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Abstract. Data intensive simulations are often limited by

their I/O (input/output) performance, and “novel” techniques

need to be developed in order to overcome this limita-

tion. The software package pnetCDF (parallel network Com-

mon Data Form), which works with parallel file systems,

was developed to address this issue by providing parallel

I/O capability. This study examines the performance of an

application-level data aggregation approach which performs

data aggregation along either row or column dimension of

MPI (Message Passing Interface) processes on a spatially

decomposed domain, and then applies the pnetCDF paral-

lel I/O paradigm. The test was done with three different do-

main sizes which represent small, moderately large, and large

data domains, using a small-scale Community Multiscale Air

Quality model (CMAQ) mock-up code. The examination in-

cludes comparing I/O performance with traditional serial I/O

technique, straight application of pnetCDF, and the data ag-

gregation along row and column dimension before apply-

ing pnetCDF. After the comparison, “optimal” I/O config-

urations of this application-level data aggregation approach

were quantified. Data aggregation along the row dimension

(pnetCDFcr) works better than along the column dimension

(pnetCDFcc) although it may perform slightly worse than the

straight pnetCDF method with a small number of processors.

When the number of processors becomes larger, pnetCDFcr

outperforms pnetCDF significantly. If the number of proces-

sors keeps increasing, pnetCDF reaches a point where the

performance is even worse than the serial I/O technique. This

new technique has also been tested for a real application

where it performs two times better than the straight pnetCDF

paradigm.

1 Introduction

The Community Multiscale Air Quality (CMAQ) model

(Byun and Schere, 2006) is a regional air quality model

which is widely used in air quality research and regula-

tory applications (e.g., Fu et al., 2012). This model was

developed in the 1990s by the US Environmental Protec-

tion Agency (US EPA) and it has continued to evolve. Re-

cently, CMAQ was combined with the WRF (Weather Re-

search and Forecasting model) to form a WRF-CMAQ two-

way coupled model (Wong et al., 2012) with direct aerosol

effects on radiation. CMAQ has been and continues to be

extensively used to provide guidance in rule making such

as CSAPR (Cross-State Air Pollution Rule, http://www.epa.

gov/airtransport/CSAPR/), used by state and local agencies

for air quality management analyses such as SIP (State Im-

plementation Plan), and also used by academia and industry

for studying relevant atmospheric processes and model ap-

plications. CMAQ has also been adapted into the real-time

US National Air Quality Forecasting system (AQF) (Otte et

al., 2005) operationally at the National Weather Service since

2003 and was recently deployed for forecasting air quality for

the 2010 Shanghai World Expo.

CMAQ uses IOAPI (Input/Output Applications Program-

ming Interface; http://www.cmascenter.org/ioapi) to handle

I/O since the initial model inception. In recent years, I/O has
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been shown as one of the bottlenecks in the CMAQ model

system. I/O consumes about 24–35 % of the entire simulation

time. For many applications model runtime is critically im-

portant, such as air quality forecasting which requires meet-

ing operational time constraints, studies of relationships be-

tween climate change and air quality that involve decadal-

scale simulations (e.g., Gao et al., 2013), or multiscale model

simulations involving multiple coarse- and fine-grid resolu-

tions. For such runtime critical applications, improving the

efficiency of I/O becomes an even more important element

that needs to be addressed. To increase the I/O efficiency, we

turn to a data aggregation technique (Palmera et al., 2011)

which has been used to achieve high I/O bandwidth as well as

a parallel I/O approach which has been applied in other com-

puter science fields but not for existing environmental models

and their processes. Section 2 provides background informa-

tion about what has been done regarding parallel I/O applica-

tions. Section 3 describes the current implementation of I/O

in CMAQ through IOAPI. Section 4 depicts our application

level data aggregation technique to enhance I/O performance

using pnetCDF (parallel network Common Data Form; Li

et al., 2003; http://trac.mcs.anl.gov/projects/parallel-netcdf/

wiki/Download) and demonstrates I/O enhancement through

testing with a smaller-scale model. This technique was ap-

plied to CMAQ and preliminary results are presented in

Sect. 5 while Sect. 6 summarizes the main findings and

presents discussion of future work.

