Döll and Fiedler, 2008; Döll et al., 2003) generally under-

estimate groundwater recharge (Table 6). The reason for

this is the representation of karstic subsurface heterogene-

ity within the VarKarst-R model, i.e. the inclusion of pref-

erential flow paths and of subsurface heterogeneity. Based

on the conceptual understanding of soil and epikarst stor-

age behaviour (Fig. 1c) it allows (1) for more recharge dur-

ing wet conditions because surface runoff is not generated,

and (2) for more recharge during dry conditions because the

thin soil compartments will always allow for some water to

percolate downwards before it is consumed by evapotran-

spiration. During wet conditions, both PCR-GLOBWB and

WaterGAP will instead produce surface runoff that is subse-

quently lost from groundwater recharge. During dry condi-

tions, due to its non-variable soil storage capacity, the PCR-

GLOBWB model will not produce any recharge when the

soil water is below its minimum storage. Separating surface

runoff and groundwater recharge by a constant factor, the

WaterGAP model will produce recharge during dry condi-

tions, but a constant fraction of effective precipitation will

always become fast surface/subsurface runoff resulting in re-

duced recharge volumes.

This does not mean that the representation of recharge pro-

cesses in models like PCR-GLOBWB or WaterGAP is gener-
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ally wrong, but that it can be limited since our analysis shows

that the structures of such models need more adaption to the

particularities of different hydrologic landscapes. In particu-

lar, it adds to the need for incorporating subgrid heterogene-

ity in our large-scale simulation models (Beven and Cloke,

2012). Karst regions comprise about 35 % of Europe’s land

surface and our results indicate that presently their ground-

water recharge is under-estimated, while surface runoff and

actual evaporation are over-estimated. Given the expected

decrease of precipitation in semi-arid regions, such as the

Mediterranean, and an increase of extreme rainfall events

at the same time in the near future (2016–2035, Kirtman et

al., 2013), current large-scale simulation models will over-

estimate both the vulnerability of groundwater recharge and

the flood hazard in karst regions in Europe and the Mediter-

ranean. The same is true for the long-term future (end of 21st

century; Collins et al., 2013). Of course, an over-estimation

of vulnerability and hazard might be the “lesser evil” com-

pared to an over-estimation. But, at times of limited financial

resources, excessive investments in ensuring the security of

drinking water supply and flood risk management for poten-

tial future changes may unnecessarily aggravate the socio-

economic impacts of climate change.

5 Conclusions

In this study we have presented the first attempt to model

groundwater recharge over all karst regions in Europe and the

Mediterranean. The model application was made possible by

a novel parameter confinement strategy that utilized a com-

bination of a priori information and recharge related obser-

vations on four typical karst landscapes that were identified

through cluster analysis. Handling the remaining uncertainty

explicitly as posterior parameter distributions resulting from

the confinement strategy, we were finally able to produce

recharge simulations and an estimate of their uncertainty. We

found an adequate agreement with our new model when com-

paring our results with independent observations of recharge

at study sites across Europe and the Mediterranean. We fur-

ther show that current large-scale modelling approaches tend

to significantly under-estimate recharge volumes.

Overall, our analysis showed that the subsurface hetero-

geneity of karst regions and the presence of preferential flow

paths enhances recharge. It results in high infiltration capac-

ities prohibiting surface runoff and reducing actual evapo-

transpiration during wet conditions. On the other hand it al-

lows for recharge during dry conditions because some wa-

ter can always percolate downwards passing the thin fraction

of the distributed soil depths. This particular behaviour sug-

gests that karstic regions might be more resilient to climate

change in terms of both flooding and droughts. Drinking wa-

ter and flood risk management is liable to be based on erro-

neous information for at least 35 % of Europe’s land surface

since this is not considered in current large-scale modelling

approaches.

However, using recharge directly as a proxy for “avail-

able” groundwater resources may not be good in all cases,

neither in karst regions nor in other types of aquifers (Bre-

dehoeft, 2002). To precisely estimate the sustainable usable

fraction of groundwater the aquifer outflow should be known

rather than just the inflow. Furthermore, pumping strate-

gies should consider the geometry and transmissivity of the

aquifer. Hence, recharge estimation can be considered only

as a first proxy of available groundwater and future studies

should focus on the large-scale simulation of karst ground-

water flow and storage to further improve water resources

predictions in karst regions.
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Appendix A

A1 Results of the cluster analysis

Figure A1. Elbow plot of sum of squared distances to cluster cen-

tres for k means method.

