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Abstract. The method of elevation classes, in which the ice 1 Introduction
surface model is run at multiple elevations within each grid
cell, has proven to be a useful way for a low-resolution atmo-
sphere inside a general circulation model (GCM) to produceMany questions still surround the issues of how ice sheets
high-resolution downscaled surface mass balance fields fofespond to climate forcing and how those changes will af-
use in one-way studies coupling atmospheres and ice flofect sea level, regional and global climate. Recent observa-
models. Past uses of elevation classes have failed to conserf®ns have shown accelerating mass loss from the Greenland
mass and energy because the transformation used to regr@ld Antarctic ice sheetd/gughan et a).2013, adding ur-
to the atmosphere was inconsistent with the transformatior¥ency to these questions. Although general circulation mod-
used to downscale to the ice model. This would cause prob€ls (GCMs) are able to project changes in ice sheet surface
lems for two-way coupling. mass balance, projection of changes in ice sheet mass due to
A strategy that resolves this conservation issue has beel¢e dynamics with GCMs remains a challen@h(rch et al.
designed and is presented here. The approach identifies thr&®13. A number of climate modeling groups are addressing
grids between which data must be regridded and five transthese deficiencies by adding dynamic ice flow effects to ex-
formations between those grids required by a typical cou-Sting GCMs: GISS ModelEgchmidt et al. 200§, CESM
pled atmosphere—ice flow model. This paper develops a thelHurrell et al, 2013, HadGEM2 Collins et al, 201J), etc.
oretical framework for the problem and shows how each of This is done by coupling the GCM with an existirg flow
these transformations may be achieved in a consistent, cofnodel such as Glimmer—CISMRutt et al, 2009, BISI-
servative manner. These transformations are implemented ifLES (Cornford et al. 2013, ISSM (Larour et al, 2012,
Glint2, a library used to couple atmosphere models with iceP!SM (Bueler and Brown2009, etc. A full understanding
models. Source code and documentation are available foPf the long-term evolution of an ice sheet within a coupled
download. Confounding real-world issues are discussed, inclimate system requires coupling with the ocean as well as at-
cluding the use of projections for ice modeling, how to han- mosphere. Surface runoff, ocean cavity circulation and salin-
dle dynamically changing ice geometry, and modificationsity gradient effects are all important. In this paper, we focus

required for finite element ice models. only on coupling with the atmosphere.
One can distinguish betweame-wayand two-waycou-

pling. In one-way coupling, the GCM is used to develop sur-
face mass balance (SMB) and temperature fields, which are
then used to drive the ice flow model off-line. This process
misses effects caused by feedbacks from the ice sheet to the
rest of the Earth system: for example, decreased ice sheet
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884 R. Fischer et al.: Conservative regridding for ice—atmosphere coupling

albedo Qu and Hall 2006 or lowered atmosphere orogra- cell, not just the elevation seen by the atmosphere. A high-
phy Ridley et al, 2009. Past studies with one-way coupling resolution surface mass balance is produced on the ice grid
have yielded useful insight into the future of present-day iceby first computing SMB on the elevation grid, and then us-
sheets; examples includtuybrechts(1994), Greve (2000, ing a vertical interpolation scheme to produce SMB on the
Stone et al(2010, Bindschadler et al(2013, Lipscomb ice grid. This method of interpolation produces surprisingly
et al.(2013, Nowicki et al. (20133, Nowicki et al. (20138 good results: although it cannot capture certain localized ef-
andGoelzer et al(2013. However, ice sheet feedbacks are fects (e.g., wind direction), it has been shown to allow GCMs
expected to be increasingly important for simulations of theto produce surface mass balance fields approaching the qual-
long-term evolution of ice sheets and the climate associatedty of those produced by regional climate model&z¢aino
with them. This kind of feedback probably plays a significant et al, 2013.
role in many events in the paleorecord (Dansgaard—Oeschger Inside the GCM, SMBs computed on the elevation grid
events, Heinrich events, the Younger Dryas). must be regridded to the atmosphere grid as well as the ice
Two-way coupling strategies address these issues by algrid. In order to maintain conservation in a tight two-way
lowing the atmosphere to be influenced by changes in theeoupled system, it is essential that the set of regridding op-
ice sheet elevation, extent and albedo over time. We distineration chosen is self-consistent: that is, if a flux field on the
guish betweeltooseandtight two-way coupling. Loose two-  elevation grid is regridded simultaneously to the atmosphere
way coupling involves running a series of GCM simulations and ice grid, then the total amount of flux represented by
with different ice sheet configurations, each based on the rethe resulting two fields should be the same. For conservation
sult of the previous. Each GCM run is a separate simulationpurposes, the specifics of these two transformations are not
without continuity of mass or energy between runs. Stud-important, as long as they are consistent with each other. Past
ies with loose two-way coupling have yielded insight into efforts at one-way coupling have defined these two transfor-
future equilibrium states for ice sheets and clim&éeley mations in ways that each make intuitive sense, but are not
et al, 2005 2010. However, ice sheets change configura- consistent with each other. This is not a problem for one-way
tion in these runs without accompanying mass and energgoupling, but it would cause conservation problems for two-
fluxes required to make those changes happen. This is equiway coupling.
alent to applying an unknown impulse forcing to the ice sheet This paper develops the concept of the elevation grid on
each time it is changed. Although the coupled ice sheet mightvhich the ice surface model runs, and then derives a set of
eventually reach the correct equilibrium state, the transientgonservative regridding transformations between the atmo-
involved in achieving that equilibrium will be suspect. Un- sphere, elevation and ice grids. The coupled processes un-
fortunately, results relevant to human society all require ander consideration along with the transformations required for
understanding of the transients. For successful simulation ofight two-way coupling are introduced in Se2t.Section3
transients, we turn to tight two-way coupling. It involves run- focuses on the elevation grid, while the grid fundamentals
ning the ice flow model, step by step, along with the rest ofnecessary for the two-way coupling are presented in 8ect.
the GCM — while conserving mass and energy along the waySection5 deals with the use of projection and associated is-
Attention to conservation is required, since the GCM is sim-sues encountered when bridging between the spherical ge-
ulating a more nearly closed system that could run for a longometry of GCMs and Cartesian ice sheet models. We show
time. how to choose and implement the transformations in Sécts.
When one couples dynamic ice flow models with GCM through9 and work through realistic examples of these trans-
atmospheres, two models operating on different grids andormations in SectslOthroughl12. We touch on a number of
timescales must communicate: ice flow models operate aéxtra “wrinkles” in the real-world problem: procedures to use
low frequency on a high-resolution grid with local projec- when the elevation grid is based on a horizontal grid other
tion, while GCM atmospheres operate at high frequency orthan the atmosphere grid in Set8, and regridding proce-
low-resolution global grids. A number of issues arise duedures required when ice elevations, ice extent or elevation
to this mismatch, including how one creates high-resolutiongrid change in the simulation in Sed#. Finally, we present
surface mass balance fields from low-resolution GCM in-in Sect.15a library, Glint2, that can be used to tightly couple
put. Elevation classes address the latter issue. They were fir&CMs and ice sheet models.
introduced for precipitation downscaling in a GCM bg-
ung and Ghaif1998 and later applied to one-way coupling
from GCM atmosphere to ice flow models bypscomb etal. 2  Coupled processes
(2013. The key insight is that mass and energy fluxes be-
tween the atmosphere and an ice sheet vary approximatelyhe coupled atmosphere—ice system involves three models
by elevation within a local region. interacting with each other: an atmosphere model, an ice
When using elevation classes, a third grid is introduced,flow model and an ice surface model situated between them
the elevation grid This allows the GCM to compute surface (Fig. 1). The atmosphere model is coupled with the ice sur-
fields at a variety of elevations within each atmosphere gridface model, which tracks the top few meters of ice. Processes
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to capture these effects accurately; typically, the atmosphere
time step is sufficient.

While ice sheets move slowly and can be modeled with
long time steps, the modeling of tiserfaceof the ice sheet
requires short time steps. This is accomplished by introduc-
ing the ice surface model as a third model, sitting in between
the ice flow model and atmosphere model. The top of the ice
surface model couples with the atmosphere model every at-
mosphere time step, whereas the bottom couples with the ice
sheet model every coupling time step. The ice surface model
needs to be thick enough so there is little variation in tem-
perature at the bottom: 15m is sufficient. This ensures that
the heat flux with the ice flow model will be small and low
frequency.

The ice surface model can serve an additional purpose of
modeling the great variety of surface processes that may be
relevant to the long-term evolution of ice sheets: snow—firn
compaction, surface runoff/drainage networks, water per-
colation, refreeze, albedo effects and wind-blown snow, to

Fig. 1. Configuration of the three models, and the separate spa
tial domains they occupy. The atmosphere modgl i6 coupled

to the ice surface modek(), which tracks the top few meters of
ice. The ice surface modeE] is then coupled to the dynamic ice name a few. . .

flow model (). The dynamic ice flow model, operating at long time The use of E_m ice Surface model SOIVe_S some Impor_tant
steps, is insulated from high-frequency surface processes in the iceroblems, but it also introduces nonphysical elements into
atmosphere interaction. the model. Ice contained in the ice surface model does not

advect along with the ice flow model, nor does it contribute
to the stress field of the ice below it in the ice flow model.

