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Abstract. A new algorithm is presented for the solution
of the shallow water equations on quasi-uniform spherical
grids. It combines a mimetic finite volume spatial discretiza-
tion with a Crank–Nicolson time discretization of fast waves
and an accurate and conservative forward-in-time advection
scheme for mass and potential vorticity (PV). The algo-
rithm is implemented and tested on two families of grids:
hexagonal–icosahedral Voronoi grids, and modified equian-
gular cubed-sphere grids.

Results of a variety of tests are presented, including con-
vergence of the discrete scalar Laplacian and Coriolis oper-
ators, advection, solid body rotation, flow over an isolated
mountain, and a barotropically unstable jet. The results con-
firm a number of desirable properties for which the scheme
was designed: exact mass conservation, very good avail-
able energy and potential enstrophy conservation, consistent
mass, PV and tracer transport, and good preservation of bal-
ance including vanishing∇ ×∇, steady geostrophic modes,
and accurate PV advection. The scheme is stable for large
wave Courant numbers and advective Courant numbers up to
about 1.

In the most idealized tests the overall accuracy of the
scheme appears to be limited by the accuracy of the Cori-
olis and other mimetic spatial operators, particularly on the
cubed-sphere grid. On the hexagonal grid there is no evi-
dence for damaging effects of computational Rossby modes,
despite attempts to force them explicitly.

1 Introduction

In order to achieve the parallel scalability needed to ex-
ploit future generations of supercomputers, weather and cli-
mate prediction models will need to use quasi-uniform spher-
ical grids. A significant challenge is to develop schemes
that can achieve comparable accuracy to current state-of-
the-art longitude–latitude grid models, without excessive
cost (Staniforth and Thuburn, 2012). With this motivation,
Thuburn and Cotter(2012) recently presented a framework
for the construction of finite volume schemes for the solu-
tion of the rotating shallow water equations. In this frame-
work, key physical properties related to conservation, bal-
ance, and potential vorticity (PV) dynamics are obtained by
ensuring that the numerical scheme mimics certain math-
ematical properties of the continuous governing equations.
The framework makes use of a primal polygonal grid with
a C-grid placement of variables and the corresponding dual
grid, along with a set of linear operators with certain sym-
metry properties for mapping between the two. It extends the
work of Thuburn et al.(2009) andRingler et al.(2010) to
the case in which dual grid edges are not necessarily orthog-
onal to primal grid edges, thus making it applicable to quasi-
uniform cubed-sphere grids, for example, as well as Voronoi
grids. However,Thuburn and Cotter(2012) did not provide
any specific examples of the required linear operators for
non-orthogonal grids. Here we present a set of operators suit-
able for a particular class of cubed-sphere grid, and compare
the resulting model with one using theRingler et al.(2010)
operators on a hexagonal–icosahedral Voronoi grid.
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1.1 Governing equations

The vector invariant form of the shallow water equations is
used:

∂φ

∂t
+ ∇ · (vφ)= 0, (1)

∂v

∂t
+ v⊥φq + ∇(φT + k)= 0. (2)

Here,φ is the geopotential given by the fluid depth times
the gravitational acceleration,φT = φ+φorog is the total
geopotential at the fluid’s upper surface including the con-
tribution from orography,v is the velocity, andk = |v|

2/2.
A superscript⊥ indicates that the vector in question is ro-
tated throughπ/2 in the positive (anticlockwise) direction:
v⊥

= k×v wherek is the unit vertical vector. Finally,vφq is
the flux that appears in the conservation law for PV (derived
from Eqs.1 and2):

∂(φq)

∂t
+ ∇ · (vφq)= 0, (3)

whereq = ζ/φ is the PV,ζ = f + ξ is the absolute vorticity,
andξ = k · ∇ × v is the relative vorticity.

1.2 Grids

The shallow water code we have developed is formulated
for an arbitrary unstructured grid. However, a considerable
amount of grid-related information, including the opera-
tors listed in Table3 below and the multigrid restriction
and prolongation operators (Sect.4), needs to be generated
and pre-tabulated for any given grid. So far, grid genera-
tors and operators for two families of grids have been de-
veloped: hexagonal–icosahedral Voronoi grids and cubed-
sphere grids.

The hexagonal–icosahedral grid is essentially that pro-
posed byHeikes and Randall(1995a, b) (but without the
twist). The primal grid comprises hexagonal and pentago-
nal Voronoi cells, while its dual is the corresponding Delau-
nay triangulation. The grid generation code iteratively ad-
justs the primal grid cell centres so as to minimize a cost
functionJ = αHRJHR +αCJC, whereJHR is the cost func-
tion used byHeikes and Randall(1995b), which penal-
izes failure of primal and dual edges to cross at their mid-
points, andJC penalizes departures of the primal cell “cen-
tres” (i.e. dual grid vertices) from primal cell centroids. Set-
ting (αHR,αC)= (1,0) gives the Heikes–Randall grid; set-
ting (αHR,αC)= (0,1) gives a centroidal Voronoi grid as de-
scribed byDu et al.(1999) and used byRingler et al.(2010),
and Skamarock et al.(2012). All of the results shown be-
low use 40 iterations of a simple cell-by-cell minimization
algorithm to minimizeJ with (αHR,αC)= (1,0). (A few ex-
periments using(αHR,αC)= (0,1) suggest that there is only
weak sensitivity of results to this choice.) The default orien-
tation of the grid, used in all tests below, has a pentagon at
each pole.

Figure 1.Left: a hexagonal–icosahedral grid with 162 cells and 642
degrees of freedom. Right: a cubed-sphere grid with 216 cells and
648 degrees of freedom. Continuous lines are primal grid edges,
dotted lines are dual grid edges.

For the cubed-sphere grid, the vertices are first positioned
as on the equiangular cubed-sphere (e.g.Ronchi et al., 1996),
then the dual vertices are positioned at the barycentres of
the surrounding primal vertices, and finally the primal ver-
tices are relocated to the barycentres of the surrounding dual
vertices. The last step is needed in order to use theH op-
erator described in Sect.2 below and the Appendix. It has
the effect of smoothing the grid somewhat across the cube
edges, which is probably beneficial. (Iterating the last two
steps leads to further smoothing and resolution clustering at
the cube vertices; after many iterations the grid resembles the
conformal cube (Rancic et al., 1996). For this reason the last
two steps are not iterated for the results shown below.) The
default orientation of the grid, used in all tests below, has the
cube corners at latitudes±π/4.

Figure1 shows coarse resolution versions of the two grids.
Some characteristics of the grids at different resolutions are
given in Table1. The resolutions on the cubed-sphere have
been chosen to give approximately the same number of de-
grees of freedom as one of the hexagonal–icosahedral grids,
allowing a fair comparison between the two grid types.

2 Summary of the framework, and specific operators

The framework ofThuburn and Cotter(2012) is expressed
in terms of variables integrated over relevant grid elements
(cells or edges) or sampled at vertices. See Table2. This has
the advantage that many geometrical factors such as lengths
and areas are absorbed into the field variables, helping to
make both the mathematical formulation and the computer
code simpler and clearer. We will use subscripts on variables
(e.g.φi orVe) to refer to specific grid elements (geopotential
at dual vertexi or circulation integrated along dual edgee),
and omit subscripts (e.g.φ or V ) to refer to the entire vector
of these variables at all relevant grid elements; this allows the
use of a compact matrix-vector notation.
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Table 1. Grid characteristics. The second to seventh columns give number of cells, total number of degrees of freedom (cells plus edges),
maximum dual edge length (i.e. distance between neighbouring cell centres – a guide to the resolution), the ratio of maximum to minimum
primal edge length, the ratio of maximum to minimum dual edge length, and the ratio of maximum to minimum primal cell area; the last
three give a guide to grid uniformity. The last column gives the time step used at each resolution in the advection and solid body rotation
tests.

Grid Cells DoF Maxd (km) Max l/Min l Max d/Min d MaxA/Min A 1t (s)

Hex 42 162 4003 1.25 1.14 1.13
(HR) 162 642 2120 1.70 1.23 1.09

642 2562 1081 1.92 1.26 1.07 7200
2562 10 242 545 2.01 1.28 1.06 3600

10 242 40 962 273 2.08 1.28 1.07 1800
40 962 163 842 137 2.13 1.29 1.07 900

Cube 54 162 3349 1.38 1.67 1.44
(1 itn) 216 648 1661 1.47 1.25 1.63

864 2592 834 1.46 1.33 1.72 7200
3456 10 368 417 1.44 1.37 1.74 3600

13 824 41 472 208 1.43 1.39 1.74 1800
55 296 165 888 104 1.42 1.40 1.74 900

In terms of these integrated variables, the vector calculus
operations gradient, divergence and curl then take particu-
larly simple forms:

– Gradient integrated along a dual edge

G= D1φ, (4)

– Gradient integrated along a primal edge

−U = D1ψ
(v), (5)

– Divergence integrated over a primal cell

1= D2U, (6)

– Curl integrated over a dual cell

4(v)
v = D2V, (7)

where the sparse matricesD1, D1, D2, andD2 are determined
by the grid topology and their non-zero entries are all equal
to +1 or −1. The meanings of these and the other mimetic
operators are briefly summarized in Table3 and Fig.2. See
Thuburn and Cotter(2012) for detailed mathematical defini-
tions and discussion.

