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Abstract. This paper presents a stochastic weather generator
based on analogues of circulation (AnaWEGE). Analogues
of circulation have been a promising paradigm to analyse
climate variability and its extremes. The weather generator
uses precomputed analogues of sea-level pressure over the
North Atlantic. The stochastic rules of the generator con-
strain the continuity in time of the simulations. The generator
then simulates spatially coherent time series of a climate vari-
able, drawn from meteorological observations. The weather
generator is tested for European temperatures, and for winter
and summer seasons. The biases in temperature quantiles and
autocorrelation are rather small compared to observed vari-
ability. The ability of simulating extremely hot summers and
cold winters is also assessed.

1 Introduction

Weather generators are tools to generate random time series
of climate variables (generally precipitation, temperature or
wind speed) with realistic statistics. Such statistics can be the
mean, variance or quantiles of the variables. More sophisti-
cated statistical quantities can be evaluated (e.g. persistence,
power spectra, skewness, etc.), depending on the application
of the weather generator. Their realism is tested on meteo-
rological observations. Their use is mainly to simulate long
series at local spatial scales that are not accessible to general
circulation models (GCMs) or even regional climate models
(RCMs). Empirical probability distributions of relevant cli-
mate variables can hence be estimated from those weather
generator simulations.

Several random weather generators have been developed,
with the aim of simulating long sequences of precipita-
tion, for agronomical applications (Mavromatis and Hansen,
2001; Huth et al., 2001; Hansen et al., 2006; Semenov and
Barrow, 1997; Flecher et al., 2010; Busuioc and von Storch,
2003), by using an empirical relation between large and small
scale variability. Such tools can simulate thousands of years
with daily increments in just a few minutes. This ease of use
has been an incentive for the development of such applica-
tions.

One of the limitation of many random weather generators
is their lack of spatial coherence, unless it is imposed on the
marginal distributions of a variable at two locations or more
(Naveau et al., 2009). Such a spatial constraint is technically
difficult to impose, because there is an infinity of choices
for models of spatial covariance (Schölzel and Friederichs,
2008). Empirical methodologies considering spatial coher-
ence have been tested for precipitation in the USA (Wilks,
1999; Schoof and Robeson, 2003) or Australia (Westra and
Sharma, 2009). Stochastic models that use a decomposition
of the atmospheric circulation into weather types and their
empirical relation with surface variables have also been de-
veloped (Bissolli and Dittmann, 2001; Kreienkamp et al.,
2013) for European climate.

This paper presents a random weather generator
(AnaWEGE) based on circulation analogues (Vautard and
Yiou, 2009; Yiou et al., 2012). This weather generator pre-
serves spatial constraints by construction and can be used to
generate time series of climate variables such as temperature,
precipitation or wind speed, distributed over a continent. The
principle is similar to the one derived from weather types
(Bissolli and Dittmann, 2001; Kreienkamp et al., 2013),
although the constraint on the existence of clusters is
relaxed.
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The paper first presents the method of analogues of cir-
culation. Two stochastic methodologies are proposed for a
stochastic weather generator based on analogues of circula-
tion. The first one is a perturbation of an observed sequence
of climate variables. The second one allows one to explore
several likely sequences of a climate variable. This weather
generator is tested for temperature observations over Europe,
with a focus on time autocorrelation, and quantile properties.
The ability of the weather generator to simulate hot summers
and cold winters is also tested. The motivation stems from
an application to the energy sector, because peaks of energy
consumption occur during cold winters (for heating) and hot
summers (for air-conditioning in buildings).

