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Abstract. We describe and test a two-horizontal-dimension

subglacial hydrology model which combines till with a dis-

tributed system of water-filled, linked cavities which open

through sliding and close through ice creep. The addition of

this sub-model to the Parallel Ice Sheet Model (PISM) ac-

complishes three specific goals: (a) conservation of the mass

of water, (b) simulation of spatially and temporally variable

basal shear stress from physical mechanisms based on a min-

imal number of free parameters, and (c) convergence un-

der grid refinement. The model is a common generalization

of four others: (i) the undrained plastic bed model of Tu-

laczyk et al. (2000b), (ii) a standard “routing” model used

for identifying locations of subglacial lakes, (iii) the lumped

englacial–subglacial model of Bartholomaus et al. (2011),

and (iv) the elliptic-pressure-equation model of Schoof et al.

(2012). We preserve physical bounds on the pressure. In

steady state a functional relationship between water amount

and pressure emerges. We construct an exact solution of the

coupled, steady equations and use it for verification of our ex-

plicit time stepping, parallel numerical implementation. We

demonstrate the model at scale by 5 year simulations of the

entire Greenland ice sheet at 2 km horizontal resolution, with

one million nodes in the hydrology grid.

1 Introduction

Any continuum-physics-based dynamical model of the liq-

uid water underneath and within a glacier or ice sheet has at

least these two elements: the mass of the water is conserved

and the water flows from high to low values of the mod-

eled hydraulic potential. Beyond that there are many varia-

tions considered in the literature. Modeled aquifer geometry

might be a system of linked cavities (Kamb, 1987), conduits

(Nye, 1976), or a sheet (Creyts and Schoof, 2009). Geome-

try evolution processes might include the opening of cavities

by sliding of the overlying ice past bedrock bumps (Schoof,

2005), the creation of cavities by interaction of the ice with

deformable sediment (Schoof, 2007), closure of cavities and

conduits by creep (Hewitt, 2011), or melt on the walls of

cavities and conduits which causes them to open (Clarke,

2005). Water could move in a macro-porous englacial sys-

tem (Bartholomaus et al., 2011) or it could be stored in a

porous till (Tulaczyk et al., 2000a).

Models have combined subsets of these different mor-

phologies and processes (Flowers and Clarke, 2002a; He-

witt, 2013; Hoffman and Price, 2014; Van der Wel et al.,

2013; Werder et al., 2013; de Fleurian et al., 2014). However,

the completeness of the modeled processes must be balanced

against the number of uncertain model parameters and the

ultimate availability of observations with which to constrain

them.

This paper describes a carefully selected model for a dis-

tributed system of linked subglacial cavities, with additional

storage of water in the pore spaces of subglacial till. Water

in excess of the capacity of the till passes into the distributed

transport system. In this sense the model could be called a

“drained-and-conserved” extension of the “undrained” plas-

tic bed model of Tulaczyk et al. (2000b).

The cavities in our modeled distributed system open by

sliding of the ice over bedrock roughness and close by ice

creep. These two physical processes combine to determine
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the relationship between water amount and pressure. Pres-

sure is thereby determined non-locally over each connected

component of the hydrological system. No functional rela-

tion between subglacial water amount and pressure is as-

sumed (compare Flowers and Clarke, 2002a). The pressure

solves an equation which is a parabolic regularization of the

distributed pressure equation given in elliptic variational in-

equality form by Schoof et al. (2012).

In cases where boreholes have actually been drilled to

the ice base, till is often observed (Hooke et al., 1997; Tu-

laczyk et al., 2000a; Truffer et al., 2000; Truffer and Harri-

son, 2006). Laboratory experiments on the rheology of till

(Kamb, 1991; Hooke et al., 1997; Tulaczyk et al., 2000a;

Truffer et al., 2001) generally conclude that its deformation

is well approximated by a Mohr–Coulomb relation (Schoof,

2006b). For this reason we adopt a compressible-Coulomb-

plastic till model when determining the effective pressure on

the till as a function of the amount of water stored in it (Tu-

laczyk et al., 2000a). Existing models which combine till

and a mass-conservation equation for the subglacial water

are rather different from ours, as they either have only one-

horizontal dimension (Van der Wel et al., 2013) or have a

pressure equation which directly ties water pressure to wa-

ter amount, which generates a porous-medium equation form

(Flowers and Clarke, 2002a; de Fleurian et al., 2014).

The major goals here are to implement, verify, and demon-

strate this two-dimensional subglacial hydrology model. The

model is applicable at a wide variety of spatial and tempo-

ral scales but it has relatively few parameters. It is paral-

lelized and it exhibits convergence of solutions under grid

refinement. It is a sub-model of a comprehensive three-

dimensional ice sheet model, the open-source Parallel Ice

Sheet Model (PISM; http://pism-docs.org); the sub-model

can be added to any PISM run by a simple run-time option.

Channelized subglacial flow is widely assumed to occur

in Greenland, based on borehole and moulin evidence (An-

drews et al., 2014, for example). This important physical pro-

cess for subglacial hydrologic transport is not captured by

our model because conduits are not modeled. Existing theo-

ries of conduits apparently require their locations to be fixed

a priori (Schoof, 2010b; Hewitt, 2013; Werder et al., 2013).

Such lattice models have no known continuum limit in the

map plane. By contrast with conduits, linked-cavity models

do not put the cavities at the nodes of a pre-determined lat-

tice, exactly because the continuum limit of such a lattice

model is known (Hewitt, 2011), namely as a partial differen-

tial equation (PDE; Eq. 13 in the current paper). Regarding

lattice models, because all PISM usage involves a run-time

determination of grid resolution, all parameters must have

grid-spacing-independent meaning. Lattice or other input-

grid-based models are therefore not acceptable as compo-

nents of PISM.

Wall melt in the linked-cavity system, which is believed

to be small (Kamb, 1987), is not added into the mass-

conservation equation in our model. (It can be calculated

diagnostically from the modeled flux and hydraulic gradi-

ent, however.) If included in mass conservation, the addi-

tion of wall melt can generate an unstable distributed system

(Walder, 1982), though such a system can be stabilized to

some degree by bedrock bumps (Creyts and Schoof, 2009).

The structure of the paper is as follows: Sect. 2 consid-

ers basic physical principles, culminating with a fundamen-

tal advection–diffusion form of the mass-conservation equa-

tion. Section 3 reviews what is known about till mechanical

properties, water in till pore spaces, and shear stress at the

base of a glacier. In Sect. 4 we compare “closures” which di-

rectly or indirectly determine the subglacial water pressure.

Based on all these elements, in Sect. 5 we summarize the

new model and the role of its major fields. In this section

we show how the model extends several published models,

we note properties of its steady states (see also Appendix A),

and we compute a nearly exact steady solution in the map

plane, a useful tool for verification. In Sect. 6 we present the

numerical schemes, with particular attention to time-step re-

strictions and the treatment of advection, and we document

the PISM options and parameters seen by users. Section 7

shows numerical results from the model, starting with con-

vergence under grid refinement in the verification case. We

then demonstrate the model in 5 year runs on a 2 km grid

covering the entire Greenland ice sheet.

2 Elements of subglacial hydrology

2.1 Mass conservation

We assume that liquid water is of constant density ρw; see

Table 1 for constants. Thus, the thickness of the layer of lat-

erally moving water, denoted by W(t,x,y), determines its

mass; see Table 2 for variable names and meanings. In ad-

dition there is liquid water stored locally in the pore spaces

of till (Tulaczyk et al., 2000b) which is also described by

an effective thicknessWtil(t,x,y). Such thicknesses are only

meaningful compared to observations if they are regarded as

averages over a horizontal scale of meters to hundreds of

meters (Flowers and Clarke, 2002a). Thus, the total effec-

tive thickness of the water at map-plane location (x,y) and

time t is W +Wtil. This sum is the conserved quantity in our

model. In two map-plane dimensions the mass-conservation

equation is (compare Clarke, 2005)

∂W

∂t
+
∂Wtil

∂t
+∇ · q =

m

ρw

, (1)

where ∇· = ∂
∂x
+

∂
∂y

denotes divergence, q is the vector wa-

ter flux (m2 s−1), and m is the total input to the subglacial

hydrology (kgm−2 s−1). Note that the water flux q is con-

centrated within the two-dimensional subglacial layer.

The water source m in Eq. (1) includes both melt on the

base of the glacier and drainage to the bed from the glacier

surface. In portions of ice sheets with cold surface conditions,
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Table 1. Physical constants and model parameters. All values are configurable in PISM; see Table 3.

Name Default Units Description

A 3.1689× 10−24 Pa−3 s−1 ice softness (Huybrechts et al., 1996)

α 5
4

power in flux formula (Schoof et al., 2012)

β 3
2

power in flux formula (Schoof et al., 2012)

c0 0 Pa till cohesion (Tulaczyk et al., 2000a)

c1 0.5 m−1 cavitation coefficient (Schoof et al., 2012)

c2 0.04 creep closure coefficient

Cc 0.12 till compressibility (Tulaczyk et al., 2000a)

Cd 0.001 ma−1 background till drainage rate

δ 0.02 Ntil lower bound, as fraction of overburden pressure

e0 0.69 reference void ratio at N0(Tulaczyk et al., 2000a)

φ0 0.01 notional (regularizing) englacial porosity

g 9.81 m s−2 acceleration of gravity

k 0.001 m2β−αs2β−3kg1−β conductivity coefficient (Schoof et al., 2012)

N0 1000 Pa reference effective pressure (Tulaczyk et al., 2000a)

ρi 910 kgm−3 ice density (Greve and Blatter, 2009)

ρw 1000 kgm−3 fresh water density (Greve and Blatter, 2009)

Wr 0.1 m roughness scale (Hewitt et al., 2012)

Wmax
til

2 m maximum water in till (Bueler and Brown, 2009)

Table 2. Functions used in the subglacial hydrology model (Eq. 32).