2 Previous work in parallel I/O

The independent I/O and collective I/O are the two most

common I/O strategies in parallel applications. However, a

shortcoming of the independent I/O approach is the servic-

ing of the I/O requests of each process individually (Chen

et al., 2010). The collective I/O provides a better solution

of managing non-contiguous portions of a file with multiple

processes interleaved (Thakur et al., 1999). Several collective

I/O techniques are hence developed to improve the parallel

I/O performance at various levels by enabling the compute

nodes to cooperate with efficient parallel access to the stor-

age system. Examples include two-phase I/O (del Rosario et

al., 1993), data sieving (Thakur et al., 1999), and the collec-

tive buffering (Nitzberg and Lo, 1997).

To optimize the I/O performance, software is designed to

access non-contiguous patterns by implementation of collec-

tive I/O. Data is rearranged and aggregated in memory prior

to writing to files, which reduces the number of disk accesses

and the seek-time overhead due to large amounts of non-

contiguous write requests. Improved I/O efficiency is ob-

served through split writing and hierarchical striping of data

(Yu et al., 2007). The benefits of utilizing the improved par-

allel I/O techniques on applications in various research areas

have been recognized (Li et al., 2003; Kordenbrock and Old-

field, 2006; Huang et al., 2014). The approach to parallelize

the I/O by using the network Common Data Form (http:

//www.unidata.ucar.edu/software/netcdf/), a set of software

libraries and self-describing, machine-independent data for-

mats, has been discussed regarding the performance of dif-

ferent I/O libraries (Li et al., 2003), including serial netCDF,

pnetCDF and Hierarchical Data Format (Cheng and Folk,

2000). An auto-tuning framework (Behzad et al., 2013) has

been developed to attempt to provide the best I/O setting with

respect to the entire I/O stack automatically. It used a genetic

algorithm to search the “optimal” solution from the parame-

ter space. Our approach gears toward application level rather

than the I/O stack level but we also deal with two parameters,

stripe count and stripe size, in the parallel file system level.

File data striping on parallel file systems also influences

I/O performance. Data is distributed using a fixed block size

in a round-robin manner among available I/O servers and

disks based on a simple striping data distribution function.

An optimal striping setup on parallel file systems can signif-

icantly reduce the I/O time (Nisar et al., 2012) while inap-

propriate settings may incur striping overhead for both meta-

data and file read/write operations (Yu et al., 2007). Research

work has shown degradation of parallel I/O efficiency when

large numbers of processors are applied to scientific applica-

tions such as CMAQ (Kordenbrock and Oldfield, 2006). To

overcome these shortcomings, we re-engineered the current

CMAQ I/O module to better utilize more processors on high-

performance computational machines as well as quantifying

the optimal data-striping setup on Lustre file systems.

3 I/O in CMAQ

The Community Multiscale Air Quality (CMAQ) modeling

system, an active open-source development project of the US

Environmental Protection Agency, is an air quality model

for regulatory and policy analysis. The interactions of atmo-

spheric chemistry and physics are studied through this three-

dimensional Eulerian atmospheric chemistry and transport

modeling system. The primary goal for CMAQ is to simu-

late ozone, particulate matter, toxic airborne pollutants, vis-

ibility, and acidic and nutrient pollutant species within the

troposphere and across spatial scales ranging from local to

hemispheric.

IOAPI, a third-party software, was created concurrently

with the initial development of the CMAQ model. It provides

a simple interface to handle read and write data in netCDF

format in CMAQ. It originally operated in serial mode and

was later expanded to run on SMP (Symmetric Multiprocess-

ing) machines using OpenMP. It has never been implemented

with capability to run on a distributed system.

When CMAQ was parallelized in late 1998, a “pseudo”

parallel I/O library, PARIO, was created to enable CMAQ

to run on a distributed system. PARIO was built on top of

the IOAPI library to handle regular data operations (read

and write) from each MPI (Message Passing Interface) pro-
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Figure 1. Conceptual diagrams of four I/O modules: serial I/O used

in current CMAQ with netCDF data format (a), straight pnetCDF

implementation (b), with data aggregation along row dimension and

then use of pnetCDF (c), and with data aggregation along column

dimension and then use of pnetCDF (d). PE denotes a processor.