Discretizing Eqs. (1) and (2) in space gives

8̇+ D2F = 0, (8)

V̇ −Q⊥
+ D1I(8T +K)= 0. (9)

Here the prognostic variables are8i , the integral ofφ over
primal cell i, and Ve, the circulation along dual edgee.
A time derivative is indicated bẏ(). Fe is the mass flux
across primal edgee; it is computed from the8 andU fields

Figure 2. Schematic showing how the various mimetic operators
map between the different fields used on the polygonal C-grid.

using the primal grid advection scheme – see Sect.5. Q⊥
e

is the PV flux across dual edgee. It is computed from the
C⊥ andJ−1q fields using the dual grid advection scheme,
whereC⊥

e = (WF)e is the mass flux across dual edgee, and

qv = Zv/8
(v)
v is the PV at primal vertexv,Zv is the absolute

vorticity integrated over dual cellv, and8(v)
v = (R8)v is the

geopotential integrated over dual cellv.
Finally, Ki is the kinetic energy per unit mass integrated

over primal celli. Motivated by the fact that the discrete ap-
proximation to the global integral of kinetic energy is given

1

2

∑
e

VeUe, (10)

(Thuburn and Cotter, 2012), initial testing usedKi defined
by distributingVeUe/4 to the cells either side of edgee.
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Table 2. Summary of the variables used in the discretization. Lower case variable names indicate values sampled at a point while upper
case indicates integrated values. Superscript (v) indicates a value at a primal vertex or dual cell, to distinguish it from a variable of the same
name at a dual vertex or primal cell. Here,ne is the unit normal to primal edgee andte = k × ne; me is the unit tangent to dual edgee and
se = k × me.

Discrete Integral definition Description
variable

φi Geopotential sampled at dual vertexi

χi , χ
(v)
v Velocity potential sampled at dual vertexi or primal vertexv

ψi , ψ
(v)
v Stream function sampled at dual vertexi or primal vertexv

Ve
∫
dual edgee v · me dl Circulation along dual edgee

Ue
∫
primal edgee v · ne dl Flux across primal edgee

V⊥
e

∫
dual edgee v · se dl = −

∫
dual edgee v

⊥
· me dl Flux across dual edgee

U⊥
e

∫
primal edgee v · te dl = −

∫
primal edgee v

⊥
· ne dl Circulation along primal edgee

Ce
∫
dual edgee φv · me dl Mass circulation along dual edgee

Fe
∫
primal edgee φv · ne dl Mass flux across primal edgee

C⊥
e

∫
dual edgee φv · se dl = −

∫
dual edgee φv⊥

· me dl Mass flux across a dual edgee

F⊥
e

∫
primal edgee φv · te dl = −

∫
primal edgee φv⊥

· ne dl Mass circulation along primal edgee
Ge

∫
dual edgee∇φ · me dl Geopotential gradient integrated along dual edgee

8i
∫
primal cell i φdA Geopotential integrated over primal celli

8
(v)
v

∫
dual cellv φdA Geopotential integrated over dual cellv

1i
∫
primal cell i ∇ · vdA Divergence integrated over primal celli

1
(v)
v

∫
dual cellv∇ · vdA=

∫
dual cellv k · ∇ × v⊥ dA Divergence integrated over dual cellv

4
(v)
v

∫
dual cellv k · ∇ × vdA Relative vorticity integrated over dual cellv

Z
(v)
v

∫
dual cellv ζ dA Absolute vorticity integrated over dual cellv

However, although this is first-order accurate on the hexag-
onal Voronoi grid, it is not on the cubed-sphere grid, and
convergence of the maximumφ error was observed to stall
for the solid body rotation test case (Sect.6.5). Therefore,
an alternative scheme is used for all results presented below.
A constant vector velocityui is constructed for each celli
that gives a least squares best fit to theVe at the edges of
that cell. The kinetic energy in celli is then approximated by
|ui |

2/2 times the area of celli.
Provided the operators satisfy certain symmetry condi-

tions, this framework ensures a number of desirable prop-
erties for the scheme.

– The placement of degrees of freedom is that of a polyg-
onal C-grid, which helps to ensure an accurate represen-
tation of the geostrophic adjustment process (Arakawa
and Lamb, 1977).

– Equation (8) is manifestly in conservative form, ensur-
ing conservation of mass.

– It is a topological identity thatD2 ≡ −D
T
1 ; this, together

with the condition that the matricesI andH should be
symmetric, provides a discrete analogue of the property
that∇ is minus the adjoint of∇ · ( ), ensuring that the
geopotential gradient term is energy conserving for the
linearized shallow water equations.

– The condition thatW should be antisymmetric ensures
that the Coriolis term is energy conserving for the lin-
earized shallow water equations.

– Another topological identity is thatD2D1 ≡ 0, which
leads to a discrete analogue of the identity∇ ×∇ ≡ 0;
this ensures that the geopotential gradient term cannot
act as a source of vorticity or potential vorticity.

– TheR operator must be local and conservative, so that
the global integral of any variable8 over the primal
grid is equal to the global integral of8(v)

= R8 over
the dual grid. This property enables the construction
of a uniqueW that satisfies−D2W = RD2 (as well as
antisymmetry), as described byThuburn et al.(2009).
ProvidedW and R are related in this way, any non-
divergent velocity field can be balanced by some8
field, and will produce no vorticity via the Coriolis term;
in other words, the scheme can support geostrophically
balanced flows.

– A corollory is that the linearized potential vorticity

4
(v)
v /φ− f8

(v)
v /φ

2
is steady for the linearized equa-

tions. (Hereφ is the reference geopotential for the lin-
earization.)
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Table 3.Summary of mimetic operators.

Operator Purpose

I Converts primal cell area integrals to dual vertex point values
J Converts dual cell area integrals to primal vertex point values
H Converts dual edge integrals of tangential components of a vector (circulations) to primal edge

integrals of normal components of the vector (fluxes)

D1 Given primal vertex values of a scalar, computes primal edge integrals of its gradient
D2 Given primal grid fluxes, computes primal cell integrals of their divergence
D1 Given dual vertex values of a scalar, computes dual edge integrals of its gradient
D2 Given dual edge circulations, computes dual cell area integrals of their curl

R Converts primal cell area integrals to dual cell area integrals
W Converts primal edge fluxes to dual edge fluxes

– Finally, this property can be extended to the nonlinear
case following the approach ofLin and Rood(1997),
in the following sense: we can define a PV fluxQe by
discretizing the PV conservation law

∂

∂t
(φq)+ ∇ · Q = 0, (11)

where Q = vφq; then, by substituting thisQe in
Eq. (9), the PV can be made to evolveexactly as ifwe
were to integrate Eq. (11) directly, even though we ac-
tually integrate Eqs. (8) and (9). This means we can use
any desired advection scheme to compute the PV flux,
giving a high degree of control over the PV evolution.

Here we have emphasized conservation of energy only for
the linearized equations. If desired, a scheme can be con-
structed that conserves energy for the full nonlinear system
(Thuburn and Cotter, 2012). However, this requires a some-
what artificial construction of the PV flux. The philosophy
adopted here is that we prefer to have the PV evolve accord-
ing to a chosen advection scheme, maximizing our control
of the PV. Upwind advection schemes of the sort described
below are inherently damping on small scales, leading to dis-
sipation of potential enstrophy and, to some extent, energy.
Kent et al.(2012) andThuburn et al.(2014) discuss the ex-
tent to which this approach can provide an implicit subgrid
model capturing cascades of potential enstrophy and energy
for two-dimensional vortical flow. Apart from this inherent
dissipation due to the advection scheme, no other dissipa-
tion mechanism (either explicit or inherent in the numerics)
is needed in the model to maintain stability or to control dis-
persion errors or other numerical sources of noise.

All of the above properties are quite general. It remains to
define specific instances of theI , H, J, andR operators for
the two grids used here.

For the hexagonal–icosahedral grid, theI , H andJ oper-
ators implemented are all diagonal, i.e. their stencil is a sin-
gle cell or edge. This is just the translation into the present

framework of the operators used byThuburn et al.(2009) and
Ringler et al.(2010).

I i i′ =

{
1/Ai, i′ = i,

0, i′ 6= i,
(12)

whereAi is the area of primal celli. This I operator will be
first-order accurate provided the dual vertexi lies within pri-
mal celli. (It would be second-order accurate on a centroidal
Voronoi grid.)