A2 Results of the regional sensitivity using initial

ranges

Figure A2. Sensitivity of simulated recharge to the model parame-

ters at different timescales and in the different karst landscapes, as

in Fig. 10 but with sampling parameters from the confined parame-

ter ranges of Table 5.

Geosci. Model Dev., 8, 1729–1746, 2015 www.geosci-model-dev.net/8/1729/2015/



A. Hartmann et al.: A large-scale simulation model to assess karstic groundwater recharge 1743

Acknowledgements. We want to thank Juergen Strub, research

associate at the Chair of Hydrology, Freiburg, Germany, for

designing some of the figures and Thomas Godman for collect-

ing references to independent recharge studies. This work was

supported by a fellowship within the Postdoc Programme of the

German Academic Exchange Service (Andreas Hartmann, DAAD)

and by the UK Natural Environment Research Council (Francesca

Pianosi, CREDIBLE Project; grant number NE/J017450/1).

The sensitivity analysis was carried out by the SAFE Toolbox

(http://bristol.ac.uk/cabot/resources/safe-toolbox/). We thank Petra

Döll for providing the mean annual recharge volumes of Water-

GAP, and Fanny Sarazin for checking the results of the regional

sensitivity analysis. The article processing charge was funded by

the open-access publication fund of the Albert Ludwigs University

Freiburg.

Edited by: H. McMillan

References

Allocca, V., Manna, F., and De Vita, P.: Estimating annual ground-

water recharge coefficient for karst aquifers of the south-

ern Apennines (Italy), Hydrol. Earth Syst. Sci., 18, 803–817,

doi:10.5194/hess-18-803-2014, 2014.

Andreo, B., Vías, J., Durán, J., Jiménez, P., López-Geta, J., and Car-

rasco, F.: Methodology for groundwater recharge assessment in

carbonate aquifers: application to pilot sites in southern Spain,

Hydrogeol. J., 16, 911–925, doi:10.1007/s10040-008-0274-5,

2008.

Aquilina, L., Ladouche, B., and Doerfliger, N.: Water storage and

transfer in the epikarst of karstic systems during high flow peri-

ods, J. Hydrol., 327, 472–485, 2006.

Arnell, N. W.: Relative effects of multi-decadal climatic variability

and changes in the mean and variability of climate due to global

warming?: future streamflows in Britain, J. Hydrol., 270, 195–

213, 2003.

Aydin, H., Ekmekci, M., and Soylu, M. E.: Characterization and

conceptualization of a relict karst aquifer (bilecik , turkey) karak-

terizacija in konceptualizacija reliktnega, Acta carsologica, 42,

75–92, 2013.

Bakalowicz, M.: Karst groundwater: a challenge for new resources,

Hydrogeol. J., 13, 148–160, 2005.

Bakalowicz, M., El, Æ. M., and El-hajj, A.: Karst groundwater re-

sources in the countries of eastern Mediterranean?: the example

of Lebanon, Environ. Geol., 54, 597–604, doi:10.1007/s00254-

007-0854-z, 2008.

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Run-

ning, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R.,

Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi,

Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pile-

gaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala,

T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to

Study the Temporal and Spatial Variability of Ecosystem–Scale

Carbon Dioxide, Water Vapor, and Energy Flux Densities,

Bull. Am. Meteorol. Soc., 82, 2415–2434, doi:10.1175/1520-

0477(2001)082<2415:fantts>2.3.co;2, 2001.

Barbieri, M., Boschetti, T., Petitta, M., and Tallini, M.: Stable

isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitor-

ing for groundwater hydrodynamics analysis in a karst aquifer

(Gran Sasso, Central Italy), Appl. Geochemistry, 20, 2063–2081,

doi:10.1016/j.apgeochem.2005.07.008, 2005.

Beven, K. J. and Cloke, H. L.: Comment on “Hyperresolution global

land surface modeling: Meeting a grand challenge for monitoring

Earth’s terrestrial water” by Eric F. Wood et al., Water Resour.

Res., 48, W01801, doi:10.1029/2011WR010982, 2012.

Bonacci, O.: Analysis of the maximum discharge of karst springs,

Hydrogeol. J., 9, 328–338, doi:10.1007/s100400100142, 2001.

Bredehoeft, J. D.: The water budget myth revisited: why hydroge-

ologists model, Ground Water, 40, 340–345, 2002.

Budyko, D. H. and Miller, M. I.: Climate and life, Academic press,

New York, 1974.

Butscher, C. and Huggenberger, P.: Intrinsic vulnerability assess-

ment in karst areas: A numerical modeling approach, Water Re-

sour. Res., 44, W03408, doi:10.1029/2007WR006277, 2008.

Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao,

X., Held, I., Jones, R., Kolli, R. K., Kwon, W.-T., Laprise, R.,

Rueda, V. M., Mearns, L., Menéndez, C. G., Räisänen, J., Rinke,

A., Sarr, A., and Whetton, P.: Regional Climate Projections,

in Climate Change 2007: The Physical Science Basis. Contri-

bution of Working Group I to the Fourth Assessment Report

of the Intergovernmental Panel on Climate Change, edited

by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis,

M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge

University Press, Cambridge, United Kingdom and New York,

NY, USA, available at: http://www.ipcc.ch/publications_and_

data/publications_ipcc_fourth_assessment_report_wg1_report_

the_physical_science_basis.htm (last access: 8 June 2015), 996

pp., 2007.

Collins, M., Knutti, R., Arblaster, J. M., Dufresne, J.-L., Fichefet,

T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T. and

Krinner, G.: Long-term climate change: projections, commit-

ments and irreversibility, in Climate Change 2013: The Physi-

cal Science Basis. Contribution of Working Group I to the Fifth

Assessment Report of the Intergovernmental Panel on Climate

Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tig-

nor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex,

V., and Midgley, P. M., Cambridge University Press, Cambridge,

United Kingdom and New York, NY, USA, 1029–1136, 2013.

COST: Hydrogeological aspects of groundwater protection in

karstic areas, Final report (action 65), edited by: D.-G. X. I. I.

S. European Comission Research and Development, Eur. Comm.

Dir. XII Sci. Res. Dev., Report EUR, 446, 1995.

Dai, A.: Increasing drought under global warming in ob-

servations and models, Nat. Clim. Chang., 3, 52–58,

doi:10.1038/nclimate1633, 2012.

De Vita, P., Allocca, V., Manna, F., and Fabbrocino, S.: Cou-

pled decadal variability of the North Atlantic Oscillation, re-

gional rainfall and karst spring discharges in the Campania re-

gion (southern Italy), Hydrol. Earth Syst. Sci., 16, 1389–1399,

doi:10.5194/hess-16-1389-2012, 2012.

De Vries, J. J. and Simmers, I.: Groundwater recharge: an

overview of processes and challenges, Hydrogeol. J., 10, 5–17,

doi:10.1007/s10040-001-0171-7, 2002.

Döll, P. and Fiedler, K.: Global-scale modeling of ground-

water recharge, Hydrol. Earth Syst. Sci., 12, 863–885,

doi:10.5194/hess-12-863-2008, 2008.

www.geosci-model-dev.net/8/1729/2015/ Geosci. Model Dev., 8, 1729–1746, 2015

http://bristol.ac.uk/cabot/resources/safe-toolbox/
http://dx.doi.org/10.5194/hess-18-803-2014
http://dx.doi.org/10.1007/s10040-008-0274-5
http://dx.doi.org/10.1007/s00254-007-0854-z
http://dx.doi.org/10.1007/s00254-007-0854-z
http://dx.doi.org/10.1175/1520-0477(2001)082<2415:fantts>2.3.co;2
http://dx.doi.org/10.1175/1520-0477(2001)082<2415:fantts>2.3.co;2
http://dx.doi.org/10.1016/j.apgeochem.2005.07.008
http://dx.doi.org/10.1029/2011WR010982
http://dx.doi.org/10.1007/s100400100142
http://dx.doi.org/10.1029/2007WR006277
http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm
http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm
http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm
http://dx.doi.org/10.1038/nclimate1633
http://dx.doi.org/10.5194/hess-16-1389-2012
http://dx.doi.org/10.1007/s10040-001-0171-7
http://dx.doi.org/10.5194/hess-12-863-2008


1744 A. Hartmann et al.: A large-scale simulation model to assess karstic groundwater recharge

Döll, P., Kaspar, F., and Lehner, B.: A global hydrological

model for deriving water availability indicators: model tuning

and validation, J. Hydrol., 270, 105–134, doi:10.1016/S0022-

1694(02)00283-4, 2003.

Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C.,

Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oeve-

len, P., Robock, A., and Jackson, T.: The International Soil Mois-

ture Network: a data hosting facility for global in situ soil mois-

ture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698,

doi:10.5194/hess-15-1675-2011, 2011.

Doummar, J., Sauter, M., and Geyer, T.: Simulation of flow pro-

cesses in a large scale karst system with an integrated catch-

ment model (Mike She) – Identification of relevant parame-

ters influencing spring discharge, J. Hydrol., 426-427, 112–123,

doi:10.1016/j.jhydrol.2012.01.021, 2012.