Arrows show the direction of data movement.

cess. Each individual processor can read its subdomain por-

tion of data straight from the input files. However, for out-

put, PARIO requires that all processors send their portion of

data to the designated processor, i.e., processor 0, which will

stitch all data together and write en masse to the output file

(Fig. 1a). Clearly, there are a few shortcomings of this strat-

egy: (1) as the number of processors increases, the network

will be flooded with more MPI messages and require longer

synchronization time to accomplish an output task; (2) if the

domain size remains the same but the number of processors

increases, the output data size in each processor decreases

which will lower the I/O efficiency; and (3) it requires ex-

tra memory for processor 0 to hold the entire data set before

writing to the file.

4 An application-level data aggregation approach

Besides the shortcomings mentioned in Sect. 3, IOAPI has

another major drawback, which is not taking advantage of ex-

isting technology advancements such as parallel file systems

and a parallel I/O framework, for example, pnetCDF. Kor-

denbrock and Oldfield (2006) have shown an enhancement of

model I/O performance with the adoption of pnetCDF. Our

new approach not only utilizes advanced parallel I/O technol-

ogy, it also addresses all the shortcomings directly. This new

approach performs I/O through pnetCDF using a collective

parallel netCDF API (applications programming interface)

on a parallel file system basis, thus eliminating the first and

third shortcomings discussed above.

Spatial domain decomposition is widely used in paralleliz-

ing scientific models such as CMAQ. The key characteristic

of this new technique is data aggregation which can be con-

sidered as mitigation for the second shortcoming described

above. Generally speaking, data can be either aggregated

along the row dimension or column dimension of a rectan-

gular horizontal grid to enhance the I/O efficiency. During

aggregation, a small number of localized MPI communica-

tion processes were introduced, which does not diminish the

overall benefit of the technique.

In order to determine the performance of this new tech-

nique, a small-scale code was devised. This smaller code,

which is designed to mimic the CMAQ model, contains a

time step loop with artificial workload. Data is output at the

end of each time step. This small-scale code was tested with

three time steps and was run on two different machines. The

following two subsections provide brief information about

the machines as well as how the test was setup.

4.1 High-performance computational systems (HPCs)

The experiments were performed on two HPCs to examine

the CMAQ I/O performance with various methods. (1) Edi-

son: a Cray XC30 system with 236 Tflop s−1, 5200 compute

nodes with 64 GB memory per node, 333 TB of aggregate

memory, Cray Aries high-speed interconnect and 6.4 PB of

scratch storage space. Each node has dual-socket 12-core In-

tel Ivy Bridge processors at 2.4 GHz. The software packages

we used were cray-mpich/7.0.4, cray-netcdf/4.3.0, parallel-

netcdf/1.3.1, and lustre: 2.5.0. (2) Kraken: a Cray XT5 sys-

tem with the peak performance of 1.17 petaflops s−1, 112 896

compute cores, 147 TB of compute memory, 3.3 PB of raw

parallel file system disk storage space, and 9408 compute

nodes. Each node has two 2.6 GHz six-core AMD Opteron

processors (Istanbul), 16 GB of memory, and is connected

by a Cray SeaStar2+ router. The software packages we used

were Cray MPT 5.3.5, netcdf 3.6.3, pnetcdf 1.2.0, and lustre

2.5.0.

The file system on both HPCs is managed by Lustre, a

massive parallel-distributed file system that has the ability to

distribute the segments of a single file across multiple ob-

ject storage targets (OSTs). A striping technique is applied

when a file with a linear sequence of bytes is separated into

small chunks. Through this technique, the bandwidth of ac-

cessing the file and the available disk space for storing the file

both increase as read and write operations can access multi-

ple OSTs concurrently. The default value of stripe count is

1 OST of stripe count and 1 MB of stripe size on both Kraken

and Edison.

4.2 Experimental design

To examine the I/O performance of each module, a small-

scale model (pseudo-code I/O module) written in Fortran90,

which includes the basic functions, reading data, writing data

and performing arithmetic in between read and write opera-

tions, was tested to imitate the complex CMAQ model with
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the emphasis on the I/O behavior. The code cycles three times

to represent three time steps as in regular CMAQ simulations.

