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Abstract. Analytic approximations of the binary collision
rates of hydrometeors are derived for use in bulk micro-
physical parameterizations. Special attention is given to non-
spherical hydrometeors like raindrops and snowflakes. The
terminal fall velocity of these particles cannot be sufficiently
well approximated by power-law relations which are used in
most microphysical parameterizations, and therefore an im-
proved formulation is needed. The analytic approximations
of the bulk collision rates given in this paper are an alterna-
tive to look-up tables and can replace the Wisner approxima-
tion, which is used in many atmospheric models.

1 Introduction

The approximation of bulk collision rates is a classic prob-
lem in the formulation of cloud microphysical parameteriza-
tions for atmospheric models. The most common formula-
tion is the continuous growth equation which applies to par-
ticles of very different sizes and fall speeds; i.e., the size and
the fall speed of the smaller and thus slower falling particle
is neglected (Rogers and Yau, 1996; Pruppacher and Klett,
1997; Straka, 2009). In practice, collisions of different par-
ticles of similar size and fall speed do occur, and one needs
a formulation which is more general than the simple con-
tinuous growth equation. The standard approach for the col-
lision rate of two ensembles of precipitation-sized particles
goes back toWisner et al.(1972), who used the ansatz that
the velocity difference can be approximated by the differ-
ence of weighted means which then simplifies the solution

of the collision integrals. If the weighting functions are prop-
erly chosen, this Wisner approximation can recover the con-
tinuous growth equations as asymptotic limits. The main dis-
advantage of this approach is that the bulk collision rate of
the Wisner approximation becomes zero, if the difference of
the weighted mean sedimentation velocities is zero, while for
broad size distributions as they occur in nature the bulk col-
lision rate is always non-zero.

Verlinde et al.(1990) studied analytic solution of the bulk
collision integrals for generalized gamma distributions and
terminal fall velocities which can be approximated by power-
law relations. They provide exact solutions for this prob-
lem, but those include the general hypergeometric function
and are therefore difficult and expensive to evaluate.Gaudet
and Schmidt(2005, 2007) derived a generalized form of the
Wisner approximation, which overcomes some of the defi-
ciencies of the classic approximation.Straka and Gilmore
(2006) discussed the effect of non-spherical raindrops on the
bulk collision rate and argued that the usual approximation
of spherical geometry in combination with a power-law fall
speed is sufficiently accurate, but that this is the result of the
cancellation of two relatively large errors.Ćurić and Janc
(2010) showed that the use of size distributions without an
upper cutoff diameter can lead to significant errors, espe-
cially for raindrops and hail.

An alternative to the Wisner approximation was suggested
by Murakami(1990) andMizuno (1990) and later bySeifert
and Beheng(2006, SB2006 hereafter). The latter used the
variance (or standard deviation) to approximate the bulk dif-
ference of the sedimentation velocities. Like most earlier
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parameterizations SB2006 limited their formulas to power-
law relations for the terminal fall velocities.

In this paper we revisit the variance approximation intro-
duced by SB2006. Especially for raindrops and snowflakes
the power-law relations for the terminal fall velocity are not
valid for large particles. Therefore new equations are derived
which yield a better approximation for the collision rates that
involve these particles. Additionally, the SB2006 variance
ansatz is improved by introducing a more general weighting
factor. For raindrops we include the non-spherical geometry
of large raindrops for consistency with the more accurate ter-
minal fall velocity approximation.

An alternative to analytic approximations of the integrals
is look-up tables as they are used or recommended by many
previous studies in their attempt to improve the parameteriza-
tion of the collision integrals (e.g.,Walko et al., 1995; Straka
and Gilmore, 2006; Saleeby and Cotton, 2008; Thompson
et al., 2008). In our opinion, look-up tables have some dis-
advantages and their use should be limited to cases where
analytic solutions or approximations are not available. The
reasons which made us discard the use of look-up tables are
as follows:

1. Look-up tables increase the complexity of the mod-
eling system because an automatic pre-processing be-
comes necessary which guarantees that the look-up ta-
bles are consistent with the microphysical parameters
chosen for the specific simulation. This can become es-
pecially cumbersome in operational numerical weather
prediction where reproducibility is of the essence.