2 Analogues of circulation

The preliminary step of the weather generator is to com-
pute analogues of circulation (Lorenz, 1969; Van den Dool,
1994; van den Dool, 2007; Zorita and von Storch, 1999).
This computation is done once (before using the weather
generator), and the resulting analogues are used to gener-
ate weather time series. Here, the terminology ofYiou et al.
(2012) for computing analogues of circulation is recalled.
The analogues of circulation are computed from daily sea-
level pressure (SLP) data. The data is extracted from the
National Centers for Environmental Prediction (NCEP) re-
analysis data (Kalnay et al., 1996) for daily SLP between
1 January 1948 and 31 December 2012. The SLP data have
a horizontal resolution of 2.5× 2.5◦. We focus on the North
Atlantic region (80◦ W–30◦ E; 30◦ N–70◦ N). This region is
chosen because it encompasses the atmospheric patterns that
influence surface temperature and precipitation over Europe
(Hurrell et al., 2003; Cassou et al., 2005). Of course other re-
analysis datasets or climate model simulations could be sub-
stituted to the NCEP reanalysis, for instance CMIP5 simula-
tions (Taylor et al., 2012).

Each dayj between 1 January 1948 and 31 Decem-
ber 2012 can be written:

j = y104
+ m102

+ d, (1)

wherey is the year (between 1948 and 2012),m is the month
(between 1 and 12) andd is the day (between 1 and 31). In
the sequel, days of the year are encoded in this manner. By
convention, thecalendar dayof j is:

κ(j) = m102
+ d. (2)

For each “target” dayj , the setSj of daysj ′
= y′104

+

m′102
+ d ′ is determined, wherey′

6= y, and thecalendar
distanceδ(j,j ′) betweenj andj ′ is less than 30 days. The
calendar distance is the number of days that separateκ(j)

andκ(j ′). The setSj is:

Sj = {j ′
= y′104

+ m′102
+ d ′,y′

6= y,δ(j,j ′) ≤ 30}. (3)
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Fig. 1. Scores of daily analogues for each season. Upper panel:
RMS values (in Pa). Lower panel: pattern rank correlation between
RMS analogues and actual SLP.

The analogues are computed by minimising the root mean
square (RMS) distance between SLP[j ] and SLP[j ′

] overSj :

D(j,j ′) =

[∑
x

(
SLP[x,j ] − SLP[x,j ′

]
)2]1/2

, (4)

wherex is the spatial dimension. Here the firstK = 20 ana-
logues of the target SLP of dayj are considered, i.e. the ones
achieving theK = 20 smallest RMS values overSj . The
choice of the RMS as a distance to minimise is debatable.
Other distances can be chosen (e.g. Mahalanobis or “taxi-
cab”). TheMahalanobis(1936) distance is potentially inter-
esting because it normalizes the data by their spatial covari-
ance structure. But it is a computational burden that makes it
almost ten times slower than RMS, due to repeated products
of large matrices.

For each dayj ∈ [1 January 1948, 31 December 2012],
K = 20 analogues of SLP are obtained, with daysJ k

j (k ∈

[1,K]) in years different than those ofj . For all analogues,
the spatial rank correlation between SLP[j ] and SLP[J k

j ] is
computed. This score is used to provide an objective degree
of similarity between the target SLP and its analogues: cor-
relation values lie between−1 and 1 andp values can be ob-
tained for statistical significance. The (Spearman) rank corre-
lation measures the pattern similarity, rather than the average
field proximity captured by the distance, although correlation
is not adistancein the mathematical sense.

The distribution of RMS and correlation values for the 20
first analogues are indicated in Fig.1. They are computed
for the four seasons (winter, spring, summer and fall). The

Geosci. Model Dev., 7, 531–543, 2014 www.geosci-model-dev.net/7/531/2014/
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Fig. 2. Upper panel: distribution of maximum (maxcor), median
(medcor) and 20th (mincor) rank spatial correlations of the 20 ana-
logues. Lower panel: analogue rank (between 1 and 20) for maxi-
mum (lmaxcor), median (lmedcor) and 20th (lmincor) spatial rank
correlations.

RMS values exhibit a seasonal cycle, with higher values in
the Fall and Winter. This is due to a higher variance of SLP
in the cold seasons than in the warm seasons. The correlation
values also yield a seasonal cycle, albeit with a smaller rela-
tive amplitude. High correlations are found in the winter, and
lower correlations appear in the summer. This is explained
by less contrasted spatial patterns and a lower signal to noise
ratio in the summer than in the winter, so that the average
RMS can have a small value, but the spatial patterns can be
shifted for the analogues. This was explained byYiou et al.
(2012).

