
Geosci. Model Dev., 8, 1299–1313, 2015

www.geosci-model-dev.net/8/1299/2015/

doi:10.5194/gmd-8-1299-2015

© Author(s) 2015. CC Attribution 3.0 License.

The terminator “toy” chemistry test: a simple tool to assess errors in

transport schemes

P. H. Lauritzen1, A. J. Conley1, J.-F. Lamarque1, F. Vitt1, and M. A. Taylor2

1National Center for Atmospheric Research, Boulder, Colorado, USA
2Sandia National Laboratories, Albuquerque, New Mexico, USA

Correspondence to: P. H. Lauritzen (pel@ucar.edu)

Received: 22 October 2014 – Published in Geosci. Model Dev. Discuss.: 10 December 2014

Revised: 4 April 2015 – Accepted: 17 April 2015 – Published: 4 May 2015

Abstract. This test extends the evaluation of transport

schemes from prescribed advection of inert scalars to reac-

tive species. The test consists of transporting two interacting

chemical species in the Nair and Lauritzen 2-D idealized flow

field. The sources and sinks for these two species are given by

a simple, but non-linear, “toy” chemistry that represents com-

bination (X+X→ X2) and dissociation (X2→ X+X). This

chemistry mimics photolysis-driven conditions near the solar

terminator, where strong gradients in the spatial distribution

of the species develop near its edge. Despite the large spatial

variations in each species, the weighted sum XT = X+ 2X2

should always be preserved at spatial scales at which molec-

ular diffusion is excluded. The terminator test demonstrates

how well the advection–transport scheme preserves linear

correlations. Chemistry–transport (physics–dynamics) cou-

pling can also be studied with this test. Examples of the con-

sequences of this test are shown for illustration.

1 Introduction

Tracer transport is a basic component of any atmospheric dy-

namical core. Typically, transport accuracy is evaluated in

ideal tests before being developed further or implemented

in full models. Several tests for 2-D passive and inert trans-

port exist in the literature (Williamson et al., 1992; Nair and

Machenhauer, 2002; Nair and Jablonowski, 2008; Nair and

Lauritzen, 2010). To facilitate the intercomparison of trans-

port operators under challenging flow conditions, Lauritzen

et al. (2012) proposed a standard suite of tests that was ex-

ercised by a number of state-of-the-art schemes in Lauritzen

et al. (2014). These tests evaluate each advection scheme’s

ability to transport an inert tracer with respect to a wide range

of diagnostics as well as the ability of each transport scheme

to maintain non-linear tracer correlations between pairs of

tracers (Lauritzen and Thuburn, 2012). While such evalu-

ations provide useful information about the ability of each

transport operator to advect inert scalars, these idealized tests

do not shed light on how transport methods perform under

forced conditions, e.g., how the method interacts with sub-

grid-scale processes.

Idealized chemical processes have readily available an-

alytic expressions for the forcing terms. The implementa-

tion of these processes as sub-grid-scale forcing involves

“only” solving forced continuity equations rather than the

full Navier–Stokes, primitive or shallow water equations

that add extra levels of complexity. Indeed, several simpli-

fied systems, where two species interact non-linearly, have

been developed and studied quite extensively in the liter-

ature. For example, the Lotka and Voltera equations (also

known as predator–prey equations) are a pair of first-order

differential equations describing the dynamics of biologi-

cal systems in which two species interact, one as a predator

and the other as prey. For a dynamical systems analysis of

the Lotka and Voltera equations, e.g., see Chapter 4 in Pri-

gogine (1981). The equations are the same for simple chem-

istry systems where each chemical species is transformed to

the others. A more complicated system, but also consisting

of just two independent variables (and two variables held

constant), is the Brusselator system (Prigogine and Lefever,

1968) that allows for a rich set of solutions (Prigogine, 1981).

The real Belousov–Zhabotinsky reaction has similar tran-

sient complex oscillations as found in the Brusselator sys-

tem. Pudykiewicz (2006) coupled the Brusselator reactions
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to the advection–diffusion equations in a shallow water flow.

The linearized system has analytic solutions (Turing, 1952)

that can be used to assess the accuracy of the numerical solu-

tion to the differential equations. Pudykiewicz (2006, 2011)

solved the full non-linear system, which is basically a forced

advection–diffusion equation with flow prescribed from the

shallow water solution, and examined the solutions qualita-

tively since the analytic solution is not known. Similar ideal-

ized systems for reactive species have been developed in the

context of convective boundary layers (e.g., Kristensen et al.,

2010).

The test we develop in this paper extends the Nair and

Lauritzen (2010) test to two reactive species, adding one ex-

tra level of complexity while retaining the simplicity of an-

alytic prescribed flow and known analytic solution. The in-

spiration for the idealized chemical reactions is photolysis-

driven chemistry in which sunlight strongly influences the

production and loss processes, creating very steep gradi-

ents in the individual tracer distributions near the terminator

boundary (as observed for chlorine species and bromine in

the stratosphere; see, e.g., Anderson et al., 1991; Salawitch

et al., 2009; Brasseur and Solomon, 2005). Hence, these re-

action coefficients lead to strong gradients coinciding with a

“terminator-like” line (Lander and Hoskins, 1997). Another

inspiration for this test is that the atomic concentration for

each air parcel is conserved (up to the scales where molecu-

lar diffusion matters), while the molecular species react non-

linearly with each other, e.g., total organic and inorganic

chlorine in the stratosphere (Edouard et al., 1996; Strahan

et al., 2011; Prather and Jaffe, 1990). So, by choosing the ini-

tial condition for two tracers so that the total amount (i.e., the

total weighted mass of a chemical constituent X) is a constant

throughout the domain, then the atomic concentration should

remain constant in space and time (as long as the chemistry

exactly conserves the total of the constituents). This concept

is used in this test case so that an analytic solution for the

atomic concentration is readily available irrespective of the

complexity of the flow and non-linearity of the chemical re-

actions.

The paper is organized as follows. In Sect. 2, the idealized

chemistry, referred to as “toy chemistry”, is defined. An anal-

ysis in terms of steady-state solutions is presented. The trans-

port operator is discussed in the context of linear tracer cor-

relations in Sect. 3. The combination of the “toy” chemistry

forcing with advection prescribed by the Nair and Lauritzen

(2010) wind field (see Appendix A) defines the terminator

test. The discrete terminator test is defined in Sect. 4. Sec-

tion 5 shows example solutions from the Community Atmo-

sphere Model (CAM) Finite-Volume dynamical core (CAM-

FV; Lin, 2004) and the CAM Spectral Elements dynamical

core (CAM-SE; Dennis et al., 2012). In particular, we show

that the terminator test exacerbates errors associated with the

preservation of linear relations and limiters as well as high-

lights differences in chemistry–transport (physics–dynamics)

coupling approaches. The summary and conclusions are in

Sect. 6.

