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Abstract. Farming is using more of the land surface, as pop-

ulation increases and agriculture is increasingly applied for

non-nutritional purposes such as biofuel production. This

agricultural expansion exerts an increasing impact on the ter-

restrial carbon cycle. In order to understand the impact of

such processes, the Community Land Model (CLM) has been

augmented with a CLM-Crop extension that simulates the

development of three crop types: maize, soybean, and spring

wheat. The CLM-Crop model is a complex system that re-

lies on a suite of parametric inputs that govern plant growth

under a given atmospheric forcing and available resources.

CLM-Crop development used measurements of gross pri-

mary productivity (GPP) and net ecosystem exchange (NEE)

from AmeriFlux sites to choose parameter values that opti-

mize crop productivity in the model. In this paper, we cali-

brate these parameters for one crop type, soybean, in order

to provide a faithful projection in terms of both plant devel-

opment and net carbon exchange. Calibration is performed

in a Bayesian framework by developing a scalable and adap-

tive scheme based on sequential Monte Carlo (SMC). The

model showed significant improvement of crop productivity

with the new calibrated parameters. We demonstrate that the

calibrated parameters are applicable across alternative years

and different sites.

1 Introduction

Development of Earth system models (ESMs) is a chal-

lenging process, involving complex models, large input data

sets, and significant computational requirements. As mod-

els evolve through the introduction of new processes and

through improvement of algorithms, the ability of the mod-

els to accurately simulate feedbacks between coupled sys-

tems improves, although results may not have the desired

impact on all areas. For example, Lawrence et al. (2012) es-

timate that changes to the hydrology parameterization may

be responsible for the warm bias in high-latitude soils in the

Community Land Model (CLM) version 3.5 switching to a

cold bias in CLM4.0. Although testing of ESMs is exten-

sive, ensuring after new developments are merged that the

model can still perform with limited (if any) degradation, on

rare occasions, model behavior can be negatively affected.

The strong nonlinearity of such models also makes param-

eter fitting a difficult task, and as global models are devel-

oped by several different user groups simultaneously, com-

binations of multiple alterations make identifying the spe-

cific cause that leads to a new model output challenging. The

CLM has been augmented with a CLM-Crop extension that

simulates the development of three crop types: maize, soy-

bean, and spring wheat (Drewniak et al., 2013). The CLM-

Crop model is a complex system that relies on a suite of

parametric inputs that govern plant growth under a given at-

mospheric forcing and available resources. CLM-Crop de-

velopment used measurements of gross primary productivity

(GPP) and net ecosystem exchange (NEE) from AmeriFlux

sites to choose parameter values that optimize crop produc-

tivity in the model.

Global climate models have historically been tuned or cal-

ibrated to meet certain requirements, such as balancing the

top of the atmosphere radiation budget (Bender, 2008; Hour-

din et al., 2012; Mauritsen et al., 2012). Various techniques

have been applied to models to adjust parameters, includ-

ing using data assimilation (Pauwels et al., 2007), applying

an ensemble Kalman filter (EnKF) (Hargreaves et al., 2004;

Annan et al., 2005; Evensen, 2009), and using a sampling

algorithm such as multiple very fast simulated annealing

(MVFSA) (Yang et al., 2012). Most calibration strategies can
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be traced to a Bayesian approach that in most cases is sim-

plified (e.g., MVFSA) or augmented with assumptions that

make the problem tractable (e.g., EnKF). The tuning parame-

ters that are not directly observed may be stated as an inverse

problem (Tarantola, 2005). Inverse problems are, in general,

very challenging, especially when the data are sparse, the

models are complex, and the state space is large. This is the

case for the CLM-Crop model, as well as for ESMs.

Our goal is to calibrate some of the CLM-Crop parame-

ters in order to improve model projection of plant develop-

ment and carbon fluxes. To this end, we follow a Bayesian

approach (Tarantola, 2005; Kaipio and Somersalo, 2004).

We start by summarizing our initial state of knowledge in

a prior probability distribution over the parameters we wish

to calibrate. After making some observations, our updated

state of knowledge is captured by the posterior distribution.

Since the posterior is not analytically available, we attempt

to approximate it using an ensemble of particles (samples)

from it. To construct this particle approximation, we employ

ideas from sequential Monte Carlo (SMC) (Doucet et al.,

2001). Basically, we define a one-parameter family of dis-

tributions of increasing complexity that starts at the prior and

ends at the posterior. Starting from a particle approximation

of the prior, we gradually move it toward the posterior by

sequentially applying importance sampling. The scheme is

highly parallelizable, since each particle of the approxima-

tion can be computed independently. The way we move the

particle approximation towards the posterior is adjusted on

the fly using the ideas developed by Bilionis and Koutsoure-

lakis (2012) and Bilionis and Zabaras (2014). Each interme-

diate step of our scheme requires Markov chain Monte Carlo

(MCMC) (Metropolis et al., 1953) sampling of the interme-

diate distributions. One of the novelties of this work is the au-

tomatic construction of MCMC proposals for those interme-

diate steps using Gaussian mixtures (Blei and Jordan, 2005).

The result is an algorithmic framework that can adjust itself

to the intricacies of the posterior. As demonstrated by the nu-

merical examples, our scheme can perform model calibration

using very few evaluations and, by exploiting parallelism, at

a fraction of the time required by plain vanilla MCMC.

We present the results from a twin experiment (self-

validation) and calibration results and validation using real

observations from two AmeriFlux tower sites in the midwest-

ern United States, for the soybean crop type. The improved

model will help researchers understand how climate affects

crop production and resulting carbon fluxes and, additionally,

how cultivation impacts climate.

2 The CLM-Crop model

CLM-Crop was designed and tested in the CLM3.5 model

version (Drewniak et al., 2013) and in CLM4 (Levis et al.,

2012). The crop model was created to represent crop veg-

etation similarly to natural vegetation for three crop types:

maize, soybean, and spring wheat. The model simulates GPP

and yield driven by climate, in order to evaluate the impact

of climate on cultivation and the impact of agriculture on cli-

mate. Crops are modeled within a grid cell sharing natural

vegetation; however, they are independent (i.e., they do not

share the same soil column). This approach allows manage-

ment practices, such as fertilizer, to be administered without

disturbing the life cycle of natural vegetation. For a full de-

scription of the crop model, see the study by Oleson et al.

(2013); the harvest scheme is described by Drewniak et al.

(2013).

Crops are modeled similarly to natural vegetation, with the

main exception of how allocation is defined via a different

growing scheme, which is separated into four phases: plant-

ing, emergence, grain fill, and harvest. Each phase of growth

changes how carbon and nitrogen are allocated to the vari-

ous plant parts: leaves, stems, fine roots, and grain. During

planting, carbon and nitrogen are allocated to the leaf, repre-

sentative of seed. This establishes a leaf area index (LAI) for

photosynthesis, which begins during the emergence phase.