In the following, for each dayj , the setJ of K = 20 ana-
logues days is written:

J = {ĵ
k
, k ∈ [1,K]}, (5)

with (decreasing) RMS values:

D = {dk, k ∈ [1,K]}, (6)

and spatial correlation values:

C = {ck, k ∈ [1,K]}. (7)

The distribution of the maximum, median and minimum
correlations of the 20 analogues is shown in Fig.2 (upper
panel). This shows that the highest correlation among the 20
analogues exceedsr = 0.6 in 75 % of cases, and the mini-
mum correlation is significantly positive in 75 % of cases.

For each day, the analogues with the maximum, median
and minimum correlations are determined. Their ranking ac-
cording to RMS value is shown in Fig.2 (lower panel). This
shows that the analogues with high, median or low correla-
tions roughly yield low, medium and high RMS values, al-
though correlations and RMS values are generally not cor-
related in time, because their analytical relationship yields
time-varying factors ( (e.g.Murphy and Epstein, 1989). This
ranking relation does not depend on the season (not shown).

In practice, the computation of circulation analogues is
done once. The weather generator is written in the R lan-
guage. It can be accelerated by parallelization, because each
analogue computation is done independently from the oth-
ers. It produces a multi-column text file. Each line represents
a day between 1 January 1948 and 31 December 2012. The
first column is the date of the target day. The 20 following
columns are for the dates of analogues. The 20 following
columns are for the RMS values. The last 20 columns are
for the Spearman spatial correlation values. It serves as input
to the weather generator.

3 Generating random sequences from SLP analogues

The goal of the weather generator is to produce a random
sequence of dates (between 1 January 1948 and 31 Decem-
ber 2012) with a temporal coherence. A random resampling
of the calendar would not be sufficient because time continu-
ity of the SLP field would be lost. Thus two methodologies
are presented for creating random samples of dates from ana-
logues in order to preserve time continuity of SLP. The ratio-
nale of those methodologies stems from dynamical system
theory and ensemble weather prediction. The first methodol-
ogy (called “static”) samples an observed trajectory of SLP
and shadows it from a random selection of analogues. The
second methodology (called “dynamic”) computes a new tra-
jectory from a selected initial condition, with a constraint of
staying on the underlying attractor.

3.1 Static weather generator

The weather generator selects random years (between 1948
and 2012). The goal is to generate ensembles of seasons
of typically 90 days. The season to be simulated is writ-
ten S (e.g. winter, spring, summer or fall). For each se-
lected random year (y), the datesjS in the seasonS are
considered. Each dayjS is replaced by a random sample of

(jS , ĵ
1
, . . . , ĵ

K
) with probabilities:

p = (p0,p1, . . . ,pK). (8)

The value ofp0 = βα1 gives a probability of choosingjS ,
i.e. not perturbing the trajectory by an analogue.α1 is a pos-
itive number controling the time persistence of the weather
generator. The probabilities{p1, . . . ,pK

} are chosen to be
proportional to the spatial correlation between analogue and

www.geosci-model-dev.net/7/531/2014/ Geosci. Model Dev., 7, 531–543, 2014



534 P. Yiou: Circulation analogue weather generator

q05

q25

q50

q75

q95

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

q05

q25

q50

q75

q95

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

q05

q25

q50

q75

q95

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

Fig. 3. Left column: 5th, 25th, 50th, 75th and 95th quantiles of summer temperature anomalies in Europe from the ECA&D set (in◦C).
Central column: differences of quantiles between observed and simulated temperature anomalies with “static” weather generator. Right
column: differences of quantiles between observed and simulated temperature anomalies with “dynamic” weather generator.

observed SLPC:

pk
= β(1+ ck)/2. (9)

β is a normalization factor so that the sum of probabilities
equals 1:

K∑
k=0

pk
= β

(
α1 +

K∑
k=1

(ck
+ 1)/2

)
= 1. (10)

This procedure randomly transforms observed trajectories
with weights on “resembling” analogues: each day is per-
turbed independently of other days on the reference trajec-
tory. It is calledstatic because the transformed trajectory
does not have the possibility of jumping to a very different

trajectory of the underlying climate attractor. This method
can be used when one wants to “replay” a particular season
or event, and assess uncertainties on temperature estimates
during this season or event by computing random but likely
surrogates of trajectories.