In both cases, we expect the relative error to be small: the

modeled 'here '”C'”O!e a full sur'face mass—energy balanc%p 15 m of snowl/firn contains less than 1% of the mass of
computation, snow—firn compaction, albedo effects, meltwa-

X X "“a 1000 m thick ice sheet. There may be ways to fix these
ter percolatlon,_ runoff, refreezmg, etc. The bottom of the ice problems — however, there is no need to make the ice surface
surface model is coupled to the ice flow model.

model thicker than it needs to be. Numerous studies have

shown that ice sheets below about 15m are fully insulated

2.1 Ice surface model from surface weather and seasonal cyceyprodnov et a.
2008.

In order to couple an ice sheet to a GCM atmosphere, SMB

on the ice sheet must be calculated from GCM outputs2.2 Three models, three grids

Some one-way coupled studies have used temperature index . )

schemesHuybrechts 1994 Greve 200Q Stone et a].201Q Each qf the three models in the coupled system runs on its

Bindschadler et 812013 Nowicki et al, 20133 b; Goelzer ~ W grid. The atmosphere is run on the atmosphere gjd (

et al, 2013: the mean surface temperature over each cou2Nd the ice flow model is run on the ice gri(The ice sur-

pling time step (typically one month or year) is used to com- face model is run on _the elevation grif) whi_ch is based
on the atmosphere grid (see S&)t.All three grids are two-

pute SMB, and both are passed to the ice flow model. It is” 3 -
hard to see how energy can be conserved with such a schem@imensional, in the sense that they are used to construct two-

The problem is that the atmosphere must run for many timélimensional functiong (x, y) over the domain. Regridding
steps before atmosphere—ice sheet energy fluxes are corfPerations are needed to pass mass and energy fluxes be-
puted on a coupling time step. The computed flux on the icWeen the models. . L

sheet will not be the same as that sum of fluxes seen by the !t IS important to keep in mind the relative size of the

. . lO
atmosphere over the previous coupling time step — and it idhree grids. We set up a test using the GISS23 " atmo-
“too late” to go back and change the atmosphere to match. sphere grid$chmidt et al.2006, overlapping with the 5 km

For this reason, a full energy balance scheme, compute@_rid frqm SeaRISE (Sea-level Response to Ice _Sheet_Evqu-
each atmosphere time step (typically one hour) and intefion; Bindschadler et 312013. We used 40 elevgtlon points,
grated over the coupling time step, is considered essentiaiPaced every 100m from Om to 4000 m. In this caséad
in a GCM setting. Energy flux between atmosphere and icet46 9rid cells/ had 66 906 and had 1829. These numbers
sheet follows diurnal and seasonal cycles, making positive®nly account for grid cells involved with the Greenland ice
and negative contributions to the integrated flux. It is impor- Sheet. In general, the ice grid will be finest, the atmosphere

tant that energy flux is computed at a small enough time stef@"d coarsest and the elevation grid in the middle.
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Atmosphere A Atmosphere grid, projected to Cartesian plane
Model RA A’ Origir'1al atmosphere grid on the sphere
I Ice grid
G Interpolation grid (e.g., ice or exchange grid)
Atmosphere Rearid: E  Elevation grid
Time step 4 g E. M  Interpolation matrix: £ — G
(~1 hour) _ R Area-weighted remapping matrix: G — A
A “Repeat” transformation matrix: A — F
—— RE X Area-weighted remapping matrix: G — [
ce surtace X' Area-weighted remapping matrix: I — G
Model P Diagonal scaling matrix: A’ — A
FE LO Function defined to be constant within grid cells
L1  Function defined by piecewise linear
interpolation between grid points
Sum Fluxes ™"
FE4— FE F Fig. 3. Definition of symbols used throughout the paper. See Ap-
pendixA for notational conventions.
~~ Coupling Regrid: _ - o
Regrid: Time step Bl downwelling shortwave radiation, precipitation, etc. These
I-AE (~1 month) fields must be regridded from to E. We denote the set of
fields to be regridded with a capital lett&®4; the result of
D o the regridding' isRE (see AppendiXA and Fig.3 for nota-
Ico tional conventions).
The ice surface model is run at the same frequency as the
Model .
atmosphere. Among its outputs are mass and energy fluxes

with the atmosphere: evaporation, sublimation, upwelling
sphere, ice surface and dynamic ice flow models (boxes). Since thiPng-wave raEdlatlon, latent heat releilse, etc. These are repre-
three models run on different grids, regridding operations (ovals)S€nted by-F~ and are regridded teF before being passed

are required at each step. Figile shows the inputs required to back to the atmosphere on the next time step.
compute these regridding operations. The ice surface model also produces fluxes in the ice flow

model; these are described immediately below.

Fig. 2. Data flow (blue arrows) for the coupling between atmo-

Time frequency mismatches are another issue. The atma2.5 Coupling time step
sphere runs at high frequency, each time step being typically
1 h. On the other hand, the atmosphere and ice flow model®n each atmosphere time step, relevant flux outputs from the
are coupled at much lower frequency, typically one monthice surface model are accumulated=asfor future coupling
or any other time period. We call these two time steps thejih the ice flow model. They are namé&d because these
atmosphere time stendice coupling time step fluxes are in general equal and opposite to fluxes sent to the
atmosphere. Every coupling time step — about once a month

— the accumulate&” is regridded to the ice grid®() and

Figure 2 shows the data flow of the fully coupled system. passed to the ice flow model.

Steps of the data flow are organized based on their frequency: The ice flow model produces changes in ice surface topog-
the top circle of steps runs at the same frequency as the GCN@Phy and extent, as well as a small energy flux between the
atmosphere, while the bottom circle runs atitecoupling  ice flow and ice surface models (together, we call tH25e
frequency — typically one month or more. We describe theChanges in ice topography and extent are regridded to the
steps involved in coupling the GISS ModelGohmidtetal.  atmosphere gridl{*) and used to adjust the atmosphere’s
2006 with PISM (Bueler and Brown2009; however, these ~orography. The energy flux is regridded to the elevation grid
steps are general for any GCM or ice flow model. We now(D*) and applied to the ice surface model.

trace through the data flow on a typical coupled run.

2.3 Fully coupled system

2.6 Regridding requirements

2.4 Atmosphere time step
We see that the fully coupled system requires the use of five

When the atmosphere runs, it produces a set of fields omegridding operations at various points in its run (F2y.
the atmosphere grid that affect the processes in the ice suifhese regridding operations must be conservative, in the
face model: for example, downwelling long-wave radiation, sense thahoneof them can change the integral of the field
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on the domain as a whole. In fact, we would like to impose a Surface Mass Balance
stronger conservation condition so that values are conserved > ‘ o o o = o
within each atmosphere grid cell. I !

We develop these five regridding operations in the sec- € <)
tions below. We begin by discussing the method of elevation 5 -5 %:
classes in a general manner (S&tand then move on to 2 Gt
developing basics of conservative regridding (SdxtBe- < -10 El:
cause conservation is defined in terms of integration over ar- = _15 E:
eas, part of our discussion involves a definition of how to o N
integrate functions on the elevation giid Finally, we show 20 ‘ L

: . . 0 1000 2000 3000

how the required set of operations can be constructed in a Elevation (m)

fully self-consistent manner.

Throughout, we assume that the atmosphere gridas ~ Fig- 4. Interpolated surface mass balance (SMB) function within
LO parameterization: functions ohare represented by their one atmosphere grid cell. These values come from one month (July)
mean value within each grid cell. This becomes our basis f0|pf a run of GISS ModelE with elevation points. The vertical dashed

) line indicates the mean elevation of the grid cell, “seen” by the at-

conservation: all regridding operations are conservative over
9 g op mosphere. Dots and squares represent the results of extrapolated

every atrnosphere g”d_ce“' We do not requw_e any specific Pazyg computations at other elevations: dots represent elevations
rameterization for the ice grid, but we consider cases for LOsonq within the grid cell, whereas squares represent elevations out-

(piecewise Constaqt) and L1 (piecewise |ine§“’) _pgrameterizaside the cell's range. SMB values at intermediate elevations are in-
tions, the latter which are commonly used in finite elementterpolated.
ice models.

values as samples of a 1-D function relating elevation to flux
3 Elevation points (SMB), within the localized regiorof A;. By interpolating

between those points using standard methods, one can con-
The method of elevation classes, when applied to thestruct a continuous function relating flux to elevation within
atmosphere—ice coupling problem, involves running the ice4; Aslong as enough points are used and the function being
surface model at one or more elevations in each atmosphefgterpolated is smooth enough, this procedure will yield an
grid cell (Lipscomb et al.2013. Temperature, pressure and grpjtrarily accurate representation of the “true” function.
precipitation are extrapolated to a set of elevations within the | fact, the functions we typically wish to interpolate — sur-
g“d Ce”. They are then Used in an ice Surface mOde| to Com'face mass and energy ba'ance averaged over about a month -
pute a full surface mass and energy balance at each elevatiogre quite smooth as functions of elevation (Big.In the face
The result is a set of “what-if” scenarios, giving an estimate of spatially invariant precipitation, one would expect SMB
of what the fluxesvould have beerhad the ice surface of the  to pe constant to first order above the equilibrium line alti-
grid cell been at the given elevation — rather than the elevat,de (ELA), and to decrease linearly with elevation below
tion seen by the atmosphere model. the ELA. Near the ELA, one would expect a smooth tran-

The modeler must choose which elevations to use for eaclition because the ELA goes up and down over a month of
atmosphere grid cell. The simplest approach is to use a fixegjjurnal cycles. This is in agreement with experimental work,
set of elevations across all grid cells — for example, everywhich has shown SMB below the ELA to vary linearly with
100 m from O m to 4000 m. temperatureBraithwaite 1981 Box et al, 2013.

However elevations are Chosen, the result is a new “grid" How many elevation points are required to proper'y re-
— theelevation grid— on which the ice surface model is run splve the elevation—flux relationship? This depends on the in-
and surface fluxes are generated. The elevation grid is deriveghrpolation scheme: higher order schemes will require fewer
from the atmosphere grid, in the sense that each elevatioRgints than piecewise linear interpolation. But the general
grid “cell” (or elevation pointis associated with one parent shape of the function — two straight lines connected by a
atmosphere grid cell. If elevation poifY; is associated with  cyrve near the ELA — implies that not many points are
atmosphere grid celd;, we write E; € A;. needed, except for near the ELA.

Once the GCM has computed a conserved quantity on the |f one knows where the ELA is on every atmosphere grid
elevation grid, those values can be used to develop a relatioge||, then this is a useful guide in selecting elevation points.
between elevation and SMB within each atmosphere gridgt if one is studying ice sheets in a changing climate, then
cell. Suppose we have computed a flux figll: SMB, for  the ELA will be expected to move over time. It is possible
example. For an atmosphere grid céll, consider the com- {0 adaptively move elevation points as the ELA moves. But
ponents of the flux field’ that are related to the enclosing it is simpler just to use many points everywhere. In our tests,
atmosphere grid celd;. Or more formally, consideff for we have used 40 points at 100 m spacing, which is proba-
all j such thatE; € A;. We can think of these component bly more than sufficient for coupled ice sheet simulations.
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We have not done a careful study of the optimal number ofas needed. How one integrates the basis functions depends

elevation points. on the nature of those basis functions. We give specifics for
The method of elevation classes — or elevation points -L0 and L1 grids in AppendiceB andC, respectively.

provides a way to construct an interpolated relation between

elevation and surface mass—energy flux within each atmo4.2 Comparison across grids

sphere grid cell. Additional choices need to be made in or- o o _

der to produce fully downscaled flux fields on the ice grid ' regridding applications, we need to compare fields across

(Sect.6). We are now almost ready to define the transforma-différent grids. They cannot be tested for simple point-by-

tions posited in Sec8. But first, we pause for some ground- point equality, dye to d.ifference's in grid structure. Insf[ead,
work on grid fundamentals in Sedtand projection issuesin W€ compare by integrating two fields over the same region or
Sect.5. set of regions.