The emergence phase allocates carbon and nitrogen to leaves,

stems, and roots using functions from the Agro-IBIS model

(Kucharik and Brye, 2003). During the grain fill stage, de-

creased carbon is allocated to leaves, stems, and roots in or-

der to fulfill grain requirements. When maturity is reached,

harvest occurs: all grain is harvested, while leaves, stems, and

roots are turned over into the litter pool. Residue harvest is

not active in the model.

The allocation of carbon to each plant part is driven largely

by the carbon–nitrogen (CN) ratio parameter assigned to

each plant segment. CLM first calculates the potential pho-

tosynthesis for each crop type based on the incoming solar

radiation and the LAI. The total nitrogen needed to maintain

the CN ratio of each plant part is calculated as plant demand.

If soil nitrogen is sufficient to meet plant demand, potential

photosynthesis is met; however, if soil nitrogen is inadequate,

the total amount of carbon that can be assimilated is down-

scaled.

During the grain fill stage, a nitrogen retranslocation

scheme is used to fulfill nitrogen demands by mobilizing ni-

trogen in the leaves and stems for use in grain development.

This scheme uses alternate CN ratios for the leaf and stem to

determine how much nitrogen is transferred from the leaves

and stems into a retranslocation storage pool. The total nitro-

gen transferred at the beginning of the grain fill stage from

the leaf and stem is represented by

retransnleaf =
Cleaf

leafcn
−

Cleaf

fleafcn
, (1)

retransnstem =
Cstem

livewdcn
−

Cstem

fstemcn
. (2)

Cleaf and Cstem are the total carbon in the leaf and stem, re-

spectively; leafcn and livewdcn are the pre-grain fill CN ra-

tios for the leaf and stem; and fleafcn and fstemcn are the

post-grain fill CN ratios for the leaf and stem. All of the CN
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Table 1. Prior information on the parameters.

Name Description Constraints Min Max Default

xl Leaf/stem orientation index None −0.40 0.60 −0.40

slatop Specific leaf area at top of canopy None 0.00 0.15 0.07

leafcn Leaf C None 5.00 80.00 25.00

frootcn Fine root C None 40.00 100.00 42.00

livewdcn Live wood (phloem and ray parenchyma C) None 10.00 100.00 50.00

grperc Growth respiration factor 1 None 0.10 0.50 0.25

grpnow Growth respiration factor 2 None 0.00 1.00 1.00

graincn Organ carbon nitrogen ratio None 20.00 100.00 50.00

fleafcn Final leaf carbon nitrogen ratio > leafcn 10.00 100.00 65.00

fstemcn Final stem carbon nitrogen ratio > livewdcn 40.00 200.00 130.00

ratios are fixed parameters, which vary with crop type; de-

fault values are reported in Table 1.

In addition to the above, CLM-Crop has a fertilizer appli-

cation and soybean nitrogen fixation, described by Drewniak

et al. (2013). Planting date and time to maturity are based on

temperature threshold requirements (Levis et al., 2012). For

the calibration procedure, we used the actual planting date

reported for the Bondville site for the year 2004. Crops are

not irrigated in the model, nor do we consider crop rotation.

Although rotation will have an impact on the carbon cycle

both above- and below-ground, the CLM does not support

crop rotation at this time.

The version of CLM-Crop detailed by Drewniak et al.

(2013) was calibrated against AmeriFlux data for both the

Mead, NE, and Bondville, IL, sites’ plant carbon measure-

ments, for both maize and soybean, using optimization tech-

niques to fit parameters. When available, parameter values

were taken from the literature or other models. Remaining

parameters were derived through a series of sensitivity simu-

lations designed to match modeled carbon output with Amer-

iFlux observations of leaf, stem, and grain carbon at the

Bondville, IL, site and total plant carbon at the Mead, NE,

(rainfed) site.

When CLM-Crop was ported into the CLM4.5 framework,

the parameter values were no longer optimized as a result

of various changes in model processes that affected how

crops fit into the model framework. In addition, a new below-

ground subroutine of carbon and nitrogen cycling is included

in CLM4.5 (Koven et al., 2013), which has a strong influ-

ence on crop productivity. Therefore, we needed to retune

the model parameters that represented crops with a more so-

phisticated approach described later in this paper.

2.1 Parameters affecting the crops

Over 100 parameters are defined in CLM4.5 to represent

crops. Many of these parameters are similar to those that gov-

ern natural vegetation, but some are specific to crops. These

parameters define a variety of processes, including photosyn-

thesis, vegetation structure, respiration, soil structure, car-

bon nitrogen dynamics, litter, mortality, and phenology. To

add further complication, parameters are assigned in various

parts of the model; some parameters are defined in an exter-

nal physiology file, some are defined in surface data sets, and

others are hardcoded in the various subroutines of CLM4.5.

Performing a full model calibration for all parameters

would be a monumental task, so we began our calibration

process by narrowing down the parameters that are used only

in crop functions or might have a large influence on crop be-

havior. Of this list, parameter values can be fixed across all

vegetation types (or crop types), vary by crop type, or vary

spatially and by crop type. We chose to limit the parameters

to those that are either constant or vary with crop type.

Crop parameters are taken from the literature (when avail-

able) and used to determine a range of values appropriate for

each crop type. When parameters are not available, optimiza-

tion techniques are used to estimate parameter values based

on CLM performance. Determining a full range of accept-

able values was difficult for several parameters, and in some

cases not possible. Of the full list of parameters in need of

calibration, we began our approach with the ten parameters

listed in Table 1 that may have a large influence on crop pro-

ductivity and have the greatest uncertainty because the val-

ues are based on optimization from a previous model ver-

sion. Six of the parameters are the carbon–nitrogen (CN) ra-

tios for the various plant parts (leaf, stem, root, and grain).

Since the leaf and stem account for nitrogen relocation dur-

ing grain fill, they are represented by two separate CN ratios,

to separate pre- and post-grain fill stages of plant develop-

ment. They influence how carbon and nitrogen are allocated,

thereby affecting growth, nutrient demand, photosynthesis,

and so on, and are included as part of the physiology data

file. Four additional parameters are included in the calibra-

tion process. The leaf–stem orientation is used to calculate

the direct and diffuse radiation absorbed by the canopy, the

specific leaf area at the top of the canopy is used with the

leaf CN ratio to calculate the LAI, and the growth respiration

factors determine the timing and quantity of carbon allocated

toward respiration of new growth.
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2.2 Description of the observational data set

We used observations from the Bondville, IL, AmeriFlux

tower located in the midwestern United States (40.01◦ N,

88.29◦W) using an annual no-till corn–soybean rotation;

a full site description is given by Meyers and Hollinger

(2004). The site has been collecting measurements since

1996 of wind, temperature, humidity, pressure, radiation,

heat flux, soil temperature, CO2 flux, and soil moisture.