3.2 Dynamic weather generator

For each day (or initial condition), the next step of the tra-
jectory is estimated, knowing that there is an uncertainty in
the observation of the initial condition. Hence, the weather
generator looks at the nearest neighbours (i.e. the analogues)
of the initial condition and examine the trajectories emerg-
ing from those nearest neighbour initial conditions. The
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proposed methodology assigns probability distributions to
the nearest neighbours in order to compute random (but
likely) trajectories of the system.

The generator is initialised by a random dayj0 = 104y0 +

102m0 + d0. Let the day coming afterj0 be ĵ . This day has
K = 20 analogues:

J = {ĵ
k
, k ∈ [1,K]}, (11)

with spatial correlation values:

C = {ck, k ∈ [1,K]}. (12)

The weather generator chooses a random “next day” forj0
amongĵ and its analoguesJ . Hence a probability vector is
assigned:

p = (p0,p1, . . . ,pK) (13)

to those potential “next days”. The most likely candidate
should certainly bêj , so thatp0 is proportional to a high
valueα1. The value ofα1 controls the persistence of the gen-
erator: ifα1 is too high, the generated sequence will mostly
be consecutive days in a deterministic fashion. The probabil-
ities {p1, . . . ,pK

} are chosen to be proportional to the spa-

tial correlation and the calendar distance betweenĵ
k

andj0.
This condition ensures an average seasonal cycle in the sim-
ulated series of dates. Hence, the probabilities{p1, . . . ,pK

}

are taken as:

pk
= β(ck

+ 1)exp
(
−α2δ(ĵ

k,j0)
)
. (14)

Theα2 parameter controls the weight given to the calendar
proximity of the analogues. Ifα is large, only analogues that
have calendar dates close to the one ofj0 will be chosen. The
β parameter is determined so that the sum of probabilities
equals 1:∑K

k=0pk
=

β
(
α1 +

∑K
k=1(c

k
+ 1)exp

(
−α2δ(ĵ

k,j0)
))

= 1.
(15)

From the vector of probabilitiesp, one “next” datej1 for
j0 is sampled. The operation is then repeated for the desired
number of iterations.

The free parameters of the weather generator areα1 (per-
sistence) andα2 (seasonality). By default, the values are
α1 = 0.5 andα2 = 4. By construction, a positiveα2 ensures
that a seasonal cycle in the simulations if one is interested
in simulating long time series (and not just a large ensem-
ble of seasons). This parameter also constrains the dynamic
weather generator to flow “forward” in time, because ana-
logue dates occurring far away from the desired calendar date
have a very low probability of being drawn.

This operation can be repeated for an arbitrary number of
time steps. The outcome of this simulation is a sequencej of
dates of analogues:

j = {j0, . . . , jN }. (16)

If one is interested in simulating weather conditions for
a given season, one can initialisej0 with a random year
and a calendar day starting the season (e.g. 21 March, June,
September or December) and let the weather generator run
for 90 days and an arbitrary number of seasons.

This type of Monte Carlo simulation (simulating a large
number of seasons) can be done in parallel, in order to in-
crease the efficiency of the computation. The weather gen-
erator code has been tested on a computing server with 2 to
8 CPUs.

The goal of this method for exploiting analogues of cir-
culation is to generate potentially new sequences of (already
observed) weather patterns. For example, if the weather gen-
erator is initialised with SLP conditions at the beginning of
the summer of 2003, it is possible to assess the probability
of observing a major European heatwave by repeating sim-
ulations. The weather generator hence works like a seasonal
climate prediction, with a very large ensemble. The provided
code in R is not configured to do an actual seasonal predic-
tion.