Hee′ =

{
le/de, e′ = e,

0, e′ 6= e,
(13)

wherele is the length of primal edgee andde is the length
of dual edgee. On an orthogonal grid this diagonalH will
be first-order accurate provided the primal and dual edges do
intersect each other, and will be second-order accurate if the
grid is constructed so that the intersection point approaches
the midpoint of both the primal edge and the dual edge as
resolution is increased (Heikes and Randall, 1995b). Finally,

Jv v′ =

{
1/A(v)

v , v′
= v,

0, v′
6= v,

(14)

whereA(v)
v is the area of dual cellv. This J operator will be

first-order accurate provided the primal vertexv lies within
dual cell v. The R operator is defined as inRingler et al.
(2010), in which the mapping weights are proportional to the
overlap area between primal and dual cells. This operator is
first-order accurate. TheW operator is constructed fromR
following Thuburn et al.(2009).

For the cubed-sphere grid,I andJ are again the diagonal
operators defined by Eqs. (12) and (14). However, because
the primal and dual edges are not orthogonal to each other,
a diagonalH operator would be inconsistent (i.e. not even
first-order accurate). Instead we use the following:

Ue =

∑
e′ 6=e∈S

1

sc

(Vede′ −Ve′de) · de′

|de × de′ |
. (15)

www.geosci-model-dev.net/7/909/2014/ Geosci. Model Dev., 7, 909–929, 2014
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The stencilS comprises the five edges nearest to edgee,
including edgee itself. de is a vector of magnitudede in
the direction of dual edgee. Subscriptc refers to the cor-
ner formed by the edgese ande′. sc = 4 when dual edgese
ande′ are edges of the same quadrilateral, andsc = 6 when
dual edgese ande′ are edges of the same triangle. This op-
erator exactly convertsV to U for a constant velocity field
on a plane, and is therefore first-order accurate, provided the
primal grid vertices are located at the barycentres of the sur-
rounding dual vertices. See the Appendix for more details.
The construction works when the dual cells are either quadri-
laterals or triangles. Again, theR operator is defined as in
Ringler et al.(2010) andW is constructed fromR following
Thuburn et al.(2009).

Note that the above defines theI , H, J, andR operators
everywhere on the two grids; no special handling is used near
pentagons on the hexagonal–icosahedral grid or near cube
edges or corners on the cubed-sphere grid.

3 Time integration scheme

The time integration scheme is motivated by the observa-
tion that a Crank–Nicolson scheme gives a robustly stable
treatment of fast waves, with sufficient accuracy to capture
geostrophic adjustment, while a forward-in-time finite vol-
ume advection scheme can provide exact mass conservation
and stability up to Courant number≈ 1 while accurately cap-
turing Lagrangian conservation. Therefore, consider the fol-
lowing scheme, obtained by integrating Eqs. (8) and (9) over
a time interval1t :

8n+1
−8n+ D2F̃ = 0, (16)

V n+1
−V n− Q̃⊥

+ D1I(8T +K)
t

= 0. (17)

Here,

ψ
t
=

(
βψn+αψn+1

)
1t (18)

indicates a (possibly off-centred) trapezoidal approximation
to the Eulerian time integral for any variableψ , F̃ is the time
integral of the mass flux, given by the primal grid advection
scheme using the time-integrated fluxesU

t
, andQ̃⊥ is the

time integral of the potential vorticity flux, given by the dual
grid advection scheme using the mass fluxesC̃⊥

= WF̃ .
All of the results presented below, except in Sect.6.8, use

a centred approximation to the time integral:α = β = 0.5.

4 Iterative solution and Helmholtz problem

TheK, F̃ andQ̃⊥ terms in Eqs. (16) and (17) depend non-
linearly on the values of the predicted variables at stepn+1.
Hence we must solve a coupled nonlinear system of equa-
tions at each step. An incremental iterative approach is used.
Let8(l) andV (l) be our estimates for8n+1 andV n+1 after

l iterations, and letR8 andRV be the associated residuals in
the8 andV equations:

R8 =8(l)−8n+ D2F̃ , (19)

RV = V (l)−V n− Q̃⊥
+ D1I(8T +K)

t

, (20)

where(.)
t
quantities, including the velocities used for advec-

tion, are evaluated using the latest available estimates. Seek
increments8′,V ′ that will reduce the residuals towards zero:

8′
+α1tD2(φ

∗HV ′)= −R8, (21)

V ′
+α1tD1I8′

= −RV . (22)

Hereφ∗ is a reference geopotential field defined at cell edges.
In the current implementation it is updated at each time step
based onφ at stepn. This approach resembles Newton’s
method with an approximate Jacobian.

EliminatingV ′ leaves a Helmholtz problem for8′:

α21t2D2(φ
∗HD1I8′)−8′

= R8−α1tD2(φ
∗HRV ). (23)

A variety of methods are possible for solving the Helmholtz
problem. The current implementation uses a single sweep
of a full multigrid method (e.g.Fulton et al., 1986), which
provides more than sufficient accuracy in the context of the
iterative nonlinear solver. (There is growing evidence that
the solution of elliptic subproblems need not be a barrier
to scalability on massively parallel computers, e.g.Heikes
et al.(2013); Müller and Scheichl(2014).) Once8′ is found,
back-substitution givesV ′, and then the latest estimates for8

andV are updated:8(l+1)
=8(l)+8′, V (l+1)

= V (l)+V ′.
The first guess is given by the value at the previous step:
8(0) =8n, V (0) = V n.

In the tests described below, the residualsR8 andRV typ-
ically decrease by an order of magnitude at each iteration (by
up to two orders of magnitude per iteration at very high res-
olution with short time step). Four iterations are sufficient to
achieve stable results, and it might be feasible to use fewer
iterations operationally.

5 Advection scheme

The advection scheme is a so-called forward-in-time scheme,
a kind of finite volume scheme. (The approach is also re-
ferred to as “swept area” or “incremental remapping”.) The
time integral of the flux across a cell edge is replaced by
a spatial integral of the advected field over the area swept
across the edge during one time step. The idea is an extension
to two dimensions and more general grids of the schemes de-
scribed byCrowley(1968), Tremback et al.(1987), Leonard
(1979) and Leonard et al.(1993, 1995). Similar schemes
have been described byThuburn (1997), Lashley (2002),
Lipscomb and Ringler(2005), Miura (2007), andSkamarock
and Menchaca(2010). The swept area integral is computed

Geosci. Model Dev., 7, 909–929, 2014 www.geosci-model-dev.net/7/909/2014/
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Figure 3.Schematics showing how the advection scheme stencils are iteratively constructed on various grid structures. A numberm indicates
a cell added to the stencil at themth sweep.

by approximating the subgrid distribution of the advected
field as a polynomial in terms of localx andy coordinates.
The code has been implemented for an arbitrary degree poly-
nomial (though with some approximations); the results be-
low focus on the case of a quadratic fit. Some details are de-
scribed in the following subsections.

5.1 Construction of stencils

A polynomial subgrid distribution of the advected field is
constructed for each grid cell. A polynomial of degreed in
two dimensions has(d+ 1)(d+ 2)/2 coefficients, and so re-
quires at least this many pieces of information in order to
determine the coefficients, i.e. we need a stencil of at least
this size. The stencil should be as isotropic and symmetrical
as possible to ensure that the construction of the fit is well
conditioned, and because the same subgrid reconstruction is
used for all the downstream edges of the given cell.

The stencil is grown iteratively, as follows:

– First sweep: the stencil comprises only the cell in ques-
tion.

– Subsequent sweeps: if there are sufficient cells in the
stencil then stop. If not then make a list of all cells that
are not yet in the stencil but are neighbours of cells in
the stencil. If any cells in the list are neighbours of two
or more stencil cells then add these to the stencil and
finish this sweep. Otherwise, add all the cells in the list
(which are neighbours of only one stencil cell) to the
stencil and finish this sweep.

Figure3 illustrates how the stencil is grown on three dif-
ferent grids in order to fit quartic polynomials, which need at
least 15 stencil cells. The numbers indicate the number of the
sweep in which the cell is added to the stencil. (The triangular
case is relevant to PV advection on the dual of the hexagonal
grid.) Note that the details of the stencil vary near anomalous
regions of the grid such as pentagons or cube corners; these
cases are left as an exercise for the interested reader!

5.2 Constructing the polynomial fit

We wish to construct a polynomial fit for celli so as to fit
the given data, which are grid cell area integrals8j in each
of the corresponding stencil cells. However, the stencil con-
structed using the above scheme will almost always contain
more cells than needed to determine the polynomial coeffi-
cients; we have an overdetermined problem. An obvious so-
lution is to construct a least squares fit to the data. However,
Lashley(2002) found that this gave unstable results. He ob-
tained stable results by demanding that the central cell be
fitted exactly, with a least squares fit to the rest of the data.
Here we generalize this idea by demanding an exact fit to
the data in some substencil containing the central cell, with
a least squares fit to the rest of the data.