2 Toy chemistry

In this section, we use the nomenclature X to describe the

number density (the number of molecules of compound X

divided by the number of molecules of dry air; see Andrews

et al., 1987). A molecule composed of two atoms X is written

as X2. The number density associated with the total number

of atoms X (in X and X2) is denoted by XT.

The non-linear toy chemistry equations for X2 and X are

X2

k1
→2X, (1)

X+X
k2
→X2, (2)

where k1 and k2 are the reaction rates of the production path-

ways for X and X2, respectively. The reactions are designed

to conserve the total number of X atoms

XT = X+ 2X2. (3)

The kinetic equations corresponding to the above system

(Eqs. 2 and 1) are given by

dX

dt
= 2k1X2− 2k2XX, (4)

dX2

dt
=−k1X2+ k2XX, (5)

where d/dt is the material (or total) derivative d/dt = ∂/∂t+

v · ∇ and v is the wind vector. It is easily verified that the

weighted sum of X and X2 is conserved along characteristics

of the flow

dXT

dt
=

d

dt
[X+ 2X2] = 0. (6)

If the initial condition for XT is constant (as we assume

here), XT is not a function of time and is therefore equal to

its initial value.

XT = X(t)+ 2X2(t),

= X(0)+ 2X2(0), (7)

and, hence,

X2(t)=
1

2
(XT−X(t)) . (8)

The reaction coefficient, k1, represents the photolytic

breaking of molecule X2 and can be represented as the co-

sine of the solar zenith angle for when the sun’s zenith is at

(λc, θc) (see Fig. 1). The reaction coefficient, k2, represents

the recombination and is assumed constant over the globe.
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Figure 1. Contour plot of the terminator-‘like’ reaction coefficient
k1(λ,θ) where λ and θ are longitude and latitude, respectively.

and the mixing ratios are non-negative,

Cl(0)≥ 0, (13)165

Cl2(0)≥ 0. (14)

From the kinetic equations (4) and (5) above, as well as the
conservation equation (3) we can write

dCl
dt

= k1(Cly −Cl)− 2k2ClCl. (15)170

Completing the square on the right-hand side leads to the
expression

dCl
dt

=−2k2

[
(Cl + r)2−D2

]
, (16)

The right-hand side can be factored, and the following partial
fraction expansion can be constructed:175

dCl
(Cl + r)−D −

dCl
(Cl + r) +D

=−4Dk2dt (17)

Integration of each of these terms from time t= 0 to t, yields
the expression

ln
(

(Cl(t) + r−D)(Cl(0) + r+D)
(Cl(t) + r+D)(Cl(0) + r−D)

)
=−4Dk2t, (18)

leading to the solutions (19). The analytic solution for Cl(t)180

is

Cl(t) =
{
D
(

(Cl(0)+r)(1+E(t))+D(1−E(t))
(Cl(0)+r)(1−E(t))+D(1+E(t))

)
− r if r > 0,

Cl(0)
1+2k2tCl(0) if r = 0.

(19)

185

Cl2(t) =
1
2

(Cly −Cl(t)) , (20)

where

r =
k1

4k2
, (21)

D =
√
r2 + 2rCly, (22)

E(t) = e−4k2Dt. (23)190

For long times, Cl(t) and Cl2(t) converge to the steady state
solutions,

lim
t→∞

Cl(t) =D− r, (24)

lim
t→∞

Cl2(t) =
1
2

(Cly −D+ r) , (25)195

and are shown on Figure 2. The steady state solutions are
specified as initial conditions for the terminator test case. For
a stability analysis of the terminator ‘toy’ chemistry see Ap-
pendix B.200

3 Transport operator and correlations

Let T be the discrete transport operator that advances, in
time, the numerical solution to the passive and inert conti-
nuity equation for species Cl and Cl2

Dφ

Dt
= 0, φ= Cl,Cl2, (26)205

at grid point or grid cell k:

φn+1
k = φnk + ∆ttracer T (φnj ), j ∈H, φ= Cl,Cl2 (27)

where n is the time-level index, ∆ttracer time-step for the
transport operator, and H is the set of indices defining the
stencil required by T to update φnk . Note that the trans-210

port operator may not solve the prognostic equation for φ
in advective form as used in (4) and (5). For example, it is
common practice for finite-volume schemes to base the dis-
cretization on a flux-form formulation of the continuity equa-
tion (here written without forcing terms)215

∂(ρφ)
∂t

=−∇ · (vρφ) , (28)

Figure 1. Contour plot of the terminator-“like” reaction coefficient

k1(λ,θ) where λ and θ are longitude and latitude, respectively.

k1(λ,θ)=max[0,sinθ sinθc

+cosθ cosθc cos(λ− λc)] , (9)

k2(λ,θ)= 1, (10)

where λ and θ are longitude and latitude, respectively, and

(λc,θc) are chosen as (20◦ N, 300◦ E) to align with the flow

field. The terminator is the continuous boundary between day

and night regions. These reaction rates produce very steep

gradients in the X species near the terminator. This setup is

of direct application to the real atmosphere as the total chlo-

rine in the stratosphere is conserved (except for molecular

diffusion), while photolysis and chemical reactions partition

the various components and lead to narrow gradients across

the terminator.

An analytic steady-state solution of the chemical concen-

trations for the condition of no flow is derived in Appendix B.

The initial condition is specified as being the steady-state so-

lution under no flow (see Fig. 2). Reaction rates are quite

rapid compared to the model time steps as shown in Ap-

pendix C.