The pseudo code of this small-scale model (is available on

request) looks like this:

DO I= 1, 3

Read in data

Perform numerical calculation

Output result

END DO

Three domain sizes were chosen to represent the typical

12 km resolution settings in the CMAQ community: a small

domain that covers the entire State of California and its vicin-

ity (CA), 89× 134× 35× 146 (column by row by layer by

species), a medium-sized domain that covers the Eastern US

(EUS) 279×299×35×146, and a large domain that covers

the entire continental US (CONUS), 459× 299× 35× 146

(Fig. 2). Various combinations of stripe counts (2, 5, 11, 20,

and 40) and stripe sizes (1, 2, 4, 8 and 16 MB) are tested

on different processor configurations (4× 4, 4× 8, 8× 8,

8×16, and 16×16 on CA and EUS domains and 4×8, 8×8,

8× 16, 16× 16, and 16× 32 on CONUS domain). Regular

domain decomposition is applied on the spatial domain (col-

umn by row) as in the CMAQ model. Each experiment was

carried out multiple times and the averaged values were re-

ported. Four different I/O techniques were setup: the serial

I/O scheme used in the current CMAQ model which uses

regular netCDF (rnetCDF), I/O implementation with straight

pnetCDF (Fig. 1b), our new technique with data row-wise

aggregation among MPI processes plus I/O through using

pnetCDF (pnetCDFcr) (Fig. 1c), and our new technique with

data column-wise aggregation among MPI processes plus

I/O through using pnetCDF (pnetCDFcc) (Fig. 1d). Figure 1

illustrates the essence of these methods. Timing includes the

actual I/O time (disk writing time) plus any additional time

such as data gathering as in the method shown in Figure 1a

or additional MPI communication as needed in data aggrega-

tion techniques.

The results provided by the small-scale model serve as a

basis to determine the optimal striping information (count

and size) for further experiments with the pre-released

CMAQ version 5.0.2. The 1-day simulations of CMAQ at a

4 km resolution EUS domain (423×594×14×146) were run

to evaluate the differences among rnetCDF, pnetCDF, and

the data aggregation schemes using pnetCDF with respect to

I/O performance. These tests were conducted on Kraken and

Edison with three different processor configurations: 10×12,

12× 15, and 18× 20.

Figure 2. Regional representation of the CA (blue box), EUS (red

box) and CONUS domains.

5 Results

5.1 Small-scale model results

In Figs. 3–8 and 10, a relative performance calculation shown

in formula (1) is plotted against the stripe counts and sizes:

rel.performance(%)=
(Tm1− Tm2)

Tm1

100%, (1)

where Tm1 and Tm2 denote the averaged maximum I/O time

for method 1 and method 2, respectively. Since, all the runs

were done on non-dedicated system environments, the same

setup was run multiple times for consistency purposes and

outliers were filtered. To avoid visual blocking when display-

ing negative values below the xy plane, absolute values are

plotted, solid bars represent positive values and checkered

bars represent negative values. In each figure, a larger posi-

tive solid bar is the desirable outcome.

The CA case, which represents a relatively small domain,

shows a general trend where performance degrades as the

stripe count increases and/or the stripe size increases. For

this case, pnetCDF performance can be worse than the se-

rial approach using regular netCDF (Fig. 4). With the data

aggregation technique, aggregation along the row dimension

is better. Overall, for data aggregation along row dimension,

pnetCDFcr outperforms pnetCDF. Setting the stripe count to

5 and stripe size to 1 MB seems to be the “optimal” settings

on both machines and among all processor configurations.

Furthermore, as the number of processors increase, the rel-

ative performance of pnetCDF drops (from ∼ 50 to ∼ 20 %

on Kraken (Fig. 3) and from∼ 40 to about− 25 % on Edison

(Fig. 4). Conversely, with the optimal settings, relative per-

formance of pnetCDFcr increases as the number of proces-

sors increases (increases from ∼ 20 to 75 % except the 4× 4

case on Kraken, Fig. 3, and increases from ∼ 20 to 80 % on

Edison, Fig. 4).

Geosci. Model Dev., 8, 1033–1046, 2015 www.geosci-model-dev.net/8/1033/2015/
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Figure 3. Relative I/O performance of pnetCDF to rnetCDF, and pnetCDFcc and pnetCDFcr to pnetCDF on the CA domain with 4×4, 4×8,

8× 8, 8× 16, and 16× 16 processor configurations from Kraken. Red color denotes positive value in relative performance while blue color

denotes negative value in relative performance.
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Figure 4. Relative I/O performance of pnetCDF to rnetCDF, and pnetCDFcc and pnetCDFcr to pnetCDF on the CA domain with 4×4, 4×8,