If we have two fieldsf¢ and £ on two different grids,
we say thatf ¢ is equivalent tof 7/ on regionB, or f¢ =58

4  Grid fundamentals fHif
Numerical models represent continuous fields with IinearfG,/g(x,y)dAz fH ~/h(x,y)dA. (3)
combinations of a finite se¥ of basis functions — which we J

call a parameterization(Appendix A describes our mathe-

matical notation). For example, suppose thatses the basis Suppose we wish to compag” and £ over an entire
functions g(x, y) =[g1(x,y), ..., gn(x, y)], Whereg(x,y)  domain? If we have a set of regiods= {A1, ..., A,} tiling

is the vector of all the basis functions. Suppose we have afhat domain, then we can say the two fields ageivalent
n-dimensional vectoy© with componentsf,”. That vector  on 4 if they are equivalent on all oy, ..., A,. Note thatd
represents the functiofi (x, y) formed by a weighted sum could be an LO grid, or simply a set of regions on the domain.

of the basis functions: If we have a regridding transformatigh() such thatf =
F(f9), then we say thafF () is conservative o if f¢ =4
Oy = £9 - gx.y). W L yinaro /

A wide variety of basis function sets are used for different
problems. Most commonly in climate modeling,G repre-
sents the mean value ¢t (x, y) within some well-defined
bounded region, which we callgxid cell. From a conserva-
tion point of view, a functionf ¢ (x, y) with LO parameteri-
zation may be taken to be constant within each grid cell, with
discrete “jumps” from one grid cell to the next. In this case,
the basis functiorg; (x, y) for grid celli is equal to 1 inside
the cell and 0O outside.

LO parameterizations are widely used in climate and fi-
nite difference ice flow models. Finite element ice flow mod-
els might use L1 or even higher order parameterizations

4.3 Area-weighted remapping

Suppose we have two grids and H, with H being LO pa-
rameterized — for exampl&; might be an ice grid andd

an atmosphere grid. Suppose we have a fffd which we
wish to regrid in a conservative manner to result in the field
fH. One common way to do this is to compute each com-
ponent £ based on the value of“(x, y) integrated over
the area covered by thiéh grid cell in the gridH. Or, more
formally,

(Zienkiewicz et al. 2013, and they use the term “mesh”to  ,# _ i 7. fg(x yda | . (4)
describe the geometry of their basis functions. In this paper; ' |H;| ’

we use the term “grid” to refer to both the vector space in Hi

which ¢ lives and its associated parameterization. By construction, this transformation is conservativefn

Note thatf¢ and £ will generally not be equivalent over
other regions other than grid cells i — for example, over

Because we are working with conserved quantities, it is esgr'z cells 'n.GhE'f dG happens o beILO ;?ararrit%nfed). defi
sential that we can integrate functions over any well-defined .’ rea-weighted remapping 1s closely refated to our detl-
region B. Because a parameterization defing&(x, y) on nition of equivalence above. If we have two fields on two

every point, this integral is well-defined. Substituting from g?ﬁerﬁnihg;_id% ethlgvale;ce on can ?he testeﬁ_ by regtr id-
Eq. (1) and using linearity, we get ing both fields toH and comparing the resulting vectors.

The transformation fronG to H is linear and thus repre-
G G sentable by a matrix. It is variously calletea-weighted
,y)dA = Y. ,¥)dA. 2 . . o
/f ) ! /g(x y) @ remappingor conservative regriddinRamshaw1985. The
B matrix is computed by integrating the source basis functions
If we wish to integrate oveB repeatedly, we can pre- gi(x,y),...,gn(x,y) over every grid cell in the destination
computefB g(x,y)dA, and then take dot products wigh grid.

4.1 Integration on grids

B
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Atmosphere lce Exchange (Lauritzen and Nair2008. Even if an equal area projection
Grid fi Grid is used, in practice grid cells still experience small changes
J

in area. This is because projected grid cells have complex
‘ shapes, but the algorithms in Append@bare only able to ap-
proximate these shapes with polygons. Changes in area due
to polygonal approximation of curves, or numerical artifacts
1 i in the methods used, are callgdometric error(Lauritzen
Al I and Nait 2008.

3 i Whether a change in grid cell area arises from projection
or geometric error, data must be rescaled to maintain conser-

Fig. 5. An exchange grid, obtained by overlapping a sample atmo-yation when transforming a field4’ to f4:
sphere grid and ice grid (not to scale). Each resulting grid cell, ir-

regularly shaped, overlaps with exactly one atmosphere grid ceIIf_A _ ﬂ f'A’ (5)
and exactly one ice grid cell. ! [A;]""

Note that this transformation is diagonal and invertible.
Because this is simply a rescaling, the regridding schemes
presented in this paper are not operationally affected by pro-
%ection issues.

Although this rescaling scheme may be used to address
any change in grid cell area, it is preferable to eliminate or
minimize these changes to begin with. To this end, we con-
sider projection and geometric error separately.

/

/U]
/1]
I

4.4 Interpolation grid

We are now almost ready to discuss our implementations o
the transformationg — I andE — A (see AppendiA and
Fig. 3 for mathematical notation). But first, we must intro-
duce theinterpolation grid G, which is used to rigorously
define basis functions on the elevation gkidThe user has a
choice of howG is to be chosen. 5.1 Projection error
In general,G is chosen simply as the ice grid If I is
LO-parameterized, we might instead cho@sé¢o be theex-  The stereographic projection used in SeaRIBiE¢schadler
change gridbetweenA and 7 (Fig. 5): the LO grid whose et al, 2013 can change the area of grid cells by up to 10 %.
grid cell outlines are formed by the intersection of grid cells If a projected grid cell is 10 % smaller then the original, then
in A and] (Balaji et al, 2006. The exchange grid is a use- that means that 1 m of accumulation in the GCM will turn
ful choice forG because every exchange grid cell overlaps atinto 1.1 m in the ice flow model. This could cause significant
most one atmosphere grid cell. This choice has its pros andiscrepancies in dynamic ice flow. Because the projection in
cons, which we explore in Sed. Either way, the interpola-  SeaRISE is constructed to minimize errors in a band along
tion grid G is similar to the ice grid and can be thought of the 72 N parallel, we would not expect the magnitude of
as an ice grid proxy in most cases. projection error to change significantly if an oblique stereo-
graphic projection were used instead.

o One solution to the problem of projection error would be

5 Projection issues to use an equal area projection — the Lambert equal area
I . projection, for example. However, equal area projections do

Whether the source gr|d_|s LO or L1, are_a-welghfced rémap, ot preserve angles, which distorts the ice dynamics at a lo-
ping algorithms qeed to f|nq the |nte.rs.ect|on of g”.d ce!l OUL- a1 scale. We conclude that nonphysical distortions happen
lines from two grids. Technically, this is only possible if the whether an area-preserving or angle-preserving projection is

two grids e.X'St on the same surface. In our case, atm.osphergsed_ It is not yet clear which choice gives better results in
models exist on the surface of a sphere, whereas ice rothe end

;nodells Wgrl.( on z?]Cz_irtelsmn [:jl_ane. Ur_1|ess a(;] 'Cﬁ flow T}‘Ode One innovative approach to this problem is to use an angle-
or(rjng ated In spherica ;:]oor mztes ('js used, t,i exc ang reserving projection, but to allow ice flow model grid cells
grid between an atmosphere grid and an ice grid cannot bg, vary in size, based on the local distortion of space intro-

dir_?ﬁ.tly corglp uteq. ved usi octi@nd duced by the projection. Parametensahd dv are kept for
198 'Svsrol erf‘b's ?‘0 Ve _u3||ng a mar[]) prOJe_(;tl df{her | each grid cell. These grid parameters are included in the ice
7). We letA” be the original atmosphere grid and then let flow model equations, thereby accounting for shape and area

A. be the prOjgcted atmosphere g.”d N prolecte_d t9 the Carte('Jlistortion caused by the projection in a physically meaning-
sian plane using the chosen projection. Regridding compug, | way (Pollard and DeCont®012.
tations described in this paper are made to/frénthe pro-
jected grid. 5.2 Geometric error

In general, the area of a grid cell can change when it
is projected. Changes in area due to the use of a projecGeometric errors are typically three orders of magnitude
tion that does not preserve areas are cablegection error  smaller than projection errors. In theory, they may be
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6 Transformation: elevation to ice/interpolation grid

We can now derive the first of the five transformations
posited in Fig.2. We begin with the transformatio — G
from the elevation grid to interpolation grid, because this is
the transformation that ice modelers are most concerned with
when seeking high-quality downscaled flux fields. In various
contexts, this transformation might be referred to asger-
polation downscalingor regridding operation.

In Sect.3, we showed how valueg® at elevation points
may be used to construct a flux—elevation relationghip)
in each atmosphere grid cell;. These relationships may
then be used to construgt® on the interpolation grid. The
resulting transformation faE — G potentially involves hor-
izontal and vertical interpolation, of which the modeler has
considerable choice.