3 Transport operator and correlations

Let T be the discrete transport operator that advances, in

time, the numerical solution to the passive and inert conti-

nuity equation for species X and X2:

Dφ

Dt
= 0, φ = X̃, X̃2, (11)

at grid point or grid cell i (in this equation, X̃ refers to the

volume mixing ratio of X (Andrews et al., 1987), which is

related to the number density of X through scaling by the

fixed ratio of the atomic weight of X to the molecular weight

of dry air):

φn+1
i = φni +1ttracer T (φnj ), j ∈H, φ = X̃, X̃2, (12)

where n is the time-level index, 1ttracer the time step for the

transport operator, and H is the set of indices defining the

stencil required by T to update φni . Note that the transport

operator may not solve the prognostic equation for φ in ad-

vective form as used in Eqs. (4) and (5). For example, it is

common practice for finite-volume schemes to base the dis-

cretization on a flux-form formulation of the continuity equa-

tion (here written without forcing terms):

∂(ρ φ)

∂t
=−∇ · (vρ φ), (13)

where ρ is air density. To deduce the mixing ratio from

Eq. (13), one needs to solve the continuity equation for air.

For a non-divergent wind field and an initial condition of ρ

that is constant, the exact solution for ρ is that it remains

constant in time and space. For the terminator test, in which

we use a non-divergent flow field and constant initial con-

dition for ρ (if applicable), it has been found to be crucial

to solve for ρ rather than to prescribe the analytic solution

for ρ. Usually, a transport scheme using ρ φ as a prognos-

tic variable will not preserve a ρ φ = constant initial condi-

tion, whereas it will preserve a constant mixing ratio. So, if

ρ is analytically prescribed, φ will not be preserved in ar-

eas where it would otherwise be constant. Such errors can be

exacerbated by the terminator chemistry. For a fuller discus-

sion of tracer–air coupling, see, e.g., Lauritzen et al. (2011)

and Nair and Lauritzen (2010).

For the theoretical discussion, it is convenient to define the

property “semi-linear”: a transport operator T is semi-linear

if it satisfies

T (aφi + b)= aT (φi)+ bT (1)= aT (φi)+ b, (14)

for any constants a and b (Lin and Rood, 1996; Thuburn

and McIntyre, 1997). A semi-linear transport operator pre-

serves linear correlation between two trace species. Note that

the semi-linear property subsumes that the transport operator

preserves a constant mixing ratio

T (b)= b. (15)

Since XT is simply the weighted sum of just two species,

XT will be conserved in the numerical model if T is semi-

linear. The semi-linear property, however, does not imply that

a weighted (linear) sum of more than two species is con-

served (Lauritzen and Thuburn, 2012). The chemical reac-

tions (Eqs. 1 and 2), even in discrete form, will preserve the

sum of species. Consequently, a semi-linear transport opera-

tor combined with the terminator chemistry will produce no

error in XT.

Several transport operators T in the literature are semi-

linear when limiters/filters are not applied. For example,

www.geosci-model-dev.net/8/1299/2015/ Geosci. Model Dev., 8, 1299–1313, 2015
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Figure 2. Contour plots of the steady-state solutions, assuming no flow, for X (left) and X2 (right), respectively, computed from initial

conditions X= 4.0× 10−6 and X2 = 0.

Lin and Rood (1996) show that their scheme, based on the

widely used piecewise parabolic method (PPM; Colella and

Woodward, 1984) for reconstructing sub-grid-scale tracer

fields, preserves linear correlations. The CSLAM scheme

(Lauritzen et al., 2010), also based on polynomials, preserves

linear correlations (see the proof in Appendix A of Harris

et al., 2010). An example of a scheme that is not semi-linear

is the transport operator based on rational functions described

in Xiao et al. (2002), due to the non-linearity of the recon-

struction function.

Typically, transport operators are not applied in their

unlimited versions in full models. Shape-preserving fil-

ters are applied to ensure physically realizable solutions

such as the prevention of negative mixing ratios or un-

physical oscillations in the numerical solutions (e.g., Dur-

ran, 2010). The filter method/algorithm depends on the

advection scheme formulation and discretization. Finite-

volume discretizations that are based on cell-average prog-

nostic variables (ρφ) usually make use of either sub-grid-

cell reconstruction function filters, e.g., van Leer type

1-D limiters (Lin et al., 1994), or flux-limiting methods such

as flux-corrected transport (Zalesak, 1979). The reconstruc-

tion filter can be applied for schemes that are based on La-

grangian or Eulerian finite-volume discretizations, where the

integration is based on swept areas (in either dimensionally

split 1-D operators such as Lin and Rood, 1996, or fully 2-

D) that span the domain without gaps or overlaps. Exam-

ples of reconstruction function filters are Colella and Wood-

ward (1984) and Lin and Rood (1996). Limiting through flux

correction, where low-order shape-preserving fluxes are op-

timally blended with higher-order fluxes, can only be ap-

plied in flux-form schemes. For discretizations based on a

non-conservative form (advective form), where the prognos-

tic variables are mixing ratio φ rather than ρφ, tracer mass

conservation is not inherent, and is usually restored a poste-

riori with ad hoc methods (e.g., Priestley, 1993; Gravel and

Staniforth, 1994). Since the mass-restoration algorithm may

alter φ, the mass-fixer and shape-preservation algorithms are

intrinsically related. Usually, this problem is solved using

optimization/variational methods (e.g., White and Dongarra,

2011). For methods where the prognostic variables are repre-

sented by series expansions (e.g., Galerkin methods), shape

preservation can also be enforced with optimization methods

(e.g., Guba et al., 2014).

Shape-preserving filters may render an otherwise semi-

linear transport operator non-semi-linear. Some limiters,

however, are semi-linear. For example, van Leer type 1-

D limiters (Lin et al., 1994) preserve linear correlations

(Lin and Rood, 1996). Flux-corrected transport limiters with

and without selective limiting preserve linear correlations

(Blossey and Durran, 2008; Harris et al., 2010). The lim-

iter by Barth and Jespersen (1989) that scales the reconstruc-

tion functions, so that it is within the range of the surround-

ing cell average values, preserves linear correlations (Harris

et al., 2010). Positive definite limiters that insure positivity-

preservation and “clipping” algorithms that simply remove

negative values (see, e.g., Skamarock and Weisman, 2009,

for applications in a weather forecast model) are certain to

violate linear correlations as the filter only affects the species

that is about to become negative, and not the other species.

Note that “clipping” may occur in the physical parameteri-

zation package. A posteriori filters (e.g., optimization-based

shape-preserving filters) may or may not be semi-linear, and

the details of the implementation can affect the semi-linearity

(e.g., iteration thresholds, logic in the code).