Type Description (symbol, units, meaning)

State

W m transportable water thickness

Wtil m till-stored water thickness

P Pa transportable water pressure

Input

b m bedrock elevation

ϕ till friction angle

H m ice thickness

m kgm−2 s−1 total melt water input

|vb| ms−1 ice sliding speed

Output
Ntil Pa till effective pressure

τc Pa till yield stress

such as Antarctica and the interior of Greenland, the basal

melt rate part of m is dominated by the energy balance at

the base of the ice (Aschwanden et al., 2012). The Greenland

results in Sect. 7 use only that basal melt for m. Drainage

from the surface has also been added to m in applications of

our model (Van Pelt, 2013), but modeling such drainage is

outside the scope of this paper.

2.2 Hydraulic potential and water pressure

The hydraulic potential ψ(t,x,y) combines the pressure

P(t,x,y) of the transportable subglacial water and the grav-

itational potential of the top of the water layer (Goeller et al.,

2013; Hewitt et al., 2012),

ψ = P + ρwg (b+W). (2)

Here z= b(x,y) is the bedrock elevation.

We have added the term “ρwgW” to the standard hydraulic

potential formula ψ = P + ρwgb (Clarke, 2005; Shreve,

1972) because differences in the potential at the top of the

subglacial water layer determine the driving potential gradi-

ent for a fluid layer. When the water depth becomes substan-

tial (W � 1 m), as it would be in a subglacial lake, this term

keeps the modeled lakes from being singularities of the water

thickness field (compare Le Brocq et al., 2009).

Ice is a viscous fluid which has a stress field of its own.

The basal value of the downward normal stress, called the

overburden pressure, is denoted by Po. We accept the shal-

low approximation that this stress is hydrostatic (Greve and

Blatter, 2009):

Po = ρigH, (3)

where H is the ice thickness.

Overpressure P > Po has been observed in ice sheets, but

only for short durations (Das et al., 2008). In our model and

others (Schoof et al., 2012), however, because the condition

P > Po is presumed to cause the ice to lift and thus reduce

the pressure back to overburden P = Po, the pressure solu-

tion is subject to inequalities

0≤ P ≤ Po. (4)

2.3 Darcy flow

Subglacial water flows from high to low hydraulic potential.

The simplest expression of this is a Darcy flux model for a

water sheet:

q =−KW ∇ψ, (5)
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where the hydraulic conductivity K is a constant (Clarke,

2005). More generally Schoof et al. (2012) suggests a power-

law form

q =−kWα
|∇ψ |β−2

∇ψ (6)

for α ≥ 1, β > 1, and a coefficient k > 0 with units that de-

pend on α and β (see Table 1). Clarke (2005) suggests α = 1

and β = 2, to give Eq. (5) above, Creyts and Schoof (2009)

use α = 3/2 and β = 3/2, Hewitt (2011, 2013) uses α = 3

and β = 2, and Hewitt et al. (2012) suggest α = 5/4 and

β = 3/2. The current paper generally implements Eq. (6) but

uses the Clarke (2005) and Hewitt et al. (2012) exponents

in an exact solution and in numerical experiments, respec-

tively. We call K = kWα−1
|∇ψ |β−2 the effective hydraulic

conductivity, so that Eq. (5) applies formally throughout.

2.4 Advection–diffusion decomposition

Combining Eqs. (2) and (6), and separating the term propor-

tional to ∇W , we get the flux expression

q =− kWα
|∇ψ |β−2

∇ (P + ρwgb) (7)

− ρwgkW
α
|∇ψ |β−2

∇W,

which suggests a mix of mechanisms. If P scales with the

overburden pressure Po, and if |∇(H+b)| � |∇W |, then the

first flux term in Eq. (7) will dominate. In any case, the sec-

ond term with ∇W acts diffusively in the mass conservation

Eq. (1). We will see that in near-steady-state circumstances

where there is significant sliding, the first term with ∇P is

also significantly diffusive in the mass-conservation equation

(Sect. 5.3). In conditions far from steady state, however, the

direction of ∇P is presumably different from the direction

∇W .

We will construct our numerical scheme based on decom-

position Eq. (7). To simplify the expression slightly, the small

thickness approximation W ≈ 0 is made inside the absolute

value signs in Eq. (7), namely,

|∇ψ | ≈ |∇ (P + ρwgb)| . (8)

This simplification, which makes no change in the β = 2 case

(see Sect. 2.3), lets us redefine the effective hydraulic con-

ductivity as

K = kWα−1
|∇(P + ρwgb)|

β−2. (9)

In terms of K we define a velocity field and a diffusivity

coefficient:

V =−K∇ (P + ρwgb), D = ρwgKW, (10)

so that Eq. (7) is a clean advection–diffusion decomposition:

q = V W −D∇W. (11)

From Eqs. (1) and (11) we now have an advection–

diffusion-production equation for the evolution of the con-

served water amount W +Wt il :

∂W

∂t
+
∂Wtil

∂t
=−∇ · (V W)+∇ · (D∇W)+

m

ρw

. (12)

There are distinct numerical approximations for the advec-

tion term ∇ · (V W) and the diffusion term ∇ · (D∇W), with

time-step restrictions of different magnitudes (Sect. 6). Equa-

tion (12) is often advection dominated in the sense that

|VW | � |D∇W |, and numerical schemes for advection and

diffusion must be tested in combination (Sect. 7).

2.5 Capacity of a linked-cavity distributed system

The rate of change of the area-averaged thickness of the cav-

ities in a distributed linked-cavity system is the difference of

opening and closing rates (Hewitt, 2011). This thickness Y ,

also called “bed separation” (Bartholomaus et al., 2011), has

the generic evolution equation

∂Y

∂t
=O(|vb|,Y )− C(N,Y ), (13)

where vb is the ice base (sliding) velocity and N = Po−P is

the effective pressure on the cavity system. Denoting X+ =

max{0,X}, we choose a non-negative opening term based on

cavitation only:

O(|vb|,Y )= c1|vb|(Wr−Y )+. (14)

Here c1 is a scaling coefficient and Wr is a maximum rough-

ness scale of the basal topography (Schoof et al., 2012); see

Table 1. The closing term models ice creep only (Hewitt,

2011; Schoof et al., 2012):

C(N,Y )= c2AN
3Y, (15)

where c2 is a scaling coefficient and A is the softness of

the ice. We have used Glen exponent n= 3 for concrete-

ness and simplicity. The closing term C in Eq. (15) is non-

negative because our modeled pressure P satisfies the bounds

0≤ P ≤ Po.

3 Till hydrology and mechanics

Till with pressurized liquid water in its pore spaces is ex-

pected to support much of the ice overburden. When present,

such saturated till is central to the complicated relationship

between the amount of subglacial water and the speed of

sliding. Our model includes storage of subglacial water in

till both because of its role in conserving the mass of liquid

water and its role in determining basal shear stress.

We will assume throughout that liquid water or ice fills the

pore spaces in the till, and that there are no air- or vapor-filled

pore spaces. When Wtil = 0 in the model, the pore spaces

Geosci. Model Dev., 8, 1613–1635, 2015 www.geosci-model-dev.net/8/1613/2015/



E. Bueler and W. van Pelt: Subglacial hydrology in PISM 1617

in the till are regarded as filled with ice and the basal shear

stress is correspondingly high. When Wtil attains sufficiently

large values, however, the till is regarded as saturated with

liquid, and a drop in effective pressure becomes possible

(Sect. 3.2 below).

3.1 Evolution of till-stored water layer thickness

The water in till pore spaces is much less mobile than that in

the linked-cavity system because of the very low hydraulic

conductivity of till (Lingle and Brown, 1987; Truffer et al.,

2001). Therefore, we choose an evolution equation for Wtil

without horizontal transport for simplicity (Tulaczyk et al.,

2000a), namely,

∂Wtil

∂t
=
m

ρw

−Cd. (16)

Here Cd ≥ 0 is a fixed rate that makes the till gradually drain

in the absence of water input; we choose Cd = 1 mm a−1,

which is small compared to typical values ofm/ρw. Refreeze

is also allowed, as a negative value for m.

As in Bueler and Brown (2009), we constrain the layer

thickness by

0≤Wtil ≤W
max
til . (17)

Any water in excess of the capacity of the till, i.e., Wmax
til ,

“overflows” the till and enters the transport system; it is

conserved. Because the source term m in Eq. (16), or the

whole right side, can be negative, the lower bound in inequal-

ities (17) must be actively enforced. The upper bound in in-

equalities (17) also relates to the effective pressure on the till,

as we explain next.