8× 8, 8× 16, and 16× 16 processor configurations from Edison. Red color denotes positive value in relative performance while blue color

denotes negative value in relative performance.
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Figure 5. Relative I/O performance of pnetCDF to rnetCDF, and pnetCDFcc and pnetCDFcr to pnetCDF on the EUS domain with 4× 4,

4× 8, 8× 8, 8× 16, and 16× 16 processor configurations from Kraken. Red color denotes positive value in relative performance while blue

color denotes negative value in relative performance.
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Figure 6. Relative I/O performance of pnetCDF to rnetCDF, and pnetCDFcc and pnetCDFcr to pnetCDF on the EUS domain with 4× 4,

4× 8, 8× 8, 8× 16, and 16× 16 processor configurations from Edison. Red color denotes positive value in relative performance while blue

color denotes negative value in relative performance.
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Figure 7. Relative I/O performance of pnetCDF to rnetCDF, and pnetCDFcc and pnetCDFcr to pnetCDF on the CONUS domain with 4×8,

8× 8, 8× 16, 16× 16, and 16× 32 processor configurations from Kraken. Red color denotes positive value in relative performance while

blue color denotes negative value in relative performance.
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Figure 8. Relative I/O performance of pnetCDF to rnetCDF, and pnetCDFcc and pnetCDFcr to pnetCDF on the CONUS domain with 4×8,

8×8, 8×16, 16×16, and 16×32 processor configurations from Edison. Red color denotes positive value in relative performance while blue

color denotes negative value in relative performance.
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Figure 9. The impact of stripe count and size on parallel netCDF I/O performance on the CONUS domain. Left: various stripe sizes with

fixed 11-stripe counts. Right: various stripe counts with fixed 2 MB stripe size.

 

 

 

 

Figure 10. Relative performance of pnetCDF and pnetCDFcr with respect to rnetCDF in a large number of processors scenario on Kraken.

Red color denotes positive value in relative performance while blue color denotes negative value in relative performance.

The EUS case, which represents a moderately large do-

main, shows similar result as in the CA case. Relative perfor-

mance of aggregation along the row dimension is much better

than along the column dimension (Figs. 5, 6). With a small

number of processor scenarios, 4×4 and 4×8, pnetCDF per-

forms better than pnetCDFcr. At 8× 8, pnetCDFcr performs

better than pnetCDF slightly, ∼ 10 %. As the number of pro-

cessors grows, the enhancement becomes more significant.

Overall, the optimal setting on Kraken is a stripe count of 11

and stripe size of 2 MB, and on Edison it is a stripe count

of 5 and stripe size of 2 MB. Again, with pnetCDF, the rela-

tive performance drops as the number of processors increases

(decreases from ∼ 90 to ∼ 75 % on Kraken and from ∼ 50 to

∼ 40 % on Edison). However, the pnetCDFcr shows the op-

posite behavior: as the number of processors increases, the

relative performance increases significantly.

The CONUS case represents a relatively large do-

main, showing similar results for the CA and EUS cases

(Figs. 7, 8). When the number of processors increases, the

relative performance of pnetCDF decreases (from∼ 80 down

to∼ 60 % on Kraken and from∼ 75 down to∼ 50 % on Edi-

son). However, the relative performance of the pnetCDFcr

scheme increases dramatically. Overall, the “optimal” set-

tings are a stripe count of 11 and stripe size of 2 MB.

5.2 Stripe size and stripe counts effect with pnetCDF

Stripe size and stripe count are two of the key factors that

affect I/O performance as shown in Figs. 3–8. The CONUS

www.geosci-model-dev.net/8/1033/2015/ Geosci. Model Dev., 8, 1033–1046, 2015
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Figure 11. The maximum data size (left panel) and I/O rate (right panel) among all I/O processors in the CA (top), EUS (middle) and

CONUS domains (bottom), respectively, in the pseudo-code experiment running on Edison.

domain is chosen with various stripe counts (2, 5, and 11)

and stripe sizes (1, 2, 4, 8, and 16 MB) here to summarize

these effects (Fig. 9). Among all stripe counts, the cases using

stripe counts of 11 demonstrate the best performance com-

pared to other stripe counts; for stripe sizes, the 2 MB cases

were better than the other stripe sizes. As more processors

were applied, larger stripe sizes resulted in decreasing per-

formance in writing out data while 2 MB cases had relatively

better results compared to the other four sizes. Shorter writ-

ing time was found when fewer processors were requested.