Soybeans were planted in 2002 and 2004, and corn was

planted in 2001, 2003, and 2005. We used daily averaged

eddy covariance measurements of NEE and derived GPP in

our model calibration procedure, which are categorized as

Level 4 data published on the AmeriFlux site, and gap filled

by using the Marginal Distribution Sampling procedure out-

lined by Reichstein et al. (2005). GPP is derived as the differ-

ence between ecosystem respiration and NEE, where ecosys-

tem respiration is estimated by using the method of Reich-

stein et al. (2005). In addition, biomass information (which

we convert to carbon assuming half of the dry biomass is

carbon) and LAI have been collected for years 2001–2005

for the various plant segments, including leaf (LEAFC),

stem (STEMC), and grain (GRAINC), which are reported

on the AmeriFlux website (http://public.ornl.gov/ameriflux).

The frequency of biomass measurements is generally ev-

ery 7 days, beginning a few weeks after planting and con-

tinuing through the harvest. We chose to calibrate against

the Bondville AmeriFlux site because of the availability of

unique biomass data collected. By performing the calibration

against site data that include crop rotation, we hope to indi-

rectly include the effects of crop rotation on GPP and NEE in

the model. Finally, in order to assess the transferability of the

calibrated parameters across sites, we perform one more val-

idation experiment using observations from the Mead, NE,

AmeriFlux site, located at 41.1741◦ N, −96.4396◦W, simi-

lar to the Bondville, IL, site growing a corn–soybean rotation

under no-till conditions. Although there are three fields, only

one is under rain-fed conditions. The site was initialized in

2001; a description can be found in Verma et al. (2005). The

data collected are the same as the Bondville, IL, AmeriFlux

site. Soybeans were planted in 2002 and 2004.

The time-dependent observations are denoted by z(t)=

{z1(t), . . .,z6(t)}, where the indices correspond to GPP, NEE,

GRAINC, LEAFC, STEMC, and TLAI. Because of un-

certainties in fertilization use and measured data, we fo-

cused on the peak observed values, as well as the growth

slope for GPP, NEE, LEAFC, and STEMC. To remove the

atmospheric-induced noise in the NEE and GPP measure-

ments, we filtered the time series by applying a moving av-

erage operator with a width of 30 days. These operations are

denoted by the map

y = [y1, . . .,y10]
T (3)

= [max(z1(t)),slope (z1(t)),

max(abs(z2(t))),slope (z2(t)),

max(z3(t),maxz4(t),slope z4(t),

max(z5(t),slope (z5(t)),max(z6(t)]
T ,

where z represents the filtered z and the slope is calculated

in the beginning of the plant emergence phase, resulting in

one maximum and one slope per variable per year. The ob-

served GPP and NEE slopes were computed as the slope be-

tween the 208th day and 188th day for 2002 and between the

180th day and 160th day for 2004. The observed LEAFC and

STEMC slopes were computed based on observed values on

16 July–13 August and 23 July–10 September for 2002, and

on 8 June–27 July and 8 June–10 August for 2004, respec-

tively.

2.3 Initial conditions and spin-up

CLM requires a spin-up to obtain balanced soil carbon and

nitrogen pools, which are responsible for driving decomposi-

tion and turnover. A global spin-up of the model is provided

with the model, using the below-ground biogeochemistry and

spin-up method provided by Koven et al. (2013). Crops are

then interpolated to a higher resolution over the Bondville,

IL, site.

The meteorological forcing data used for the calibration

procedure (post spin-up) are from the Bondville, IL, flux

tower site. The atmospheric data cover the years 1996–2007,

but we focus on 2002 and 2004 for this experiment. The

model is run in point mode, meaning only one grid cell is

simulated at a resolution of roughly 0.1◦× 0.1◦.

3 Calibration strategy

We represent the CLM-Crop model output relevant to Eq. (3)

by f (θ)= (f1(θ), . . .,fq(θ)), where θ = (θ1, . . .,θd) are the

d time-independent parameters that we wish to calibrate and

q = 10 is the number of outputs. The slopes estimated from

numerical simulations were computed as the variable slopes

between the date when the fraction of growing degree days

to maturity reaches 0.3 and 20 days prior to this point, where

growing degree days are accumulated each day by subtract-

ing the minimum temperature for growth (10 ◦C for soybean)

from the average daily temperature; see Oleson et al. (2013).

We consider a set of ten calibration parameters that were

indicated by the model as being highly uncertain. This set

consists of xl, slatop, leafcn, frootcn, livewdcn, grperc, grp-

now, graincn, fleafcn, and fstemcn. See Table 1 and Sect. 2.1

for details.

The model calibration strategy aims to merge model pre-

dictions that depend on parameters θ with observational data

Geosci. Model Dev., 8, 1071–1083, 2015 www.geosci-model-dev.net/8/1071/2015/
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sets. We assume that the relationship between observation

data and the true process follows a relationship of type

Y = f (θ∗)+ ε, (4)

where θ∗ are the perfectly calibrated parameters and ε rep-

resents the observational errors. This holds under the as-

sumption that the model is a perfect representation of reality

(Kennedy and O’Hagan, 2001). The problem statement can

be extended to account for imperfect models, but then the

statistical description of ε tends to become much more com-

plicated. Therefore, for this study, we start by considering

a perfect model assumption.

Following a Bayesian approach, we assume a prior distri-

bution on the calibration parameters:

p(θ)∝ C(θ)

d∏
i=1

1[θi,min,θi,max](θi), (5)

where θi,min and θi,max are the minimum and maximum al-

lowed values for the parameter θi , respectively; 1A(x) is the

indicator function of a set A (i.e., 1A(x) is one if x ∈ A and

zero otherwise); and C(θ) models any physical constraints

that are known a priori. For the parameters we are consider-

ing, the constraints are as follows:

C(θ)= 1[θfleafcn>θleafcn]
(θ)1[θfstemcn>θlivewdcn]

(θ). (6)

We define the likelihood as

p(y|θ)∝N (y|f (θ),6obs) , (7)

where N (x|µ,6) is the Gaussian probability density

with mean µ and covariance matrix 6. The covariance

matrix 6obs is taken to be diagonal, namely, 6obs =

diag
(
σ 2

obs,1, . . .,σ
2
obs,q

)
, with each diagonal component

σ 2
obs,i being the square of 10 % of the corresponding observed

value. This choice of 6obs is equivalent to a priori assuming

10 % observational noise.