2. Large multi-dimensional look-up tables can become
inefficient because of the additional memory access,
especially when the tables are larger than the cache
size. On today’s supercomputers atmospheric mod-
els are often memory bandwidth limited. Doing more
floating point operations without additional memory
access can thus be more efficient than using look-up
tables.

3. Look-up tables are usually not included in the publi-
cations, nor are the corresponding source codes. This
makes it difficult to reproduce the results from such
models and hinders scientific progress.

4. While analytic approximations allow further theoret-
ical studies, e.g., to explore the sensitivity to certain
parameters or assumptions, this becomes limited to nu-
merical studies once look-up tables have been intro-
duced.

Therefore analytic approximations are in our opinion an im-
portant part of microphysical parameterizations. Another al-
ternative to look-up tables are fits with, e.g., rational func-
tions as used, for example, byFrick et al. (2013). In the
end the question of which implementation strategy is most

efficient depends very much on the application and the hard-
ware architecture of the supercomputer and the processor.

The paper is organized as follows: in Sect. 2 we review
and discuss the geometry and terminal fall velocity of rain-
drops and snowflakes and their approximation in bulk mi-
crophysical parameterizations. Sections 3 and 4 shortly in-
troduce the Wisner and variance approximation of the bulk
collision rates. In Sects. 5 and 6 we derive explicit parame-
terizations of the bulk collision rates of the collision between
graupel and rain, and between snow and rain. Section 7 deals
with the self-collection of snow. In Sect. 8 the previously in-
troduced as well as other binary collision interactions are dis-
cussed by use of quantitative error measures. Some conclu-
sions are given in Sect. 9. The Supplement contains auxiliary
figures and further technical details on the collision interac-
tions which are not in discussed in the main text.

2 Geometry and fall speeds of raindrops and snowflakes

Many hydrometeors in the atmosphere can be approximated
as spheres, and this approximation is often made in bulk mi-
crophysical models. As is well known, the assumption of
sphericity does not hold for raindrops larger than 1 mm di-
ameter because the aerodynamic pressure forces lead to an
oblate shape and oscillations (e.g.,Beard and Chuang, 1987;
Szakall et al., 2010). The axis ratio of raindrops

η =
Dr,min

Dr,max
, (1)

whereDr,min andDr,max are the minimum and maximum di-
mensions of the raindrop, is shown in Fig.1a based on the
theoretical model ofBeard and Chuang(1987), the polyno-
mial fit of Chuang and Beard(1990), and the parameteriza-
tion following Khvorostyanov and Curry(2002) given by

η(Dr,max) = exp

(
−

Dr,max

Dη

)
(2)

+

[
1− exp

(
−

Dr,max

Dη

)][
1

1+ Dr,max/Dη

]
.

The length scaleDη is a constant which we chose to
be 5.2 mm. Compared toKhvorostyanov and Curry(2002)
this is a slightly higher value, but it fits the data of
Beard and Chuang(1987) better than the 4.7 mm used
by Khvorostyanov and Curry(2002). Assuming a perfect
oblate spheroid, the mass of the raindrop is given byxr =

(π/6)ρwηD3
r,max, i.e., given the equivalent diameter of the

raindrop Eq. (2) constitutes an implicit equation for the max-
imum dimension.