4 Simulation of European temperatures

In this section, we are interested in simulating mean daily
temperature anomaly variations at a given location, or a set
of locations in western Europe. The goal is to combine exist-
ing observations and the sequence of dates produces by the
random analogues.

4.1 Composites of temperatures from analogues

We want simulate random temperatureanomaliesT with re-
spect to a seasonal cycle, at a given location that are coher-
ent with the large scale information given by the sequence
j = (j0, . . . , jN ) obtained in Sect.3. It is assumed that there
are daily observationsTj during the reanalysis period (j ∈ [1
January 1948, 31 December 2012]). The simulation of tem-
perature variations simply considers the set of temperatures
T̂ :

T̂ = (Tj0, . . . ,TjN
). (17)

Therefore, composite temperatures for a random selection
of analogues are determined.

The advantage of this approach appears when one wants to
simulate temperature at several stations. By construction, the
local temperature simulations are consistent with large scale
SLP on daily time scale. This implies that for each day, the
simulated temperatures at two or more locations are coher-
ent with each other. This can be achieved with models of the
multivariate dependence of several time series (Schölzel and
Friederichs, 2008; Naveau et al., 2009; Bonazzi et al., 2012).
But such a model needs to be re-evaluated if one set of obser-
vations is added or subtracted. Here, the spatial dependence
structure is provided by the SLP analogues.
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Fig. 4.Left column: 5th, 25th, 50th, 75th and 95th quantiles of summerτ (first non-positive autocorrelation lag) in ECA&D observations (in
days). Central column: differences of quantiles ofτ between observed and simulated temperature anomalies with “static” weather generator.
Right column: differences of quantiles ofτ between observed and simulated temperature anomalies with “dynamic” weather generator.

With this simple first procedure, the values ofT̂ are drawn
from the values of the observations. What changes is the se-
quence of values. For anN = 90 day season, the number
of possibilities for a simulated trajectory is of the order of
KN > 10117 if K = 20 analogues are used. If persistence
constraints of a few days are imposed, with large values of
α1, this still leaves a large number of possibilities.

In summary, the weather generator for temperature pro-
ceeds in four steps:

1. Read SLP analogues and Pareto parameters for tem-
perature at selected locations.

2. Simulation of random dates from SLP analogues
(static or dynamic).

3. Computation of temperatures for simulated dates for
selected locations.

Time series of climate variables can be saved in various for-
mats. By default, the native R binary format is used for out-
put.

4.2 Data

In principle, the weather generator can simulate tempera-
tures for any location, provided that it yields observations.

Geosci. Model Dev., 7, 531–543, 2014 www.geosci-model-dev.net/7/531/2014/



P. Yiou: Circulation analogue weather generator 537

q05

q25

q50

q75

q95

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

q05

q25

q50

q75

q95

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. Left column: differences of quantiles between observed and
simulated temperature anomalies with “static” weather generator
initiated on 21 June 2003 (in◦C). Right column: differences of
quantiles between observed and simulated temperature anomalies
with “dynamic” weather generator with a 21 June 2003 initialisa-
tion.

We opted to focus on European temperatures. The Eu-
ropean Climate Assessment and Data (ECA&D) dataset
provides a regularly updated set of observations done by
meteorological services over Europe (Klein-Tank et al.,
2002). Time series are provided on a daily timescale. The
data have been homogenized and quality checks were per-
formed by the data providers. Data and metadata available at
http://www.ecad.eu.

A subset of 291 series from the 1872 average tempera-
ture time series of ECA&D (TG) was selected. Time se-
ries starting before 1948 and ending after 2012 (hence cov-
ering the NCEP reanalysis period) were chosen. Stations
for which more than 10 % of data are missing or doubtful
were removed. This left 291 time series over Europe, with
a high density of stations in Germany. For each time series,
a seasonal cycle was computed by averaging over calendar
days between 1971 and 2000. The seasonal cycle was then
smoothed by a spline (smooth.spline function in R) with 9
degrees of freedom. The seasonal cycle was removed to daily
temperature values in order to obtain temperature anomalies.