3.2 Effective pressure on the till

Deformation of saturated till is well modeled by a plastic

(Coulomb friction) or nearly plastic rheology (Hooke et al.,

1997; Truffer et al., 2000; Tulaczyk et al., 2000a; Schoof,

2006b). Its yield stress τc satisfies the Mohr–Coulomb rela-

tion:

τc = c0+ (tanϕ)Ntil, (18)

where c0 is the till cohesion, ϕ is the till friction angle, and

Ntil is the effective pressure of the overlying ice on the satu-

rated till (Cuffey and Paterson, 2010). (Note that the effective

pressure N = Po−P used in Sect. 2.5 for modeling cavity

closure is distinct from Ntil in Eq. (18). This distinction is

again explained by the very low hydraulic conductivity of

till.)

Let e = Vw/Vs be the till void ratio, where Vw is the vol-

ume of water in the pore spaces and Vs is the volume of min-

eral solids (Tulaczyk et al., 2000a). From the standard the-

ory of soil mechanics and from laboratory experiments on

till (Hooke et al., 1997; Tulaczyk et al., 2000a), a linear rela-

tion exists between e and the logarithm of Ntil,

e = e0−Cclog10 (Ntil/N0) . (19)

Figure 1a shows a graph of Eq. (19). Here e0 is the void ratio

at a reference effective pressure N0, and Cc is the coefficient

of compressibility of the till. Equivalently to Eq. (19), Ntil

is an exponential function of e, namely, Ntil =N010(e0−e)/Cc

(Van der Wel et al., 2013, Eq. 15), so Ntil is nonzero for all

finite values of e.

While Eq. (19) suggests that the effective pressure could

be any positive number, in fact the area-averaged value of

Ntil under ice sheets and glaciers has limits. It cannot exceed

the overburden pressure for any sustained period. Further-

more, once the till is close to its maximum capacity then the

excess water will be “drained” into a transport system. We

suppose this occurs at a small, fixed fraction δ of the over-

burden pressure. Thus, we assume the bounds

δPo ≤Ntil ≤ Po, (20)

where δ = 0.02 in the experiments in this paper.

The void ratio e and the effective water layer thickness

Wtil are describing the same thing, namely, the amount of liq-

uid water in the till. In fact, if 1x, 1y are the horizontal di-

mensions of a rectangular patch of till with (mineral-portion)

thickness η then Vw =Wtil1x1y and Vs = η1x1y. Thus,

e =
Wtil

η
. (21)

On the other hand, we specify a maximumWmax
til on the water

layer thickness, in the bounds (17). The minimumNtil = δPo

of the effective pressure occurs at maximum values of void

ratio e and effective thickness Wtil, so Eqs. (19) and (21) al-

low us to express the solid-till thickness η in terms of our

preferred parameters Wmax
til , δ, e0, N0, and Cc:

η =
Wmax

til

e0−Cclog10

(
δPo

N0

) . (22)

From Eqs. (19), (21), and (22), the effective pressure Ntil

can now be written as the following function of Wtil:

N̂til =N0

(
δPo

N0

)s
10
(
e0
Cc
) (1−s)

, (23)

where s =Wtil/W
max
til . However, as noted above, Ntil is

bounded:

Ntil =min
{
Po, N̂til

}
. (24)

This function is shown in Fig. 1b.

It follows from Eqs. (18), (23), and (24) that the yield

stress τc is determined by the layer thickness Wtil. Regard-

ing the parameters in this relation:

www.geosci-model-dev.net/8/1613/2015/ Geosci. Model Dev., 8, 1613–1635, 2015
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Figure 1. (a) Equation (19) determines the effective pressureNtil as

a function of the void ratio e; reference values e0,N0 are indicated.

(b) The same curve, but with Ntil as a function ofWtil, with bounds

above by overburden pressure Po and below by a fixed fraction δ of

Po; the solid curve is used in our model. The case shown has 1000

meters ice thickness.

i. Experiments on till suggest small values for cohesion c0

in Eq. (18), 0≤ c0.1 kPa (Tulaczyk et al., 2000a), and

we choose c0 = 0 for concreteness.

ii. Measured till friction angles ϕ are in a 18–40◦ range

(Cuffey and Paterson, 2010). Simulations of the whole

Antarctic (Martin et al., 2011) and Greenlandic (As-

chwanden et al., 2013) ice sheets have been based on

a hypothesis that the till friction angle ϕ depends on

bed elevation so as to model the submarine history of

low-elevation sediments.

iii. The ratio e0/Cc can be determined by laboratory experi-

ments on till samples (e.g., Hooke et al., 1997; Tulaczyk

et al., 2000a). Values for the dimensionless constants e0

and Cc used here (Table 1) are from till samples from

ice stream B in Antarctica (Tulaczyk et al., 2000a), and

they give e0/Cc = 5.75 in Eq. (23).

iv. The till capacity parameter Wmax
til could be set in a

location-dependent manner from in situ (Tulaczyk et al.,

2000a) or seismic reflection (Rooney et al., 1987) evi-

dence, but for simplicity we set it to a constant 2 m.

3.3 Sliding law

Observe that the ice sliding velocity vb is an input into

the subglacial hydrology model we are building, because of

Eq. (14). On the other hand, the yield stress τc is an output

of the till-related part of the hydrology model (Sect. 3.2). In

an ice dynamics model like PISM, vb is determined by solv-

ing a stress balance in which the vector basal shear stress τ b

appears either as a boundary condition (Schoof, 2010a) or

as a term in a vertically integrated balance (Schoof, 2006a;

Bueler and Brown, 2009). In PISM, τc and vb combine to

determine τ b through a sliding law

τ b =−τc

vb

|vb|
1−qv

q

0

, (25)

where 0≤ q ≤ 1 and v0 is a threshold sliding speed (As-

chwanden et al., 2013).

Power-law Eq. (25) generalizes, and includes as the

case q = 0, the purely plastic (Coulomb) relation τ b =

−τcvb/|vb|. At least in the q� 1 cases, under Eq. (25) the

till “yields” and the magnitude of the basal shear stress be-

comes nearly independent of |vb|, when |vb| � v0. Equa-

tion (25) could also be written in generic power-law form

τ b =−β|vb|
q−1vb with coefficient β = τc/v

q

0 ; in the linear

case q = 1 we have β = τc/v0.

4 Closures to determine pressure

The evolution equations listed so far, namely, Eqs. (12), (13),

and (16), can be simplified to three equations in the four ma-

jor variables W , Wtil, Y , and P . We do not yet know how to

compute the water pressure P or its rate of change ∂P/∂t

given the other variables and data of the problem. A closure

is needed.

4.1 Simplified closures without cavity evolution

We first consider two simple closures which appear in the

literature but which do not use cavity evolution Eq. (13) or

similar physics. We list them because the resulting simpli-

fied conservation equations emerge as reductions of our more

complete theory. For simplicity we present them without till

storage (Wmax
til = 0) and only in the constant conductivity

case (α = 1 and β = 2).

Setting the pressure equal to the overburden pressure is the

simplest closure (Le Brocq et al., 2009; Shreve, 1972):

P = Po. (26)

This model is sometimes used for “routing” subglacial wa-

ter under ice sheets so as to identify subglacial lake loca-

tions (Goeller, 2014; Livingstone et al., 2013; Siegert et al.,

2007). Straightforward calculations using Eqs. (1), (6), and

(26) show that the advection–diffusion form Eq. (12) has an
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ice-geometry-determined velocity Ṽ ,

∂W

∂t
=−∇ ·

(
Ṽ W

)
+∇ · (ρwgkW ∇W)+

m

ρw

, (27)

Ṽ =−ρwgk

[
ρi

ρw

∇H +

(
1−

ρi

ρw

)
∇b

]
.

Because the approximation W �H is usually accepted,

so that the hydraulic potential is insensitive to the water layer

thickness, i.e., ψ = Po+ ρwgb (Le Brocq et al., 2009), the

diffusion term in Eq. (27) is usually not included. With this

common simplification, Eq. (27) becomes an advection equa-

tion with a source term. It therefore possesses characteristic

curves, trajectories of the water flow or “pathways” (Liv-

ingstone et al., 2013), which are determined by ice sheet

geometry. However, without the diffusion term, Eq. (27)

exhibits continuum solutions with infinite water concentra-

tion at every location where the simplified potential ψ =

Po+ρwgb has a minimum. Applications therefore only com-

pute the characteristic curves themselves. We prefer Eq. (27)

as stated, with the diffusion term, because it is well posed for

positive initial and boundary values on W (compare Hewitt

et al., 2012), so that numerical solutions can converge under

sufficient grid refinement.

At an almost opposite extreme, our second simplified clo-

sure makes the water pressure a function of the amount of

water. Specifically, Flowers and Clarke (2002a) proposed

PFC(W)= Po

(
W

Wcrit

) 7
2

, (28)

where, for Trapridge glacier, Flowers and Clarke (2002b)

used Wcrit = 0.1 m. Thus, no separate pressure evolution

equation needs to be solved.

One concern with form Eq. (28) is that PFC(W) can be

arbitrarily larger than overburden pressure (Schoof et al.,

2012). In any case, Eq. (28) is used in Eqs. (1) and (6) to yield

a nonlinear diffusion which generalizes the porous-medium

equation ∂W/∂t =∇2(W γ ) (Vázquez, 2007). The main idea

in such a nonlinear diffusion is that the direction of the flux is

−∇W . However, a Darcy-type model q ∼−∇ψ like Eq. (6)

normally gives flux directions different from −∇W in many

cases, especially in rapidly evolving hydrologic systems, if

the pressure is determined by a more physical closure. We

consider such a closure next.