For the parameterization of the bulk collision rate we need
a simpler explicit equation forDr,max as a function of the
equivalent diameterDr . In the following we use

Dr,max(Dr) = Dr exp(ωrDr), (3)
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a) axis ratio of raindrops b) Maximum dimension of raindrops

Fig. 1. Parameterization relations for non-spherical geometry of raindrops. The axis ratio as a function of equivalent diameter (left) following
from Eq. (2) with Dη =5.2 mm, the results of the Beard and Chuang (1987) model and the polynomial fit of Chuang and Beard (1990). For
the maximum diameter as a function of the equivalent diameter (right) the explicit relation Dr,max =Dr exp(ωrDr) with ωr = 33 m−1 is
used as an approximation to the implicit relation given by Eq. (2).

asymptotics, i.e., a constant value at large diameters. Most
of these relations are of the form

vr(Dr) =αr−βrexp(−γrDr) (4)

or some variant thereof. Here Dr is again the equivalent di-
ameter of raindrops, and αr, βr and γr are constant coeffi-
cients. In the following we will call Eq. (4) an Atlas-type fall
speed relation. In contrast to that, bulk microphysical param-
eterizations traditionally use the less accurate power law ap-
proximation for the terminal fall velocity (e.g. Kessler, 1969;
Liu and Orville, 1969; Lin et al., 1983, etc.), which increases
without bounds for large diameters.

Over the last decades an aerodynamic theory has been
developed, which predicts the terminal fall velocity of ar-
bitrarily shaped particles over the whole size range, i.e, a
large range of Reynolds numbers. The basic idea to apply
boundary layer theory to the problem goes back to Abraham
(1970). Later Böhm (1989, 1992) showed that the boundary
layer theory not only provides a powerful approach to treat
the large range of Reynolds numbers, but can also overcome
the difficulties of arbitrarily shaped complicated particles.
Böhm’s approach was then further developed by Mitchell
(1996) as well as Khvorostyanov and Curry (2002, 2005).

Figure 2 shows the terminal fall velocity of raindrops using
the empirical relation of Beard (1976). The theoretical model
of Khvorostyanov and Curry (2005, KC05 hereafter) agrees
reasonably well with the empirical data, but underestimates
the fall velocity of raindrops between 2 and 5 mm diameter.

The simple power law formula is as quite crude approxima-
tion and can only give a rough estimate over a limited size
range. Especially for large raindrops the power law overesti-
mates dramatically. In contrast, the Atlas-type fall speed re-
lation provides a good approximation over a large size range.
Here and in the following we have used the parameters

αr = 9.292 ms−1, βr = 9.623 ms−1, γr = 6.222×102 m−1.

The only disadvantage is that it underestimates the terminal
fall velocity of small drops, i.e., it does not approach the
Stokes law and becomes even negative for very small drops.
Nevertheless, for water drops larger than 0.1 mm diameter,
i.e. for raindrops, it provides a very good parameterization.

Snowflakes show a similar behavior to raindrops in the
sense that for large snowflakes the terminal fall velocity be-
comes approximately independent of size. The reason for
this is that the particle bulk density decreases with increas-
ing size of the snowflake, i.e., snowflakes grow faster than
constant density spheres. The geometry of snowflakes can
be described by a quadratic mass-size-relation (Locatelli and
Hobbs, 1974; Brandes et al., 2007)

xs = asD
2
s (5)

with the maximum dimension Ds, the mass of the snowflake
xs and a constant parameter as. The quadratic mass-size-
relation is typical for growth regimes dominated by aggrega-
tion as shown by Westbrook et al. (2004a,b). Such relations

Fig. 1. Parameterization relations for non-spherical geometry of raindrops. The axis ratio as a function of equivalent diameter (left) following
from Eq. (2) with Dη = 5.2 mm, the results of theBeard and Chuang(1987) model and the polynomial fit ofChuang and Beard(1990). For
the maximum diameter as a function of the equivalent diameter (right) the explicit relationDr,max= Dr exp(ωrDr ), with ωr = 33 m−1, is
used as an approximation to the implicit relation given by Eq. (2).

with ωr = 33 m−1, and Fig.1b suggests that this is a suffi-
ciently accurate approximation.