5 Metrics and bias estimates

Here the weather generator for summer and winter tempera-
tures in Europe is tested. The weather generator is run for
100 winters and summers of 90 days. Two sets of exper-
iments were performed for each season. The first one set
is initialised with a random year between 1948 and 2011.
Such an experiment tests the climatological features of the
weather generator. The second type of experiment initialises
the weather generator from years that have experienced ex-
treme temperatures, with hot summers and cold winters. The
prototype year for hot summer is 2003 (Schaer et al., 2004).
The prototype years for cold winters is 2009. Such experi-
ments test the ability to simulate extreme temperatures (Cat-
tiaux et al., 2010).

The average daily mean temperature (TG) anomaly was
simulated for all 291 stations. The 5th, 25th, 50th, 75th and
95th quantiles of temperature were computed for the ob-
served time series (between 1948 and 2011) and the sim-
ulated time series. The comparison of quantiles allows one
to verify the probability distribution induced by the weather
generator.

The autocorrelation function was also computed for the
observed and simulated time series of temperature for each
3 month season. At lag 0, the autocorrelation function is 1
(by construction). It tends to 0 when the lag tends to infin-
ity. The first lag timeτ for which the autocorrelation is no
longer significantly positive is considered. This lagτ pro-
vides a measure of the persistence of temperature variations.
The value ofτ is computed for each simulated season. It is
then possible to compare the quantiles ofτ for the weather
generator simulations and the observed time series.

5.1 Summer temperatures

In those sets of experiments, the summers were initiated on
the 21st of June. The five quantiles (5, 25, median, 75 and
95) of temperature anomalies from the ECA&D database
are shown in Fig.3 (left column), for reference. 90 % of
temperature anomaly values range between−6 and 10◦C.
For each quantile, the differences between observations and
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Fig. 6. Left panel: observed mean summer (June to August: JJA) temperature anomaly (in◦C) in Europe for the 6 hottest summers be-
tween 1948 and 2012 (upper 90th quantile of mean JJA temperature). Right panel: probability of exceeding the 90th quantile of mean JJA
temperature in 100 simulations of the “dynamic” weather generator.

simulations are shown in Fig.3 (central and right column)
for the static and dynamic weather generators.

The static weather generator has a generally slight warm
bias (< 0.6◦C). The bias is less than 0.2◦C in France or
Great Britain.

The bias for the dynamic weather generator is slightly pos-
itive for the lower quantiles (< 0.4◦C). It yields small nega-
tive values (< 0.2◦C), especially in Germany, for the upper
quantiles.

The extreme summer conditions were simulated with ini-
tialisations on 21 June 2003. The quantile differences are
shown in Fig.5. The static weather generator, by construc-
tion, simulates high temperature differences for all quantiles,
especially for France. This is to be expected because such
simulation only alters each day of summer 2003 with ana-
logue SLP. During the summer of 2003, the weather patterns
were mostly anticyclonic, and caused the major observed
heatwave in Western Europe (Cassou et al., 2005).

The dynamic simulations yield more moderate temper-
ature positive anomalies in Western Europe, although the
anomalies have higher values for the upper quantiles. This
means that not all synoptic conditions resembling those at the
beginning of the summer 2003 lead to a major heatwave. This
was the case, for instance, for the year 2005 in Europe, which
had similar weather patterns as 2003 at the end of June, but
did not reach a heatwave at the middle of the summer. This
result however suggests that if a summer starts like the one of
2003, it is likely that it will be warmer than usual, although
cool conditions can occur too.

From the set of 100 dynamic experiments starting on
21 June 2003, the stationwise probability of simulating a
summer with an average temperature exceeding the 90th

quantile of observed mean temperature between June and
August over Europe since 1948 is computed (this corre-
sponds to the 6th hottest summer). It is found that this prob-
ability lies around 1 % in Europe. This probability exceeds
3 % in Spain, Eastern France, Switzerland and Germany
(Fig. 6). This means that, although the simulated tempera-
tures are on average warmer than usual, the probability of
obtaining an extremely warm summer is small. This test is
very conservative, because the radius of European heatwaves
is less than 1000 km, and the criterion used here considered
the whole of Europe.