4.2 Full-cavity closure

Simply requiring the subglacial layer to be full of water is

also a closure (Bartholomaus et al., 2011), which we adopt:

W = Y. (29)

The consequences of this closure are explored at some length

by Schoof et al. (2012), Hewitt et al. (2012), and Werder et al.

(2013), who describe the full-cavity case as the “normal pres-

sure” condition.

Equation (29) obviously allows us to eliminate eitherW or

Y as a state variable. We choose to eliminate Y becauseW is

already part of the conserved mass W +Wtil. In the zero till

storage case, Eqs. (1), (13), and (29) imply

O(|vb|,W)− C(N,W)+∇ · q =
m

ρw

, (30)

which is exactly elliptic pressure Eq. (2.12) of Schoof et al.

(2012). They argue that a model based on Eq. (30) should

accommodate the possibility of partially empty cavities with

W < Y when P = 0. However, like Werder et al. (2013) who

implement the model in two dimensions, we accept a poten-

tial loss of model completeness by using a full-cavity model.

4.3 Englacial porosity as a pressure regularization

Englacial systems of cracks, crevasses, and moulins have

been observed in glaciers (Fountain et al., 2005; Bartholo-

maus et al., 2008; Harper et al., 2010, for example), and these

have been included in combined englacial–subglacial hy-

drology models (Flowers and Clarke, 2002a; Bartholomaus

et al., 2011; Hewitt, 2013; Werder et al., 2013). The englacial

system is generally parameterized as having macro-porosity

0≤ φ < 1. If the englacial system is efficiently connected to

the subglacial water then the amount of englacial water is

equivalent to the subglacial pressure, which is reflected by

an englacial “water table” in such models.

Bueler (2014) shows that a distributed extension of the

lumped englacial–subglacial model in Bartholomaus et al.

(2011) gives an equation similar to Eq. (30). The crucial dif-

ference from Eq. (30) is that the equation is parabolic for the

pressure and not elliptic (compare Hewitt et al., 2012). Based

on this analysis, our model uses a parabolic regularization of

Eq. (30) which has constant (notional) englacial porosity φ0:

φ0

ρwg

∂P

∂t
=−∇ · q +

m

ρw

+ C(N,W) (31)

−O(|vb|,W)−
∂Wtil

∂t
.

Compare Eq. (7) in Hewitt (2013) and Eq. (24) in Werder

et al. (2013). Unlike Werder et al. (2013), however, we do

not add an englacial water amount variable to the conserva-

tion equation, and in this sense the porosity only serves to

regularize the pressure equation.

Using englacial porosity as a regularization, as in Eq. (31),

allows a user-adjustable trade-off between temporal detail

in the pressure evolution vs. computational effort (Van Pelt,

2013). If the englacial porosity φ0 is small then there is

a nearly impermeable “cap” on the subglacial system and

Eq. (31) is stiff (Ascher and Petzold, 1998). Equation (31)

is then similar, in terms of numerical solution, to elliptic

Eq. (30). Indeed, if elliptic Eq. (30) is used instead of Eq. (31)

then the coupled hydrological equations system is differen-

tial algebraic (Ascher and Petzold, 1998), and harder to solve
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numerically. By contrast, local changes in subglacial pres-

sure P propagate to other parts of the connected hydraulic

system in a damped way if φ0 is large.

Schoof et al. (2012) show that the mathematical prob-

lem encompassing Eq. (30), constraints (4), and appropriate

pressure boundary conditions can be written as an elliptic

variational inequality (Kinderlehrer and Stampacchia, 1980).

Solving this variational inequality problem in two dimen-

sions, at each time step, is asserted to be “prohibitively ex-

pensive” by Werder et al. (2013). Our adaptive explicit time-

stepping scheme (Sect. 6), by contrast, solves Eq. (31), while

satisfying constraints (4), at demonstrably reasonable com-

putational cost (Sect. 7).

Stiffness in these pressure equations ultimately follows

from the incompressibility of water and the relative non-

distensibility (i.e., hardness) of the ice and bedrock. Clarke

(2003) addresses this in a physically different manner from

englacial porosity. He includes a relaxation (damping) pa-

rameter “β” which is based on the small compressibility of

water, but which is more than 2 orders of magnitude larger

than the physical value. Clarke’s parameter β appears in his

equation exactly as φ0 appears in Eq. (31), multiplying the

pressure time derivative.

5 The new subglacial hydrology model in PISM

5.1 Summary of the model

The major evolution equations for the model are mass con-

servation (Eq. 12), till-stored water layer thickness evolution

(Eq. 16), and pressure evolution (Eq. 31). Collected here for

clarity they are

∂W

∂t
+
∂Wtil

∂t
=−∇ · (V W)+∇ · (D∇W)+

m

ρw

, (32)

∂Wtil

∂t
=
m

ρw

−Cd,

φ0

ρwg

∂P

∂t
+
∂Wtil

∂t
=−∇ · (V W)+∇ · (D∇W)+

m

ρw

+ c2A(Po−P)
3W − c1|vb|(Wr−W)+.

Also recall these definitions:

D = ρwgKW diffusivity,

K = kWα−1
|∇(P + ρwgb)|

β−2 effective conductivity,

Po = ρigH overburden pressure, and

V =−K∇ (P + ρwgb) velocity.

Equations (32) are coupled to ice dynamics by Mohr–

Coulomb Eq. (18) and till effective pressure Eqs.( 23) and

(24).

The model includes these bounds on major variables:

0≤W, 0≤Wtil ≤W
max
til , 0≤ P ≤ Po. (33)

As a result of these inequalities, free boundaries arise in

the domain. In particular, free boundaries occur at locations

where m is sufficiently negative to drive W to 0 or where the

pressure P goes to 0 or overburden.

A coupled weak formulation of Eq. (32) and con-

straints (33) would be a mathematically rigorous unified de-

scription of the free boundary conditions, but this paper takes

a more pragmatic approach, as follows. First, PISM uses a

periodic domain for whole ice sheet computations (Sect. 7),

so the computational domain has no classical boundary. Sec-

ond, inequalities (33) are enforced in our coupled explicit

scheme by truncation–projection (Sect. 6). Third, at ice-free

land and ocean (i.e., ice shelf or ice-free ocean) grid lo-

cations, pressure P is determined by atmospheric or ocean

pressure, respectively. Fourth and finally, at ice-free land and

ocean grid locations the mass-conservation equation effec-

tively has m sufficiently negative so that water which flows

or diffuses into that grid location during a time step is fully

removed and thus W = 0 and Wtil = 0; see the “mask” vari-

ables in Sect. 6.

In this model the pressure P does not feed back to ice dy-

namics through changing the basal shear stress applied to the

ice. Thus, modeled cavity size, i.e., the thickness W of the

water in the linked-cavity system, also does not affect ice dy-

namics. Instead, as clearly stated in Sect. 4, the yield stress

τc is determined by the amount Wtil of water in the till. Un-

der general conditions of significant basal melting, or sur-

face input, so that m> ρwCd, the second equation in system

Eq. (32) causes Wtil to increase up to its limit Wmax
til . Ongo-

ing significant melt then causes water to pass into the linked-

cavity system, at which point W generally increases accord-

ing to the first equation in the system, and P evolves accord-

ing to the third. Under these conditions the term ∂Wtil/∂t is 0

in the first and third equations becauseWtil is unchangingly at

its maximum value. In summary, water input is first put into

the till and then “cascades” into the linked-cavity system.

As in Table 2, the functions in the model can be cate-

gorized into state functions, which must be provided with

initial values, input functions, which are either supplied by

observations or by other components of an ice sheet model,

and output functions which are supplied to other components

of the ice sheet model. In two-way coupling the ice dynam-

ics model passes H , m, and |vb| to the subglacial hydrology

model, and τc is returned.

5.2 Reduction to existing models

Four reductions (limiting cases) of model Eq. (32) can now

be stated precisely:

i. The zero till storage (Wmax
til = 0) and zero englacial

porosity (φ0 = 0) case of Eq. (32) is essentially the

model described by Schoof et al. (2012). Recalling that
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q =−KW∇ψ , the equations are

∂W

∂t
=−∇ · (KW∇ψ)+

m

ρw

, (34)

0=∇ · (KW∇ψ)+
m

ρw

+ c2A(Po−P)
3W − c1|vb|(Wr−W)+.

The bounds W ≥ 0 and 0≤ P ≤ Po are unchanged.

Model (32) is a parabolic version of model (34), reg-

ularized using a notional connection to porous englacial

storage, and with coupling to till storage.

ii. The P = Po limit of Eqs. (32), in which the evolution

equation for pressure is ignored, is essentially the model

for “routing” water to subglacial lakes under cold ice

sheets used by Siegert et al. (2007) and Livingstone

et al. (2013). As noted in Sect. 4, the Wmax
til = 0 and

α = 1 case of this model routes water with a velocity

which is determined entirely by ice and bedrock geom-

etry.

iii. The non-distributed “lumped” form of Eqs. (32), in

which, in particular, ∇ · q =
(qout−qin)

L
where L is the

length of the glacier and qout,qin are given by obser-

vations, is the model of Bartholomaus et al. (2011); see

Bueler (2014).

iv. The undrained plastic bed (UPB) model of Tulaczyk

et al. (2000b) arises as the W = 0,q = 0,φ0 = 0 re-

duction of Eqs. (32). This model depends on friction-

heating feedback to keep Wtil bounded, which is not ef-

fective if local friction heating is a non-local function of

changes in till strength. Bueler and Brown (2009) there-

fore enforce Wtil ≤W
max
til by removing water above the

capacity Wmax
til , giving a minimal non-conservative, but

“drained,” version of the UPB model.