Einsiedl, F.: Flow system dynamics and water storage of a fissured-

porous karst aquifer characterized by artificial and environmental

tracers, J. Hydrol., 312, 312–321, 2005.

Ek, M. B.: Implementation of Noah land surface model advances

in the National Centers for Environmental Prediction oper-

ational mesoscale Eta model, J. Geophys. Res., 108, 8851,

doi:10.1029/2002jd003296, 2003.

FAO/IIASA/ISRIC/ISSCAS/JRCv: Harmonized World Soil

Database (version 1.2), edited by FAO/IIASA, 2012.

Fleury, P., Plagnes, V., and Bakalowicz, M.: Modelling of the func-

tioning of karst aquifers with a reservoir model: Application to

Fontaine de Vaucluse (South of France), J. Hydrol., 345, 38–49,

2007.

Ford, D. C. and Williams, P. W.: Karst Hydrogeology and Geomor-

phology, Wiley, Chichester, 2007.

Foster, S. S. D.: Groundwater recharge and pollution vulnerability

of British aquifers: a critical overview, Geol. Soc. London, Spec.

Publ., 130, 7–22, doi:10.1144/GSL.SP.1998.130.01.02, 1998.

Gleeson, T., Wada, Y., Bierkens, M. F., and van Beek, L. P.: Wa-

ter balance of global aquifers revealed by groundwater footprint,

Nature, 488, 197–200, doi:10.1038/nature11295, 2012.

Gleeson, T., Moosdorf, N., Hartmann, J., and van Beek, L. P. H.: A

glimpse beneath earth’s surface: GLobal HYdrogeology MaPS

(GLHYMPS) of permeability and porosity, Geophys. Res. Lett.,

41, 3891–3998, doi:10.1002/2014gl059856, 2014a.

Gleeson, T., Moosdorf, N., Hartmann, J., and van Beek, L. P. H.: A

glimpse beneath earth’s surface: GLobal HYdrogeology MaPS

(GLHYMPS) of permeability and porosity, Geophys. Res. Lett.,

41, 3891–3898, doi:10.1002/2014GL059856, 2014b.

Goldreich, Y.: The climate of Israel: observation, research and ap-

plication, Kluwer Academic/Plenum Publishers, 2003.

GRDC: Long Term Mean Annual Freshwater Surface Water Fluxes

into the World Oceans, Comparisons of GRDC freshwater flux

estimate with literature, available at: http://grdc.bafg.de/servlet/

is/7083/ (last access: 8 June 2015), 2004.

Hartmann, A., Lange, J., Weiler, M., Arbel, Y., and Greenbaum, N.:

A new approach to model the spatial and temporal variability of

recharge to karst aquifers, Hydrol. Earth Syst. Sci., 16, 2219–

2231, doi:10.5194/hess-16-2219-2012, 2012.

Hartmann, A., Barberá, J. A., Lange, J., Andreo, B., and Weiler,

M.: Progress in the hydrologic simulation of time variant

recharge areas of karst systems – Exemplified at a karst

spring in Southern Spain, Adv. Water Res., 54, 149–160,

doi:10.1016/j.advwatres.2013.01.010, 2013a.

Hartmann, A., Weiler, M., Wagener, T., Lange, J., Kralik, M.,

Humer, F., Mizyed, N., Rimmer, A., Barberá, J. A., Andreo, B.,

Butscher, C., and Huggenberger, P.: Process-based karst mod-

elling to relate hydrodynamic and hydrochemical characteristics

to system properties, Hydrol. Earth Syst. Sci., 17, 3305–3321,

doi:10.5194/hess-17-3305-2013, 2013b.

Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., and Weiler,

M.: Karst water resources in a changing world: Review of hy-

drological modeling approaches, Rev. Geophys., 50, 6507–6521,

doi:10.1002/2013rg000443, 2014a.

Hartmann, A., Mudarra, M., Andreo, B., Marín, A., Wagener,

T., and Lange, J.: Modeling spatiotemporal impacts of hy-

droclimatic extremes on groundwater recharge at a Mediter-

ranean karst aquifer, Water Resour. Res., 52, 218–242,

doi:10.1002/2014WR015685, 2014b.

Hartmann, A., Kobler, J., Kralik, M., Dirnböck, T., Humer, F., and

Weiler, M.: Transit time distributions to understand the biogeo-

chemical impacts of storm Kyrill on an Austrian karst system,

Biogeosciences Discuss., submitted, 2015.