We present here three methods of interpolation from
E to G: z interpolation (Sect6.1), bilinear interpolation
(Sect.6.2) and elevation class interpolation (Segt3). All
three methods assume ti@ais LO parameterized and can be
Fig. 6. An example of geometric error, in which grid cells change sed for the basis of a conservative coupling. And since they

size due to polygonal approximation. This map, made using a Lamye || |inear, they can all be represented by a (sparse) matrix,
bert equal area projection centered on the North Pole, shows a set hich we will call M. The methods are extended to the L1
latitude—longitude grid cells — a kind commonly used in atmosphere '

models. Solid blue lines show polygonal approximations, while dot- case in Sec6.4
ted red shows the actual grid cells on the sphere. Note that all grid
cells (in this local map) shrink when approximated. 6.1 Zinterpolation

Z interpolation constructs a flux field¢ on the interpola-
arbitrarily reduced further by increasing the number of sides!'o" gnd_ through d!rect gpphcaﬂon of the flux—eleva}tlon re-
used in the approximating polygons — the parametspec- Iat|onsh|pf,-.(z) Qerlved in Sect3l for atmos_phere grld cell
ifies the number of line segments used to approximate eacﬁi' Su_pposmgﬁ is LO paramet_erlze_d, consider an mterpol_a-
side of the original grid cell in its projected state. But this tion grid gell G, wholly c_ontamed in one atmosphere grid
cell A;, with mean elevationr;. We would set the value of

method has its limit in practical terms. _ .
P that grid cell tof¢ = fi(z;). If G; intersects more than one

Consider a typical latitude—longitude grid on the sphere N h c{ I th dure is foll dqf h
with a Lambert equal area projection centered at the Nortrfimosphere grid cell, the same procedure IS foliowed for eac

Pole (Fig.6). In this case, the area of a polygonal approxi- atmosphere grid cell; it intersects — and the results are
mation will always besmallerthan the area of the actual grid summed tog_eth_er, area-vx{elghtedmyj NAil. .

cell: we end up inscribing polygons inside of circles. The We call thisz interpolation As long as standard mte_rpo-
geometric error will depend on the number of sides of the in—latIon methods are used to constrygtz), z interpolation

) . i B G )
scribed polygon, which in this case depends on the numbe?inInes a linear fupct|on fronf ™ to f and can be rep .
of grid cells in the circle, and on. resented by a matrix. An example of the result is shown in

This is the method used by Archimedes to approximateFig' 7a. In general, z interpolation produces SMB fields that
the value ofr in ~ 250 BCE Heath and Archimede4897, vary smoothly within each atmosphere grid cell but that con-

p. 91). Unfortunately, it converges only quadratically, as tain discontinuities between grid cells.

0(1/n?). Meanwhile, memory use to store all those poly-

gons goes up by (n). Memory and time requirements will 6.2  Bilinear interpolation

therefore be exponential in terms of the number of digits of

accuracy required: each additional digit of accuracy will re- There is some concern that discontinuities created by z in-
quire an increase in the number of sides by a factar . It terpolation could cause problems as an input to an ice flow
is therefore not practical to make geometric error arbitrarily model. In that case, a bilinear interpolation step may be used
small by increasing:. In our experience, a value af=2 to create a smooth field, as iipscomb et al(2013. This
yields geometric error of approximately 10 We believe ~ scheme sets the value of interpolation grid «jl equal to

n = 2 offers an acceptable trade-off between efficiency anda linear combination of; (z), fx(z), fi(z) and f,,(z), where
accuracy. atmosphere grid celld;, Az, A; and A,, are the four grid
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Fig. 7. Results of(a) z interpolation andb) bilinear interpolation,

to develop a downscaled field on the ice grid from an elevation point
field. Bilinear interpolation eliminates the discontinuities present at
atmosphere grid cell boundaries. However, total SMB is changed,
particularly for localized events such as snowstorms, for example in
the northwest. This could introduce biases in the long-term evolu-
tion of the ice sheet, even though both schemes can be made to con-
serve mass and energy. This figure is for demonstration purposes
only. See Sectd.0and11 for thorough regridding examples.

Fig. 8. Setup for bilinear interpolation. The value in an ice grid cell
. . (square) will be the sum of the values at the four nearest atmosphere
cells with centers closest to the centexdf (Fig. 8). Results g cell centers, weighted by-longitude andA-latitude along the
are shown in Fig7b. axes.

Bilinear interpolation has an advantage over z interpola-
tion in that it produces smooth fields. However, bilinear in-

terpolation presents a number of problems: — It is also not always clear how to extend bilinear in-
terpolation to the case of non-rectangular atmosphere
— The fields it produces will have a significantly different grids. This problem can also affect non-regular points
total mass than the fields produced by z interpolation. in mostly regular grids (e.g., at the poles of a latitude—
Our experience with monthly SMB fields over Green- longitude grid).

land indicates that storms tend to leave large amounts
of snow in a few localized areas. Bilinear interpolation 6.3 Elevation class interpolation
tends to reduce the total amount of snowfall in these
cases, causing potentially significant differences in theOne final choice for regridding is to define elevatidasses
GCM model run. as they were originally formulated ¢ung and Ghamnl998.
In this approach, each atmosphere grid cell is grouped into
sub-regions based on elevation bands. For example, an at-
mosphere grid cell near the coast spanning elevations of
0 m—600 m might be grouped into sub-regions of 0 m—200 m,
200 m-400m and 400 m—-600m. The grt can then be
cause biases. In particular, a scheme that makes sno Eought of as hav:cng wreguAarly shgpecil %”d cglls. formeéj bly
storms smaller than the GCM “intended” would pro- € Intersection o . atmosp ere grd cefl boundaries anc ele-
duce a negative bias in the equilibrium extent of the yatlon contours (Fige). Are_a-we|ghted remapping 1S useq to
ice sheet. mterpola_te from th_e elevathn grld to the atmosphere gru_j.
Elevation class interpolation is equivalent to a specialized
— It introduces significant numerical diffusion into the form of z interpolation, in which the 1-D functiof (z) (for
system. grid cell 4;) is interpolated as a discontinuous piecewise
constant function (Figl10), rather than a piecewise poly-
— The A — E transformation derived with bilinear inter- nomial (Fig.4). Unless one expects significant discontinu-
polation can introduce nonphysical artifacts (Ség}. ities in topography or the elevation—flux relationship, such a

Variations in total mass caused by the choice of inter-
polation procedure wilhot cause conservation prob-
lems: we make this clear in Seat. However, an in-
terpolation scheme that produces a significantly differ-
ent mass from the apparent “intent” of the GCM could
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Fig. 10.Interpolated SMB function within one atmosphere grid cell
when using elevation classes. The resulting piecewise constant in-
terpolation is almost never preferable to the piecewise linear inter-
polation in Fig.4. Traditional elevation class schemes are discour-
aged because they offer no benefit over first-order z interpolation.

7 Transformation: elevation to atmosphere grid

As shown in Fig.2, a regrid step from the elevation to the
atmosphere grid is required on every GCM time step. Once
the modeler has chosen the transformafion> G, we show
here how to derive a transformation fBr— A that is con-
sistent with it.

To derive this transformation, consider one GCM time
step, during which a flux fielgf £ between the atmosphere
and ice surface is computed on the elevation grid. That
field will be regridded both to the interpolation and atmo-

Fig. 9. Traditional elevation class schemes are equivalent to run-Sphere grids. Conservation requires that the resulting fields

ning the ice surface model on an LO grid, where grid cell outlines are equivalent o, i.e,

are created by the intersection of the atmosphere grid and eIevatiogpA —A fG' (6)

contours. One such grid is shown in this figure. Note that grid cells

extend only as far as the ice sheet; the grey line shows the Greenland |f the transformationt — G derived in Sect6 is repre-

coast. sented by the matrii , then we can writf¢ =M f£. Sub-
stituting into Eq. 6), we get the requirement

zero-order interpolation scheme would be expected to give g4 =4 M f£. (7

less accurate version ¢f° than a higher order scheme such Equival b db vel
as z interpolation. Since we expect the elevation—flux rela-  Eduivalence om can be tested by conservatively remap-

tionship to be smooth with elevation, we recommend the use{)'?ghbozjh §(|jde§ to;‘ ar:jd then comparing (in this case, trgje
of z interpolation over elevation class interpolation. eft-hand si € 1s already OA, SO o remapping IS require
there). DenotindR as the matrix that conservatively regrids

from G to A, we have the requirement

fY=RMfE. ®)

6.4 Interpolating to L1 grids

We have outlined methods for the interpolatibn— G, as

long asG uses an LO parameterization. The procedures need If we treat this as a definition for the transformatin—

to be modified for interpolation or ice grids using L1 param- A, we have derived a transformation fBr— A that is con-
eterization. In a finite element mesh (“grid”), field values are sistent with the transformation we already choseAor G.
determined at mesh vertices and linearly interpolated within In other words (Fig.11): we will regrid from E to A
each triangular elemenEZienkiewicz et al. 2013. Any of by first regridding fromE to G (represented by the ma-
the interpolation methods above may be used to determin&ix M) and then use area-weighted remapping frénto

the value off “ (x, y) at each vertex. Once vertex values have A (represented by the matriR). The GCM, which needs to
been interpolated on the vertices of a finite element mesh, these the transformatioF — A, does not need to know any-
value of f9 (x, y) at all other points is fully determined. thing about the ice grid used to derive that transformation. It
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Fig. 11. The transformation from elevation grid to atmosphere grid is derived by first interpolating to the ice grid (represented by matrix
M) and then using a conservative area-weighted remapping step to the atmosphere gridRndtnie two steps may be combined by
computing the matrix produd®M. This construction ensures that a quantity computed on the elevation grid will have the same total mass
when regridded to the ice grid or atmosphere grid. The two transformations from the elevation grid to the ice and atmosphere grids are said
to beconsistent

just needs to know the final matr®M, which can be pre- Equivalently, the basis functios; (x, y) is the function

computed via matrix multiplication. obtained if we set thg‘,.E =1 and all other components of
We have derived a transformation fBr— A thatby def-  f£ =0, regrid to the interpolation grid, and then examine

inition is consistent with a previously chosen transforma-the resulting functiory © (x, y).

tion for E — G. Our approach differs from previous efforts,  In general, these basis functions will be not orthogonal.

which would start out withe — A and try to find a transfor-  Their exact form depends on choices made in choosng

mation forE — G that is consistent with it. i.e., vertical and horizontal interpolation choices, as well as
) ) ) grid geometry issues. We have plotted some example basis
7.1 A basis for the elevation grid functions in Fig.12

. . : . Note that if elevation class interpolation is used (Sé@ ).
Every vector space has basis functions, including the elevaéndG is the exchanae arid. then our scheme reduces to a
tion grid E. Our choice for the transformatia — A con- ge grid,

strains the basis functions we use BaTo find these basis traditional elevation class scheme, and basis functions will

. . . . represent constant-value sub-grid tiles, which are orthogonal.
functions, we expand on the central idea in the previous sec- P g g

tion, i.e., that we can determine properties of a field on the; 5 Fonward transformations: summary

elevation grid by regridding to the ice grid. In this case, we

definef £ (x, y) to be equal tof “ (x, y), wheref¢ =M f£. e have now defined three of the five regridding transforma-
In other words, we can evaluaf” (x, y) at a point by in-  tions required by Fig2: E — G, G — A andE — A. We
terpolatingf* to G and then evaluating® (x, y). This def-  call these thdorward transformationdecause they are lin-
inition is consistent with our method fof4 in the previous  ear and can be represented by matrices. SeelBidor a

section. diagram of how these transformations may be used to regrid
We now use this principle to obtain a formula for the basis fie|ds.