The above list does not imply that all possible subglacial

hydrology models are reductions of ours. For example, the

subglacial hydrology model of Johnson and Fastook (2002)

is a variation on idea (ii) above but it is not a reduction. The

Flowers and Clarke (2002a) model mentioned in Sect. 4.1 is

also not a reduction, though a significant connection is ex-

plained in the Appendix.

Two-dimensional models which include conduits (Schoof,

2010b) are not reductions of our model. Conduit evolu-

tion is numerically straightforward to implement in one-

dimensional hydrology models (Hewitt et al., 2012; Van der

Wel et al., 2013), but when extended to two-horizontal di-

mensions all existing models (Schoof, 2010b; Hewitt, 2013;

Werder et al., 2013) become “lattice” models without a

known continuum limit. Our model has no conduit-like evo-

lution equations at all, though the gradient-descent locations

of characteristic curves from models using idea (ii) may cor-

respond to the locations of conduits in some cases.

5.3 Steady states

The steady form of model Eqs. (32), stated using α = 1, β =

2, and Wmax
til = 0 for simplicity, can be written as follows in

terms of V ,q,W,P :

V =−k∇ (P + ρwgb), (35)

q = VW − ρwgkW∇W, (36)

0=−∇ · q +
m

ρw

, (37)

0= c2A(Po−P)
3W − c1|vb|(Wr−W)+. (38)

These steady-state equations are also stated in the one-

dimensional case by Schoof et al. (2012). Observe that the

equations describing mass conservation (Eq. 37) and cavity

opening/closing processes (Eq. 38) have become decoupled.

We make three observations about solutions to Eqs. (35)–

(38)

i. From Eq. (38) there is a functional relationship P =

P(W).

ii. By Eqs. (35) and (38), the apparently advective flux

“VW” in Eq. (36) actually acts diffusively.

iii. Radial nearly exact solutions can be constructed.

In Appendix A we detail points (i) and (ii). Observation (iii)

is addressed next.

5.4 A nearly exact steady-state solution

For the purpose of verifying numerical schemes we have built

a two-dimensional, nearly exact solution for W and P , in

a case with nontrivial overburden pressure and ice sliding.

It depends on the numerical solution of a scalar first-order

ordinary differential equation (ODE) initial value problem,

something we can do with high accuracy. Note that Schoof

et al. (2012) also construct traveling-wave (i.e., non-steady)

exact solutions in one dimension.

We solve the flat bed (b = 0) angularly symmetric case of

coupled Eqs. (35)–(38). By assuming spatially constant wa-

ter input (m=m0), a parabolic ice thickness profile in the

radial coordinate r , and a particular profile of sliding, the

equations reduce to a single first-order ODE in r for the

water thickness W(r). The sliding is given by a function

|vb(r)| with onset of sliding at location r = 5 km, about one-

fourth of the ice cap radius r = 22.5 km. The pressure P(r)

is then determined from W(r) by the functional relationship

Eq. (A3) which applies in steady state (Appendix A).

To compute the nearly exact solution, we use adaptive

numerical ODE solvers, both a Runge–Kutta method and a

variable-order stiff solver, with relative tolerance 10−12 and

absolute tolerance 10−9. The two solvers gave identical re-

sults to more than six digits. The result W(r) is shown in

Fig. 2, which also shows the regions of the r,W plane which

correspond to overpressure (P = Po in our model), normal
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Figure 2. A nearly exact radial, steady solution for water thick-

nessW(r) (dashed). In r-vs.-W space the overpressure (O), normal

pressure (N ), and under-pressure (U ) regions (solid curves) are de-

termined by ice geometry and sliding velocity, because this is steady

state.

pressure (0< P < Po), and under pressure (P = 0). Figure 3

shows the corresponding pressure solution P(r). Starting at

the margin, we see that the solution is in the normal pressure

region as r decreases, until the onset of sliding (r = 5 km)

where it switches into the overpressure case (because there is

no sliding upstream).

Verification results using the nearly exact solution appear

in Sect. 7. Our numerical methods (next section) use a carte-

sian (x,y) grid unrelated to the radial nearly exact solution,

so numerical error comes from generic relationships between

exact solution features and the grid.

6 Numerical schemes

Equations (32) are discretized by explicit finite difference

methods (Morton and Mayers, 2005). A centered, second-

order scheme is applied to the diffusion part of the mass-

conservation equation in model (32), but two upwind-type

schemes for the advection part are compared, namely, first-

order “donor cell” upwind method (LeVeque, 2002) and a

higher-order flux-limited upwind-biased method (Hundsdor-

fer and Verwer, 2003). All the numerical schemes are imple-

mented in parallel using the Portable, Extensible Toolkit for

Scientific computation (PETSc) library (Balay et al., 2011).

6.1 Discretization of the mass-conservation equation

To set notation, suppose the rectangular computational do-

main has Mx ×My grid points (xi,yj ) with uniform spacing

1x,1y. Let W l
i,j ≈W(tl,xi,yj ), (Wtil)

l
i,j ≈Wtil(tl,xi,yj ),

and P li,j ≈ P(tl,xi,yj ) denote the numerical approxima-

tions.
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Figure 3. A nearly exact radial, steady solution for pressure P(r)

(dashed) and overburden pressure Po (solid).

We compute velocity components and flux components at

the staggered (cell-face-centered) points, shown in Fig. 4,

from centered finite difference approximations of Eqs. (10)

and (11). We use “compass” indices for such staggered val-

ues, so that, for example, the “east” and “north” staggered

water layer thicknesses are computed by averaging regular

grid values:

We =
(W l

i,j +W
l
i+1,j )

2
, Wn =

(W l
i,j +W

l
i,j+1)

2
. (39)

The nonlinear effective conductivityK from Eq. (9) is also

needed at staggered locations. As a notational convenience

define R = P +ρwgb and define these staggered-grid values

(compare Mahaffy, 1976):

5e =

∣∣∣∣Ri+1,j −Ri,j

1x

∣∣∣∣2
+

∣∣∣∣Ri+1,j+1+Ri,j+1−Ri+1,j−1−Ri,j−1

41y

∣∣∣∣2,
5n =

∣∣∣∣Ri+1,j+1+Ri+1,j −Ri−1,j+1−Ri−1,j

41x

∣∣∣∣2
+

∣∣∣∣Ri,j+1−Ri,j

1y

∣∣∣∣2.
Thereby define

Ke = kW
α−1
e 5

(β−2)
2

e , Kn = kW
α−1
n 5

(β−2)
2

n . (40)

The velocity components (u,v) of the water velocity V are

then found by differencing:

ue =−Ke

Ri+1,j −Ri,j

1x
, vn =−Kn

Ri,j+1−Ri,j

1y
. (41)
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Figure 4. Numerical schemes Eqs. (44) and (49) use a grid-point-

centered cell. Velocities, diffusivities, and fluxes are evaluated at

staggered-grid locations (triangles at centers of cell edges) denoted

by compass notation e,w,n,s. State functions W,Wt il,P are lo-

cated at regular grid points (diamonds).

For diffusivity we simply have

De = ρwgKeWe, Dn = ρwgKnWn. (42)

We get the remaining staggered-grid quantities by shifting

indices.

Define Qe(ue), Qw(uw), Qn(vn), and Qs(vs) as the face-

centered (staggered-grid) normal components of the advec-

tive flux VW ; more detail is given in the next subsection.

The grid values ofD =∇ ·q =∇ ·(VW)−∇ ·(D∇W) using

Eqs. (41) and (42) now become

Di,j =
Qe(ue)−Qw(uw)

1x
+
Qn(vn)−Qs(vs)

1y
(43)

−
De(W

l
i+1,j −W

l
i,j )−Dw(W

l
i,j −W

l
i−1,j )

1x2

−
Dn(W

l
i,j+1−W

l
i,j )−Ds(W

l
i,j −W

l
i,j−1)

1y2
.

Local conservation is ensured by usingQe(ue) in computing

Di,j equal to Qw(uw) used in Di+1,j , and so on.

Our scheme for approximating mass conservation Eq. (12)

is

W l+1
i,j −W

l
i,j

1t
+
(Wtil)

l+1
i,j − (Wtil)

l
i,j

1t
=−Di,j +

mij

ρw

. (44)

The updated value of Wtil, which appears on the left side of

Eq. (44), is computed by trivial integration of Eq. (16),

(Wtil)
l+1
i,j = (Wtil)

l
i,j +1t

(
mij

ρw

−Cd

)
. (45)

The given value W l+1
til is used if it is in the closed interval

[0,Wmax
til ], but otherwise the bounds 0≤Wtil ≤W

max
til are en-

forced. Once W l+1
til is computed, the value of W l+1 can be

updated by Eq. (44) in a mass-conserving way.

Assuming no error in the flux components Q, the lo-

cal truncation error (Morton and Mayers, 2005) of scheme

Eq. (44) would be O(1t1+1x2
+1y2) as an approxima-

tion of Eq. (12). The actual truncation error depends on the

approximation of the discrete fluxes, addressed next.