Hatipoglu-Bagci, Z. and Sazan, M. S.: Characteristics of karst

springs in Aydıncık (Mersin Turkey), based on recession curves

and hydrochemical and isotopic parameters, Q. J. Eng. Geol. Hy-

drogeol., 47, 89–99, 2014.

Heilman, J. L., Litvak, M. E., McInnes, K. J., Kjelgaard, J.

F., Kamps, R. H., and Schwinning, S.: Water-storage capac-

ity controls energy partitioning and water use in karst ecosys-

tems on the Edwards Plateau, Texas, Ecohydrology, 7, 127–138,

doi:10.1002/eco.1327, 2014.

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Ya-

mazaki, D., Watanabe, S., Kim, H., and Kanae, S.: Global

flood risk under climate change, Nat. Clim. Chang., 3, 816–821,

doi:10.1038/nclimate1911, 2013.

Hoetzl, H.: Groundwater recharge in an arid karst area (Saudi Ara-

bia), IAHS Publ. (International Assoc. Hydrol. Sci., 232, 195–

207, 1995.

Hughes, A. G., Mansour, M. M., and Robins, N. S.: Evaluation

of distributed recharge in an upland semi-arid karst system: the

West Bank Mountain Aquifer, Middle East, Hydrogeol. J., 16,

845–854, 2008.

Jackson, C. R., Meister, R., and Prudhomme, C.: Mod-

elling the effects of climate change and its uncertainty

on UK Chalk groundwater resources from an ensemble of

global climate model projections, J. Hydrol., 399, 12–38,

doi:10.1016/j.jhydrol.2010.12.028, 2010.

Jeannin, P.-Y. and Grasso, D. A.: Permeability and hydrodynamic

behavior of karstic environment, in: Karst Waters Environmental

Impact, edited by: Gunay, G. and Johnson, A. I., 335–342, A.A.

Balkema, Roterdam, 1997.

Jukic, D. and Denic-Jukic, V.: Estimating parameters of groundwa-

ter recharge model in frequency domain: Karst springs Jadro and

Žrnovnica, Hydrol. Process., 22, 4532–4542, 2008.

Ketchen, D. J. and Shook, C. L.: The application of cluster analysis,

Strateg. Manag. J., 17, 441–458, 1996.

Kiraly, L.: Modelling karst aquifers by the combined discrete chan-

nel and continuum approach, Bull. d’Hydrogéologie, 16, 77–98,

1998.

Kiraly, L.: Karstification and Groundwater Flow, Speleogenes,

Evol. Karst Aquifers, 1, 1–24, 2003.

Geosci. Model Dev., 8, 1729–1746, 2015 www.geosci-model-dev.net/8/1729/2015/

http://dx.doi.org/10.1016/S0022-1694(02)00283-4
http://dx.doi.org/10.1016/S0022-1694(02)00283-4
http://dx.doi.org/10.5194/hess-15-1675-2011
http://dx.doi.org/10.1016/j.jhydrol.2012.01.021
http://dx.doi.org/10.1029/2002jd003296
http://dx.doi.org/10.1144/GSL.SP.1998.130.01.02
http://dx.doi.org/10.1038/nature11295
http://dx.doi.org/10.1002/2014gl059856
http://dx.doi.org/10.1002/2014GL059856
http://grdc.bafg.de/servlet/is/7083/
http://grdc.bafg.de/servlet/is/7083/
http://dx.doi.org/10.5194/hess-16-2219-2012
http://dx.doi.org/10.1016/j.advwatres.2013.01.010
http://dx.doi.org/10.5194/hess-17-3305-2013
http://dx.doi.org/10.1002/2013rg000443
http://dx.doi.org/10.1002/2014WR015685
http://dx.doi.org/10.1002/eco.1327
http://dx.doi.org/10.1038/nclimate1911
http://dx.doi.org/10.1016/j.jhydrol.2010.12.028


A. Hartmann et al.: A large-scale simulation model to assess karstic groundwater recharge 1745

Kirtman, B., Power, S. B., Adedoyin, J. A., Boer, G. J., Bojariu,

R., Camilloni, I., Doblas-Reyes, F. J., Fiore, A. M., Kimoto, M.,

and Meehl, G. A.: Near-term climate change: projections and

predictability, in: Climate Change 2013: The Physical Science

Basis. Contribution of Working Group I to the Fifth Assessment

Report of the Intergovernmental Panel on Climate Change, edited

by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.

K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.