We note that, instead of advecting each species separately

by solving the advection equations in Eqs. (11) or (13) with

φ = X,X2, one may also choose to advect the sum XT and

one of the species, e.g., X, and then diagnose the remaining

species, X2, from Eq. (8). If the transport operator conserves

a constant, which many transport operators do, then the con-

stant sum XT is trivially conserved if chosen as a prognos-

tic variable. This approach is commonly used in chemistry

transport models for some families of species; e.g., Douglass

et al. (2004) advected the sum of total inorganic chlorine and

bromine to avoid spurious maxima and minima in their dis-
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tributions in the stratosphere. For idealized tests to evaluate

how well families of species that add up to a constant are

preserved, see, e.g., Lauritzen and Thuburn (2012).

4 Discrete terminator test

Coupling the chemistry parameterization with advection

can be done in multiple ways. A common approach in

weather/climate modeling is to update the species evolu-

tion in time incrementally by first updating the mixing ra-

tios with respect to sub-grid-scale forcings (chemistry) and

then to apply the transport operator based on the chemistry-

updated state (or in reverse order). Since the computation

of the sub-grid-scale tendencies in full models is computa-

tionally costly, the dynamical core (in this case, the transport

scheme) is usually subcycled with respect to chemistry. For

fast chemistry, this may be reversed.

A model will operate with a chemistry (physics) time

step 1tchem, a tracer time step 1ttracer and a chemistry–

transport (physics–dynamics) coupling time step 1tcpl. For

example, in the default CAM-SE setup, 1ttracer = 300s,

1tchem = 1800s and1tcpl = 600s. Hence, the chemistry ten-

dencies, FX and FX2
, are computed every 30 min, and the

species are updated every 600 s with the chemistry tenden-

cies. A detailed description of the CAM-SE implementation

of physics–dynamics coupling in terms of its namelist vari-

ables is given in Appendix E.

It is, of course, up to the model developer to choose

which coupling method and time step to use. To facilitate

comparison, the model developer is encouraged to use the

analytically computed forcing terms FX and FX2
given in

Appendix F, and to use a chemistry (physics) time step

of 1tchem = 1800s. The initial conditions are given by the

steady-state asymptotic solutions Eqs. (B14) and (B15) with

a mixing ratio of XT = 4× 10−6 (Fortran code for the initial

conditions is given in Appendix G and in the Supplement).

For simplicity, the velocity field for the transport opera-

tor T is prescribed. We use the deformational flow of Nair

and Lauritzen (Case 2; 2010) that was also used in the stan-

dard test case suite of Lauritzen et al. (2012, 2014). For

completeness, the components of the non-divergent veloc-

ity vector V (λ,θ, t) and the stream function are repeated

in Appendix A. The test is run for 12 days (or 5 non-

dimensional time units) exactly as prescribed in Nair and

Lauritzen (2010). Note that the test case methodology can be

applied in any velocity field, including a full 3-D dynamical

core.

5 Results

It is the purpose of this section to show exploratory termina-

tor test results. An in-depth analysis of why the limiters do

not preserve linear relations (and the derivation of possible

remedies) is up to the scheme developers.

5.1 Model setup

Terminator test results are shown for two dynamical cores

(transport schemes) available in the CAM: CAM-FV (Lin,

2004) and CAM-SE (Dennis et al., 2012), which are docu-

mented within the framework of CAM in Neale et al. (2010).

The transport scheme in CAM-FV is the widely used finite-

volume scheme of Lin and Rood (1996). CAM-SE performs

tracer transport using the spectral element method based on

degree 3 polynomials. Further details on CAM-SE are given

in Appendix H.

As discussed in detail in Nair and Lauritzen (2010) and

briefly in Sect. 3, care must be taken in the handling of the

tracer mixing ratio and tracer mass coupling for schemes that

prognose tracer mass. In general, the transport scheme will

not preserve a constant tracer density field (ρφ = constant),

since the discrete divergence operator is non-zero despite the

analytical wind field being non-divergent (zero divergence).

However, the scheme will preserve a constant mixing ratio if

φ is recovered from ρφ by dividing the tracer density by the

prognosed air density ρ. If one does not prognose ρ and sim-

ply specifies the analytic solution (ρ = constant), a constant

mixing ratio will not be preserved.

For all simulations, the chemistry (physics) time step is

1tchem = 1800s. The horizontal resolution is approximately

1◦: for CAM-FV, that is the 0.9× 1.25 configuration (192

latitudes and 288 longitudes) and, for CAM-SE, it is the

NE30NP4 configuration in which there are 30× 30 ele-

ments on each cubed-sphere panel and 4×4 Gauss–Lobatto–

Legendre (GLL) quadrature points in each element. The

tracer time step 1ttracer is 900 s for CAM-FV and 300 s for

CAM-SE. During the tracer transport scheme time step, the

analytic winds of Nair and Lauritzen (2010) are held constant

following the CAM-Chem setup (Lamarque et al., 2012).

Unless explicitly stated otherwise, the coupling time step

for CAM-SE is 1tcpl = 600 and 1tcpl = 1800 for CAM-FV.

For details on CAM chemistry–transport coupling, see Ap-

pendix E.

The sample results shown next are divided into four sec-

tions: first of all, baseline results for CAM-FV and CAM-SE

using their default configurations. Next, results from experi-

ments varying the limiter in CAM-SE are presented. Then,

the consequences of using different chemistry–transport

(physics–dynamics) coupling methods (in CAM-SE) are dis-

cussed. Lastly, the results are quantified.

5.2 Default CAM-FV and default CAM-SE results

Figure 3 shows the distributions XT after 1 and 6 simulated

days for CAM-FV and CAM-SE. Ideally, XT should be con-

served. Both CAM-FV and CAM-SE show deviations from

constancy in XT (note that the color scale in the figures is

not linear). The errors in XT are produced at the terminator

when the limiter is most challenged. After the errors are in-

troduced, they propagate away from the terminator following

www.geosci-model-dev.net/8/1299/2015/ Geosci. Model Dev., 8, 1299–1313, 2015
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Figure 3. Contour plots of XT for (left column) CAM-FV and for (right column) CAM-SE in ftype= 0 configuration at day 1 (upper row)

and day 6 (lower row), respectively. Solid black line is the location of the terminator line. Note that the contour levels are not linear.

Lagrangian trajectories of the prescribed flow. This is most

visible for CAM-SE at day 6 (see Fig. 3 and/or the anima-

tions in the Supplement).