For any celli, letBk(x) be a set of basis functions for the
subgrid fit, so that

φ(x)=

∑
k

akBk(x), (24)

where the coefficientsak are to be determined. (Later the ba-
sis functions will be chosen to be monomials, 1,x, y, x2,
. . . etc, but for now we keep the theory general.) It is then
a straightforward exercise in linear algebra to show that

ak =

∑
j

Ck,j8j (25)

for some matrixC. For each celli, the matrixC can be com-
puted provided we can evaluate the integral ofBk(x) over
each stencil cell. Moreover, theC’s do not change in time, so
they can be evaluated just once at the start of the integration
and stored for later use.

One matrixC needs to be stored for each cell. Typical sizes
of C per cell are 6× 7 for a quadratic fit on a hexagonal grid
(up to 7 stencil cells to determine 6 coefficients) and 15×19
for a quartic fit on a hexagonal grid (up to 19 stencil cells to
determine 15 coefficients).

There is some freedom in the choice of substencil to be fit-
ted exactly. All of the results shown below fit only the central
cell exactly.
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5.3 Local coordinate system

In the current scheme the basis functionsBk(x) are monomi-
als in local coordinatesx andy. We choose a local coordinate
system that approaches Cartesian as the ratio of grid length
to Earth’s radius tends to zero, and for which the results are
independent of the choice of direction of thex axis.

The origin of the coordinate system is taken to be the cen-
tre of the cell in question,x0, say. The direction of thex axis
is defined to be the direction fromx0 to the centre of an
arbitrarily chosen neighbouring cell. This choice is simply
a matter of convention; identical results should be obtained
for other choices. Then for any pointx in the neighbourhood
of x0, it is straightforward to compute the spherical distance
s betweenx0 andx, and the angleθ between thex axis and
the line joiningx0 to x. Finally, the local coordinates are
given by

x = s cosθ; y = s sinθ. (26)

5.4 Integrals of monomials

The basis functionsBk are chosen to be the set of mono-
mials in x and y up to some chosen degreed, for exam-
ple,{1,x,y,x2,xy,y2

} for d = 2. (It may be verified that the
space of functions spanned by the basis is independent of
the choice ofx axis.) For each celli, the construction of the
subgrid fit requires the integralL j k of thekth basis function
over thej th stencil cell, for allk andj . These are computed
as follows.

The stencil cell is subdivided into subtriangles by joining
its centre to each vertex. For each subtriangle, three approxi-
mate Gauss points are found by computingxg = (4xi+xj +

xk)/6, where{i,j,k} is a cyclic permutation of the indices
of the three subtriangle vertices, and then projectingxg back
onto the unit sphere. The corresponding Gaussian weights
are given by 1/3 of the true spherical triangle area. The in-
tegrals of the monomials over the subtriangle are thus eval-
uated by (approximate) Gaussian integration. The integrals
over the stencil cell are obtained by summing over the corre-
sponding subtriangles.

Three point Gaussian integration would be exact for inte-
gration of polynomials up to degree 2 for planar triangles.
For spherical triangles it remains very accurate. Three point
Gaussian integration is not exact for higher degree polyno-
mials, even for planar triangles. However, because the sten-
cil cell is subdivided into several triangles, the approximate
integrals are still very accurate ford = 4.

5.5 Construction of swept area

The area swept across an edge during a time step is approxi-
mated as a parallelogram in the localx–y coordinate system
of the upwind cell. The displacement in the normal direction
is given byut and in the tangential direction byvt , where
u andv are the normal and tangential velocity components,

making appropriate allowance for sign. On the primal grid,
u is obtained fromU and v is obtained fromU⊥

= HV ⊥

whereV ⊥
= WU . On the dual grid,u is obtained fromV ⊥

andv is obtained fromV .

5.6 Integral over swept area

The swept area integral is evaluated by Gaussian integration
over the parallelogram area. Sufficient Gauss points are used
to evaluate the swept area integral exactly on a plane: 2×

2 for a quadratic subgrid fit, 3× 3 for a quartic subgrid fit.
(The affine transformation that transforms a rectangle into
a parallelogram also transforms the rectangle’s Gauss points
into the parallelogram’s Gauss points.)

On the primal grid, we wish to ensure that a constantφ

field remains constant in a non-divergent flow. This requires
that the subgrid reconstruction of a constantφ field should
be constant, and also that the swept area integrals should be
proportional to the velocity fluxes, so that the mass fluxes are
non-divergent. The subgrid reconstruction described above
preserves a constant. To ensure non-divergent mass fluxes for
non-divergent velocity the Gaussian weights are normalized
by the swept area:Aswe = U

t

e.
One dimensional experiments and stability analysis

(Sect.6.1) revealed the need for an important modification
to this swept area calculation:

Aswe =
U
t

e

1+β1t(ID2Un)up
, (27)

where(ID2U
n)up is the divergence at time leveln in the cell

upwind of edgee. This modification is essential for stabil-
ity when the advection of mass is coupled to the momen-
tum equation. It may be interpreted as allowing for the time-
integrated effect of the divergence on the swept area.

5.7 Advection of tracers: primal grid

We require two important properties of the advection
scheme:

i. A constantφ field should remain constant in non-
divergent flow.

ii. A constant tracer mixing ratio should remain constant.

On the primal grid, the first of these properties is guaran-
teed by the construction of the swept area integral described
above.

The prognostic variables for primal grid tracers are as-
sumed to be “concentrations”, e.g.0 = φγ whereγ is the
“mixing ratio”, and they are stored as area integrals (analo-
gous to8). Provided the same subgrid reconstruction scheme
is applied to the area integrals of0 as is applied to8, the
scheme will preserve a constant mixing ratio, because the
subgrid distributions of0 andφ will be proportional to each
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other. (A flux limiter could also be used to ensure preserva-
tion of a constant mixing ratio, e.g.Thuburn, 1996; Miura,
2013, but has not been implemented for the results shown
below.)

5.8 Dual grid advection

The spatial discretization implies that there exists a dual grid
mass field

8(v)
= R8 (28)

that satisfies its own mass continuity equation

8̇(v)
− D2C

⊥
= 0, (29)

whereC⊥
= WF . In other words, predicting the8(v) di-

rectly using Eq. (29) would give the same result as predicting
8 then diagnosing8(v) using Eq. (28).

To ensure that this property continues to hold for finite
time steps, and in particular that properties (i) and (ii) hold
on the dual grid, we must ensure that the dual grid advec-
tion is based on the time integrated mass fluxesC̃⊥

= WF̃ .
Note thatC̃⊥ must be built in this way using theW opera-
tor; constructing a dual cell subgrid fit from the8(v) data and

a swept area based onV
t⊥

would give a different result for
which Eqs. (28) and (29) are not consistent. Also note that
there is no need to modify the swept mass to allow for diver-
gence, as in Eq. (27); this has already been taken into account
in the calculation of̃F .

The mass flux̃C⊥ determines a swept massMswe = C̃⊥
e

rather than a swept area. Therefore, in order to ensure preser-
vation of a constant tracer mixing ratio, the subgrid recon-
struction must be for the mixing ratio rather than the concen-
tration, so that the swept integral is evaluated as∫
γ dM (30)

rather than∫
0dA. (31)

The rest of the calculation is the same as for primal grid ad-
vection, except that the Gaussian weights are normalized by
the swept mass rather than the swept area.

Numerical tests (see interactive discussion) confirm that
properties (i) and (ii) do indeed hold in practice on both the
primal and dual grids. The importance of such mass-tracer
consistency for modelling atmospheric transport has been
discussed, for example, byZhang et al.(2008).

6 Results

A variety of tests have been applied to test the stability
and different aspects of accuracy of the scheme on the
hexagonal–icosahedral and cubed-sphere grids. A particular
focus is on the properties listed in Sect.2.

6.1 Stability

The stability of the scheme was investigated by applying
it, with appropriate simplifications, to the one-dimensional
shallow water equations. Specifically, for small perturbations
to simple basic states with constantφ andu, the system ma-
trix was generated numerically in order to compute the fre-
quencies and structures of the eigenmodes. Provided the ef-
fect of divergence on swept area is included, as in Sect.5.6,
then, with α = β = 0.5, the scheme was found to be sta-
ble for large gravity wave Courant numbers and advective
Courant numbers up to about 0.75, with only very small
instability growth rate for advective Courant numbers be-
tween 0.75 and 1.0. A very small off-centring,α = 0.502,
was enough to obtain stability for advective Courant num-
bers up to 1.

All testing of the two-dimensional shallow water model
presented below has usedα = β = 0.5. In practice the model
is found to be stable for large gravity wave Courant numbers
and advective Courant numbers less than about 1.