6.2 Discrete advective fluxes

We test two flux-discretization schemes, namely, a first-

order upwind scheme and the Koren flux-limited third-order

scheme (Hundsdorfer and Verwer, 2003). Both schemes

achieve non-oscillation and positivity, but with different lo-

cal truncation error and complexity of implementation. The

third-order scheme is best explained as a modification of our

conservative (“donor cell”; LeVeque, 2002) first-order up-

wind scheme.

For a flux-limited scheme, the following formulas apply in

the cases ue ≥ 0, ue < 0, vn ≥ 0, and vn < 0:

Qe(ue)= ue

[
Wi,j +9(θi)(Wi+1,j −Wi,j )

]
, (46)

Qe(ue)= ue

[
Wi+1,j +9

(
(θi+1)

−1
)
(Wi,j −Wi+1,j )

]
,

Qn(vn)= vn

[
Wi,j +9(θj )(Wi,j+1−Wi,j )

]
,

Qn(vn)= vn

[
Wi,j+1+9

(
(θj+1)

−1
)
(Wi,j −Wi,j+1)

]
,

where the subscripted θ quotients are

θi =
Wi,j −Wi−1,j

Wi+1,j −Wi,j

, θj =
Wi,j −Wi,j−1

Wi,j+1−Wi,j

.

The first-order upwind scheme simply sets 9(θ)= 0 in

formulas Eq. (46). The Koren scheme limits its third-order

and positive-coefficient correction to the upwind scheme by

using this formula (Hundsdorfer and Verwer, 2003)

9(θ)=max

{
0,min

{
1,θ,

1

3
+

1

6
θ
}}
. (47)

When using the Koren flux limiter, the stencil in Fig. 4 is

extended because regular grid neighbors Wi+2,j , Wi−2,j ,

Wi,j+2, Wi,j−2 are also involved in updating Wi,j . The

flux-correction-limited Koren third-order scheme bypasses

the first-order limitation of positive linear finite difference–

volume schemes imposed by Godunov’s barrier theorem

(Hundsdorfer and Verwer, 2003, Sect. I.7.1) by using a non-

linear correction formula. Though the Koren scheme is third-

order where smoothness allows, it reverts to first-order at ex-

trema and jumps where θ � 1 or θ � 1.

For either scheme, if the water input m is negative then

we must actively enforce, by truncation, the positivity of

the water thickness W . In fact, positivity of the source-free

advection–diffusion scheme, a desirable property which we

can show by standard methods (Hundsdorfer and Verwer,

2003), does not ensure positivity of the solution if there is

water removal, i.e., if m
ρw
−
∂Wtil

∂t
< 0.
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6.3 Discretization of the pressure equation

Pressure evolution Eq. (31) is a nonlinear diffusion with “re-

action” terms from the opening and closing of cavities. How-

ever, our numerical scheme for this equation is similar to the

scheme for the mass-conservation equation (Sect. 6.1) be-

cause the spatial derivatives are actually the same in each

equation, namely, ∇ · q. Thus, we reuse the computation of

those derivatives, namely, scheme Eq. (43), which givesDi,j .

Let Oij , Cij be the gridded values of the zeroth-order

(i.e., without spatial derivatives) opening and closing rates;

see Eqs. (14), (15). Define the sum of all zeroth-order terms:

Zij = Cij −Oij +
mij

ρw

−
(Wtil)

l+1
ij − (Wtil)

l
ij

1t
. (48)

Using Eq. (43) for the flux divergence, the scheme for pres-

sure Eq. (31) is

φ0

ρwg

P l+1
i,j −P

l
i,j

1t
=−Di,j +Zij . (49)

Because Eq. (48) uses the updated value (Wtil)
l+1
ij , Eq. (45)

must be applied before Eq. (49) can be used to update P .

There are also special cases at the boundaries of the region

where W > 0; see Sect. 6.5.

6.4 Stability of time stepping

A sufficient condition for stability of mass-conservation

scheme Eq. (44) comes from combining sufficient condi-

tions for stability of the advection and diffusion parts. For

the advection part we first define1tCFL, after the well-known

Courant–Friedrichs–Lewy restriction for advection schemes

(Morton and Mayers, 2005), by

1tCFL

(
max|u|

1x
+

max|v|

1y

)
=

1

2
, (50)

where V = (u,v) is the velocity of the water in the dis-

tributed system. For the diffusion part we define 1tW by

1tW maxD

(
1

1x2
+

1

1y2

)
=

1

4
. (51)

The condition 1t ≤min{1tCFL,1tW} is sufficient for sta-

bility and convergence of scheme Eq. (44) if V , D, and m

were all externally provided functions, i.e., in the case where

Eqs. (32) are decoupled. We can show this by maximum prin-

ciple arguments for the first-order upwind advection choice

(Morton and Mayers, 2005), but standard theory at least sug-

gests the same conclusion for the higher-order flux-limited

advection scheme (Hundsdorfer and Verwer, 2003).

These time-step restrictions can be understood by consid-

ering an example. We ran the model on a 1x =1y = 250 m

grid to approximate steady state for the subglacial hydrology

of Nordenskiöldbreen (Van Pelt, 2013). We used realistic in-

puts for H , b, and m, but a spatially constant ice sliding rate

of |vb| = 50 m a−1; other parameter values were from Ta-

ble 1. The result is that the maximum computed water speed

|V | is about 0.2 m s−1 so Eq. (50) gives1tCFL ≈ 300s. Com-

puted diffusivity D = ρwgKW has a maximum value that

varies significantly in time, 0.1≤maxD ≤ 5m2 s−1. Using

a typical value maxD = 1m2 s−1 in Eq. (51) gives 1tW ≈

8000s. Thus, in this simulation1tW ≈ 251tCFL. This exam-

ple suggests that, unless both the maximum speed |V | is un-

usually low, and deep subglacial lakes develop so that maxD

is large, the diffusive timescale is significantly longer than

the CFL timescale. While the scaling 1tW =O(1x
2) vs.

1tCFL =O(1x
1) makes it clear that under sufficient spatial

grid refinement 1tW is controlling, we suspect that 1tCFL is

controlling for 1x > 100 m.

However, the time-step restriction from the pressure-

equation scheme is typically shorter than either 1tW or

1tCFL. The time-step restriction for scheme Eq. (49) is com-

parable to 1tW, and we define 1tP by

1tP

(
2maxD

φ0

)(
1

1x2
+

1

1y2

)
= 1. (52)

If the time step is set by

1t =min{1tCFL,1tW,1tP}, (53)

then we observe in practice that the coupled scheme consist-

ing of Eqs. (44), (45), and (49) is stable.

Recalling Eq. (51), however, 1tP is actually a fraction

of 1tW, namely, 1tP = 2φ01tW. If we return to the above

example for Nordenskiöldbreen, with φ0 = 0.01 we have

1tW ≈ 8000 s, 1tCFL ≈ 300 s, and 1tP ≈ 160 s. In this case

the pressure scheme has the shortest time step, but it is

comparable to CFL. Because 1tP is O(1x2), the pressure

scheme restriction is certainly controlling for sufficiently fine

grids. However, the time step 1tP also scales with porosity

φ0, so we can make it more or less severe by adjusting that

parameter.

If implicit time stepping were instead used for the pressure

equation, which would require overt variational inequality

treatment to preserve physical pressure bounds (Schoof et al.,

2012), then the timescales1tW,1tCFL addressed here would

be the only restrictions. The time-step restriction 1tW could

also be removed by implicit steps for the mass-conservation

equation, though again this requires a variational inequality

formulation because of the lower bound W ≥ 0. Our obser-

vation above that 1tCFL�1tW for practical ice sheet grids

suggests that implicit time stepping only for the diffusion part

of the mass-conservation equation is not beneficial.

6.5 One time step of the model

Mathematical model Eqs. (32) evolves the fieldsW ,Wtil, and

P . Here we describe one time step of the fully discretized

coupled evolution.
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For convenience only we denote the ice geometry, bed ge-

ometry, and sliding speed (i.e.,Hi,j , bi,j , (Po)i,j , and |vb|i,j )

as though they are all time independent. The geometry may

be quite general, with ice-free land, floating ice shelf, or ice-

free ocean allowed at any location (xi,yj ). The geometry in-

put data determine boolean “masks” on the grid, based on 0

as the sea level elevation:

icefreei,j = (Hi,j = 0)& (bi,j > 0),

floati,j = (ρiHi,j <−ρsw bi,j ),

where ρsw = 1028.0 is sea-water density. Note floati,j is

true both where there is floating ice shelf and where the

ocean is ice free. The subglacial hydrology model exists only

for grounded ice, that is, only if both flags icefree and

float are false.

One time step follows this algorithm:

i. Start with values W l
i,j , (Wtil)

l
i,j , P li,j which satisfy

bounds W ≥ 0, 0≤Wtil ≤W
max
til , and 0≤ P ≤ Po.

ii. Get (Wtil)
l+1
i,j with Eq. (45). Enforce 0≤Wtil ≤W

max
til .