M., 953–1028, Cambridge University Press, Cambridge, United

Kingdom and New York, NY, USA, 2013.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World

Map of the Köppen-Geiger climate classification updated, Mete-

orol. Z., 15, 259–263, doi:10.1127/0941-2948/2006/0130, 2006.

Koutroulis, A. G., Tsanis, I. K., Daliakopoulos, I. N., and Ja-

cob, D.: Impact of climate change on water resources status: A

case study for Crete Island, Greece, J. Hydrol., 479, 146–158,

doi:10.1016/j.jhydrol.2012.11.055, 2013.

Lange, J., Greenbaum, N., Husary, S., Ghanem, M., Leibundgut, C.,

and Schick, A. P.: Runoff generation from successive simulated

rainfalls on a rocky, semi-arid, Mediterranean hillslope, Hydrol.

Process., 17, 279–296, doi:10.1002/hyp.1124, 2003.

Lee, E. S. and Krothe, N. C.: A four-component mixing model for

water in a karst terrain in south-central Indiana, USA. Using so-

lute concentration and stable isotopes as tracers, Chem. Geol.,

179, 129–143, 2001.

Leibowitz, S. G., Comeleo, R. L., Wigington Jr., P. J., Weaver, C.

P., Morefield, P. E., Sproles, E. A., and Ebersole, J. L.: Hydro-

logic landscape classification evaluates streamflow vulnerability

to climate change in Oregon, USA, Hydrol. Earth Syst. Sci., 18,

3367–3392, doi:10.5194/hess-18-3367-2014, 2014.

Le Moine, N., Andréassian, V., Perrin, C., and Michel, C.: How

can rainfall-runoff models handle intercatchment groundwater

flows? Theoretical study based on 1040 French catchments,

Water Resour. Res., 43, W06428, doi:10.1029/2006WR005608,

2007.

Le Moine, N., Andréassian, V., and Mathevet, T.: Confronting

surface- and groundwater balances on the La Rochefoucauld-

Touvre karstic system (Charente, France), Water Resour. Res.,

44, W03403, doi:10.1029/2007WR005984, 2008.

Lerner, D. N., Issar, A. S., and Simmers, I.: Groundwater recharge?:

a guide to understanding and estimating natural recharge, Heise,

Hannover, 1990.

Lionello, P.: The Climate of the Mediterranean Region: From the

past to the future, Elsevier, 2012.

Maloszewski, P., Stichler, W., Zuber, A., and Rank, D.: Identify-

ing the flow systems in a karstic-fissured-porous aquifer, the

Schneealpe, Austria, by modelling of environmental 18O and 3H

isotopes, J. Hydrol., 256, 48–59, 2002.

Milly, P. C. D., Dunne, K. A., and Vecchia, A. V: Global pattern of

trends in streamflow and water availability in a changing climate,

Nature, 438, 347–350, doi:10.1038/nature04312, 2005.

Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H.,

Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface

evaporation estimated from satellite-based observations, Hydrol.

Earth Syst. Sci., 15, 453–469, doi:10.5194/hess-15-453-2011,

2011.

Mudarra, M. and Andreo, B.: Relative importance of the saturated

and the unsaturated zones in the hydrogeological functioning of

karst aquifers: The case of Alta Cadena (Southern Spain), J. Hy-

drol., 397, 263–280, doi:10.1016/j.jhydrol.2010.12.005, 2011.

Padilla, A., Pulido-Bosch, A., and Mangin, A.: Relative Importance

of Baseflow and Quickflow from Hydrographs of Karst Spring,

Ground Water, 32, 267–277, 1994.

Perrin, J., Jeannin, P.-Y., and Zwahlen, F.: Epikarst storage in a karst

aquifer: a conceptual model based on isotopic data, Milandre test

site, Switzerland, J. Hydrol., 279, 106–124, 2003.

Priestley, C. H. B. and Taylor, R. J.: On the Assessment of

Surface Heat Flux and Evaporation Using Large-Scale Pa-

rameters, Mon. Weather Rev., 100, 81–92, doi:10.1175/1520-

0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.

Quinn, J. J., Tomasko, D., and Kuiper, J. A.: Modeling complex

flow in a karst aquifer, Sediment. Geol., 184, 343–352, 2006.

Rimmer, A. and Hartmann, A.: Simplified conceptual structures and

analytical solutions for groundwater discharge using reservoir

equations, Water Resour. Manag. Model. Ed. by DPC Nayak, In-

Tech, Kakinada, India, 217–338, 2012.

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell,

K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J.,

Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll,

D.: The Global Land Data Assimilation System, Bull. Am. Me-

teorol. Soc., 85, 381–394, doi:10.1175/BAMS-85-3-381, 2004.