6.2 Convergence of Laplacian

Using the operators listed in Table3, a discrete Laplacian
operator can be built for scalars defined at the centres of pri-
mal cells (ID2HD1) and for scalars defined at the centres
of dual cells (−JD2H−1D1). Examining the convergence of
the discrete Laplacian provides a basic test of the accuracy
of some of the discrete operators. Moreover, the primal grid
Laplacian arises when the discrete linearized mass and mo-
mentum equations are combined to obtain a discrete wave
equation, and also in the vorticity form of the expression
for geostrophic balance. Thus, the accuracy of the primal
grid Laplacian will influence the accuracy with which gravity
wave propagation and geostrophic balance are captured.

The code was used to test the convergence with increasing
resolution of the primal grid discrete scalar Laplacian applied
to the function cosϕ sinλ (hereϕ is latitude,λ is longitude).
The results are given in Table4. For the hexagonal grid, the
L2 error is almost second order while theL∞ error is first
order or a little better. For the cubed-sphere grid theL2 error
is almost first order, while theL∞ error does not decrease
with increasing resolution.

The test was repeated for the dual grid discrete scalar
Laplacian. (Again see Table4.) For the hexagonal grid the
L2 error is approximately first order while theL∞ error ap-
pears to be close to first order until the finest resolution where
convergence almost stalls. For the cubed-sphere grid theL2
error is worse than first order, and theL∞ error does not de-
crease as resolution is refined.

A vector Laplacian can also be built from the operators in
Table3 (seeThuburn and Cotter, 2012). Its convergence was
found to be similar to that of the dual grid scalar Laplacian
on both the hexagonal and cubed-sphere grids (not shown).
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Table 4.Convergence of the primal and dual grid scalar Laplacians.

Primal Dual

Grid & Cells L∞ err L2 err L∞ err L2 err

Hex
42 0.80× 10−3 0.44× 10−3 0.34 0.12

162 0.23× 10−3 0.12× 10−3 0.18 0.084
642 0.73× 10−4 0.33× 10−4 0.091 0.047

2562 0.29× 10−4 0.89× 10−5 0.046 0.024
10 242 0.14× 10−4 0.24× 10−5 0.024 0.012
40 962 0.78× 10−5 0.78× 10−6 0.019 0.0065

Cube
54 0.21 0.12 0.10 0.070

216 0.36 0.10 0.059 0.025
864 0.41 0.064 0.050 0.012

3456 0.43 0.035 0.093 0.0076
13 824 0.44 0.018 0.12 0.0052
55 296 0.45 0.0092 0.13 0.0036

6.3 Convergence of Coriolis operator

Although theR operator is at least first-order accurate, this
does not imply any guarantee of accuracy of theW operator
constructed from it. On a regular hexagonal or square grid
on a plane, bothR andW would be second-order accurate.
However, for the distorted polygons of the quasi-uniform
spherical grids the convergence rate must be checked empir-
ically.

A stream function equal to cosϕ sinλ for a rotational
flow was defined and sampled at both primal cell centres
(ψ) and primal vertices (ψ (v)). Dual edge normal fluxes
were then calculated both directly from the stream function
(V ⊥

= D1ψ) and by applying theW operator to primal edge
normal fluxes (V ⊥

approx= WU = −WD1ψ
(v)). The difference

betweenV ⊥
approxandV ⊥, after dividing by the lengths of the

corresponding dual edges, gives a measure of the accuracy
of W. The variations of theL∞ andL2 errors with reso-
lution are listed in Table5. A similar calculation was car-
ried out for a divergent flow by defining a velocity poten-
tial equal to cosϕ sinλ, sampled at primal cell centres (χ )
and at primal vertices (χ (v)). The L∞ andL2 differences
D1χ

(v)
− HWH D1χ (after dividing by primal edge lengths)

are also shown in Table5.
On both grids theL∞ error fails to converge to zero, while

theL2 error converges very slowly, roughly proportional to
the square root of the grid spacing, orO(N−1/4) on a grid
with N cells. This is consistent with the observation that
O(1) errors are found along the lines joining the pentagons
on the hexagonal–icosahedral grid and along the cube edges
on the cubed-sphere grid, thus affectingO(N1/2) edges. The
errors on the cubed sphere are significantly larger than those
on the hexagonal–icosahedral grid.

6.4 Advection

Test case 1 ofWilliamson et al.(1992) tests the advection
scheme in isolation from the rest of the dynamics. A co-
sine bell profile tracer is advected once around the sphere
by a solid body rotation flow. We have carried out this test
on both the hexagonal–icosahedral and cubed-sphere grids,
for tracers stored on both primal and dual cells, at a range
of grid resolutions and for flow at different angles relative to
the grid. Figure4 shows a sample of results. Generally the
advection scheme shows

– accurate phase speed, with weak dispersion error;

– some erosion of the maximum but with rather isotropic
error field (the cubed-sphere case in Fig.4 is rather un-
usual in that the flow is aligned with the grid, leading to
more elongation than broadening of the tracer profile);

– weak undershoots provided the tracer is well resolved;

– little sensitivity to the grid (hexagonal or cubed sphere,
primal or dual);

– little grid imprinting, as measured by the evolution of
errors as the cosine bell crosses grid features such as
pentagons or cube corners;

– a convergence rate close to second order or better, de-
pending on the error norm, at the resolutions tested.

The advection scheme has also been tested using a quartic
subgrid fitd = 4. This option is considerably more expen-
sive than the quadratic fitd = 2. The qualitative features of
the results are rather similar to thed = 2 case. Generally the
errors are reduced in magnitude by a factor in the range 3–5,
though the convergence rate remains close to second order.
Undershoots are a little worse on poorly resolved data. All of
the results shown in later sections used = 2.

Several factors could reduce the convergence rate below
the third order and fifth order rates expected in the ideal case
for quadratic and quartic subgrid fits, respectively. These fac-
tors include the approximation of the swept area as a parallel-
ogram (Ullrich et al., 2013), the use of approximate quadra-
ture in the quartic case, and the lack of perfect smoothness
of the initial data (Holdaway et al., 2008). The parallelogram
swept area should be an excellent approximation for the solid
body flow of this test case. The observed convergence rates
are consistent with the results ofHoldaway et al.(2008) (case
n= 2 in their Table I), suggesting that smoothness of the ini-
tial data is the dominant factor limiting the convergence rate.

We have also experimented with fitting a larger substen-
cil exactly. In most cases this leads to a reduction in the er-
rors. However, for advection on the dual of the hexagonal
grid with d = 4 the scheme became unstable, for reasons we
do not yet understand. All of the results shown below use
exact fitting only to the central stencil cell.
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phi  Min −16.91  Max 865.9 phierr  Min −126.5  Max 66.71

phi  Min −18.14  Max 907.7 phierr  Min −82.38  Max 76.77

Fig. 4.Cosine bell advection test. Left: finalφ field, contour interval 100; 0 and 500 contours are bold. Right: final error field, contour interval
40; negative and zero contours are bold. Top: hexagonal-icosahedral grid with 10242 cells. Bottom: cubed sphere grid with 13824 cells. A
quadratic subgrid fit was used with a time step of1800s. The coarse-resolution grids shown in the background are for orientation only.

triggers the radiation of fast inertio-gravity waves and slow
Rossby waves.760

Maps of the surface height field produced by the model
at day 15 appear very similar to those published in the lit-
erature for other models. To obtain more detailed informa-
tion we therefore examine the errors in the height field. Test
case 5 has no analytical formula for the true solution, so765

a high-resolution reference solution was generated using the
ENDGame shallow water model (Zerroukat et al., 2009),
which uses a well tested semi-implicit semi-Lagrangian solu-
tion scheme on a longitude-latitude C-grid. The reference so-
lution is generated at a grid resolution1024×512, and a time770

step∆t= 225s. Standard semi-Lagrangian advection ofφ

(rather than SLICE) was used. The high-resolution solution
for the surface heighth was interpolated to all of the desired
test grids and resolutions using cubic Lagrange interpolation
(the same scheme as used for semi-Lagrangian advection).775

Each test model computed a height error field by reading in
the corresponding reference solution and subtracting it from
the test model solution.

As well as the mimetic finite volume scheme on the hexag-
onal and cubed sphere grids, errors were also calculated for780

the ENDGame shallow water model at similar resolutions,
for comparison.

All three models were found to run stably with the time
steps given in Table 11. However, all three models produced

Figure 4. Cosine bell advection test. Left: finalφ field, contour interval 100; 0 and 500 contours are bold. Right: final error field, contour
interval 40; negative and zero contours are bold. Top: hexagonal–icosahedral grid with 10 242 cells. Bottom: cubed-sphere grid with 13 824
cells. A quadratic subgrid fit was used with a time step of 1800s. The coarse-resolution grids shown in the background are for orientation
only.

6.5 Solid body rotation

The solid body rotation test case, test case 2 ofWilliamson
et al. (1992), tests the ability of the scheme to maintain
a steady, balanced, large-scale flow. Since the flow is steady,
the exact solution is known, allowing the calculation of errors
and convergence rates.