Our state of knowledge about the parameters θ after ob-

serving y (see Sect. 2.2) is captured by the posterior distribu-

tion:

p(θ |y)∝ p(y|θ)p(θ) . (8)

4 Approximating the posterior

We are going to construct a particle approximation of Eq. (8){(
w(i),θ (i)

)}N
i=1

, in the sense that

p(θ |y)≈

N∑
i=1

w(i)δ
(
θ − θ (i)

)
, (9)

where
N∑
i=1

w(i) = 1, and δ(·) is Dirac’s delta function. This

is achieved by using a combination of MCMC (Metropo-

lis et al., 1953; Hastings, 1970) and SMC methodologies

(Doucet et al., 2001). For more details on the methodological

aspects, we refer the reader to the work of Del Moral et al.

(2006), Koutsourelakis (2009) and Bilionis and Koutsoure-

lakis (2012). Here, we present the material briefly, focusing

only on the novel aspect of our approach that concerns auto-

matically tuning the MCMC proposals.

Let us define a sequence of bridging distributions:

p(θ |y,γt )∝ p(y|θ)
γtp(θ)=: πt (θ), (10)

where 0= γ0 < γ1 < .. . < γt < .. .≤ 1. Notice that for γt =

0 we obtain the prior and for γt = 1 the posterior. The key

idea of SMC is to start from a particle representation of the

prior (γt = 0), which is easy to obtain, and gradually increase

γt until it reaches 1, adjusting the weights along the way.

We will show later how this sequence can be determined on

the fly by taking into account the degeneracy of the particle

representations.

4.1 Sequential importance sampling

Let
{(
w
(i)
t ,θ

(i)
t

)}N
i=1

be a particle representation of

p(θt |y,γt ),

p(θt |y,γt )≈

N∑
i=1

w
(i)
t δ

(
θ − θ

(i)
t

)
, (11)

with the weights being normalized (i.e.,
N∑
i=1

w
(i)
t = 1). We

now examine how this particle representation can be updated

to a particle representation corresponding to γt+1 > γt . To-

ward this goal, we introduce a fictitious probability density

on the joint space of θt and θt+1 by

qt (θt ,θt+1)= p(θt+1|y,γt+1)Lt (θt |θt+1) (12)

∝ πt+1(θt+1)Lt (θt |θt+1),

where Lt is a backward transition density (i.e., Lt (θt |θt+1)

is the probability of θt given θt+1) properly normalized, that

is,
∫
Lt (θt |θt+1)dθt = 1. In addition, we introduce an impor-

tance sampling density,

ηt (θt ,θt+1)= p(θt |y,γt )Kt (θt+1|θt ) (13)

∝ πt (θt )Kt (θt+1|θt ),

where Kt is a forward transition density (i.e., K(θt+1|θt ) is

the probability of θt+1 given θt ) properly normalized, that is,

www.geosci-model-dev.net/8/1071/2015/ Geosci. Model Dev., 8, 1071–1083, 2015
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K(θt+1|θt )dθt = 1. Notice that

p(θt+1|y,γt )=

∫
p(θt+1|y,γt+1)L(θt |θt+1)dθt

=

∫
qt (θt ,θt+1)dθt

=

∫
qt (θt ,θt+1)

ηt (θt ,θt+1)
ηt (θt ,θt+1)dθt

=

∫
qt (θt ,θt+1)

ηt (θt ,θt+1)
p(θt |y,γt )Kt (θt+1|θt )dθt

≈

N∑
i=1

w
(i)
t

qt

(
θ
(i)
t ,θt+1

)
ηt

(
θ
(i)
t ,θt+1

)Kt (θt+1|θ
(i)
t

)
.

This observation immediately suggests that to move the γt
particle representation of Eq. (11) to a γt+1 representation{(
w
(i)
t+1,θ

(i)
t+1

)}N
i=1

,

p(θt+1|y,γt+1)≈

N∑
i=1

w
(i)
t+1δ

(
θ − θ

(i)
t+1

)
,

with
N∑
i=1

w
(i)
t+1 = 1, we must sample

θ
(i)
t+1 ∼Kt (θt+1|θ

(i)
t ), (14)

compute the incremental weights,

ŵ
(i)
t+1 = (15)

πt+1

(
θ
(i)
t+1

)
Lt

(
θ
(i)
t |θ

(i)
t+1

)
πt

(
θ
(i)
t

)
Kt

(
θ
(i)
t+1|θ

(i)
t

)
∝ qt

(
θ
(i)
t ,θ

(i)
t+1

)
ηt

(
θ
(i)
t ,θ

(i)
t+1

)
 ,

get the unormalized γt+1 weights

W
(i)
t+1 = w

(i)
t ŵ

(i)
t+1, (16)

and get the normalized γt+1 weights

w
(i)
t+1 =

W
(i)
t+1

N∑
j=1

W
(i)
t+1

. (17)

4.2 Convenient choices for Lt and Kt

The preceding remarks hold for any backward and forward

transition densities Lt and Kt , respectively. We now seek a

convenient choice that will simplify the form of the incre-

mental weights given in Eq. (15). Suppose for the moment

that Kt is given and let us look for the optimal choice of

Lt . Since qt is the target distribution and ηt is the impor-

tance sampling density, the best choice of Lt is the one that

attempts to bring the two densities as close together as pos-

sible. This is easily seen to be the conditional of ηt on θt ; in

other words, the optimal choice is

L∗t (θt |θt+1)=
η(θt ,θt+1)∫
η(θ ′t ,θt+1)dθ

′
t

(18)

=
πt (θt )Kt (θt+1|θt )∫
πt (θ

′
t )Kt (θt+1|θ

′
t )dθ

′
t

.

From a computational point of view, however, it is more con-

venient to work with the suboptimal choice,

L
∗,s
t (θt |θt+1)=

πt+1(θt )Kt (θt+1|θt )∫
πt+1(θ

′
t )Kt (θt+1|θ

′
t )dθ

′
t

, (19)

which is motivated by the expectation that consecutive den-

sities are similar (i.e., πt ≈ πt+1). For this choice, the incre-

mental weights of Eq. (15) become

ŵ
(i)
t+1 =

πt+1

(
θ
(i)
t+1

)
πt+1

(
θ
(i)
t

)
πt

(
θ
(i)
t

)∫
πt+1

(
θ ′t
)
Kt

(
θ
(i)
t+1|θ

′
t

)
dθ ′t

. (20)

To get rid of the integral in the denominator, we pick Kt to

be invariant with respect to πt+1:∫
πt+1(θ

′
t )Kt (θt+1|θ

′
t )dθ

′
t = πt+1(θt+1). (21)