5.2 Winter temperatures

In those sets of experiments, the summers were initiated on
the 21st of December. The five quantiles (5, 25, median, 75
and 95) of temperature anomalies from the ECA&D database
are shown in Fig.7 (left column), for reference. 90 % of tem-
perature anomaly values range between−14 and 10◦C. For
each quantile, the differences between observations and sim-
ulations are shown in Fig.7 (central and right column) for
the static and dynamic weather generators.

The static weather generator has a generally warm bias
(< 1◦C) (Fig.7, central column). The bias is less than 0.6◦C
in France or Great Britain. This warm bias is larger for the
extremely low quantiles (5th quantile), especially in central
Europe. The bias over Western Europe for quantiles above
the 25th are generally smaller than 0.2◦C.

The dynamic weather generator also yields a positive bias
for temperature under the 25th quantile (Fig.7, right col-
umn). This bias is lower than 0.2◦C above the 25th quantile.
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Fig. 7. Left column: 5th, 25th, 50th, 75th and 95th quantiles of winter temperature anomalies in Europe from the ECA&D set (in◦C).
Central column: differences of quantiles between observed and simulated temperature anomalies with “static” weather generator. Right
column: differences of quantiles between observed and simulated temperature anomalies with “dynamic” weather generator.

The extreme winter conditions were simulated with ini-
tialisations on 21 December 2009. The quantile differences
are shown in Fig.9. The static weather generator, by con-
struction, simulates highly negative temperature differences
for all quantiles, especially for France. This is to be ex-
pected because such simulation only alters each day of win-
ter 2009/2010 with analogue SLP. During the winter of
2009/2010, the weather patterns were locked to a negative
phase of the North Atlantic Oscillation, and caused the ma-
jor observed cold spell in Western Europe (Cattiaux et al.,
2010; Cohen et al., 2010).

The dynamic simulations yield more moderate temper-
ature negative anomalies in Western Europe (Fig.9, right
column). The temperature differences are more negative for

northern Europe (incl. Germany and Great Britain). When
they are positive (e.g. in France for the lower quantiles), the
quantile differences are smaller than for the climatological
simulations in Fig.7, right column. This implies that the sim-
ulated temperatures starting in December 2009 are colder
than the ones obtained from a random year. This also sug-
gests that a winter that starts like the 21 December 2009 is
likely to be colder than usual.

From the set of 100 dynamic experiments starting on 21
December 2009, the stationwise probability of simulating a
winter with an average temperature below the 10th quan-
tile of observed mean temperature between December and
February over Europe since 1948 is computed (this cor-
responds to the 6th coldest winter). It is found that this
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Fig. 8. Left column: 5th, 25th, 50th, 75th and 95th quantiles of winterτ (first non-positive autocorrelation lag) in ECA&D observations (in
days). Central column: differences of quantiles ofτ between observed and simulated temperature anomalies with “static” weather generator.
Right column: differences of quantiles ofτ between observed and simulated temperature anomalies with “dynamic” weather generator.

probability lies around 1 % in Europe. This probability lies
between 1 and 3 % in northern Spain, France, Switzerland
and Germany (Fig.10). This means that, although the simu-
lated temperatures are on average colder than usual, the prob-
ability of obtaining an extremely cold winter is small.

6 Conclusions and perspectives

A weather generator based on analogues of atmospheric
circulation is presented in this paper. The main feature of
this weather generator (AnaWEGE) is that it can simu-
late meteorological variables at a set of locations (in Eu-
rope) and achieve a natural spatial coherence due to physical

relationships between large scale and small scale variabil-
ity. AnaWEGE is well adapted to simulate seasons and was
tested for winter and summer. The constraints of the dynam-
ical generator (theα1 andα2 parameters) ensure that a sea-
sonal cycle is obtained if a long continuous time series is
desired.