CAM-FV transport is based on the dimensionally split

Lin and Rood (1996) scheme. The scheme produces errors

in XT since the limiter used in CAM-FV (described in Ap-

pendix B of Lin, 2004) does not strictly conserve linear rela-

tions. The errors appear to be largest when the flow is aligned

with the terminator at a 45◦ angle (see the animation in the

Supplement). In that situation, the dimensionally split ap-

proach is most challenged; the shape-preserving limiter is

not strictly shape-preserving in the cross direction since the

one-dimensional limiters are only applied in the coordinate

directions (Lauritzen, 2007).

CAM-SE does not preserve linear relations either and the

errors in XT are about an order of magnitude larger than

CAM-FV. The CAM-SE limiter is optimization based (us-

ing least squares) and guarantees no under- or over-shoots at

the element level while maintaining mass conservation at the

element level (Guba et al., 2014). While the optimization-

based limiter preserves linear relations with exact arithmetic,

its present implementation in CAM-SE does not lead to

such preservation (most likely due to iteration thresholds, if-

statements, etc., that can be non-linear).

To further understand this behavior, we have performed

some tests (not shown) turning the chemistry off and ad-

vecting linearly correlated cosine hills and linearly correlated

step functions. The cosine hills are C0 continuous (the func-

tion is continuous but its derivatives are not) and the limiter

exactly preserves the linear relationship. For the step func-

tions, which are discontinuous distributions, the correlation

preservation is only maintained up to O(10−8) due to an

O(10−8) overshoot in one of the tracers. So, the advection

operator introduces an O(10−8) error. The terminator chem-
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Figure 3. Contour plots of Cly for (left column) CAM-FV and for (right column) CAM-SE in ftype= 0 configuration at day 1 (upper row)
and day 6 (lower row), respectively. Solid black line is the location of the terminator line. Note that the contour levels are not linear.

Figure 4. Contour plot of Cly at day 1 using CAM-SE in ftype= 1
configuration where (upper) no limiter, (middle) positive definite
limiter, and the default CAM-SE limiter is applied, respectively. The
solid black line depicts the location of the terminator line. Note that
the contour levels are not linear.

5.4 CAM-SE: Physics-dynamics coupling experiments

As explained in section 4 the dynamics (tracer transport)470

and physical parameterizations (terminator chemistry) can be
coupled in various ways. Here we discuss results based on
two coupling methods available in CAM-SE referred to as
ftype= 1 and ftype= 0. In ftype= 1 the tendencies from
physics are added to the atmospheric state at the beginning of475

dynamics. For ftype= 0 the tendencies are split into nsplit
equal-sized adjustments. On Figure 6 the total Chlorine Cly
is shown using the ftype= 1 configuration, ftype= 0 using
nsplit= 2 and nsplit= 6, respectively. In all experiments
the tracer time-step is held fixed so in the latter two configu-480

rations rsplit= 3 and rsplit= 1, respectively.
Near the western edge of the terminator (located at approx-

imately 130◦W on Figure 5) where the gradients are steep-
est, the errors in Cly are largest for ftype= 1 . The physics
adjustments that steepen the gradients are largest at the west-485

ern edge and consequently produces states that challenges
the limiters more. When the physics tendency is added grad-
ually throughout the tracer transport the errors are reduced as
nsplit is increased.

At the eastern edge of the terminator (located at approxi-490

mately 30◦E on Figure 5) the gradients are less steep com-
pared to the western edge. In fact, the location of the gradient
near the eastern edge propagates (see animation in supple-
mental material) whereas the gradients at the western edge
of the terminator are static in space. The physics tendencies495

in this area are not stationary in space and are weaker so the
transport signal is larger. This means that for any given point
in the eastern area, the state used for computing the physics
tendencies changes during the tracer subcycling. As a result
the gradients will have propagated during the transport step500

but the physics tendencies will steepen gradients in the ‘old’
location. This ‘inconsistency’ is present with ftype= 0. For
ftype= 1 the physics update is based on the ‘correct’ in
time state. The temporal inconsistency in the state used for
computing physics tendencies for ftype= 0 produces an in-505

crease in errors near the eastern edge of the terminator com-
pared to ftype= 1.

Physical parameterization packages may contain code that
sets negative mixing ratios to zero. Or similarly there may be
code that prevent tendencies to be added to the state if it is510

zero or negative. The terminator test may be a useful tool to
diagnose such alternations in large complicated codes.

Figure 4. Contour plot of XT at day 1 using CAM-SE in ftype= 1

configuration where (upper) no limiter, (middle) a positive definite

limiter, and the default CAM-SE limiter are applied, respectively.

The solid black line depicts the location of the terminator line. Note

that the contour levels are not linear.

istry constantly enforces a discontinuity in the distributions

and, in combination with the CAM-SE limiter, strong error

growth is produced. It is beyond the scope of this paper to
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Figure 5. Cross sections of day 1 (left column) X, (middle column) 2×X2, and (right column) XT at 45◦ S based on CAM-SE with (top row)

no limiter, (middle row) positive definite limiter, (lower row) and default limiter, respectively. Results are normalized by 4×10−6 (the initial

value of XT).

trace down exactly where in the implementation this error is

introduced and to find a remedy. The terminator test is de-

signed to enable scheme developers to test their scheme in

setups that are directly relevant to some of the issues seen in

chemistry application. In this particular case, the terminator

test clearly exacerbates small errors in correlation preserva-

tion that may be easily overlooked in inert transport testing

(such as the tests in Lauritzen et al., 2012).

5.3 CAM-SE: limiter experiments

In addition to the quasi-monotone mass-conservative limiter

used by default in CAM-SE, the model has options for per-

forming tracer advection without any limiter and with a pos-

itive definite limiter. Results for terminator test runs using

those configurations are shown in Fig. 4. As expected, the

unlimited version of the CAM-SE transport exactly preserves

linear relations; i.e., XT is conserved to machine precision.

By looking at cross sections of the individual distributions of

X and X2 in Fig. 5, it is immediately apparent (and expected)

that the Gibbs phenomenon manifests itself near the termina-

tor when no limiter is used. The stability analysis discussed

in Appendix D and illustrated in Figs. D1 and D2 indicates

that the terminator chemistry will make a negative mixing

ratio even more negative. From the experiments, however,

the amplitude of the spurious oscillations near the terminator

remains nearly constant in time. In other words, the instabil-

ity associated with negative mixing ratios in the terminator

chemistry is weak in our present setup.
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When using a positive definite limiter, Gibbs phenomena

are eliminated near the base of the terminator, but not near the

maximum. This obviously violates linear relations and pro-

duces large errors in XT. Similar results are expected from

mass-filling algorithms in which negative values are simply

set to 0. This emphasizes the importance of using carefully

designed limiters in transport schemes for applications in

which preservation of linear pre-existing relations is impor-

tant, e.g., chemistry applications (for a fuller discussion, see,

e.g., Lauritzen and Thuburn, 2012).