Rui, H. and Beaudoing, H.: README Document for Global

Land Data Assimilation System Version 2 (GLDAS-2) Prod-

ucts, GES DISC / HSL, available at: http://hydro1.sci.gsfc.

nasa.gov/data/s4pa/GLDAS/README.GLDAS2.pdf (last ac-

cess: 8 June 2015), 2013.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J.,

Gatelli, D., Saisana, M., and Tarantola, S.: Global sensitivity

analysis: the primer, John Wiley & Sons., 2008.

Samuels, R., Rimmer, A., Hartmann, A., Krichak, S., and Alpert,

P.: Climate Change Impacts on Jordan River Flow: Downscaling

Application from a Regional Climate Model, J. Hydrometeorol.,

11, 860–879, doi:10.1175/2010JHM1177.1, 2010.

Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo,

G.: Catchment classification: empirical analysis of hydrologic

similarity based on catchment function in the eastern USA, Hy-

drol. Earth Syst. Sci., 15, 2895–2911, doi:10.5194/hess-15-2895-

2011, 2011.

Scanlon, B., Healy, R., and Cook, P.: Choosing appropriate tech-

niques for quantifying groundwater recharge, Hydrogeol. J., 10,

18–39, doi:10.1007/s10040-001-0176-2, 2002.

Seber, G. A. F.: Multivariate observations, John Wiley & Sons,

2009.

Sivapalan, M., Yaeger, M. A., Harman, C. J., Xu, X., and

Troch, P. A.: Functional model of water balance variability

at the catchment scale: 1. Evidence of hydrologic similarity

and space-time symmetry, Water Resour. Res., 47, W02522,

doi:10.1029/2010WR009568, 2011.

Spear, R. C. and Hornberger, G. M.: Eutriphication in peel inlet – II.

Identification of critical uncertainties via generalized sensitivity

analysis, Water Resour. Res., 14, 43–49, 1980.

Tague, C. and Grant, G. E.: Groundwater dynamics me-

diate low-flow response to global warming in snow-

dominated alpine regions, Water Resour. Res., 45, W07421,

doi:10.1029/2008WR007179, 2009.

Tritz, S., Guinot, V., and Jourde, H.: Modelling the be-

haviour of a karst system catchment using non-linear

www.geosci-model-dev.net/8/1729/2015/ Geosci. Model Dev., 8, 1729–1746, 2015

http://dx.doi.org/10.1127/0941-2948/2006/0130
http://dx.doi.org/10.1016/j.jhydrol.2012.11.055
http://dx.doi.org/10.1002/hyp.1124
http://dx.doi.org/10.5194/hess-18-3367-2014
http://dx.doi.org/10.1029/2006WR005608
http://dx.doi.org/10.1029/2007WR005984
http://dx.doi.org/10.1038/nature04312
http://dx.doi.org/10.5194/hess-15-453-2011
http://dx.doi.org/10.1016/j.jhydrol.2010.12.005
http://dx.doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
http://dx.doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
http://dx.doi.org/10.1175/BAMS-85-3-381
http://hydro1.sci.gsfc.nasa.gov/data/s4pa/GLDAS/README.GLDAS2.pdf
http://hydro1.sci.gsfc.nasa.gov/data/s4pa/GLDAS/README.GLDAS2.pdf
http://dx.doi.org/10.1175/2010JHM1177.1
http://dx.doi.org/10.5194/hess-15-2895-2011
http://dx.doi.org/10.5194/hess-15-2895-2011
http://dx.doi.org/10.1007/s10040-001-0176-2
http://dx.doi.org/10.1029/2010WR009568
http://dx.doi.org/10.1029/2008WR007179


1746 A. Hartmann et al.: A large-scale simulation model to assess karstic groundwater recharge

hysteretic conceptual model, J. Hydrol., 397, 250–262,

doi:10.1016/j.jhydrol.2010.12.001, 2011.

USGS: Shuttle Radar Topography Mission, 3 Arc Second scene

SRTM V2.1, University of Maryland, College Park, Maryland,

2006.

Vaute, L., Drogue, C., Garrelly, L., and Ghelfenstein, M.: Relations

between the structure of storage and the transport of chemical

compounds in karstic aquifers, J. Hydrol., 199, 221–238, 1997.

Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Wein-

gartner, R.: Mountains of the world, water towers for humanity:

Typology, mapping, and global significance, Water Resour. Res.,

43, W07447, doi:10.1029/2006WR005653, 2007.