functions of E. Substituting into Eq.X), we get We defined these three transformations in a consistent

FEx,y) = O, y) =M FE . g(x, y). 9) manner. We began by allowing the user choice in construct-

ing the transformation from the elevation to interpolation
Rewriting in indicial notation, using the commutative grids, represented by matriM: this makes sense because
property of multiplication, and swapping index letters, we ysers desire choice f& — G. We then noted that standard
get area-weighted remapping, represented by mdrixnay be
FE(x,y) = fiEMjigj x, y). (10) used to regrid from the intgrpolation .g.riq to the'atmosphere
grid. From these two choices, transitivity requires that the
We can use this, along with Ecl)( to determine the basis transformation from the elevation to atmosphere grid is rep-
functions for the elevation grid: resented by the matriRM. Conservation is maintained be-
causeE — G and E — A are consistent with each other,

(x,y)=M;;gi(x, 11 : . .
& (x,) ji8j(x: ) D producing f¢ and £ that are equivalent on every grid cell
or, switching back to vector notation, in A.
e(r,y) =MTg(x,y). (12)
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Fig. 12. Unitless basis functions for the elevation gfd constructed using 20 elevation points and z interpolation (the exchange grid was
used as the interpolation grid). The grey box represents one atmosphere grid cell on the west coast of Greenland, with the coastline shown a
black lines. White lines in the atmosphere grid cell represent elevation contours corresponding to each elevation point. The basis functions
corresponding to elevation points at 950 m, 1150 m and 1350 m are shown. Note that basis functions overlap and are not orthogonal. Becaus
of the z interpolation, each basis function has maximum value at its corresponding elevation, but it has a non-zero support up to one elevation
point away.

Our choices for these transformations lead directly to a Because of the many-to-one relationship between eleva-
well-defined set of basis functions for the giitj examples tion and atmosphere grid cells, our intuition tells us that
of which we plotted. Fields on this grid will be represented f£ may be constructed simply by repeating valuesfdf
in terms of these basis functions — for example, surface-within each atmosphere grid cell. This is physically self-
atmosphere fluxes and ice surface model state. consistent. More precisely, if; € A;, then we would like
to setij = fl.A. We define a simple linear transformatian
that does thisf £ = A f4.

Surprisingly, this definition forA — E is only conserva-
We have defined three transformations so far, butFigdi-  tive in some cases. RM computes eactf* as a weighted
cates that five are necessary for full functioning of the cou-Sumonly of valuesf” whereE; € A;, then we say the®M
pled system. We still need to derive appropriate procedureds alocal transformation- it uses only data from “within”
for the “reverse transformationst — E andG — E, indi- an atmosphere grid cell to compute a value on that grid cell.
cated in Fig13as dotted lines. Because of the differences inIn that case, it is easy to prove conservation by showing that
dimensionality between the three grids (Sex8), M and RMA f* = f# (see Eq.13). The weights involved irRM
RM are not invertible in a simple linear algebraic sense:do not matter, as long as they sum to 1 for each component
A = E is underdetermined an@ — E is overdetermined. of f*.

We must still find ways to compute these transformations that Therefore, ifRM is local, we can simply use for our

8 Reversing the transformations

retain conservation over atmosphere gr|d cells. transformationA — E. Even better, it is easy to show that
there will be no numerical dispersion in the round-trip trans-
8.1 Transformation: atmosphere to elevation grid formationE — A — E because\RM is the identity matrix.
The lack of dispersion on this round-trip is important because
Suppose we have a flux fieli* on the atmosphere grid. it is computed every atmosphere time step.

We wish to regrid it to an “equivalent” flux fielgf £ on the
elevation gridE. In this casef might represent precipitation 8.2 Nonlocal RM
or downwelling radiation from the atmosphere.

The problem is underdetermined. Any solution for which If RM is not local, then in general f# and f# will not be
fA =4 fE will be conservative. This is the same as requir- €quivalent omA or even the entire ice sheet. We are forced to

ing that trade off between the most physically self-consistent value
for f£ = A f4 vs. something that conserves. We can ise

RM fE = fA. (13) along with quadratic optimization, to guide us to such a com-
promise.
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We seek a vectof £ such that -7 TN

RM f# = 4. (14) M
G Grid

We also wish that vector to be as close as possible to our
intuition above. That is, we wish to minimize the quantity

1F5 = AafA1%, (15) :

Projected
where ourL, norm is weighted by the weight of each basis A _Atm Grid
function. That is, we use a weight vectewhere A
w; = f ei(x,y)dA. (16) Atmosphere

A' Grid
o0

This is a sparse quadratic optimization problem with ig 13 The five grids used in the coupling problem, and transfor-
equality constraints. A number of numerical packages carmations between them. The (linear) interpolation stepfrom E
solve it; we used GALAHAD Gould et al, 2003. In our to G, is chosen by the user. The (linear) transformafrirom G
tests, solution typically requires a fraction of a second on ato A, is an area-weighted remapping step. These two fully constrain
single core. This is so fast that we have found no need tghe transformation fronE to A asRM. If I is LO-parameterized,
consider suboptimal solutions to this problem. thenG is the exchange grid betwedrand/, andX andX’ are area-

This procedure introduces some numerical dispersion intgVeighted remapping transformations/ I L1-parameterized, then
the fully coupled system from nonlocal regridding opera- Gis eguwalent tg(, makingX andX’ the identity.P is a dlggonal
tions; by numerical dispersion, we mean movement of masées_cahng operation betweet! andA. Reverse transfqrmatlons re-
between adjacent atmosphere grid cells, thereby vioIatingqUIer by the coupled system are shown as dotted lines.
our desired property of conservation with each atmosphere

grid cell. Considering the round-trip transformatiéh— Finally, some GCMs use implicit schemes for ice surface—
A — E, itis clear that this transformation is not local, both atmosphere couplingBest et al, 2004, requiring a matrix
becaus&kM is not I.ocal, and because the quadratic program;,ersion on every time step. RM is nonlocal, then a large,
set up forA — E will be nonlocal. sparse, global matrix inversion will be required, rather than a
number of small, local inversions.

Because of the significant practical complications that
arise with the use of a nonlocBIM matrix, most users find
it simplest to use a loc&&M matrix if at all possible.

8.3 Practical issues for nonlocal RM

GCMs are well equipped to deal wislub-grid tiles each one
occupying a fraction of the overall grid cell. The GCM will
typically implementE — A by computing a weighted sum
over sub-grid tiles in each grid cell, with weights based on

each tile’s fractional area. This capability is used to imple- The use of a nonloca®M transformation can be an added

ment traditional elgvgtlon class schemes.. . burden to the GCM developer. It is therefore important to
If the RM matrix is local, then by definition the value jqjineate cases in whid&M is not local

on each atmosphere grid cell is a weighted sum of the ele- | 1 jce grids, as used with a finite element ice flow
vation points in that grid cell. This is compatible with €x- 461 RM will be nonlocal: ice elements that straddle two
isting GCM practice that assumes sub-grid tiles. To use theyygsphere grid cells will by necessity involve elevation
methods in this paper, the computation/of> A inside the  yint valyes from two atmosphere grid cells. This will make
GCM does not need to be replaced, it only needs to be fegy slightly nonlocal.

a new set of weights. Even though elevation points do not £ anfor L0 gridsM could be nonlocal, depending on the
have well-defined areas, the weight for elevation pginan cice of interpolation schemes fér— G. Bilinear inter-

be thought of as the *fractional area” that an elevation pointyqation is inherently nonlocal, whereas the other interpola-
contributes to its containing atmosphere grid cell. The GCMiion strategies mentioned above are local.

can be coded as if traditional elevation classes were being .| gice grids with a local interpolation scherfRM can
used, even if the user has chosen a more numerically acc
rate form of vertical interpolation in the construction of the
M matrix.

8.4 When is RM not local?

Y%e made local, as long &3 was chosen to be the exchange
grid (see Sect4.4). In this caseM will be local — because

; i , each exchange grid cell attains its value from elevation points
_Things get more complicated for the GCM if tRM ma- 55t one atmosphere grid ceR will be local as well, for
trix is not local. Instead of using a simple set of weights, (14 <ame reason.

the GCM will have to be multiplied by a general sparse ma-
trix RM when computing — A. An MPI (Message Pass-
ing Interface) gather will be required to compute— E.
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8.5 Transformation: ice/interpolation to elevation grid will be trivial. However, therewill be numerical dispersion
for the transformatiort — I, which is used once every ice
coupling time step.

If one directly uses the ice grid fag, then theRM ma-
trix will notbe local, producing numerical dispersion for the
transformationE — A and complicating the reverse trans-
formationA — E. However, there will be no numerical dis-
persion for the transformatioi — 1.

On balance, we recommend keeping B matrix local

Suppose we have a flux fielfil® on the interpolation grid
G. We wish to regrid it to an “equivalent” flux fielgf £ on
the elevation gride. As before, we will set up a quadratic
optimization problem.

It would be nice if we could findf£ such thatM f£ =
f£¢. This will not usually be possible, sineg has far more
degrees of freedom thah. Instead, we will minimize the

quantity if possible. Not only does this simplify implementation, it
5 G2 moves unavoidable numerical dispersion away from the at-
M= =71 (17)  mosphere time step to the less frequent ice coupling time

tep.
while we maintain conservation on each atmosphere grid cel? .
(whereR defines area-weighted remapping fréhio A; see

Fig. 13): 9.1 Exchange grids for finite elements

(18) The discussion in Sec®.assumes an LO ice grid. The results
can be extended to L1 or higher order parameterizations: fi-

This quadratic optimization problem may be solved with Nite element ice models, for example. In this case, the con-
the same methods as in Se&2 We weight components of ceptof exchange grid is not meaningful, since exchange grids

our L, norm by the integral of each basis functionGn are by definition LO.
Instead of the exchange grid, one can chaGde be just

aboutany LO grid, of resolution at least as high as the ice
mesh, where grid cells do not cross atmosphere cell bound-
aries: we will call this ageneralized exchange grid’he

So far, we have defined our transformations in terms of theyser would then need to develop an appropriate conserva-
interpolation grid G — which could be either the ice grid or tive transformation forG — I, whereas the transformation
the exchange grld But real ice flow models operate on the iCQor I — G would remain an area-weighted remapping (See

grid, and transformations must ultimately transform to/from AppendixC). Details of this scheme for a particular ice mesh
that grid. If we have chose@ as the exchange grid, we need parameterization are left to the reader.

to extend our transformations above to regrid to/from the ice  Asin Sect9, the transformatio — I would cause some

grid. We do this by using area-weighted remapping as neceshumerical dispersion, due to the geometry of the ice mesh.

sary betweer@ and/. Additional dispersion would be introduced because of mis-
More formally, we construct transformations %r. G — match between the LO gri6 and the higher order mesh

I andX': I — G using area-weighted remapping. We can _ although this could be reduced by makiGgfiner. The

then represent — I as the matrix produckM . Similarly,  trade-offs of choosings to be a generalized exchange grid

we can construct — E by first computingf© = X' f and s, the ice grid are the same as in S&ctumerical disper-

then using the reverse transformation— E to obtain f*  sjon is introduced in the ice coupling time step, in exchange

(see Fig13). for simplifying implementation and eliminating dispersion in
Note that the transformatiok: G — I is notconservative  the atmosphere time step.

on A. For this reason, the transformatién— I represented

by XM is not conservative o either, although it is con-

servative overall: “mass” lost from one atmosphere grid cell

will be gained by neighboring cells. This will cause numer- 10 Regridding examples: local RM

ical dispersion when these transformations are used in the

fully coupled system (FigR). Having shown how to compute all five required regridding
Assuming the ice grid is LO parameterized, we will now transformations, we now demonstrate them working within

address the practical issue faced by the user, namely whether realistic GCM context. We set up a test using the GISS

RMfE=RfC.