5.4 CAM-SE: chemistry–tracer (physics–dynamics)

coupling experiments

As explained in Sect. 4, the tracer transport (dynamics) and

chemistry (physics) can be coupled in various ways. Here, we

discuss results based on different coupling time steps, 1tcpl,

in CAM-SE.

In Fig. 6, XT is shown using 1tcpl = 1800s, 1tcpl =

600s, and 1tcpl = 300s, respectively1. In all experiments,

the tracer time step nd chemistry time step are held fixed:

1ttracer = 300s and 1tchem = 1800s, respectively. The ex-

periments evaluate the sensitivity to coupling time-step size,

in other words, how often the species are adjusted with chem-

istry tendencies.

Near the western edge of the terminator (located at approx-

imately 130◦W in Fig. 5) where the gradients are steepest,

the errors in XT are largest for1tcpl = 1800s. The chemistry

adjustments that steepen the gradients are largest at the west-

ern edge and consequently produce states that challenge the

limiters more. When the chemistry tendency is added gradu-

ally throughout the tracer transport, the errors are reduced as

1tcpl is decreased.

At the eastern edge of the terminator (located at approxi-

mately 30◦ E in Fig. 5), the gradients are less steep compared

to the western edge. In fact, the location of the gradient near

the eastern edge propagates (see animation in Supplement),

whereas the gradients at the western edge of the terminator

are static in space. The chemistry tendencies in this area are

not stationary in space and are weaker, so the transport signal

is larger. This means that, for any given point in the eastern

area, the state used for computing the chemistry tendencies

changes during the tracer subcycling. As a result, the gradi-

ents will have propagated during the transport step, but the

chemistry tendencies will steepen gradients in the “old” lo-

cation. This “inconsistency” is present with 1tcpl 6=1tchem.

For1tcpl = 1800s, the chemistry update is based on the “cor-

rect” in time state. The temporal inconsistency in the state

used for computing chemistry tendencies for 1tcpl = 600s

and 1tcpl = 300s produces an increase in errors near the

eastern edge of the terminator compared to 1tcpl = 1800s.

1In terms of the CAM-SE namelist, these configurations cor-

respond to (a) ftype=1, nsplit=1, rsplit=6, (b) ftype=0, nsplit=2,

rsplit=3, and (c) ftype=0, nsplit=6, rsplit=1.

Figure 6. Contour plots of XT at day 1 using CAM-SE based

on (upper) 1tcpl = 1800s, (middle) 1tcpl = 900s, and (lower)

1tcpl = 300s, respectively. In all simulations, the tracer and chem-

istry time step is constant: 1ttracer = 300s and 1tchem = 1800s,

respectively.

Physical parameterization packages may contain code that

sets negative mixing ratios to 0. Or, similarly, there may be

code that prevents tendencies from being added to the state

if it is 0 or negative. The terminator test may be a useful tool

to diagnose such alternations in large complicated codes.

5.5 Quantification of XT errors

To quantify the errors introduced in the terminator test,

we suggest computing standard error norms for XT. The

global normalized error norms used are `2(t) and `∞(t) (e.g.,

Williamson et al., 1992):

`2(t)=

√
I [(XT(t)−XT(0))

2
]

I [(XT(0))2]
, (16)

`∞ =
max∀λ,θ |XT(t)−XT(0)|

max∀λ,θ |XT(0)|
, (17)

where XT(0)= 4× 10−6 is the globally uniform initial con-

dition and the global integral I is defined as follows:
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I (φ)=
1

4π

2π∫
0

π/2∫
−π/2

φ(λ,θ, t) cosθdλdθ. (18)

As a reference, we show the time evolution of `2(t) and

`∞(t) for CAM-FV and CAM-SE in Fig. 7.

6 Conclusions

A simple idealized toy chemistry test case is defined. It con-

sists of advecting two reactive species (X and X2) in the Nair

and Lauritzen (2010) flow field. The simplified non-linear

chemistry creates strong gradients in the species similar to

what is observed for photolysis-driven species in the strato-

sphere. The forcing terms for the continuity equations for X

and X2 are computed analytically over one time step (assum-

ing no advection) and Fortran codes for computing the forc-

ing terms are provided in the Supplement. Hence, model de-

velopers who have already set up the standard test case suite

of Lauritzen et al. (2012) can, with modest effort, set up the

terminator test by adding the forcing terms to their codes.

As in the test case of Nair and Lauritzen (2010), this forced

advection problem has an analytic solution.

The toy chemistry, by design, does not disrupt pre-existing

linear relations between the species. So, the only source of

error is from the transport scheme and/or the chemistry–

transport (physics–dynamics) coupling. The terminator test

is set up so that XT is a constant, so any deviation from

constancy is an error in the preservation of linear correla-

tions. Many transport schemes preserve linear relations when

no shape-preserving limiter/filter is applied and are there-

fore not challenged with respect to conserving XT. However,

many shape-preserving limiters/filters render the transport

scheme non-conserving with respect to XT. While preser-

vation of linear correlations can indeed be verified in inert

advection setups, the terminator chemistry exacerbates the

non-conservation problem through the constant forcing that

creates very steep gradients. It is demonstrated in this paper

that the terminator test is useful for challenging the limiters

with strong grid-scale forcing. In particular, it is shown that

positive definite limiters severely disrupt linear correlations

near the terminator.

In addition, the terminator test assesses the accuracy of

chemistry–tracer (physics–dynamics) coupling methods in

an idealized setup. Different coupling methods (such as those

available in CAM-SE) lead to different distributions of XT.

Also, a chemistry–transport (physics–dynamics) coupling

layer or the physical parameterization package may contain

code that sets negative mixing ratios to 0 and/or contain if-

statements that prevent tendencies being added to the state if

it is 0 or negative. The terminator test may be a useful tool to

diagnose such alternations in large complicated codes.

Figure 7. Time evolution of standard error norms `2 and `∞ for

XT using the CAM-FV and CAM-SE dynamical cores. Note that

the y axis is logarithmic.