Table6 showsL2 andL∞ errors forφ andv at day 5 vs.
resolution for the two grid types. The time steps used are
given in Table1. At the resolutions tested,v converges at
close to second order on both grids, whileφ converges at
somewhere between first and second order. At any given res-
olution the errors are considerably smaller on the hexagonal–
icosahedral grid than on the cubed-sphere grid.

Maps of the error inφ on both grids (Fig.5) show small
scale and large scale components. The small-scale errors
are concentrated along the lines joining the pentagons on
the hexagonal grid and along the cube edges on the cubed-
sphere grid. They are stationary, and are present at their full

amplitude after just a few time steps. The large scale error re-
flects the symmetry of the grid: zonal wave number 5 and an-
tisymmetric about the equator for the hexagonal–icosahedral
grid, zonal wave number 4 and symmetric about the equator
for the cubed-sphere. This component is also stationary; it
gradually emerges over about three days of integration.

6.6 Flow over an isolated mountain

A more complex flow field is produced in test case 5 of
Williamson et al.(1992). An initial geostrophically balanced
solid body rotation velocity field impinges on an isolated
conical mountain at northern mid-latitudes. The mountain
triggers the radiation of fast inertio-gravity waves and slow
Rossby waves.

Maps of the surface height field produced by the model
at day 15 appear very similar to those published in the lit-
erature for other models. To obtain more detailed informa-
tion we therefore examine the errors in the height field. Test
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Table 5.Convergence ofW operator used to construct the Coriolis terms.

Rotational flow Divergent flow

Grid & Cells L∞ err L2 err L∞ err L2 err

Hex
42 0.59× 10−1 0.34× 10−1 0.78× 10−1 0.45× 10−1

162 0.49× 10−1 0.16× 10−1 0.52× 10−1 0.18× 10−1

642 0.35× 10−1 0.69× 10−2 0.35× 10−1 0.71× 10−2

2562 0.29× 10−1 0.37× 10−2 0.28× 10−1 0.38× 10−2

10 242 0.23× 10−1 0.25× 10−2 0.23× 10−1 0.26× 10−2

40 962 0.23× 10−1 0.20× 10−2 0.23× 10−1 0.20× 10−2

163 842 0.23× 10−1 0.14× 10−2 0.23× 10−1 0.14× 10−2

Cube
54 0.68× 10−1 0.38× 10−1 0.65× 10−1 0.23× 10−1

216 0.12 0.41× 10−1 0.85× 10−1 0.41× 10−1

864 0.14 0.29× 10−1 0.11 0.29× 10−1

3456 0.15 0.19× 10−1 0.13 0.20× 10−1

13 824 0.15 0.13× 10−1 0.14 0.15× 10−1

55 296 0.15 0.95× 10−2 0.15 0.11× 10−1

221 184 0.15 0.67× 10−2 0.15 0.75× 10−2

phierr  Min −8.747  Max 9 phierr  Min −57.84  Max 39.1

Figure 5. Geopotential error (m2 s−2) after 5 days for the solid
body rotation test case. Left: a hexagonal–icosahedral grid with
10242 cells. Right: a cubed-sphere grid with 13824 cells. In each
case 11 evenly spaced contours (i.e. 10 intervals) are used between
the minimum and maximum values.

case 5 has no analytical formula for the true solution, so
a high-resolution reference solution was generated using the
ENDGame shallow water model (Zerroukat et al., 2009),
which uses a well tested semi-implicit semi-Lagrangian solu-
tion scheme on a longitude–latitude C-grid. The reference so-
lution is generated at a grid resolution 1024×512, and a time
step1t = 225s. Standard semi-Lagrangian advection ofφ

(rather than SLICE) was used. The high-resolution solution
for the surface heighth was interpolated to all of the desired
test grids and resolutions using cubic Lagrange interpolation
(the same scheme as used for semi-Lagrangian advection).
Each test model computed a height error field by reading in
the corresponding reference solution and subtracting it from
the test model solution.

Table 6. Geopotential errors (m2 s−2) and velocity errors (m s−1)
at day 5 for the solid body rotation test case.

Grid & Cells L2(φ) L∞(φ) L2(v) L∞(v)

Hex
642 49.33 104.77 0.780 1.93

2562 14.19 32.25 0.218 0.533
10 242 3.81 9.00 0.0561 0.144
40 962 1.01 3.41 0.0140 0.0365

Cube
864 245.50 490.84 1.94 5.32

3456 74.67 167.98 0.576 1.613
13 824 19.62 57.84 0.152 0.453
55 296 5.11 23.66 0.0387 0.118

As well as the mimetic finite volume scheme on the hexag-
onal and cubed-sphere grids, errors were also calculated for
the ENDGame shallow water model at similar resolutions,
for comparison.

All three models were found to run stably with the time
steps given in Table1. However, all three models produced
almost identical height error fields (not shown), despite the
use of very different grids and numerics. Moreover, conver-
gence of the errors towards zero stalled between the two
finest resolutions tested, for all models and all error norms.
The common feature of the numerics of the three models is
the semi-implicit treatment of gravity waves, which will ar-
tificially slow the highest frequency waves. Such waves are
present at large amplitude because of the “impulsive” start to
the test case. The evidence suggests that this slowing of grav-
ity waves is the dominant source of error in all three models.
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Table 7.Height errors (m) for test case 5, with reduced time steps.

Model & Grid Cells L1(h) L2(h) L∞(h)

Mimetic 642 49.14 67.90 268.72
FV hex 2562 19.29 25.76 105.54

10 242 5.83 7.45 26.69
40 962 1.86 2.60 13.30

Mimetic 864 47.80 68.64 278.92
FV cube 3456 22.60 31.35 121.28

13 824 6.51 8.59 32.27
55 296 1.52 2.01 9.47

ENDGame 40× 20 41.02 57.65 248.55
Long-lat 80× 40 13.48 17.49 61.63

160× 80 4.33 5.52 19.68
320× 160 1.29 1.88 10.40

It is an encouraging result that the mimetic finite volume
model produces such similar errors to ENDGame when us-
ing time steps of the size that would be used in practice at
these resolutions. However, it is also of interest to try to as-
sess the errors arising from the spatial discretization and the
grid. To do this, the test case was repeated for all three mod-
els with1t reduced by a factor of 4 on each grid in order to
reduce the time truncation errors. The resulting error norms
for height are shown in Table7. All three models appear to be
converging at a rate somewhere between first and second or-
der, depending on the norm chosen. (Note that, because of the
lack of smoothness of the forcing mountain, we cannot ex-
pect better than first-order convergence ofL∞(h), even with
a high-order scheme.) At any given resolution, the hexagonal
and cubed-sphere grids have rather similar errors, while those
from ENDGame are typically (though not always) slightly
smaller.

The height error fields for the three models at the second
highest resolution are shown in Fig.6. Even with the reduced
time step used here, there are noticeable similarities among
the three models in both the length scales and the details of
the error patterns, which are suggestive of wave trains radi-
ating globally from the forcing mountain.

In order to examine some aspects of behaviour that depend
on the mimetic properties of the scheme, the test case was
run to 50 days at the highest resolution given in Table7 (with
1t = 900s). After about 20 days the PV dynamics becomes
strongly nonlinear, leading to the production of thin PV fil-
aments which stretch and wrap up, localized sharp PV gra-
dients, and a cascade of potential enstrophy to small scales.
Figure7 shows the PV at day 50 on the cubed-sphere grid.
It shows the production of PV filaments and sharp gradients,
with no noise or other unphysical behaviour apparent. Re-
sults on the hexagonal grid are similar.

Figure8 shows several diagnostics of behaviour related to
the mimetic properties, again for the cubed-sphere case. (The
hexagonal grid case is very similar.) The top left panel shows
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Figure 6. Height error at day 15 of the isolated mountain test case
for the mimetic finite volume model on a hexagonal grid of 10 242
cells (top), the mimetic finite volume model on a cubed-sphere grid
of 13 824 cells (middle), and for ENDGame on a longitude–latitude
grid of 160×80 cells (bottom). The contour interval is 6 m and zero
and negative contours are bold. The bold circle indicates the loca-
tion of the mountain centred at coordinates(π/2,π/6).

the relative change in total mass, and confirms that this is
at the level of round-off error. Equation (29) implies that ad-
vecting a dual grid tracer initialized with the dual grid geopo-
tential should give the same result as diagnosing the dual grid
geopotential from the predicted primal grid geopotential at
each time step. The continuous curve in the top right panel
shows the maximum absolute difference between these two
dual gridφ fields, normalized by the maximum value of the
field. The normalized difference is of order 10−5. Although
the difference is tiny, it is significantly larger than round-off
error. This is due to incomplete convergence of the nonlinear
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Figure 7. Potential vorticity at day 50 for test case 5 modelled
on a cubed-sphere grid of 55296 cells. The contour interval is
2× 10−10s m−2, and the 0 and±2× 10−9 contours use double
line thickness.

iterative solver; increasing the number of iterations from 4
to 8 reduces the discrepancy by a factor of 103. The con-
struction of theQ̃⊥ Coriolis term ensures that the PV diag-
nosed from the predicted8 andV fields evolves as if it were
a passive tracer advected by the mass fluxesF̃⊥. The dashed
curve in the top right panel shows the normalized maximum
absolute difference between PV diagnosed at each time step
and an advected tracer initialized with the PV field. The dif-
ferences are at the level of round-off error.