The stripe count effect showed that stripe counts of 11 had

the best performance compared to the other two stripe count

cases. The differences became more significant when more

processors were used.

5.3 The impact of large number of processors on I/O

efficiency

Section 5.1 has shown pnetCDF performance decreases as

the number of processors increases. When the number of pro-

cessors continues to increase, the performance of pnetCDF

reaches a point that is worse than the serial I/O scheme

(Fig. 10). In contrast, the pnetCDFcr scheme continues to

improve significantly as the number of processors increases.

The I/O efficiency is defined as the rate of data being out-

put. In parallel applications with a spatial domain decompo-

sition strategy, the domain size in each processor becomes

smaller as the number of processors increase (Fig. 11 left

panel). It is known that the I/O rate is higher if a large chunk

of data is being output. Figure 11 (right panel) reflects this

assertion which was tested on Kraken. When the data is ag-

gregated, no matter whether it is along row or column dimen-

sion, it will increase the data size in the processor which is

responsible for the I/O. This is clearly shown in Fig. 11 left
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Figure 12. Total write time in a 1-day CMAQ simulation by different I/O approaches on a 4 km EUS domain with stripe size of 2 MB and

stripe count of 11 (Kraken left and Edison right).

panel. With data aggregation (pnetCDFcc or pnetCDFcr), the

data size decreases slower than the pnetCDF approach as the

number of processors increases. This translates into a higher

I/O rate in aggregated schemes than the pnetCDF approach

with respect to the same number of processors. pnetCDFcc

is worse than pnetCDFcr due to the internal data alignment

in the netCDF internal format (row major).

5.4 Application to CMAQ

Based on this small-scale code experiment, the setting of

11-stripe count and 2 MB stripe size is selected to employ

in a real CMAQ application: a 1-day simulation on a 4 km

resolution EUS domain (423× 594× 14× 142). Figure 12

shows the overall writing time recorded on Kraken and Edi-

son with respect to three different ways to perform I/O: the

current way using rnetCDF, using straight pnetCDF with 11-

stripe count and 2 MB stripe size (pnetCDF), and our new

approach (pnetCDFcr) with 11 stripe counts and 2 MB stripe

size. Clearly pnetCDFcr shortens the writing time signifi-

cantly.

6 Conclusions

We performed a series of experiments with four different I/O

modules to examine their I/O efficiencies in CMAQ. First, a

small-scale code was tested on three different domains: CA,

EUS and CONUS, which represent small, moderately large,

and large data sizes of CMAQ outputs. The I/O modules in-

clude serial mode which is currently used in CMAQ, direct

application of parallel netCDF (pnetCDF), and a new tech-

nique based on data aggregation which can be along row or

column dimension (pnetCDFcr and pnetCDFcc) before ap-

plying the parallel netCDF technique. The experiment re-

sults show: (1) pnetCDFcr performs better than pnetCDFcc;

(2) pnetCDF performance deteriorates as the number of pro-

cessors increases and becomes worse than serial mode when

certain large numbers of processors are used; and (3) even

though pnetCDFcr does not perform as well as pnetCDF in

the small number of processors scenarios, it does outperform

pnetCDF once the number of processors becomes larger. In

addition, an overall “optimal” setting has been shown based

on the experiments: 5-stripe count and 1 MB stripe size for

small domain, 11-stripe count and 2 MB stripe size or 5-

stripe count and 2 MB stripe size for the moderately large do-

main, and 11-stripe count and 2 MB stripe size for the large

domain.

This data aggregation I/O module was also tested for

a 1-day, 4 by 4 km EUS domain using CMAQ compared

to the serial I/O mode, which is currently implemented in

CMAQ, and conventional parallel netCDF method. The re-

sults show significant reduction of I/O writing time when

this new data aggregated pnetCDF (pnetCDFcr) technique is

used compared with serial I/O approach and with application

of straight pnetCDF. With this finding, the overall runtime

of scientific applications which require I/O will be signifi-

cantly reduced. A more important implication is that it allows

users to use a large number of processors to run applications

and still maintain a reasonable parallel speedup thereby de-

ferring speedup degradation governed by Amdahl’s law. Fur-

thermore, the technique can be transferred to other environ-

mental models that have large I/O burdens.
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