The terminator test is easily accessible to advection

scheme developers from an implementation perspective since

the software engineering associated with extensive parame-

terization packages is avoided. The test forces the model de-

veloper to consider how their scheme is coupled to sub-grid-

scale parameterizations and, if solving the continuity equa-

tion in flux form, forces the developer to consider tracer–

air mass coupling. Also, the idealized forcing proposed here

has an analytic formulation, and the continuous set of forced

transport equations has, contrary to the Brusselator forcing,

an analytic solution for the weighted sum of the correlated

species, irrespective of the flow field.

We encourage dynamical core developers to implement

the toy chemistry in their test suite as it has the potential to

identify tracer transport issues that standard tests (with unre-

active/inert tracers) would not generate.
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Appendix A: Idealized flow field

In the terminator test, we use the deformational flow of Nair

and Lauritzen (Case 2; 2010). The components of the non-

divergent velocity vector V(λ,θ, t) and the stream function

u=−
∂ψ

∂θ
, (A1)

v =
1

cosθ

∂ψ

∂λ
, (A2)

are given by

u(λ,θ, t)=
10R

T
sin2(λ′)sin(2θ) cos

(
πt

T

)
+

2π R

T
cos(θ) (A3)

v(λ,θ, t)=
10R

T
sin(2λ′)cos(θ) cos

(
πt

T

)
, (A4)

ψ(λ,θ, t)=
10R

T
sin2(λ′)cos2(θ)cos

(
πt

T

)
−

2π R

T
sin(θ), (A5)

respectively, where λ is longitude, θ is latitude, t is time and

the underlying solid-body rotation is added through the trans-

lation λ′ = λ−2πt/T . The period of the flow is T = 12 days

andR = 6.3172×106 m (in non-dimensional units T = 5 and

R = 1). Schemes based on characteristics, e.g., Lagrangian

and semi-Lagrangian schemes, may use the semi-analytic

trajectory formulas given in (Nair and Lauritzen, 2010). Note

that it is not necessary to use an analytic flow field for this

test case setup. In fact, one may use winds from a weather or

climate model simulation.

Appendix B: Analytic solution for no flow

To gain more insight into the toy chemistry (and to formulate

“spun-up” initial conditions), it is useful to consider the spe-

cial case of no flow. For v = 0, the prognostic equations for

X and X2 (Eqs. 4 and 5, respectively) can be solved analyt-

ically. Assume the reaction rates are positive (and non-zero

for k2),

k1 ≥ 0, (B1)

k2 > 0 (B2)

and the mixing ratios are non-negative,

X(0)≥ 0, (B3)

X2(0)≥ 0. (B4)

From the kinetic Eqs. (4) and (5) above, as well as the

conservation Eq. (3), we can write

dX

dt
= k1(XT−X)− 2k2XX. (B5)

For (algebraic) convenience, define the quantities

r =
k1

4k2

, (B6)

D =
√
r2+ 2rXT, (B7)

E(t)= e−4k2Dt . (B8)

Completing the square on the right-hand side leads to the

expression

dX

dt
=−2k2[(X+ r)

2
−D2

]. (B9)

The right-hand side can be factored, and the following par-

tial fraction expansion can be constructed:

dX

(X+ r)−D
−

dX

(X+ r)+D
=−4Dk2dt. (B10)

Integration of each of these terms from time t = 0 to t

yields the expression

ln

(
(X(t)+ r −D)(X(0)+ r +D)

(X(t)+ r +D)(X(0)+ r −D)

)
=−4Dk2t, (B11)

leading to the solutions Eq. (B12). The analytic solution for

X(t) is

X(t)=

{
D
(
(X(0)+r)(1+E(t))+D(1−E(t))
(X(0)+r)(1−E(t))+D(1+E(t))

)
− r if r > 0,

X(0)
1+2k2tX(0)

if r = 0.

(B12)

X2(t)=
1

2
(XT−X(t)) . (B13)

For long times, X(t) and X2(t) converge to the steady-state

solutions

limt→∞X(t)=D− r, (B14)

limt→∞X2(t)=
1

2
(XT−D+ r) , (B15)

and are shown in Fig. 2. The steady-state solutions are spec-

ified as initial conditions for the terminator test case. For

a stability analysis of the terminator toy chemistry, see Ap-

pendix D.
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Appendix C: Local linear convergence

If the flow is slow compared to the rate at which the chem-

istry returns to equilibrium, then the concentrations will stay

near the steady-state solution derived in Appendix B. Under

these conditions, the rate of convergence to the steady-state

solution can be computed. For convenience, define Xs as the

right-hand side of Eq. (B14). From Eq. (B5), a perturbation

from steady state, ε(t)= X(t)−Xs, can be seen to solve the

equation

dε(t)

dt
=−k1ε(t)− 4k2Xsε(t)− 2k2 ε

2(t), (C1)

which implies a locally linearized convergence rate for ε(t)

of

−k1− 4k2Xs. (C2)

Since the maximum of X is 4×10−6 and k2 = 1, this con-

vergence rate is dominated by k1 ∈ [0,1]. It is clear that the

reaction convergence is very rapid in regions of sunlight and

much slower in dark regions. Peak rates in this computation

are 1 s−1.

Appendix D: Stability of chemical kinetics

Relation Eq. (B9) is plotted in Figs. D1 and D2. As can be

seen in Fig. D1, for k1 > 0, X converges toD−r . For k1 = 0,

Fig. D2 shows that X converges to 0 for values greater than

0, but diverges for X< 0. While X should never be negative,

numerical errors can lead to negative values. This divergence

is slow, in the sense that the divergence is algebraic, as can

be seen in Eq. (B12). The divergence is also slow in the sense

that the time required to double a negative X concentration is

t2 =−
1

4k2X
. (D1)

Thus, for very small (negative) X, the time will have to be

particularly large. However, for time of 2 · t2, the solution is

singular, reaching a value of −∞.

Appendix E: CAM-SE chemistry–tracer

(physics–dynamics) coupling

The different levels of subcycling used in CAM-SE are

explained via pseudo-code in Algorithm 1 using CAM-

SE namelist conventions: nsplit and rsplit. The outer time-

stepping loop starts with a call to chemistry that computes

the chemistry tendencies over the entire chemistry time step

1tchem. The full chemistry tendencies are divided into nsplit

adjustments of equal size and, in each iteration of the nsplit

loop, the adjustments are added to the state. The tracer

transport scheme may not be stable on the chemistry time

Figure D1. When k1 > 0, or equivalently r > 0, there is a single

stable limit point. X will converge toD− r as long as X>−D− r .