This can always be achieved with a suitable choice of a

Metropolis–Hastings transition kernel (see below). For this

case, the incremental weights simplify to

ŵ
(i)
t+1 =

πt+1

(
θ
(i)
t

)
πt

(
θ
(i)
t

) = p(y|θ (i)t )γt+1−γt
. (22)

4.3 Metropolis–Hastings-based Kt

As shown in the previous paragraph, it is convenient to select

Kt to be invariant with respect to πt+1. The easiest way to

achieve this is to associate Kt with one or more steps of the

Metropolis–Hastings algorithm. Let ht (θ
′
|θ) be any proposal

density (e.g., a simple random walk proposal). The single-

step Metropolis–Hastings forward transition density is

K1
t (θt+1|θt )= ht (θt+1|θt )a(θt+1,θt ), (23)

where

a(θt+1,θt ) :=min

{
1,
πt+1(θt+1)ht (θt |θt+1)

πt+1(θt+1)ht (θt+1|θt )

}
. (24)

Samples from Eq. (14) may be obtained by performing

one step of the well-known Metropolis–Hastings algorithm.

The forward kernel corresponding to M > 1 Metropolis–

Hastings steps is given recursively by

KM
t (θt+1|θt )=

∫
KM−1
t (θt+1|θ

′)K1
t (θ
′
|θt )dθ

′. (25)
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The number of Metropolis–Hastings steps,M , at each γt is a

parameter of SMC. This is the forward kernel we use in all

numerical examples. Theoretically, M = 1 is enough, since

the number of particlesN→∞. Therefore, we will useM =

1 in our numerical examples.

4.4 Resampling

As SMC moves to higher values of γt , some of the parti-

cles might find themselves in low probability regions. Con-

sequently, their corresponding weights will be small. This de-

generacy of the weights can be characterized by the effective

sample size (ESS) metric, defined by

ESS(γt )=
1

N∑
i=1

(
w
(i)
t

)2
. (26)

Notice that ESS is equal to N when the particles are equally

important (i.e., w
(i)
t = 1/N ) and equal to 1 when only one

particle is important (e.g., w
(1)
t = 1 and w

(i)
t = 0 for i 6= 1),

and in general takes values between 1 and N for arbitrary

weights. Resampling is triggered when the ESS falls below

a pre-specified threshold ( 1
2
N in our numerical examples).

The idea is to kill particles that have very small weights and

let the particles with big weights replicate. This process must

happen in a way that the resulting particle ensemble remains

a valid representation of the current target probability den-

sity. This can be achieved in various ways. Perhaps the most

straightforward way is to use multinomial sampling. Let the

resulting particles be denoted by
{(
w̃
(i)
t , θ̃

(i)
t

)}N
i=1

. In multi-

nomial resampling, the final weights are all equal:

w̃
(i)
t = 1/N. (27)

The sequence
{
θ̃
(i)
t

}N
i=1

is found by sampling a sequence

of integers ji ⊂ {1, . . .,N}with probabilities {w
(1)
t , . . .,w

(N)
t }

and by setting

θ̃
(i)
t = θ

(ji )
t , (28)

for i = 1, . . .,N .

4.5 Choosing γt+1 on the fly

We note that the incremental weights of Eq. (22) do not de-

pend on the γt+1 samples obtained in Eq. (14). They depend

only on the likelihood of the γt samples. In this part, we ex-

ploit this observation in order to devise an effective way of

selecting γt+1 based on the ESS. The idea is to pick the new

γt+1 so that the resulting particles do not become too degen-

erate. Their degeneracy is characterized by ESS(γt+1) given

in Eq. (26). From Eqs. (22), (16), and (17), evaluation of

ESS(γt+1) does not require any new likelihood evaluations.

We select the new γt+1 by requiring that

ESS(γt+1)= ζESS(γt ), (29)

where ζ is the percentage of the degeneracy we are willing

to accept (ζ = 0.99 in our numerical examples). It is fairly

easy to show that ESS(γt+1) is a strictly decreasing function

for γt+1 ∈ (γt ,1]). Therefore, Eq. (29) has a unique solution

that can be easily found by using a bisection algorithm.

4.6 Adapting the KM
t on the fly

Based on the discussion above, we expect that p(θt |y,γt )

should be similar to p(θt+1|y,γt+1). To exploit this fact,

we pick the proposal ht (θ
′
|θ) required by the Metropolis–

Hastings kernel KM
t given in Eq. (25) to be a mixture of

Gaussians that approximates p(θt |y,γt ). In particular, we

pick

ht (θ
′
|θ)=

L∑
i=1

ciN
(
θ ′|µt,i,6t,i

)
, (30)

where the non-negative coefficients ci sum to 1, µi,i ∈ Rd ,

and 6t,i ∈ Rd×d are covariance matrices. The number of

components L as well as all the parameters of the mixture are

fitted to a resampled version of the particle approximation of

p(θt |y,γt ) (see Eq. 28) using the procedure of Blei and Jor-

dan (2005) as implemented by Pedregosa et al. (2011).

4.7 Parallelization

SMC is embarrassingly parallelizable. Basically, each CPU

can store and work with a single particle. Communication is

required only for normalizing the weights (see Eq. 17), find-

ing γt+1 (see Eq. 29), and resampling. The first two have a

negligible communication overhead and can be implemented

easily. Implementation of the resampling step is more in-

volved and requires more resources. However, the cost of re-

sampling is negligible compared with the evaluation of the

forward model.

4.8 The final algorithm

We now collect all the details of SMC discussed above in a

single algorithm for convenience: Algorithm 1. Our imple-

mentation is in Python and is provided at https://github.com/

ebilionis/pysmc.

5 Results

In this section, we present our calibration results for the pa-

rameters described in Sect. 2.1 by using the observations de-

tailed in Sect. 2.2. In this study, we focus only on the pa-

rameters affecting the soy crop and restrict our calibration to

year 2004. With these calibrated parameters, we perform a

validation experiment by using the data from year 2002. In

addition, we forecast 2004 through a 2002–2003–2004 simu-

lation. We recognize that the Bondville observations include

crop rotation during 2003 that will influence the sequence of
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Data: N the desired number of particles, M the desired number of Metropolis-Hastings steps per SMC step, ζ ∈ (0,1) the desired
effective sample size (ESS) reduction and ε ∈ (0,1) the resampling threshold.

