Examination of the performance of the Bishop & Abramowitz (2013)
independence coefficients for model selection — an idealized
experiment

The method of Bishop and Abramowitz (2013) was designed to assign weights according to
independence and performance in a model ensemble. It was not designed to select a subset of an
ensemble, the purpose for which it is used in this paper. In particular, the method calculates
weights (or coefficients) according to a models independence from the rest of the entire ensemble.
This does not guarantee that a subset of a few models with the largest magnitude independence
weights will be optimally independent from each other.

1. ldealized experiment
An idealized thought experiment demonstrates this.

Assume you want to select two as independent as possible models out of a 5 member ensemble.
For the sake of simplicity assume that all ensemble members have the same quality compared to
observations (same error variance). Further assume that models 1 and 2 (group A) are identical,
models 3, 4, and 5 (group B) are identical as well, and the models in group A are independent from
the models in group B. An optimal choice would obviously be to select one model of group A and
one model of group B.

But what would be the result of using a ranking based on the Bishop and Abramowitz (2013)
independence weights? It would assign the largest weights to both models in group A (with regard
to the entire ensemble, they are the most independent ones). l.e. the identical models 1 and 2
would be top ranked and selected. This is clearly not the desired result.

Let us test this idealized thought experiment below.

2. Testing the experiment

Clearly such a situation with identical models could not occur in a climate model ensemble. It is
also worth noting that the use of identical models results in a non-invertible covariance matrix and
hence this method cannot be applied and independence weights cannot be calculated.

The question then is: how far from identical do the models need to be for the independence
weights to identify a model from group A and a model from group B rather than 2 models from the
same group?

Here we create two error time series that fulfil the requirements of the thought experiment and
then add some random noise to each model so that the covariance matrix is invertible and
independence weights can be calculated. The time series created can be seen in Figure 1. One
group has an error of 1 for the first half of the record while the other has an error of 1 for the first
and last quarters. The noise is added to each model, at each time step, using a random number
from a normal distribution centred at 0 and with a standard deviation of 0.01. This standard
deviation represents 1% of the range of model errors.

In this case models within their groups have correlations greater than 0.999, while the correlations
with models in the other group are less than 0.004.

Based on these time series the two independence weights with the largest magnitude are indeed
from the same group as suggested by the thought experiment.

Using this experiment design we can now increase the level of noise relative to the error signal by
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Figure 1: Error time series with random normal noise using a standard deviation of 0.01.

increasing the standard deviation of the normal distribution from which the noise is sampled.

Example time series produced using random normal noise with a standard deviation of 0.1, or 10%
of the error signal, is shown in Figure 2.

In this case models within their groups have correlations greater than 0.95, while the correlations
with models in the other group are less than 0.04. Example correlation, covariance and inverse
covariance matrices are shown below Figure 3, along with the derived coefficients.

Based on these time series the two independence weights with the largest magnitude are now
from different groups. Repeating this exercise 1,000,000 times with different random noise reveals
that the desired outcome of one model from each group is achieved 87% of the time. This suggests
that even with a high signal-to-noise ratio, though some noise is required, in this idealized
experiment the independence weights will select optimally independent models almost every
time.

A second thought experiment can be considered that requires only that the covariances between
models within each group be the same, say 0.9, and the covariances between models in different
groups be the same, say 0.1. If the error variances for all models are 1 then these covariances are
equivalent to correlations. In this case, as in the first thought experiment, only two unique values
for the independence weights will be produced and a sub-optimal model selection will result.

However, if one is dealing with time series that contain some fraction of noise, perhaps from
internal variability, obtaining identical covariances are extremely unlikely. The question raised by
this thought experiment is “how much variability in covariances, within and between groups, is
required to obtain the desired result.” The test example provided here demonstrates that a very
small amount of variability in the covariances within and between groups (see Figure 3) results in
much larger differences in the inverse covariance matrix and hence the independence weights
obtained differ significantly from those obtained from the pure thought experiment. Indeed, in this
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Figure 2: Error time series with random normal noise using a standard deviation of 0.1.

test experiment only a relatively small amount of noise is required for the independence weights
to produce the desired model selection most of the time.

Correlation matrix

1 0.9764 -0.0208 -0.0279 -0.0135
0.9764 1 -0.0171 -0.0256 -0.0125
-0.0208 -0.0171 1 0.9754 0.9738
-0.0279 -0.0256 0.9754 1 0.9801
-0.0135 -0.0125 0.9738 0.9801 1
Covariance matrix
0.2669 0.2537 -0.0067 -0.0093 -0.0043
0.2537 0.2598 -0.0054 -0.0084 -0.0041
-0.0067 -0.0054 0.2566 0.255 0.2533
-0.0093 -0.0084 0.255 0.2738 0.2643
-0.0043 -0.0041 0.2533 0.2643 0.2714
Inverse covariance matrix
52.601 -51.3407 2.5037 0.881 -3.1265
-51.3407 53.9796 -2.5993 0.2713 2.1534
2.5037 -2.5993 62.6125 -31.9783 -27.283
0.881 0.2713 -31.9783 77.4949 -45.6044
-3.1265 2.1534 -27.283 -45.6044 73.5317
Independence coefficients
0.1904 0.309 0.4083 0.1335 -0.0412

Figure 3: Example correlation,covariance and inverse covariance matrices from time series
generated using random normal noise with a standard deviation of 0.1



3. Implications for use with real climate models

What implications does this idealized thought experiment have for real climate model ensembles?
One possible situation where the use of the independence weights to select models will be
sub-optimal can be identified using the ensemble correlation matrix. If the models separate into
groups such that within each group they are extremely highly correlated, while models in different
groups have almost no correlation, then this selection method will be sub-optimal. The levels of
correlation required within a group are however extremely high (above 0.96), while those between
groups are extremely low (below 0.03). When one considers that these levels need to be achieved
across the domain for multiple variables (here daily precipitation, maximum and minimum daily
temperature), it is highly unlikely that such a situation could occur with actual climate model data.

The model ensemble considered in this study shows correlations for precipitation ranging from
0.05 to 0.8, while correlations for maximum and minimum temperature range from 0.75 to 0.99.
There is also no identifiable group with very high correlations within the group and very low
correlations with models outside the group.

While the specific example considered in this idealized thought experiment is very unlikely to occur
in a real climate model ensemble, it does serve to emphasise that the independence weights
derived by Bishop and Abramowitz (2013) were not designed for this model selection purpose.
Other situations, beyond that considered here, may occur that would result in a sub-optimal model
selection. When tested on real climate model data this method of model selection has been found
to select models which act independently compared to model selection based on performance
alone (Evans et al 2013). However, this does not preclude the possibility of sub-optimal model
selection on a different, as yet untested, model dataset. This method has the advantages of
explicitly considering independence and only requiring the same data as most performance
metrics require to calculate.
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