Figure D2. When k1 = 0, or equivalently r = 0, X converges to 0,

but if, for some numerical reason, X is made negative, the kinetic

equations will make the concentrations even more negative.

Algorithm 1 Pseudo-code explaining the different levels

of subcycling and chemistry–transport (physics–dynamics)

coupling used in CAM-SE.

Outer loop advances solution 1tchem in time:

for t = 1,2, . . . do

Compute chemistry tendencies Fi , i = X,X2

for ns = 1,2, . . .,nsplit do

Update state with chemistry/physics tendencies:

Ci = Ci +
1tchem
nsplit

Fi , i = X,X2

for rs = 1,2, . . ., rsplit do

subcycling of tracer advection:

Ci = Ci +
1tchem

nsplit×rsplit
T (Ci), i = X,X2

end for

end for

end for
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step (1tchem) or the coupling/adjustment time step (1tcpl =

1tchem/nsplit), so it must be subcycled with respect to the

chemistry adjustments. The number of iterations of the tracer

transport subcycling loop is rsplit. Note that, since the nsplit

and rsplit loops are nested, the tracer time step is 1ttracer =
1tchem

(nsplit×rsplit)
.

We distinguish between the nsplit= 1 and nsplit> 1 con-

figurations and refer to them as ftype= 1 and ftype= 0, re-

spectively, based on CAM-SE namelist terminology (ftype

refers to forcing type)2. In the CAM code, if ftype= 1, the

state is updated with chemistry (physics) tendencies in the

physics code, whereas for ftype= 0, the adjustments take

place in the dynamical core. CAM-FV uses an ftype= 1 con-

figuration (with the caveat that the chemistry tendencies are

added after the transport is complete) and CAM-SE supports

both ftype= 0 and ftype= 1. The current default CAM-SE

uses ftype= 0, where the tendencies are split into nsplit

equal-sized adjustments.

In full model runs, if the physics time step is large, the

ftype= 1 coupling method may produce large physics ten-

dencies that drive the state much out of balance. When the

dynamical core is given the physics updated state that is

strongly (and locally) out of balance, the dynamical core may

produce excessive gravity waves. To alleviate this, one may

choose to update the state with respect to physics tendencies

throughout the tracer subcycling. This approach of adding

the physics tendencies as several equal-sized adjustments is

the ftype= 0 configuration that was explained above.

For the 1◦ setup (NE30NP4), we use the stan-

dard/recommended configuration with rsplit= 3 and

nsplit= 2 (see the pseudo-code in Algorithm 1), so that for

every third tracer time step, half of the chemistry tenden-

cies are added to the state. In terms of tracer, chemistry

and coupling time steps, this configuration corresponds

to 1ttracer = 300 s, 1tchem = 1800s and 1tcpl = 600s.

CAM-FV uses ftype= 1 configuration where the chemistry

tendencies are added once3. For CAM-FV, 1ttracer = 900s,

1tchem = 1800s and 1tcpl = 1800s.

2When running the 3-D CAM-SE dynamical core, nsplit defines

the vertical remapping time step; if ftype= 0, then nsplit also de-

fines the adjustment time step, whereas if ftype= 1, then nsplit only

defines the remapping time step, as the full adjustments are added

at the beginning of dynamics only.
3Note however that, in CAM-FV, the tendencies are added after

tracer transport and not before.

Appendix F: Analytic chemical forcing term

The analytic solution of the equations leads to an explicit

solution for the change in concentrations during a time step

with no flow.

F nX =−L1tchem

×
(Xn−D+ r)(Xn+D+ r)

1+E(1tchem)+1tchemL1tchem
(Xn+ r)

, (F1)

where Xn is the value of X at the beginning of the nth time

step,

L1tchem
=


1−e−4k2D1tchem

D1tchem
if D > 0

4k2 if D = 0,
(F2)

and, by conservation,

F nX2
=−

1

2
F nX. (F3)

In implementation, L1tchem
needs some care. As 4k2D1t

approaches machine precision, it is useful to simply use the

formula for D = 0 rather than the expression for D > 0.

Appendix G: Fortran code

In terms of Fortran code, the analytical forcing is given by

! dt is size of chemistry/physics

! time step

XT = X + 2.0*X2

r = k1/(4.0*k2)

d = sqrt(r*r + 2.0*r*XT)

e = exp(-4.0*k2*d*dt)

if(abs(d*k2*dt).gt. 1e-16)

el = (1.0-e)/(d*dt)

else

el = 4.0*k2

endif

f_X = -el * (X-d+r) * (X+d+r)/

(1.0 + e + dt*el*(X+r))

f_X2 = -f_X/2.0

The reaction rates are defined by

! k1 and k2 are reaction rates

k1_lat_center = 20.0 ! degrees

k1_lon_center = 300.0 ! degrees

k1 = max(0.d0,

sin(lat)*sin(k1_lat_center)

+ cos(lat)*cos(k1_lat_center)

*cos(lon-k1_lon_center))

k2 = 1.0
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The initial condition is defined by

XT = 4.0e-6

r = k1/(4.0*k2)

d = sqrt(r*r + 2.0*XT*r)

X = d-r

X2 = XT/2.0 - (d-r)/2.0

These specifications are implemented in Fortran code in

the Supplement.

Appendix H: CAM-SE time-stepping

The tracer algorithm and dynamical core use the same time

step that is controlled by the maximum anticipated wind

speed, but the dynamics uses more stages of a second-order

accurate N -stage Runge–Kutta (RK) method in order to

maintain stability. CAM-SE’s tracer advection algorithm is

based on a three-stage RK strong-stability-preserving (SSP)

time-stepping method (Spiteri and Ruuth, 2002). The SSP

method ensures that the time step will preserve any mono-

tonicity properties preserved by the underlying spatial dis-

cretization. CAM-SE uses a monotone limiter in its advec-

tion scheme coupled with a monotone hyper-viscosity op-

erator (Guba et al., 2014). This option renders the advec-

tion scheme second-order. The time-stepping scheme in the

dynamical core uses a third-order accurate five-stage RK

method (modified version of Kinnmark and Gray, 1984a,

b; P. A. Ullrich, personal communication, 2013). The extra

stages are chosen to maximize the stable time-step size. We

also note that the hyper-diffusion in the dynamical core re-

quires three subcycled iterations for each dynamics time step

(in the NE30NP4 configuration).
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