Result: A particle approximation
{(
w(i) = w

(i)
1 ,θ(i) = θ

(i)
1

)}N
i=1

of Eq.(8).

t← 0;
γt← 0;
w

(i)
0 ← 1/N, i= 1, . . . ,N ;

Sample θ(i)0 ∼ p(θ|y,γ0 = 0) = p(θ), i= 1, . . . ,N ;
while γt < 1 do

Find γ′ ∈ (γt,1] s.t.:

ESS(γ′) =
1∑N

i=1

(
w

(i)

γ′

)2 = ζESS(γt),

where w(i)

γ′ is the normalized version of W (i)

γ′ = w
(i)
γt ŵ

(i)

γ′ with ŵ(i)

γ′ =
p(θ

(i)
γt
|y,γ′)

p(θ
(i)
γt
|y,γt)

.

if ESS(γ′)< εN then
Resample according to Sec. 4.4;

end
Adjust the MCMC proposal ht(θ′|θ) according to Sec. 4.6;
Perform M MCMC steps (see Sec. 4.3);
Adjust the next proposal ht(θ′|θ);
γt+1← γ′;
t← t+1;

end
Algorithm 1: Sampling from the posterior using sequential Monte Carlo.

(a) Twin experiment (b) Calibration

Fig. 1: Adaptation of γt for the twin experiment (a) and the calibration (b). The small jumps indicate the locations where
resampling occurs.

Algorithm 1. Sampling from the posterior using sequential Monte Carlo.

output, but since the model does not support crop rotation,

we plant soybean during 2003. The role of the latter exper-

iment is to demonstrate the robustness of the proposed cal-

ibration scheme. Moreover, we perform a twin experiment

that consists of generating artificial data by using some con-

trol parameter values, then applying the calibration strategy

to recover the control parameters.

In all our numerical examples, we fix the planting and har-

vest days. This approach is essential in order to avoid overfit-

ting the physiological parameters due to offsets in the grow-

ing seasons. The planting dates for 2002 and 2004 are 2 June

and 7 May, respectively. The harvest day is controlled via

input variable hybgdd (growing degree days for maturity),

where growing degree days are defined in Sect. 3. The values

of hybgdd that give the right harvest days for 2002 and 2004

are 1474 and 1293, respectively.

The number of particles we use is N = 1280. Each par-

ticle is assigned to a different computational core; i.e., we

use 1280 computational cores. A simulated year takes about

2 min to complete if data localization is used. Calibration re-

quires approximately 100 000 simulations and completes in

about 6 h.

5.1 Validation of the method

We begin the twin experiment with the aim of validating the

proposed calibration strategy. We generate artificial observa-

tions by randomly sampling θ from its prior Eq. (5). We ap-

ply the calibration strategy to the artificial observations to see

(a) Twin experiment (b) Calibration

Figure 1. Adaptation of γt for the twin experiment (a) and the cal-

ibration (b). The small jumps indicate the locations where resam-

pling occurs.

whether the method can recover the ground truth. The adap-

tively selected γt sequence is shown in Fig. 1a. In Fig. 2, we

compare the posterior of each parameter with the prior. The

true parameters are indicated by red dots. The fit to the arti-

ficial outputs is shown in Fig. 3. The parameters that are not

specified precisely are parameters that have a small (if any)

effect on the observed outputs.

5.2 Calibration using real data

In our next experiment, we calibrate the parameters listed

in Table 1. The observational operator (Eq. 3) is defined by

taking the annual maximum of the absolute value of LEAFC,

LAI, GRAINC, STEMC, GPP, and NEE; and the slope of

LEAFC, STEMC, GPP, and NEE as described in Sect. 2.2. In

Fig. 4, we compare the posterior we obtain with the prior. The
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Figure 2. Twin experiment: comparison of the posterior with the

prior. The red dot indicates the true parameter value. The figure is

continued on the next page.

default parameters are indicated by red dots. The fit to the

artificial outputs is shown in Fig. 5. The adaptively selected

γt sequence is shown in Fig. 1b. In Table 2, we summarize

our findings, by showing the median and the p = 0.05 and

p = 0.95 quantiles of each calibrated parameter.

5.3 Validation of real data results

To validate the generalization potential of our calibration, we

perform a one-way validation. We use the calibrated param-

eters to predict the observables in 2002. In Fig. 6, we plot the

median and 95 % error bars of the calibrated time series and

we compare the results with observations and the default pa-

Table 2. Posterior information on the parameters.

Name Median p = 0.05 p = 0.95

xl 0.09 −0.32 0.51

slatop 0.06 0.05 0.07

leafcn 29.51 25.26 35.79

frootcn 66.90 46.02 95.66

livewdcn 48.17 10.56 85.89

grperc 0.40 0.18 0.50

grpnow 0.54 0.05 0.91

graincn 55.69 27.18 89.14

fleafcn 64.30 33.68 89.43

fstemcn 118.02 59.47 180.88

Figure 3. Twin experiment: comparison of the true model output

with samples from the posterior of the calibration.

rameter output of 2002. We observe a notable improvement

in the ability of the model to explain the observations. One of

the most important improvements is related to LAI calcula-

tions, which comes from improvements to the leaf CN ratio

and the specific leaf area. The timing of maximum LAI is im-

portant for the carbon allocation; when the crops in CLM4.5

reach peak LAI, carbon allocation shifts from above- and

below-ground to strictly below-ground (roots). With the de-

fault parameter values, peak LAI occurred early in the grow-

ing season, resulting in large and unrealistic allocation of car-

bon to roots and insufficient carbon to leaves, stems, and ul-

timately grains. The large increase in stem carbon and the

slower rate of growth and peak of GPP are clear indications

that the shift in allocation to roots no longer occurs with the
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Figure 4. Calibration experiment (Bondville, IL): comparison of

the posterior with the prior. The red dot indicates the default param-

eter value. The figure continues on the next page.

new calibrated parameter values. The grain carbon is still

low, however, a result of the low leaf carbon and the over-

estimation of stem carbon, which increases the amount of

carbon allocated to maintenance respiration at the expense of

new growth for this year. The increase in uncertainty is likely

a result of a limitation in nitrogen availability in some sce-

narios. When CN ratios are low, a higher demand of nitrogen

from plants contributes to an increase in competition for re-

sources with below-ground decomposition processes. When

the nitrogen demand from the two sources exceeds availabil-

ity, the amount of carbon that can be assimilated is down-

scaled, resulting in a lower GPP, increase in NEE, and so on.

Figure 5. Calibration experiment (Bondville, IL): comparison of

the observed data for 2004 with calibrated outputs. The grey areas

correspond to 95 % confidence error bars.

We continue the simulation through 2003 to 2004 and com-

pare the calibrated time series with the observations and the

default parameter output in Fig. 7. The differences between

this plot and Fig. 5 are due to differences in the below-ground

conditions of carbon and nitrogen that drive the dynamics

for plant competition with below-ground decomposition pro-

cesses. Crops in CLM4.5 tend to be sensitive to variation in

carbon and nitrogen pools, and since we ran the calibration

over 1 year and did not consider variability in previous years’

carbon and nitrogen pools, demand for nitrogen is likely dif-

ferent when the model is run for multiple years. Since the

change in pools is minor, the resulting change in output by

the model is also small. This is also likely responsible for the

increased uncertainty in GPP and NEE, which occurs from

competition for resources as discussed above. Finally, Fig. 8

shows the results of the same validation experiment at the

Mead, NE, site.