The available potential energy is given by∫
1

2
(φT − 〈φT〉)2 dA (32)

where〈φT〉 is the global mean ofφT. It gives an upper bound
on the amount of potential energy that could be converted
to kinetic energy, and is typically much smaller than the to-
tal potential energy. The bottom left panel of Fig.8 shows
the available potential energy, kinetic energy and their sum
(total available energy). There is a significant conversion of
available potential energy to kinetic energy over the 50 days,
but their sum is well conserved. The bottom right panel
shows the relative change in total available energy (contin-
uous curve) and also the relative change in total potential en-
strophy (dashed curve). As discussed in Sect.2, the numeri-
cal methods are designednot to conserve these quantities ex-
actly but to allow a transfer to unresolved scales when there
are significant nonlinear cascades. In fact, during the first
15 days of this test case the flow is only weakly nonlinear and
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Figure 8. Diagnostics demonstrating the effects of the mimetic
properties. Top left: relative change in total mass. Top right: maxi-
mum relative discrepancy between advected dual grid tracer and di-
agnosed dual gridφ (solid), and between advected dual grid tracer
and diagnosed PV (dashed). Bottom left: available potential energy
(dotted), kinetic energy (dashed), and total available energy (solid)
all in m6 s−2. Bottom right: relative change in total available energy
(solid) and in potential enstrophy (dashed).

any downscale cascades are rather weak. During this time the
losses of available energy and potential enstrophy are very
small, of order 1 part per thousand. Very similar results are
obtained for ENDGame (see interactive discussion).

6.7 Barotropically unstable jet

The test case described byGalewsky et al.(2004) produces
a rapidly growing barotropic instability from a strong, nar-
row mid-latitude zonal jet. The true solution at day 6 has the
instability localized over a certain range of longitudes with
part of the jet remaining almost quiescent. Schemes with sig-
nificant grid imprinting tend to excite the instability all along
the jet, possibly with an incorrect zonal wave number. The
test case is dominated by strongly nonlinear PV advection
with rapid generation of small scales by straining and vortex
roll-up. A good scheme should produce no small-scale noise
or unphysical rippling in the PV or vorticity field. Since the
features of interest can easily be identified from maps of vor-
ticity, full fields rather than errors are presented.

Finer resolution is needed for this test case than the earlier
ones. Also, since the maximum velocity is around 80m s−1,
the time step is halved for all models and grids compared to
the values given in Table1.

Figure9 shows the vorticity field at day 6 on the hexag-
onal grid with 10 242 and 163 842 cells, the cubed-sphere
grid with 13 824 and 221 184 cells, and, for reference, from
ENDGame with 640× 320 cells. The ENDGame solution is
similar to other published high resolution solutions (e.g.Li
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Figure 9. Vorticity field at day 6 for the barotropic instability
test case. Row 1: hexagonal grid, 10 242 cells. Row 2: hexagonal
grid, 163 842 cells. Row 3: cubed-sphere grid, 13 824 cells. Row 4:
cubed-sphere grid 221 184 cells. Row 5: ENDGame 640×320 cells
The plotted domain is 0◦ to 360◦ longitude, 10◦ to 80◦ latitude.
Contour interval 2× 10−5 s−1.

and Xiao, 2010; Salehipour et al., 2013). All of the results
show a clean vorticity field, free from noise and spurious rip-
ples. However, at the coarser resolutions shown, the finite
volume model shows strong grid imprinting, with the wave
number of the instability determined by the grid structure. At
the finer resolutions shown, the finite volume model solutions
are more similar to the reference solution, but both show
significantly stronger development of the instability over the
longitude range[π/2,π ] than the reference solution, imply-
ing that truncation errors are still significant even at these fine
resolutions.

Similar grid-triggering of instability is seen in the Rossby–
Haurwitz wave test case (Williamson et al., 1992) (not
shown). The Rossby–Haurwitz wave is a quasi-steadily prop-
agating wave number 4 pattern that is actually unstable, but
the time taken for the pattern to break down depends on
how strongly numerical truncation or roundoff errors project
onto the unstable modes, which involve wave numbers 1,
3 and 5 (Thuburn and Li, 2000). The five-fold symmetry of
the hexagonal grid clearly has potential to trigger the insta-
bility, and in practice we found that on the hexagonal grid
with 10 242 cells the Rossby–Haurwitz wave pattern breaks

down after about 20 days. Thus, the mimetic properties of the
finite volume scheme do not help to reduce this kind of grid-
triggering of instability in delicately balanced initial states.

6.8 Balance

One of the main motivations for the development of the
mimetic numerical method is the requirement for the nu-
merical model to respect balance. In the regimes of small
Rossby or Froude number, the generation of imbalance in the
form of fast waves from an initially balanced flow should be
very weak (e.g.Ford et al., 2000; Cullen, 2000). A numerical
model should not generate excessive imbalance, and, ideally,
should not require artificial damping mechanisms to control
imbalance. A thorough investigation of this issue requires
an examination of how the model performs in the asymp-
totic limits of small Rossby or Froude number (Cullen, 2007,
2008); this is the subject of ongoing work. For present pur-
poses we examine some simple diagnostics of imbalance in
the barotropic instability test case, applied to the mimetic fi-
nite volume model and, for comparison, to ENDGame.

For each model a series of three integrations was run.

a. The model was integrated with a centred semi-implicit
time integration scheme (α = 0.5). The initial perturba-
tion applied to the jet in the barotropic instability test
case is unbalanced. Withα = 0.5 it is found that the fast
waves resulting from the initial perturbation dominate
the divergence field throughout the integration to day 6.

b. The model was run again using a fully off-centred
scheme (α = 1.0). This is found to suppress the fast
waves within about one day. The divergence pattern is
now very different: it is collocated with the vortex rolls
of the evolving barotropic instability and grows along
with them, confirming that it is slaved to the balanced
dynamics rather associated with fast waves. However,
the use ofα = 1.0 could be suppressing any numerically
generated imbalance.

c. Therefore, for the third integration we setα = 1.0 for
the first 500 steps (a little over 31 h) andα = 0.5 there-
after. This removes the imbalance associated with the
initial perturbation, but would avoid artificially sup-
pressing any imbalance (physical or numerical) gener-
ated subsequently as the instability grows.

Figure 10 shows the divergence field at day 6 from the
mimetic finite volume model on the hexagonal grid for the
three integrations (a), (b), and (c). It confirms the behaviour
described above, and shows that the results of runs (b) and (c)
are almost identical. Very similar behaviour is found on the
cubed-sphere grid and for ENDGame. Figure11 shows time
series of the root-mean-square divergence from the three
models. It shows that the evolution of the divergence is very
similar in runs (b) and (c) for all three models. These results
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Figure 10. Divergence field at day 6 from three integrations of the
mimetic finite volume model on a hexagonal grid of 163 842 faces.
Top:α = 0.5. Middle:α = 1.0. Bottom:α = 1.0 for 500 steps then
α = 0.5. Contour interval 4×10−7 s−1, zero and negative contours
are bold.

confirm that any generation of imbalance by the mimetic fi-
nite volume scheme is extremely weak and is comparable to
that in ENDGame.

6.9 Computational modes

Dispersion analysis for the regular hexagonal C-grid on
a plane (Thuburn, 2008) shows that it supports an extra fam-
ily of Rossby modes. These are characterised by small-scale
vorticity and PV structures. Although they correctly have
zero frequency on anf plane (in zero background flow),
on a β plane their frequencies are anomalously small and
strongly sensitive to the detailed formulation of the Coriolis
operator. These unphysical aspects of their behaviour lead to
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Figure 11. Time series of root-mean-square divergence. Top:
hexagonal grid. Middle: cubed-sphere grid. Bottom: ENDGame.
Dashed curves are forα = 1.0. Solid curves are forα = 1.0 for
500 steps thenα = 0.5. The solid and dashed curves almost overlay
each other.

concerns that these extra modes might adversely affect solu-
tions, for example through the appearance of noise or through
an incorrect response to forcing.

The following argument suggests that the extra modes
should be harmless provided PV advection is well handled
(see alsoWeller, 2012). Small scale Rossby waves have
very small intrinsic frequency. In the presence of a back-
ground flow their absolute frequency is dominated by ad-
vection and Doppler shifting. Although these extra Rossby
modes have excessively small intrinsic frequency, their abso-
lute frequency will be quite accurate provided PV advection
is adequately captured. Moreover, in order to avoid disper-
sion errors, an advection scheme must be inherently damping
on small scales, so advection by a background wind should
tend to damp the extra Rossby modes. The mimetic finite vol-
ume model discussed here is designed to have good PV ad-
vection properties, so we expect the above argument to hold.