Wada, Y., van Beek, L. P. H., van Kempen, C. M., Reckman,

J. W. T. M., Vasak, S., and Bierkens, M. F. P.: Global deple-

tion of groundwater resources, Geophys. Res. Lett., 37, L20402,

doi:10.1029/2010gl044571, 2010.

Wada, Y., Wisser, D., and Bierkens, M. F. P.: Global modeling

of withdrawal, allocation and consumptive use of surface wa-

ter and groundwater resources, Earth Syst. Dynam., 5, 15–40,

doi:10.5194/esd-5-15-2014, 2014.

Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Har-

man, C. J., Gupta, H. V, Kumar, P., Rao, P. S. C., Basu, N. B.,

and Wilson, J. S.: The future of hydrology: An evolving sci-

ence for a changing world, Water Resour. Res., 46, W05301,

doi:10.1029/2009wr008906, 2010.

Wellings, S. R.: Recharge of the Upper Chalk aquifer at a site in

Hampshire, England, J. Hydrol., 69, 275–285, doi:10.1016/0022-

1694(84)90167-7, 1984.

Wigington, P. J., Leibowitz, S. G., Comeleo, R. L., and Eber-

sole, J. L.: Oregon hydrologic landscapes?: A Classification

framework 1, J. Am. Water Resour. Assoc., 49, 163–182,

doi:10.1111/jawr.12009, 2013.

Williams, P. W.: The role of the epikarst in karst and cave hydroge-

ology: a review, Int. J. Speleol., 37, 1–10, 2008.

Williams, P. W.: The role of the Subcutaneous zone in karst hydrol-

ogy, J. Hydrol., 61, 45–67, 1983b.

Williams, P. W. and Ford, D. C.: Global distribution of carbonate

rocks, Zeitschrift für Geomorphol, 147, 1–2, 2006.

Winter, T. C.: The Concept of Hydrologic Landscapes, JAWRA

J. Am. Water Resour. Assoc., 37, 335–349, doi:10.1111/j.1752-

1688.2001.tb00973.x, 2001.

Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens,

M. F. P., Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti,

J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P. R., Kol-

let, S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Siva-

palan, M., Sheffield, J., Wade, A., and Whitehead, P.: Hyperres-

olution global land surface modeling: Meeting a grand challenge

for monitoring Earth’s terrestrial water, Water Resour. Res., 47,

W05301, doi:10.1029/2010WR010090, 2011.

Zagana, E., Tserolas, P., Floros, G., Katsanou, K., and Andreo, B.:

First outcomes from groundwater recharge estimation in evap-

orate aquifer in Greece with the use of APLIS method, in Ad-

vances in the Research of Aquatic Environment, edited by: Lam-

brakis, N., Stournaras, G., and Katsanou, K., 89–96, Springer

Berlin Heidelberg, 2011.

Geosci. Model Dev., 8, 1729–1746, 2015 www.geosci-model-dev.net/8/1729/2015/

http://dx.doi.org/10.1016/j.jhydrol.2010.12.001
http://dx.doi.org/10.1029/2006WR005653
http://dx.doi.org/10.1029/2010gl044571
http://dx.doi.org/10.5194/esd-5-15-2014
http://dx.doi.org/10.1029/2009wr008906
http://dx.doi.org/10.1016/0022-1694(84)90167-7
http://dx.doi.org/10.1016/0022-1694(84)90167-7
http://dx.doi.org/10.1111/jawr.12009
http://dx.doi.org/10.1111/j.1752-1688.2001.tb00973.x
http://dx.doi.org/10.1111/j.1752-1688.2001.tb00973.x
http://dx.doi.org/10.1029/2010WR010090

	Abstract
	Introduction
	Data and methods
	The model
	Data availability
	Parameter estimation
	Definition of typical karst landscapes
	Model parameters for each karst landscape

	Recharge simulations over Europe and the Mediterranean
	Model evaluation

	Results
	Parameter assessment
	Definition of typical karst landscapes
	Model parameter estimates for each karst landscape

	Recharge simulations over Europe and the Mediterranean
	Model evaluation

	Discussion
	Reliability of parameter estimation
	Identification of karst landscapes
	Confinement of parameters

	Simulation of karst recharge over Europe and the Mediterranean
	Realism of spatial patterns
	Relevance of different recharge processes to simulation timescales

	Impact of karstic subsurface heterogeneity

	Conclusions
	Appendix A
	Appendix A1: Results of the cluster analysis
	Appendix A2: Results of the regional sensitivity using initial ranges

	Acknowledgements
	References