AnaWEGE yields static and dynamic modes, and can
serve two different purposes:

– the generation of ensembles of random perturbations
of observed climate trajectories. This is useful for gen-
erating large catalogues of events (e.g. heatwaves or
coldspells). In terms of regional climate simulation,
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Fig. 9. Left column: differences of quantiles between mean ob-
served and simulated temperature anomalies with “static” weather
generator for the winter of 2009/2010 (initiated on the 21 Decem-
ber 2009). Right column: differences of quantiles between mean
observed and simulated temperature anomalies with “dynamic”
weather generator with a 21 December 2009 initialisation.

this corresponds to anudgingprocedure with observed
large scale conditions.

– the generation of ensembles of trajectories from given
initial conditions. This is useful for assessing proba-
bility distributions of events, for instance by choos-
ing initial conditions preceding the events. This feature
is similar to a numerical weather forecast, although it
uses an already computed reanalysis dataset as a basis
(or could use any model simulation). Such an option

is a very cheap alternative (albeit with no physical
constraint) to real atmospheric model simulations, al-
though large ensembles can be achieved without the
use of a supercomputer.

AnaWEGE was tested on European surface temperatures,
from the ECA&D data (Klein-Tank et al., 2002), for which
a dedicated computation of daily anomalies is provided. The
rationale for focusing on temperature was to provide a tool
to estimate background temperature extremes (especially in
winter and summer), for European energy providers. The
weather generator can be extended to simulate other climate
variables (such as precipitation or wind speed), provided that
time series of observations on the same time span as the set
of circulation analogues is available. The analogues of cir-
culation yield good skill for European precipitation (Vautard
and Yiou, 2009) and geopotential height (Yiou et al., 2012).

This weather generator can serve as a basis for more so-
phisticated weather generators, which can add layers of ran-
domness over the values that it generates. For example, one
can rectify the values of a simulated climate variable by the
weather generator by a random variable which yields similar
statistical properties. For example, values of a climate vari-
able exceeding a chosen threshold can be replaced by a sim-
ulation of a Pareto distribution (e.g.Vrac and Naveau, 2008;
Bonazzi et al., 2012).

An underlying hypothesis of the weather generator is a sta-
tionary climate, in order to simulate stationary time series,
which is certainly not true for observed European temper-
ature, although the temperature trend (≈ 0.5◦C in 50 yr) is
lower than the intra-seasonal and interannual variability.

Weather generators have been used to downscale climate
variables in simulations of future climates (Carter, 1996;
Iizumi et al., 2012). The weather generator presented here
can be used in such a configuration once circulation ana-
logues are computed for scenario simulations (Taylor et al.,
2012), provided that their SLP output is available on daily
time increments.

The computer performance of AnaWEGE might not be as
high as already existing ones (Mavromatis and Hansen, 2001;
Huth et al., 2001; Hansen et al., 2006; Semenov and Barrow,
1997; Flecher et al., 2010). It takes≈ 2 min to make 100 sim-
ulations of an 90 day season on a computer with two pro-
cessors, with the parallel option. AnaWEGE requires pack-
ages (snowfall for parallel computing and evd for optional
Pareto distributions) that are available on the R web site
(cran.r-project.org/). The source code, input data files and a
rudimentary user manual of version 1.0 can be downloaded
at: http://www-lscedods.cea.fr/AnaWEGE/.

It is designed for scientific research (no gui interface) and
the parameters can be changed easily. The season_sim_v1.R
file is a wrapper to initialise and run the weather genera-
tor. Computer system path parameters need to be adapted for
each user. The data files (analogues and mean daily temper-
ature anomalies over Europe) are provided for an immediate
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Fig. 10.Left panel: Observed mean winter (December to February: DJF) temperature anomaly (in◦C) in Europe for the 6 coldest winters
(lower 10th quantile of mean DJF temperature). Right panel: Probability of being below the 10th quantile of mean DJF temperature in 100
simulations of the “dynamic” weather generator.

use of the weather generator. The weather generator is hence
a very versatile tool, especially if one generates files of ana-
logues from other reanalyses or model simulations, and other
climate variables (from other sources).
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