If icefreei,j or floati,j then set (Wtil)
l+1
i,j = 0.

iii. Get W values averaged onto the staggered grid from

Eq. (39), staggered-grid values of the effective conduc-

tivity K from Eq. (40), velocity components u, v at

staggered-grid locations from Eq. (41), and staggered-

grid values of the diffusivity D from Eq. (42).

iv. Get time step 1t from Eq. (53).

v. Using Eq. (46) and a flux limiter ψ(θ), compute the ad-

vective fluxes Qe(αe) and Qn(βn) at all staggered-grid

points.

vi. Get flux divergence approximations Di,j from Eq. (43).

vii. If icefreei,j then set P l+1
i,j = 0. If floati,j then

set P l+1
i,j = (Po)i,j . If W l

i,j = 0, and if icefreei,j and

floati,j are both false, then either set P l+1
i,j = (Po)i,j

(no sliding) or P l+1
i,j = 0 (any sliding). Otherwise use

Eq. (49) to compute P l+1
i,j .

viii. If P l+1
i,j does not satisfy bounds 0≤ P ≤ Po then trun-

cate/project into this range.

ix. If icefreei,j or floati,j then set W l+1
i,j = 0. Other-

wise use Eq. (44) to compute values for W l+1
i,j .

x. If W l+1
i,j < 0 then truncate/project to get W l+1

i,j = 0.

xi. Update time tl+1 = tl +1t and repeat at (i).

This algorithm goes with a reporting scheme for mass con-

servation. Note that in steps (ii) and (ix) water is lost or

gained at the margin where either the ice thickness goes to

0 on land (margins), or at locations where the ice becomes

floating ice (grounding lines). Because such loss/gain may

be the modeling goal – users want hydrological discharge

– these amounts are reported. This reporting scheme also

tracks the projections in step (x), which represent a mass-

conservation error which goes to 0 in the continuum limit

1t→ 0.

6.6 Run-time options for hydrology models

Option -hydrology NAME, where NAME is one of the

three headings below, chooses the model equations.

distributed: this model is governed by the full set of

Eqs. (32) in Sect. 5. The full set of parameters (Table 1) and

variables (Table 2) are active in this model.

routing: in this reduced model the equation for pressure

evolution is replaced by P = Po. The evolution equations for

the state variables W and Wt il , and the bounds 0≤W and

0≤Wtil ≤W
max
til , are unchanged.

null: this further-reduced model is non-conserving. It has

only the state variable Wtil which is subject to bounds 0≤

Wtil ≤W
max
til and evolves by Eq. (16).

The correspondence between the notation in this pa-

per and PISM’s configurable parameters is shown in Ta-

ble 3. These parameters can be set at runtime by us-

ing the parameter name as an option, or by setting a

pism_overrides variable in a NetCDF file which is

read with the -config_override option (PISM authors,

2015). File src/pism_config.cdl determines the de-

fault values and units.

7 Results

7.1 Verification of the coupled model

By using the coupled, steady-state, nearly exact solution

(Sect. 5.4) we verified most of the numerical schemes de-

scribed above. (Verification is the process of measuring and

analyzing the errors made by the numerical scheme, espe-

cially as the numerical grid is refined (Wesseling, 2001).) To

do this we initialized our time-stepping numerical scheme

with the nearly exact steady solution and we measured the

error relative to the exact values after 1 model month. The

continuum time-dependent model Eq. (32) would cause no

drift away from steady state, so any drift is numerical error.

We did runs on grids decreasing by factors of 2 from 2 km

to 125 m. Figure 5 shows the results based on the first-order

upwind method for the fluxes.

This convergence evidence suggests that we have imple-

mented the numerical schemes in Sect. 6, for the coupled

advection–diffusion-reaction equations for W and P , cor-

rectly. The rate of convergence in this verification case is
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Table 3. Correspondence between PISM parameter names and symbols in this paper (Table 1). All are used in the distributed model,

with indicated subsets used in the routing and null models.

PISM parameter name Symbol routing null

fresh_water_density ρw × ×

hydrology_cavitation_opening_coefficient c1

hydrology_creep_closure_coefficient c2

hydrology_gradient_power_in_flux β ×

hydrology_hydraulic_conductivity k ×

hydrology_regularizing_porosity φ0

hydrology_roughness_scale Wr

hydrology_thickness_power_in_flux α ×

hydrology_tillwat_decay_rate Cd × ×

hydrology_tillwat_max Wmax
til

× ×

ice_density ρi × ×

ice_softness A

standard_gravity g × ×

till_c_0 c0 × ×

till_compressibility_coefficient Cc × ×

till_effective_fraction_overburden δ × ×

till_reference_effective_pressure N0 × ×

till_reference_void_ratio e0 × ×
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Figure 5. Average water thickness error |W −Wexact| decays as

O(1x0.91), and average pressure error |P −Pexact| decays as

O(1x0.92), for grids with spacing 250≤1x =1y ≤ 2000 m.

roughly linear (i.e., about O(1x1)) because the largest er-

rors arise at locations of low regularity of the exact solution,

including the radius r = 5 km where P quickly drops from

Po, and at the ice sheet margin where there is a jump inW to

0.

The rates of convergence for average errors are nearly

identical for the higher-resolution flux-limited scheme and

for the first-order upwinding scheme (not shown). Because

our problem is an advection–diffusion problem in which

both the advection velocity and the diffusivity are solution-

dependent, it is difficult to separate the errors arising from

numerical treatments of advection and diffusion. The first-

order upwinding scheme for the advection has much larger

numerical diffusivity but this diffusivity is masked by the

physical diffusivity. Based on our verification evidence it is

reasonable to choose the simpler first-order upwind method

for applications, as it requires less interprocess communica-

tion.

7.2 Application to the Greenland ice sheet

We now apply our hydrology models to the entire Greenland

ice sheet at 2 km grid resolution. This nontrivial example

demonstrates the model at large computational scale using

real ice sheet geometry, with one-way coupling from ice dy-

namics giving realistic distributions of overburden pressure,

ice sliding speed, and basal melt rate.

7.2.1 Spun-up initial state

The PISM dynamics and thermodynamics model (Bueler

and Brown, 2009; Winkelmann et al., 2011; Aschwanden

et al., 2012), using the non-mass-conserving null hydrol-

ogy model (Sect. 6.6), was used to compute a consistent and

nearly steady model of the ice sheet, a “spun-up” initial state,

following the procedures in Aschwanden et al. (2013). Our

model uses no spatially variable parameter values, such as

basal shear stresses found by inversion of surface velocities.

The bed elevations and present-day climate of the ice sheet,

especially surface temperature and surface mass balance (Et-

tema et al., 2009), were from the Sea-level Response to Ice

Geosci. Model Dev., 8, 1613–1635, 2015 www.geosci-model-dev.net/8/1613/2015/



E. Bueler and W. van Pelt: Subglacial hydrology in PISM 1627

Figure 6. The inputs to the hydrology model are the modeled basal melt rate m/ρw (left; ma−1) and sliding speed |vb| (right; ma−1) from

the spun-up state.

Sheet Evolution (SeaRISE) data set for Greenland (Bind-

schadler et al., 2013).

The spin-up grid sequence was to run 50 ka on a 20 km

grid, 20 ka on a 10 km grid, 2 ka on a 5 km grid, and finally

200 a on a 2 km grid, with bilinear interpolation at each re-

finement stage. The final 2 km stage, on a horizontal grid of

1.05 million grid points, used uniform 10 m vertical spacing

so that the ice sheet flow was modeled on a structured 3-D

grid of 460 million velocity–temperature points. This whole

spin-up used 2800 total processor hours on 72 2.2 GHz AMD

Opteron processors, a small computation for modern super-

computers.

The results of this spin-up were validated by comparing

results to present-day observations. In the last 100 a of this

run the ice sheet volume varied by less than 0.04 %, so the

model is in nearly steady state, though the actual Greenland

ice sheet may not be as close to steady. The spun-up ice sheet

volume of 3.094×106 km3 is close to the present-day volume

of 3.088× 106 km3 computed from the SeaRISE data on the

same grid. Compared to volume alone, a better evaluation of

dynamical quality is to compare the modeled and observed

(Joughin et al., 2010) surface speed, with a very similar result

to the comparison described in Aschwanden et al. (2013).

The spun-up initial state includes, in particular, modeled

ice thickness H , basal melt rate m, and sliding velocity |vb|;

the latter two fields are shown in Figure 6. Areas of slid-

ing roughly coincide with areas of basal melt because heat-

producing (modeled) basal drag comes from the yield stress

parameterized in Sect. 3.

7.2.2 Experimental setup and model runs

We used fields H , m, |vb| from the spun-up state as

steady data in 5 model-year runs of the routing and

distributed hydrology models; see Sect. 6.6 for model

descriptions. Thus, only one-way coupling was tested: a

steady ice dynamics model fed its fields to an evolving sub-

glacial hydrology model. The hydrology model was initial-

ized with the Wtil values from the spun-up state, but with

W = 0 initial values for both models, and also P = 0 initial

values for distributed.

In the runs, variables W , Wtil, and P were recomputed at

each time step, at each of 1.05 million subglacial hydrology

grid points, using parameter values from Table 1. In both

routing and distributed models the hydrological sys-

tem became steady after the first 3 model years.