6 Discussion

In this paper, we sought to improve CLM-Crop model perfor-

mance by parameter calibration of a subset of model param-

eters governing, mostly, the carbon and nitrogen allocation

to the plant components. By using a Bayesian approach, we

were able to improve the model-simulated GPP, NEE, and

carbon biomass to leaf, stem, and grain with the new pa-
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Figure 6. Validation experiment (Bondville, IL): comparison of the

observed data for 2002 with the model. The grey areas correspond

to 95 % confidence error bars.

rameter values. In addition, we demonstrated that the cali-

brated parameters are applicable across alternative years and

not solely representative of 1 year.

This study does have a few limitations stemming from

a lack of observation data. Currently our results are suit-

able at one site across multiple years; testing at multiple sites

would give a better indication of how well the model can per-

form globally or even across a region. However, the limited

data over agricultural sites constrain our ability to determine

parameter values that are relevant at a global scale. In addi-

tion, our use of actual planting dates is not a typical approach

with CLM4.5, which generally uses temperature thresholds

to trigger planting. Thus, the model may plant earlier or later

compared with observations, which, if significant, could in-

fluence the growth cycle and resulting carbon fluxes. In addi-

tion, CLM-Crop does not have crop rotation, which is com-

mon across agricultural landscapes, including in the observa-

tion data set. Crop rotation can modify below-ground carbon

and nitrogen cycling that would have an impact on crop pro-

ductivity through nutrient availability as well as NEE. While

we would like to include crop rotation, CLM does not cur-

rently have the capability to support this function. There-

fore, we tried to include the effects indirectly by calibrating

against data that include crop rotation. As more sophisticated

crop representation is introduced into the model, we will re-

visit the calibration to improve model parameters. Moreover,

we considered the initial litter, carbon, and nitrogen pools

Figure 7. Validation experiment (Bondville, IL): comparison of the

observed data for 2004 with the model started in 2002. The grey

areas correspond to 95 % confidence error bars.

Figure 8. Validation experiment (Mead, NE): comparison of the

observed data for 2002 with the model (top). Comparison of the

observed data for 2004 with the model (bottom).

fixed by the values of the prior parameters because a direct

spin-up calculation would have made sampling prohibitively

expensive. We will address this issue in a future study by in-

cluding these pools in the calibration procedure.

Our approach has focused on one crop type, soybean, with

the intent of determining the effectiveness of the proposed

calibration method. We consider the results promising and,
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as part of future work, hope to expand this research to ad-

ditional years, crop types, and other parameters. Many other

variables are of interest, including fertilization rate, timing

of the growth stages, and a few other parameters related to

photosynthesis. As the model continues to evolve with the

addition of new or improved processes, we also may need

to revisit the parameter choices and evaluate their appropri-

ateness. Moreover, a calibration procedure carried for such

complex models with relatively few data and a few calibra-

tion parameters has the potential to lead to overfitting. To as-

sess this effect, we performed a validation experiment, which

provides good confidence in, albeit not proof of, a robust cali-

bration of the parameters. Richer data sets will likely sharpen

the results and enhance the confidence intervals.

The introduction of new data sets documenting agriculture

productivity or carbon mass will also allow us to determine

the applicability of our new parameter values across regions.

In general, the calibration results depend on an accurate spec-

ification of the observational errors. In this study, we did

not have access to any information regarding the measure-

ment process and, therefore, assumed a certain observational

noise. These calibration results can be sharpened by anno-

tating the observational data with levels of confidence. The

calibration strategy presented in this study has the potential

to improve model performance by helping modelers define

parameters that are not often measured or documented.

Acknowledgements. This work was supported by the Office of

Biological and Environmental Research, US Department of Energy,

under contract DE-AC02-06CH11357. We gratefully acknowledge

the computing resources provided on Fusion, a 320-node comput-

ing cluster operated by the Laboratory Computing Resource Center

at Argonne National Laboratory.

Edited by: S. Arndt

References

Annan, J., Hargreaves, J., Edwards, N., and Marsh, R.: Parameter

estimation in an intermediate complexity Earth System Modelus-

ing an ensemble Kalman filter, Ocean Model., 8, 135–154, 2005.

Bender, F.: A note on the effect of GCM tuning on climate

sensitivity, Environ. Res. Lett., 3, 014001, doi:10.1088/1748-

9326/3/1/014001, 2008.

Bilionis, I. and Koutsourelakis, P. S.: Free energy computations by

minimization of Kullback–Leibler divergence: An efficient adap-

tive biasing potential method for sparse representations, J. Com-

put. Phys., 231, 3849–3870, 2012.

Bilionis, I. and Zabaras, N.: Solution of inverse problems with lim-

ited forward solver evaluations: A fully Bayesian perspective, In-

verse Probl., 30, 015004, doi:10.1088/0266-5611/30/1/015004,

2014.

Blei, D. M. and Jordan, M. I.: Variational inference for Dirichlet

process mixtures, Bayesian Analysis, 1, 121–144, 2005.

Del Moral, P., Doucet, A., and Jasra, A.: Sequential Monte Carlo

samplers, J. R. Stat. Soc. B, 68, 411–436, 2006.

Doucet, A., De Freitas, N., and Gordon, N. (Eds.): Sequential Monte

Carlo Methods in Practice (Statistics for Engineering and Infor-

mation Science), Springer, 2001.

Drewniak, B., Song, J., Prell, J., Kotamarthi, V. R., and Jacob, R.:

Modeling agriculture in the Community Land Model, Geosci.

Model Dev., 6, 495–515, doi:10.5194/gmd-6-495-2013, 2013.

Evensen, G.: Data assimilation: The ensemble Kalman filter,

Springer, 2009.

Hargreaves, J., Annan, J., Edwards, N., and Marsh, R.: An effi-

cient climate forecasting method using an intermediate complex-

ity Earth System Model and the ensemble Kalman filter, Clim.

Dynam., 23, 745–760, 2004.

Hastings, W. K.: Monte Carlo sampling methods using Markov

chains and their applications, Biometrika, 57, 97–109, 1970.

Hourdin, F., Grandpeix, J.-Y., Rio, C., Bony, S., Jam, A., Cheruy,

F., Rochetin, N., Fairhead, L., Idelkadi, A., Musat, I., Dufresne,

J.-L., Lahellec, A., Lefebvre, M.-P., and Roehrig, R.: LMDZ5B:

The atmospheric component of the IPSL climate model with re-

visited parameterizations for clouds and convection, Clim. Dy-

nam., 40, 2193–2222, doi:10.1007/s00382-012-1343-y, 2012.