9 Exchange grid or ice grid?

to choose the exchange grid or ice grid@sif one uses the
exchange grid fo6 in conjunction with a local vertical inter-
polation scheme, then ti®&M matrix will be local. This has
a number of advantages. It eases implementation (8&t.

2° x 23° atmosphere gridSchmidt et al. 2006, overlap-
ping with the SeaRISE 5km LO gridBB{ndschadler et al.
2013 and 40 elevation points, spaced every 100m from O m
to 4000 m. We chose the exchange gridiasee Appendid

There will be no numerical dispersion for the transformation and Fig.3 for notation conventions). We ran GISS ModelE in
E — A, used every atmosphere time step. The reverse tranghis configuration, using fixed sea surface temperatures cor-
formation A — E, also used every atmosphere time step,responding to the years 1996-2005. The ice surface model
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Fig. 14. July SMB computed by ModelE on the elevation gfida), and regridded to the atmosphere gtidia the exchange gri¢tb) or to

the ice gridl using z interpolatiorfc). For plotting purposes, each elevation poin{ahis assigned to a nearby region of similar elevation;

the value of the elevation point is then plotted in its corresponding region. Bold numbers on the color scale indicate the extreme values of the
plot. Elevation contours are plotted.

was run on the elevation grid, producing monthly averagedike a smoothed version of Fig.4a. Atmosphere grid cell
of SMB over Greenland, which we labgf (Fig. 14a). boundaries are still visible because z interpolation is local.
As expected, the broad pattern shows strong melting in The transformatioiX : G — I (Fig.13) introduces a small
narrow bands at low elevations, along with weak accumu-amount of nonlocality. And although it is conservative over
lation at high elevations. Atmosphere grid cell boundariesthe ice sheet in general, it is not conservative adefThis
are prominent because precipitation — the primary sourcean be seen (Fidl5) by regriddingf/ to A and comparing
of positive SMB — is not downscaled to sub-grid resolu- with the results of Figl4b. This plot quantifies the amount
tion (Leung and Gharl998. The small oscillations at high of numerical dispersion the simulation will encounter every
elevation are artifacts introduced by ModelE’s ice surfacemonth when preparing SMB input for the ice model. This

model. dispersion is caused by ice grid cells that overlap more than
one atmosphere grid cell.
10.1 Example: elevation to atmosphere grid In most areas, numerical dispersion is low, less than 1 %.

That is because most atmosphere grid cells are overlapped by

Figure 14b shows the original fieldf“ computed on the many ice grid cells, with only a few lying on an atmosphere
elevation grid and regridded to the atmosphere gridia  grid cell boundary. However, numerical dispersion can be
the transformationf# = RM f£. Note how low-elevation  significant for atmosphere grid cells that just nick the edge
ablation regions become broader and weaker (compared tef the ice sheet, where a high proportion of their overlapping
Fig. 14a), whereas the interior of the ice sheet remains abouice grid cells also overlap with a neighboring atmosphere grid
the same. This demonstrates the benefits obtained througke||.
the use of elevation points, as compared with running the ice The numerical dispersion encountered here is inherent in
surface model on the atmosphere gridr{ den Broeke etal.  the regridding problem itself, rather than our approach to that
2008. problem. Short of using an ice grid whose grid cells do not

By definition, the transformatioRM is conservative on  overlap atmosphere grid cells, we see no obvious way to
A: we can evaluate conservation properties of other transforeliminate this issue. However, we do not believe it to be a
mations by comparing to Fig.4b. serious problem: the total area of ice sheet affected by it will

be small.
10.2 Example: elevation to ice grid

Figure 14c shows the original fielgf £ regridded tof, via
fT=XM fE using z interpolation foM. This plot looks
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Fig. 15. Difference in July SMB obtained witlf — A, using two  Fi9- 16. Example of numerical dispersion caused by an ill-posed
choices for the interpolation gri@: either the exchange grid or the quadratic optimization problem. July SMB on elevation gfiavas

ice grid. Differences (exchange minus ice) are due to ice grid cells®gridded to the exchange grid. The reverse transformation was then
that overlap more than one atmosphere grid cell. used to recover the original SMB af. Plot shows the difference
between the result and the original. In theory, the two should be
exactly the same. Although mass is conserved, differences appear
because the associated quadratic optimization problem is underde-

It is important to point out that althougX’ is not (quite)  {omined in some areas.

conservative oveA, it is still conservative over the ice sheet
in general. We have verified this numerically in our exam-
ples.

10.3 Example: ice to elevation grid greatest in sparsely populated atmosphere grid cells on the
edge of the ice sheet. We conclude that the answer to the

Since we have not yet developed the surface boundary corquadratic program posed in Se8t5 is poorly constrained.

dition described in SecR.1, we do not have realistic fields A different numerical solver than the one we used might in

on I to try regridding toE. We will therefore tesf — E at  theory result in a better match betwegtf and f£.

this point usingf’ = XM f£ as input. But this is not a problem in practice: the goal Gf— E

We test the transformation in two steps. First, we testis to obtain a physically plausible field dhwith the correct
G — E using f¢ =M fE as input. Then, we test > E conservation properties. The preliminary tests presented in
using f/ = XM f£ as input. This allows us to evaluate the this section are consistent with that goal.

G — E transformation separately from confounding disper- The transformatiod — E is constructed by transforming
sion factors involved irG — 1. I — G — E (Sect.9). We used this to computg’* =[I —

We computedf’? =[G — E1(f¢) where f6 =M fE.  E](f!) wheref! = XM fE. The conservation property im-
Theoretically,f’f and f £ should be equal. The conservation posed by the quadratic program held: we found f&twas
property imposed by the quadratic program held: we foundequivalent tof’ on A to machine precision.
that f'£ =4 f6 =4 fF to machine precision. However, we ~ However, differences betweeyf’? and f£ are even
found measurable differences betwegh and f £ (Fig. 16). greater in this case: compare Fiy to Fig. 16. This is be-
Although differences are small in most cases, one area has@ause the transformatioX : G — I is not conservative on
difference of more than 8 out of 37 mmddy resulting in  A. The end result of transforminf - G - I — G — E
no more than one digit of precision. Differences tend to bewill produce anf’Z that is significantly different from the
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With a change inE — I, the transformatiorE — A is
also changed. We calculated the difference betwetnoom-
puted using this method vg:4 computed in Fig14b: this
difference is exactly the same as F1§. In practice, this dif-
ference does not present a real problem: it is impossible to
say which version off4 is more “correct.” Both maintain
conservation over the ice sheet. As predicted in Segfrid-
related dispersion i — E is eliminated. Thus, the grid-
related “errors” demonstrated in Figj7 are eliminated.

Finally, the use of a nonloc&M matrix requires use of
the algorithm described in Sed@.1 for A — E. Fig. 18a
shows a July precipitation fielg* produced by ModelE, for
the same month as the SMB fields above. ModelE currently
does not downscale precipitation to sub-grid resolutlaa (
ung and Ghanl998): it therefore yields a precipitation field
On A.

We then computedp® =[E — A](p#), which could
serve as input to the land surface model. Recall that'
is the most physically self-consistent value fof, but that
we choose a different value f@r® in order to maintain con-
servation.

Figure.18b shows the difference between the tyd, —

Ap?4. Differences are typically in the range-0.1,0.1]
-1.0 -0.5 0 0.5 1.0 . o
SMB (kg/day*m~2) (about 2 %). They tend to be relatively constant within each
atmosphere grid cell and show no discernible pattern be-
Fig. 17. Example of numerical dispersion in the transformation tween grid cells. In particular, differences are not related
I — E, caused by ice grid cells that overlap more than one atmo-tg elevation. Any errors introduced by this scheme will be
;pherg grid cell. July SMB on eleva_ttion gitiwas regridded to the  qywarfed by other precipitation errors in the model.
ice grid I. The reverse transformation was then used to recover the In this example, we used an LO ice grid to generate a pro-

original SMB on £. Plot shows the difference between the result totypical almost-locaRM matrix. We expect similar results
and the original. Although mass is conserved, differences are due h . L1 id b th | litv in the LO
mainly to ice grid cells that overlap more than one atmosphere gridW €n using an IC€ grid because h€ noniocality in the

cell, making it impossible to recover the exact original SMB. The ¢aS€ was caused by a small number ofice g”(_j c_ells that over-
same color scale is used as in Fig. lap more than one atmosphere grid cell. A similar situation

exists with any type of higher order mesh.

We conclude by considering, in the case of an LO ice grid,
original f£. Differences are greatest for elevation points nearwhether! or G is a better choice for the interpolation grid. In
an atmosphere grid cell boundary. many cases, the use of a nonloBAM matrix requires signif-

icantly more effort in GCM model development. However,
our experience shows fewer “surprises” in the transforma-
11 Regridding examples: almost local RM matrix tions when using as the interpolation grid. In the end, we
expect either choice to yield serviceable results that conserve
In Sects8.3and9, we discussed the trade-offs between usingmass and energy in the regridding.
the ice vs. exchange grid for the interpolation giidHaving
shown in Sectl0 an example of our transformations using o )
the exchange grid as, we now show how things change if 12 Regridding examples: nonlocal RM matrix
the ice grid is chosen fofr by re-running the above exam-
ples. In this case, thRM matrix will be mostly local, except
for nonlocality caused by ice grid cells that intersect more
than one atmosphere grid cell. We say tRM is almost lo-
cal.