Adaptively determined time steps reached a steady level of

about 4 model hours for the routing model based on max-

imum subglacial water speeds |V | of 0.05 ms−1 and maxi-

mum diffusivity D of 10.6 m2 s−1. For the distributed

model the time steps were actually slightly longer, primar-

ily because routing concentrates large water amounts

and fluxes along steepest-descent paths; the time steps were

about 6 model hours based on maximum speeds |V | of

0.03 ms−1 and much smaller maximum diffusivities D of

about 0.25 m2 s−1. These hydrology-only runs used much

less computation than the spin-up: 14.7 processor hours for

the routing run and 14.2 for distributed.
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Figure 7. Outputs from the routing hydrology model are the modeled till-stored water layer thickness Wtil (left; m) and modeled trans-

portable water layer thickness W (right; m).

7.2.3 routing results

The finalWtil andW fields from the routing run are shown

in Fig. 7. The till is fully saturated (Wtil = 2 m) in essen-

tially all areas where basal melt occurs. In the outlet glacier

areas the transportable water W concentrates along curves

of steepest descent of the hydraulic potential; see detail in

Fig. 8. The location of the pathways is determined primar-

ily by the bedrock elevation detail provided by the SeaRISE

data set, which is limited. Furthermore, the grid resolution of

2 km, while very high for whole ice sheet models, still causes

spatial “smearing” of the flow pathways.

The continuum limit of the model would have concen-

trated pathways of a few meters to tens of meters width.

These concentrated pathways could be regarded as minimal

“conduit-like” features of the subglacial hydrology. As noted

in the introduction, however, our model has no “R-channel”

conduit mechanism, in which dissipation heating of the flow-

ing water generates wall melt back.

7.2.4 distributed results

The final values of W and the relative water pressure P/Po

for the 5 model-year distributed run are shown in

Fig. 9. The till is full (Wtil = 2 m) in essentially all areas

where basal melt occurs, so, as Wtil is nearly identical to the

routing result, it is not shown.

Recall that |vb| determines the pressure drop caused by

sliding-generated cavities. The effect is to spread out the wa-

ter W relative to the routing model, as clearly seen in

Fig. 9. There is now no strong concentration of W along

curves of steepest descent of the hydraulic potential, but the

Figure 8. Detail of transportable water W plotted in Fig. 7, cover-

ing Jakobshavn (J), Helheim (H), and Kangerdlugssuaq (K) outlet

glaciers.

spreading depends on opening and closing parameters in the

distributed model, especially parameters c1,c2,φ0,Wr.

Darcy flux model parameters α,β,k are also important. Pa-

rameter identification using observed surface, in situ, basal

reflectivity, discharge, and other data, though needed, is be-

yond the scope of this paper.

We can examine the local relationship between water layer

thickness W and pressure P in the distributed results.

Though the model is near steady state, the basal melt rate,

sliding speed, and overburden pressure all show realistically

large spatial variations. In Fig. 10 we “bin” pairs (W,P ) by

relatively narrow sliding speed ranges (each sub-plot) and

color the points by the ice thickness. There is an increas-

ing relationship between W and the relative pressure P/Po
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Figure 9. Outputs from the distributed hydrology model include the modeled transportable water layer thickness W (left; m), and the

modeled transportable water layer pressure P , shown relative to overburden pressure (i.e., P/Po; right).

Figure 10. Scatter plots of (W,P/Po) pairs for all cells from the distributed model run, which used roughness scale Wr = 0.1 m. Each

sub-plot only shows pairs from the indicated range of ice sliding speeds. Points are colored by ice thickness using a common scale shown

beside last figure.

in each bin. While in the fast-sliding case W is often compa-

rable to the bed roughness scale Wr, for slow sliding we see

generally lower water amounts (W.Wr/10) but a full range

of pressures. In thick ice the pressure P is close to overbur-

den even if there is fast sliding. Locations with high sliding,

high water amount, and low pressure always have low ice

thickness.
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8 Conclusions

This paper documents additions made to the Parallel Ice

Sheet Model (PISM) in its 0.6 version released Febru-

ary 2014. It describes and demonstrates a subglacial hydrol-

ogy model which is novel in having these features:

– a 2-D parallel implementation of a coupled till-and-

linked-cavities model;

– a pressure-equation regularization, using notional

englacial porosity, which eases implementation and im-

proves numerical performance;

– a scheme for maintaining physical pressure bounds (0≤

P ≤ Po) at all times;

– verification using a nearly exact solution of the coupled

mass-conservation and pressure equations, in the steady

radial case;

– demonstration at high resolution and whole ice-sheet

scale on a million-point hydrology grid.

Furthermore, the comprehensive exposition here clarifies

the relationship among several pressure-determining “clo-

sures” (Sect. 4), and it allows us to understand our model as a

common extension of several seemingly disparate published

models (Sect. 5). Additional analysis (Appendix A) shows

that in steady state a functional relationship “P = P(W)”

arises between pressure and water layer thickness. This anal-

ysis reveals the diffusive nature of the apparently advective

part of the steady-state flux.

The current paper only demonstrates one-way coupling, in

which the PISM ice flow and thermodynamics model feeds

basal melt rate and sliding velocities to the hydrology model.

Two-way coupling will appear in future work.
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Appendix A: Analysis of steady states

Relative to the time-dependent model Eqs. (32), steady-state

Eqs. (35)–(38) have separate balances between the diver-

gence of the flux and the water input, and the opening and

closing processes. In particular, Eq. (38) allows us to write

the pressure P = P(W) in steady state as a continuous func-

tion of the layer thickness W . However, steady state is only

possible if a condition holds:

c1|vb|(Wr−W)+ ≤ c2AP
3
oW. (A1)

This condition says that the maximum closing rate C(N,W),
which occurs at 0 water pressure, must equal or exceed the

sliding-generated opening rate O(|vb|,W).

We define a scaled basal sliding speed which has units of

pressure; it is a scale for the pressure drop from cavitation:

sb =

(
c1|vb|

c2A

) 1
3

. (A2)

Then Eq. (A1) is equivalent to the condition W ≥Wc, where

Wc =
Wr s

3
b

(s3
b+P

3
o )

is a critical water thickness. If W ≥Wc then

P(W)= Po− sb

(
(Wr−W)+

W

) 1
3

. (A3)

Formula Eq. (A3) applies even ifW ≥Wr, in which case P =

Po. Under pressure (P = 0) with subcritical water amount

(W <Wc) does not occur in steady state, though it can occur

in non-steady conditions; note P(Wc)= 0. Figure A1 shows

the function P(W) for different values of sliding speed |vb|,

and Fig. A2 shows it for different values of overburden pres-

sure Po.

Flowers and Clarke (2002a) proposed function PFC(W) –

see Eq. (28) – for both steady and non-steady circumstances.

Both functions P(W) and PFC(W) are increasing, and both

relate P to the overburden pressure Po. However, in Eq. (A3)

the relation of P to Po is additive, while in Eq. (28) they

are proportional. Power-law form Eq. (28) is not justified by

the physical reasoning which led to Eq. (A3), even in steady

state. It would appear that any functional relationship P(W)

should also depend on the sliding velocity, as it does here, if

cavitation influences the water pressure. In any case, in the

current paper we do not impose a relationship P = P(W) at

all, though such a relation emerges in steady state.

We now consider how the steady-state water velocity V ,

and the associated flux q, depends on other quantities. First,

from Eqs. (35) and (A3), in steady state we have

∂P

∂W
=

sbWr

3W
4
3 (Wr−W)

2
3

(A4)

if Wc <W <Wr. If W ≤Wc then ∂P/∂W is undefined, and

ifW >Wr then ∂P/∂W = 0. Formula Eq. (A4) and Figs. A1

and A2 agree that ∂P
∂W
→∞ as W ↗Wr.
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Figure A1. The steady-state function P(W) defined by Eq. (A3),

using Wr = 1 m and H = 1000 m (solid curves). Values of Wc are

indicated by black dots at P = 0. For comparison, Flowers and

Clarke (2002a) relation Eq. (28) is shown with Wcrit = 1 m (dashed

black).
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Figure A2. The graph of P(W) defined by Eq. (A3) also depends on

overburden pressure Po = ρigH , shown using |vb| = 100 m/a and

Wr = 1 m.

Now note that Eqs. (35), (A3), and (A4) imply a formula

for the velocity in steady state:

V =−k

[
∇ψo−

(
Wr−W

W

) 1
3

∇ sb (A5)

+
sbWr

3W
4
3 (Wr−W)2/3

∇W

]
,

where ψo = Po+ ρwgb. Thus, the direction of water veloc-

ity V is determined by a combination of a geometric direc-

tion (∇ψo), a direction derived from spatial variations in the

sliding speed (∇ sb), and a diffusive direction (∇W ). Indeed,

a portion of the advective flux VW is diffusive in steady
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state, in addition to the a priori diffusive flux −D∇W ; recall

Eq. (11) in Sect. 2.4. In fact, because the coefficient of ∇W

in Eq. (A5) remains large when W → 0, as long as sliding is

occurring (sb > 0), then for low water amount and sustained

sliding we should think of the water as diffusing in the layer.

On the other hand, when the water thickness is almost at the

roughness scale (W.Wr), then the same coefficient is also

large in sliding cases (sb > 0); again the effect is diffusive.
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Code availability

The source code for all versions of PISM is available through

host website https://github.com/pism/pism. Extensive PDF

and searchable browser documentation for PISM is con-

tained both in the source code and online through the PISM

website http://www.pism-docs.org/. PISM is licensed under

the GNU General Public License (version 3).
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