Kaipio, J. and Somersalo, E.: Statistical and Computational Inverse

Problems (Applied Mathematical Sciences), Vol. 160, Springer,

2004.

Kennedy, M. and O’Hagan, A.: Bayesian calibration of computer

models, J. R. Stat. Soc. B, 63, 425–464, 2001.

Koutsourelakis, P. S.: A multi-resolution, non-parametric, Bayesian

framework for identification of spatially-varying model parame-

ters, J. Comput. Phys., 228, 6184–6211, 2009.

Koven, C. D., Riley, W. J., Subin, Z. M., Tang, J. Y., Torn, M. S.,

Collins, W. D., Bonan, G. B., Lawrence, D. M., and Swenson,

S. C.: The effect of vertically resolved soil biogeochemistry and

alternate soil C and N models on C dynamics of CLM4, Biogeo-

sciences, 10, 7109–7131, doi:10.5194/bg-10-7109-2013, 2013.

Kucharik, C. and Brye, K.: Integrated BIosphere Simulator (IBIS)

yield and nitrate loss predictions for Wisconsin maize receiving

varied amounts of nitrogen fertilizer, J. Environ. Qual., 32, 247–

268, 2003.

Lawrence, D., Oleson, K., Flanner, M., Fletcher, C., Lawrence, P.,

Levis, S., Swenson, S., and Bonan, G.: The CCSM4 land simu-

lation, 1850–2005: Assessment of surface climate and new capa-

bilities, J. Climate, 25, 2240–2260, 2012.

Levis, S., Bonan, G., Kluzek, E., Thornton, P., Jones, A., Sacks,

W., and Kucharik, C.: Interactive crop management in the

Community Earth system model (CESM1): seasonal influ-

ences on land–atmosphere fluxes, J. Climate, 25, 4839–4859,

doi:10.1175/JCLI-D-11-00446.1, 2012.

Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M.,

Giorgetta, M., Haak, H., Jungclaus, J., Klocke, D., Matei,

D., Mikolajewicz, U., Notz, D., Pincus, R., Schmidt, H., and

Tomassini, L.: Tuning the climate of a global model, Jour-

nal of Advances in Modeling Earth Systems, 4, M00A01,

doi:10.1029/2012MS000154, 2012.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H.,

and Teller, E.: Equation of state calculations by fast computing

machines, J. Chem. Phys., 21, 1087–1092, 1953.

Geosci. Model Dev., 8, 1071–1083, 2015 www.geosci-model-dev.net/8/1071/2015/

http://dx.doi.org/10.1088/1748-9326/3/1/014001
http://dx.doi.org/10.1088/1748-9326/3/1/014001
http://dx.doi.org/10.1088/0266-5611/30/1/015004
http://dx.doi.org/10.5194/gmd-6-495-2013
http://dx.doi.org/10.1007/s00382-012-1343-y
http://dx.doi.org/10.5194/bg-10-7109-2013
http://dx.doi.org/10.1175/JCLI-D-11-00446.1
http://dx.doi.org/10.1029/2012MS000154


I. Bilionis et al.: Crop physiology calibration in the CLM 1083

Meyers, T. and Hollinger, S.: An assessment of storage terms in

the surface energy balance of maize and soybean, Agr. Forest

Meteorol., 125, 105–115, 2004.

Oleson, K., Lawrence, D., Bonan, G., Drewniak, B., Huang, M.,

Koven, C., Levis, S., Li, F., Riley, W., Subin, Z., Swenson,

S., Thornton, P., Bozbiyik, A., Fisher, R., Heald, C., Kluzek,

E., Lamarque, J.-F., Lawrence, P., Leung, L., Lipscomb, W.,

Muszala, S., Ricciuto, D., Sacks, W., Sun, Y., Tang, J., and Yang,

Z.-L.: Technical description of version 4.5 of the Community

Land Model (CLM), 420 pp., doi:10.5065/D6RR1W7M, 2013.

Pauwels, V., Verhoest, N., De Lannoy, G., Guissard, V., Lucau,

C., and Defourny, P.: Optimization of a coupled hydrology–crop

growth model through the assimilation of observed soil mois-

ture and leaf area index values using an ensemble Kalman filter,

Water Resour. Res., 43, W04421, doi:10.1029/2006WR004942,

2007.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,

B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,

V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-

rot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in

Python , J. Mach. Learn. Res., 12, 2825–2830, 2011.

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet,

M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov,

T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H.,

Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Mat-

teucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen,

J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G.,

Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the sep-

aration of net ecosystem exchange into assimilation and ecosys-

tem respiration: review and improved algorithm, Global Change

Biol., 11, 1424–1439, 2005.

Tarantola, A.: Inverse problem theory and methods for model pa-

rameter estimation, Society for Industrial and Applied Mathe-

matics, 2005.

Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T.,

Knops, J. M., Arkebauer, T. J., Suyker, A. E., Burba, G. G.,

Amos, B., Yang, H., Ginting, D., Hubbard, K. G., Gitelson, A. A.,

and Walter-Shea, E. A.: Annual carbon dioxide exchange in irri-

gated and rainfed maize-based agroecosystems, Agr. Forest Me-

teorol., 131, 77–96, doi:10.1016/j.agrformet.2005.05.003, 2005.

Yang, B., Qian, Y., Lin, G., Leung, R., and Zhang, Y.: Some is-

sues in uncertainty quantification and parameter tuning: a case

study of convective parameterization scheme in the WRF re-

gional climate model, Atmos. Chem. Phys., 12, 2409–2427,

doi:10.5194/acp-12-2409-2012, 2012.

www.geosci-model-dev.net/8/1071/2015/ Geosci. Model Dev., 8, 1071–1083, 2015

http://dx.doi.org/10.5065/D6RR1W7M
http://dx.doi.org/10.1029/2006WR004942
http://dx.doi.org/10.1016/j.agrformet.2005.05.003
http://dx.doi.org/10.5194/acp-12-2409-2012

	Abstract
	Introduction
	The CLM-Crop model
	Parameters affecting the crops 
	Description of the observational data set
	Initial conditions and spin-up

	Calibration strategy
	Approximating the posterior
	Sequential importance sampling
	Convenient choices for Lt and Kt
	Metropolis--Hastings-based Kt
	Resampling
	Choosing t+1 on the fly
	Adapting the KtM on the fly
	Parallelization
	The final algorithm

	Results
	Validation of the method
	Calibration using real data
	Validation of real data results

	Discussion
	Acknowledgements
	References