In general, differences in results here vs. those in 3€ct.
are insignificant. However, the choice bfas interpolation
grid doeschange the basis functions used #oryielding a
system in which the transformatidi— I is now conserva-
tive overA.

In the above sections, we considered how the transformations
in this paper work when thRM matrix is local or almost lo-

cal. Here, we consider the case in whRRNI is significantly
nonlocal — for example, if bilinear interpolation were used
for the transformatior — 1. We would expect the “correc-
tions” and dispersive properties that appear in the case of an
almost-locaRM matrix to be significantly larger.
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Fig. 18.Nonphysical changes in precipitation field introduceddby> E in order to ensure conservation. Pag@lshows a July precipitation

field computed by ModelE on the atmosphere grid. This field was regridded to the elevatidh gsidg an almost-locdRM matrix for

E — A. It produced a slightly different result than the physically intuitive procedure of “repeating” precipitation values for elevation points
in each atmosphere grid cell — which is not conservative. Those differences are plotted itbpanel

We encountered numerous problems when we attemptedone of these rely on any specific relationship betwgén
the use of a significantly nonloc&M matrix, constructed andA. Similarly, E -~ A = RM can be computed as before.
using bilinear interpolation fo£ — I. Most significantly, The only other thing that must change is the construction
the A — E transformation produced elevation points of neg- of A — E: the intuitive definition forA (Sect.8.1) no longer
ative precipitation when regridding a typical precipitation makes sense. Instead, we construct an intuitive regridding
field over Greenland (Figl9) — an artifact that we believe operationF as follows. Givenf4, first regrid t()fEO using
would be unacceptable to the majority of modelers. It mightarea-weighted remapping. Then convﬁﬁo to fF using a
be possible to find a solution to this problems. In the mean-repeat” operator akin ta\ above. We can now apply the
time, it is simpler to avoid nonlocal interpolation schemes g adratic programming—based regrid operator developed in
such as bilinear interpolation. Sect.8.2, usingF instead ofA in Eq. (15).

The use ofE? # A introduces numerical dispersion into
the system. This can be seen by evaluating the locality of the
round-trip transformatio — A — E. This numerical dis-
persion is a fundamental consequence of the use of a different
underlying grid for the ice surface and atmosphere models.

13 Independent elevation grid

The elevation gridE is constructed by adding elevation

points to each grid cell of an underlying horizontal grid,

which we will denote EC. So far we have assumed that

EC=4, meaning the elevation gri#l is derived from the 14 Regridding in elevation space

atmosphere gridi. Some GCMs use a horizontal layout for

E thatis notrelated td. In this section, we extend our meth- We have tacitly assumed so far that there is one single fixed

ods to address that case. elevation gridE with one fixed set of basis functions. This is
The first problem is a choice of the interpolation géd not the case in a changing climate, since the basis functions

The idea of locality inRM no longer makes sense when used forE depend on ice elevation and extent (Séct).

EC £ A. For that reasonG; = I is the right choiceX and  The user might wish to explicitly move elevation points as

X’ will both become identity transformations. The transfor- well —for example, to track a mountain glacier as it moves up

mation E — I does not need to change, nor ddes> A: or down. When the vector spadechanges, the ice surface
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SMB (kg/day*m~”2)
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Fig. 19. Implausible precipitation field produced by— E when
bilinear interpolation is used. July precipitation (Figa) was re-
gridded to the elevation gri# using theA — FE reverse transfor-
mation, where the matrix foE — A is constructed using (nonlo-

cal) bilinear interpolation. Note the unphysical artifacts (negative

precipitation) for some elevation points.

901

Elevation
Grid (old)

Elevation
Grid (new)

Fig. 20. When ice extent, ice topography or elevation points
change, the basis functions for the elevation dtidhange along
with it. Ice surface model state, which exists Bnmust be regrid-
ded to the new set of basis functions. Shown is a grid system that
can serve as a map for this regriddingis the old elevation grid,

F is the new one and’ is the interpolation grid (same for old and
new). Ice surface model state may be regridded ffota F by first
regriddingt — G, thenG — F. Note that this diagram is a simpli-
fied version of Fig13in which two different elevation grids have
been accounted for.

procedure to be physically meaningful, the model state must
be expressed in terms of conserved quantities.

Not all ice surface models are formulated in terms of con-
served quantities. In this case, the regridding procedures may
still be used, as long as the ice flow model can be converted
to/from a form thais expressed in conserved quantities. For

model state must be regridded from the old elevation grid toexample, an ice surface model might track the temperature,
the new elevation grid. We address that issue in this sectionmass and water fraction of the top layer of ice. Temperature

Assume two elevation grids, an “old” gril and a “new”
grid F. We wish to conservatively regrid a fieftf to 7. In
this case f will not be a flux variable, but rather a conserved

is not conserved, so this regridding procedure cannot be used
directly. However, model state can be converted to enthalpy
and mass alonédéchwanden et gl2012. These quantities

state variable of the ice surface model: snow depth, wateare conserved and can be correctly regridded with conserva-

fraction, etc.

tive transformations. After regridding to the new elevation

This problem can be approached by examining the systengrid, model state can then be converted back to the original

of grids and transformations available in Fif3 when one
has multiple elevation grids (see FRY). By “following the
arrows,” the most direct way to transforfif to £ is to first
regrid to the interpolation grid, computing® =M~ fE.
Then use the procedure in Se&to computef £'. Because

all these transformations are conservative on the atmosphe

grid A, the end resulf * will be equivalent tof £ on A.
14.1 Conserved model state
In previous sectionsf represented fluxes between models,

which are conserved. In this sectigh,s amodel statevari-
able of the ice surface model. In order for this regridding

www.geosci-model-dev.net/7/883/2014/

nonconserved parameterization.
14.2 When to regrid

Regridding in elevation space is not just required if one
changes elevation points, but alsoy timethat the transfor-

re

mationM for E — I changes. Any time that happens, the
regridding described in Sect4 should be used. Relevant
events that changd include

1. changes inice topography: for example, as an ice sheet
inflates or deflates due to changing climate; when an
ice grid cell changes elevation, the weightdMnused
to compute it will change; this change will either be
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e system of domain decomposition; storage and applica-
T%fcég;ap?y tion of theRM matrix is simplified if the GCM author
e knows in advance that it is local.

3. ask Glint2 to regrid ice surface model inputs from

( ™( GLINT2 A — E as needed,; this step is only requiredRM
S SHNTZAR is nonlocal; otherwise, the transformatianis simple
Elovat enough for the GCM to do on its own.
evation
Grid

4. accumulate ice surface fluxes on the elevation grid, and

Fig. 21.The Glint2 workflow used to compute the regridding opera- pass them to Glint2 every coupling time step.
tions required by the fully coupled system (F&). Glint2 produces . . .
regridding operations based on a variety of factors: atmosphere and S ap_ply .ﬂelds rgturned from the ice flow mod_el via
ice grid geometry, ice topography and extent, and levels chosen for Glint2; these fields are returned on the elevation and
the elevation grid. Glint2 must recompute the operations when any atmosphere grids as appropriate, eliminating the need
of these factors changes. for the GCM to regrid them.

Note that the GCM doesot need to know anything about
continuous (as in z interpolation) or will jump at cer- the ice grid or ice flow model. Interface code is added to
tain thresholds (as in elevation class interpolation). ~ Glint2, not the GCM, for every ice flow model one wishes

to support. Over time, we expect the number of supported
2. changes in ice sheet extent, as an ice sheet grows aCMs and ice flow models to increase, according to re-
melts; for example, if an ice sheet shrinks, then somesearcher demand. This structure is useful because it will give
ice grid cells will no longer participate in the regrid- practitioners a way to try different ice models with a GCM
ding process, and their associated coefficientdlin  fajrly easily.
will turn to zero.

. . i . 15.1 Adoption issues
3. changes in the elevation or number of elevation points.

We expect that Glint2 could be useful to anyone with a
GCM who wishes to couple it with an ice flow model. How-
ever, many GCMs have centralized regridding strategies that

Here we describe Glint2, an open-source impIementationG”ntz does not really fit into. We do not believe this should
of the transformations developed in this paper. Glint2 is aP€ @ Significant barrier to adoption for two reasons:

15 Glint2 coupling library

GCM-ice flow model coupling library whose core function — In most cases, the elevation grid will have unusual
is to compute the five transformations required for a coupled “customized” basis functions (Figl?). Centralized
GCM-—ice flow model system (Fig). These transformations GCM regridding schemes are not typically equipped
are computed based on a variety of factors: atmosphere and {5 regrid to/from the elevation grid. Nor are they
ice grid geometry, ice topography and extent, and elevation equipped with the algorithms required for the reverse
levels chosen for the elevation grid (FRL). transformations.