To test this argument, test case 5 of
Williamson et al.(1992) was run to day 15 on a hexag-
onal grid of 10 242 cells, then two patches of grid scale noise
in the vorticity field were superposed on the solution. The
noise patches were generated by starting with a zero stream
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function, introducing a “seed” delta function in the desired
regions, applying a number of iterations of antidiffusion but
with extrema limited to some maximum value to grow the
patch, constructing a rotational velocity perturbation from
the stream function, normalizing the maximum velocity
perturbation to 1 m s−1, and adding to the model’s velocity
field. The pattern generated in the vorticity field this way
has structure very similar to that of the smallest scale extra
Rossby modes. One patch of noise was introduced on the
equator near(π,0) and the other near the north pole.

The evolution of the vorticity field over the next few time
steps is shown in Fig.12. The equatorial patch is located in
a region of relatively strong wind, and it is found to be rapidly
damped, almost completely disappearing within 2 h. The po-
lar patch is located in a region of relatively weak wind. It is
damped more slowly, and preferentially on the side that ex-
periences slightly stronger wind. Nevertheless, after 24 h the
noise has been almost completely removed.

7 Conclusions

A new finite volume shallow water model on the sphere has
been described. The formulation allows the use of arbitrary
polygonal grids, motivated by the need for quasi-uniform
spherical grids to enable parallel scalability. Results of sev-
eral test cases have been presented for two particular grids:
a hexagonal–icosahedral Voronoi grid and a modified equian-
gular cubed-sphere grid.

The model uses a new time integration scheme (Sect.3).
It combines a semi-implicit treatment of fast waves with
a forward-in-time advection scheme for mass and for the po-
tential vorticity fluxes that appear in the velocity equation.
Provided the advective swept areas are modified to allow for
the effect of divergence (Eq.27), this scheme is found to be
stable and robust for advective Courant numbers up to about
one and for wave Courant numbers greater than one, with-
out the need for off-centring of the semi-implicit part of the
scheme or other additional damping mechanisms.

The scheme is built around a framework that allows it to
mimic key mathematical properties of the continuous equa-
tions that underpin important physical properties such as
mass conservation, linear energy conservation, an accurate
representation of balance and potential vorticity dynamics,
and consistent advection of mass, PV and tracers. We have
presented diagnostics (e.g. Sects.6.6and6.8) confirming that
these properties are obtained in practice.

The gradient, divergence and curl operatorsD1, D2, D1,
andD2 are exact within this finite volume framework, while
the other operatorsI , J, H, andR are at least first-order ac-
curate. However, a limitation of the scheme presented here
is that the Coriolis operatorW, which is crucial to some of
the mimetic properties, is not, in fact numerically consistent
(Sect.6.3). Nevertheless, the model solution does appear to
be converging at the resolutions tested in the idealized solid
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Figure 12.Evolution of grid scale vorticity noise added at day 15 of
Williamson et al.(1992) test case 5. Contour interval 5× 10−6 s−1

Left: equatorial noise patch; right: polar noise patch. First row:
step 720 (day 15); second row: step 724 (day 15 + 2 h); third row:
step 768 (day 16).

body rotation test case (Sect.6.5), though the error patterns
clearly reflect the grid structure. For the more complex flow
of the isolated mountain test case the errors are comparable
to those of a state-of-the-art semi-implicit semi-Lagrangian
model on a longitude–latitude grid. For the barotropic insta-
bility test case (Sect.6.7) truncation errors spuriously trigger
the development of the instability even at quite fine resolu-
tion, though the solution does appear to be approaching the
reference solution as resolution is increased. Thus, although
the use of an inconsistent operator is unappealing, it is not
clear that it will prevent convergence in flows of realistic
complexity.

The errors for both the Laplacian operator and the Corio-
lis operator are significantly larger on the cubed-sphere than
on the hexagonal–icosahedral grid. The solution errors in the
solid body rotation test are also significantly larger on the
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cubed-sphere than on the hexagonal–icosahedral grid. How-
ever, for the isolated mountain test case the errors on the two
grid types are comparable. In this case the errors appear to
be dominated by time truncation errors associated with the
implicit treatment of gravity waves, rather than the spatial
discretization. Finally, both grids appear to show a similar
degree of spurious development in the barotropic instability
test case, though some features are slightly better captured
on the hexagonal grid.

In the test cases carried out, there is no evidence for any
damaging effects of the extra Rossby modes supported on
the hexagonal C-grid. When grid scale vorticity features,
which should project strongly onto the extra Rossby modes,
are forced into the solution, the model remains robust and
the numerics are able to remove the noise on the advective
timescale.

Because of the requirement of symmetry for theI , H andJ
operators, the construction of higher-order versions appears
to be difficult. The construction of a consistentW operator
appears to be even more difficult. The construction ofW
from R with the desired mimetic properties is only known for
the case in which the stencil forR is the set of primal cells
overlapped by each dual cell; and in this case the resulting
W is uniquely determined (Thuburn et al., 2009). Motivated
by these apparent limitations on the mimetic finite volume
scheme, we are currently investigating the use of a finite el-
ement approach (Cotter and Shipton, 2012), which can give
the same mimetic properties as the scheme presented here
but with more accurate basic operators. This will help to de-
termine whether the accuracy of the basic operators is indeed
a limiting factor for solution accuracy.
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Appendix A: H operator for the cubed sphere grid

In this appendix we give details of the construction of theH
operator used on the cubed sphere. To begin with, consider
the case of planar geometry. The operator is required to be
symmetric (Hee′ = He′ e) and to be consistent, i.e. to give the
exact result for a constant velocity field.

The construction proceeds by defining an expression for
the total kinetic energy

K =
1

2

∑
e

VeUe =
1

2

∑
e,e′

VeHee′Ve′ =

∑
c

1

2
wcuc · uc. (A1)

Here the last expression involves a sum over every corner of
every dual cell, with a suitably defined weightwc and veloc-
ity vectoruc. We defineuc to be the constant velocity vec-
tor that is consistent with the circulations along the two dual
edges that form the corner. Letde = deme, and let cornerc
be bounded by edgese ande′ (Fig. A1). Then we require

Ve = uc · de; Ve′ = uc · de′ . (A2)

It is easily verified (for example by writinguc = k × (Ade+

Bde′) and solving forA andB) that

uc =
1

ac
k × (Ve′de −Vede′) (A3)

where

ac = k · de × de′ . (A4)

The weightwc should be proportional to the contribution
of cornerc to the area of its dual cell. For a quadrilateral dual
cell

4A(v)
v =

∑
c

|ac| (A5)

while for a triangular dual cell

6A(v)
v =

∑
c

|ac|, (A6)

where in each case the sum is over the corners of dual cellv.
Therefore we define

wc =
1

sc
|ac| (A7)

wheresc = 4 or sc = 6 according to whetherc is a corner of
a quadrilateral or a triangular dual cell, respectively.

The expression forK is manifestly quadratic and symmet-
ric in V , and therefore the impliedH must be symmetric. An
explicit expression forU in terms ofV , and hence forH, is
obtained from

Ue =
1

2

∂K

∂Ve
=

∑
v

∑
c

|ac|

sc
uc ·

∂uc

∂Ve

= −

∑
v

∑
c

|ac|

scac
uc · k × de′

=

∑
e′ 6=e∈S

1

sc

(Vede′ −Ve′de) · de′

|de × de′ |
. (A8)

Figure A1. Schematic illustrating some of the grid elements used
in the construction of theH operator on the cubed sphere.

wheree′ is the index of the edge that meets edgee at corner
c in dual cellv.

Finally, we must verify the consistency of the scheme. For
a constant velocity fieldu we haveVe = u · de ∀e and we
requireUe = u · nele. Substituting forVe in Eq. (A8), the re-
quirement becomes∑
e′ 6=e∈S

1

sc

ac

|ac|
de′ × k = lene, (A9)

or, takingk× this expression,∑
e′ 6=e∈S

1

sc

ac

|ac|
de′ = lete. (A10)

This requirement is satisfied if the grid is built such that pri-
mal vertices are located at the barycentres of the correspond-
ing dual cells, i.e. the position vector of each primal vertex
should be given by the average of the position vectors of the
surrounding dual vertices.

This construction works for quadrilateral or triangular dual
cells, for which the dual cell area and hence the weights|ac|

can be built from contributions of the form of Eq. (A4), but
not for other polygons. In spherical geometry theH operator
implied by Eq. (A8) remains symmetric, and the errors in-
troduced by the spherical geometry are second order, so the
scheme remains consistent.
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The Supplement related to this article is available online
at doi:10.5194/gmd-7-909-2014-supplement.
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