Glint2 does not just compute these transformations and
provide them as a library, it also provides an application pro- — Glint2 hides all details of the ice grid from the GCM,
gramming interface (API) for GCMs to use to couple with communicating with the GCM with fields on the atmo-
ice flow models. As a realization of the mediator design pat- sphere and elevation grids. Because all ice grid-related
tern (Gamma et a).1994, Glint2 is able to shield the GCM issues are encapsulated in Glint2, it should not matter
from a number of details of the coupling. Although it uses a to the GCMhow or evenwhetherregridding to/from
different codebase, Glint2 has the same purpose as GLINT  the ice grid is accomplished. As far as the GCM is con-
(Glimmer Interface; Rutt et al, 2009, namely to build a cerned, the ice flow model might as well be running on
coupling library between GCM and ice models. The GCM the elevation grid.

programmer who wishes to couple their GCM with an ice

model need only do the following: Another barrier to adoption is the fact that Glint2 is pack-

aged as a library. Many GCM projects are reluctant to add ad-
1. implement an elevation points scheme, and move thditional Iibrgry erendengies, due.to the complications such
ice surface model to the elevation grid. erenQenC|es mtroduce.ln the build process. We do_ not pe—
lieve this should be a serious problem because coupling with
2. request theRM matrix from Glint2, and then apply an ice model already involves the use of outside libraries.
it as needed during normal model run; this might be With or without Glint2, the GCM must still manage addi-
more complex than it sounds, depending on the GCM’stional external dependencies.
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15.2 Availability We then addressed the reverse transformations, using the
notions of consistency developed in the previous sections.
Glint2 is written C++ and designed to couple with GCMs and problems of underdeterminism and overdeterminism, caused
ice flow models written in Fortran 90/2003, C or C++. Italso by mismatches in dimensionality between grids, are ad-
comes with a Python interface, making it easy to test and plofressed by using quadratic optimization for these transfor-
sample regridding problems before incorporating a couplingmations.
strategy into a GCM. Glint2 source and documentation are The result is a set of five conservative transformations
available for downloadRischer 2013. needed to support a two-way coupling of GCMs and ice
models. We defined a property of oir— A transformation
calledlocality. We showed a number of theoretical and prac-
tical benefits if that transformation is local. We implemented

This paper focuses on a system of conservative regridding"" five transformations and demonstrated that they work in

strategies needed to support tight two-way coupling betweefractice on realistic input fields. .
a GCM and an ice flow model in the context of elevation- Although three of those five transformations are well-

based downscaling in the GCM. Past efforts at one-way couknown in the literature Ramshaw 1985 Lipscomb et al.

pling have produced downscaling methods that provide SM2013, the reverse transformations are new. Most impor-
fields that match remarkably well with observations and with @ntly, we showed how to choose a set of grids, basis func-

regional models. However, these efforts used an inconsisterfions and regridding schemes so thétfive regridding op-
set of transformations. which would result in nonconserva-€rations are conservative. Note that the elevation grid uses

tion of mass and energy in a two-way coupled system. a “custom” set of basis functions. This is a significant step

In order to achieve consistency, we began by recognizingb_eyond past efforts that r_lave focused on conservative regrid-
the elevation grid as an integral part of the coupling problem,ding to LO pre-chosen gridRamshaw1983. _ _
along with the atmosphere and ice grids that had previously ©OUr downscaling transformation from the elevation to ice
been considered. We observed that the ice surface model ruf§§ids i taken from previous one-way studidspgcomb
on the elevation grid and that the downscaling step (from el-6t al- 2013. Our results *look” aimost identical, except for
evation to ice grid) is actually another form of regridding. subtle differences in the other related transformations needed

We have therefore transformed a coupling problem invoIv-tO_ ensure consgrvation. We therefore provide practiti_oners
ing two models and two grids into one with three models andith @ way to bring already proven downscaling techniques
three grids. into a conservative two-way coupled setting.

We analyzed the regridding transformations needed in W& went on to package these transformations in Glint2,

a typical two-way coupling and determined that five such@ coup_ling library. As a piece of software, Glint2 serves as
transformations are required: three “forward” transforma-& mediator Gamma et a).1994 between the GCM and ice
flow model, insulating each from the specific details of the

tions and two “reverse” transformations. We then set out to =l TsHatl : - :
develop a consistent implementation for these five transforOther. This will simplify the coupling of GCMs with multiple

mations, starting with the forward transformations. ice models, as needed to support future research.
We observe that conservation of mass and energy requires
consistency between the transformations from the elevation
to ice grid (£ — I) and elevation to atmosphere grifl (-
A). We achieve consistency by allowing the user to choose
E — I and then constructing a transformation #Br— A
that is consistent with the user’s choice. This is a good ap-
proach because it allows the user freedom in choosing a
downscaling transformation fa¢ — 7. Our transformations
imply a set of basis functions for the elevation grid, which
we demonstrated in plots.

16 Discussion and conclusions
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Appendix A Appendix B

Mathematical conventions Integration of LO grid

We use the following mathematical conventions in this paper.Suppose we have a region B and an LO-parameterized grid

1.

10.
11.

. Vector values are indicated in boldface, scalars in non-

. Since this paper is about regridding, we need to talk

. We use arrows to talk about transformations between

. If a transformation is nonlinear, we use functional no-

G with grid cellsGy, ..., G,. The basis functiog; (x, y) is
equal to 1 inside of grid cell;; and zero elsewhere. We wish
to compute

A “grid” or “parameterization” is a set of basis func-
tions that may be linearly combined to produce func-
tions over a 2-D domain. Grids are denoted by non-
bold capital lettersA for the atmosphere grid, for

the ice grid,E for the elevation grid and' for an inter-
polation grid. Basis functions are denoted by non-bold B

lower case letters; (x, y) is a basis function for. At This is simply equal to the area of intersection®fnd
times, the set of basis functions may be represented ag;. .

a bold-face vectom(x, y) = [a1(x, y), ..., an(x, y)]. If we wish to regrid to an LO grich, we must do the above

gi(x,y)dA=|BNGil. (B1)

. Subscripts are used to indicate elements of a vector. I€0Mputation multiple times, setting to every grid cellA ;

f is a vector, thery; is the value of théth index of f. A. This creates aaverlap mgtrixl_ whereLU.is egual t_o the
overlap between source grid céll and destination grid cell

. If Aisan LO-parameterized grid ad one of the grid Aj.

cells, thenA;| is the area of that grid cell. The overlap matrix is directly related to the exchange grid

betweenG andA: every non-zero element @f;; is equal to

bold. the area of one grid cell in the exchange grid. The exchange
grid may be computed as described in Apperidix he Sur-

. Vectors are used to construct a 2-D function (*field”) veyor's Formula Braden 1986, a special case of Green's

within the context of a particular grid. For example, Theorem, can then be used to compute the overlap matrix
suppose that the atmosphere gfidses the basis func-  from the exchange grid.

tions a(x,y) = [a1(x, ), ...,a,(x, y)], and we have
an n-dimensional vectorf4 with componentsfl.A. )
That vector represents the function: Appendix C

Ay =4 alx,y). (A1) " |ntegration of L1 grid

AppendixB shows how to integrate over areas on an LO ice
N ] grid. But if an L1 finite element ice flow model is used, one
Eriererzzggtfr?r ;hlf-sé|g g;eﬂ\]/ggég r%er:r(: ti}s (;2?10\{@?? will need to do this over an L1 ice grid. Here, we show how to
P INg atie . : ,,g_' , the integrate L1 finite element basis functions over an arbitrary
vector representing the “same” field on the atmosphereare 2B
grid. '

An L1 finite element mesh is made up of triangular ele-

about the “same” field in different grids. Superscripts

. Similarly, f4(x,y) denotes the function implied by ments, where the value of a function is defined at the vertices

the vectorf4 and the vector of basis functionsx, y). of the triangles. Values inside each element are interpolated
based on the values at the vertices.

Each basis functiow; (x, y) in a finite element mesh cor-
responds to a verteX{enkiewicz et al.2013. This function
is non-zero only in the triangular elements in which the ver-
tex participates. We define a sub-basis functhp(x, y) to
be equal toN; (x, y) within triangular elemenyj, and zero
elsewhere. Thus we define

grids, which transform fields on one grid to fields on
another. Since fields on a grid are represented by vec
tors, the transformations are functions from one vector
space to another. For example,— A can be read as
“the transformation from the elevation grid to the at-
mosphere grid.” Many but not all of these transforma-
tions are linear and can be represented by matrices. N;(x,y) = ZN,-,- (x,y). (C1)
J

tation with square brackets to denote an application of Within its element, a sub-basis function takes the shape of
that transformationf £ = [A — E](f*4). a plane, having the functional form

We use indicial notation in one place. Nij(x,y) =a+bx +cy. (C2)

See Fig.3 for definition of the symbols used through-  The coefficients:, b andc¢ are functions of the locations
out the text. of the vertices, not of the values assigned to those vertices.
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Using the techniques from Appendix one can compute the
polygong; as the intersection between elemgrind region
B. Green’s Theorem may then be used to compute

/N,,- (x, y)dA. (C3)
Bj

We can then apply our definition of sub-basis functions to
achieve our goal:

ZfNij(x,y)dA.

]ﬁj

/Ni (x,y)dA = (C4)
B

This section has provided just an outline of the process

The algebra can become complex at times, and a symboli

computation system such as Maxima can be useful. But in the

end, integration of a vectof! over an area@ is computed as
a linear combination of the elements $f, just as with LO
grids.

Appendix D

Computing the exchange grid

AppendicesB andC can be applied repeatedly to compute
conservative regridding matrices from an LO or L1 grid to an
LO destination grid. Both procedures assume a way to com
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If an appropriately robust polygon intersection algorithm
is used, our procedure can deal with nonconvex polygons and
other possible irregularities. This is not just a theoretical is-
sue: latitude—longitude grid cells commonly used in GCMs
are not convex in spherical or planar geometry. In other cases,
practitioners might wish to use grid cells consisting of mul-
tiple disjoint polygons.

With issues of polygonal intersection taken care of by pre-
packaged algorithms, the main challenge here is to find those
intersections in a scalable manner. The naive algorithm is to
write a nested loop, requiringl| x |G| iterations. This algo-
rithm, with O (n%) complexity, takes too long even on grids
commonly used by GCMs and ice flow models today. Most
of the “intersections” ofd; andG ; will result in nothing, be-
causeA; andG; are far from each other and obviously do
fiot intersect.

This problem is solved by using an R-tré&&uttman 1984

to avoid having to consider intersections of grid cells that are
far away from each other. The procedure works as follows:
first load all the grid cell outlines oA into the R-tree, in-
dexed by their bounding rectangles. Then loop through each
grid cell in G, checking the R-tree for any grid cells inthat

it might intersect with. The polygon intersection algorithm
is run on each of those grid cell pairs to determine the exact
outlines of the exchange grid cells. Running time is cut down
to a more reasonabl@ (nlogn).

Past algorithms exist to compute regridding matrices by
integrating functions around each cell in an exchange grid

pute polygonal intersections between two sets of polygons {Ramshaw1985 Dukowicz and Kodis1987 Jones1999.

also known as aexchange gridBalaji et al, 20086.

This task is simple in principle, using modern computa-
tional geometry packages such@SAL (2013. If A andG
are two sets of polygons, we explicitly construct each poly-
gon inA andG and then compute pairwise intersections be-
tween the two setsChin and Wang1983. This algorithm

These algorithms were originally presented in terms of
quadrilateral meshes, but they can also be applied to arbi-
trary meshes. However, they never explicitly compute the ex-
change grid polygonal outlines. By explicitly computing an
exchange grid and then using that to produce the regridding
matrix, we have presented here a procedure that is conceptu-

provides not just integration formulas, but also the actualally simpler, possibly more flexible, but almost certainly not

polygonal outlines of the exchange grid.

www.geosci-model-dev.net/7/883/2014/

faster to run.
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