The fact that raindrops deviate from a spherical shape re-
sults in an increased cross-sectional area and a higher drag;
thus it decreases the terminal fall velocity compared to a
spherical particle of the same mass. Together with the high
Reynolds number of a falling raindrop, i.e., the effects of tur-
bulence, this explains the well-known empirical result that
the terminal fall velocity of raindrops becomes independent
of drop size for large drops, i.e., that the terminal fall velocity
approaches a constant value. Many parameterizations of the
terminal fall velocity of raindrops take this fact into account,
e.g., the formulas byBest(1950), Atlas et al.(1973), Rogers
et al. (1993) or Kogan and Shapiro(1996) give the correct
asymptotics, i.e., a constant value at large diameters. Most of
these relations are of the form

vr(Dr) = αr − βr exp(−γrDr) (4)

or some variant thereof. HereDr is again the equivalent di-
ameter of raindrops, andαr , βr andγr are constant coeffi-
cients. In the following we will call Eq. (4) an Atlas-type
fall speed relation. In contrast to that, bulk microphysical pa-
rameterizations traditionally use the less accurate power-law
approximation for the terminal fall velocity (e.g.,Kessler,
1969; Liu and Orville, 1969; Lin et al., 1983), which in-
creases without bounds for large diameters.

Over the last decades an aerodynamic theory has been
developed which predicts the terminal fall velocity of ar-
bitrarily shaped particles over the whole size range, i.e, a
large range of Reynolds numbers. The basic idea to apply
boundary layer theory to the problem goes back toAbraham

(1970). LaterBöhm(1989, 1992) showed that the boundary
layer theory not only provides a powerful approach to treat
the large range of Reynolds numbers but can also overcome
the difficulties of arbitrarily shaped complicated particles.
Böhm’s approach was then further developed byMitchell
(1996) as well asKhvorostyanov and Curry(2002, 2005).

Figure2shows the terminal fall velocity of raindrops using
the empirical relation ofBeard(1976). The theoretical model
of Khvorostyanov and Curry(2005, KC05 hereafter) agrees
reasonably well with the empirical data, but underestimates
the fall velocity of raindrops between 2 and 5 mm diameter.
The simple power-law formula is as quite crude approxima-
tion and can only give a rough estimate over a limited size
range. Especially for large raindrops the power law overesti-
mates dramatically. In contrast, the Atlas-type fall speed re-
lation provides a good approximation over a large size range.
Here and in the following we have used the parameters

αr = 9.292 ms−1, βr = 9.623 ms−1, γr = 6.222×102 m−1.

The only disadvantage is that they underestimate the terminal
fall velocity of small drops; i.e., they do not approach the
Stokes law and even become negative for very small drops.
Nevertheless, for water drops larger than 0.1 mm diameter,
i.e., for raindrops, it provides a very good parameterization.

Snowflakes show a similar behavior to raindrops in the
sense that for large snowflakes the terminal fall velocity be-
comes approximately independent of size. The reason for
this is that the particle bulk density decreases with increas-
ing size of the snowflake; i.e., snowflakes grow faster than
constant density spheres. The geometry of snowflakes can be
described by a quadratic mass–size relation (Locatelli and

www.geosci-model-dev.net/7/463/2014/ Geosci. Model Dev., 7, 463–478, 2014



466 A. Seifert et al.: Approximation of bulk collision rates
A. Seifert et al.: Approximation of bulk collision rates 5

a) terminal fall velocity of raindrops b) terminal fall velocity of raindrops (log-log axis)

Fig. 2. Terminal fall velocity of raindrops as function of equivalent diameter using different approaches. The empirical relation of Beard
(black solid line) is regarded as the reference. The aerodynamic theory of Khvorostyanov Curry (2002) can explain the empirical behavior,
but significant differences exist (grey dashed line). The power law approximation (blue dotted line) is in general inappropriate, but the
Atlas-type relation (red dash-dotted line) gives a good approximation for raindrops larger than 0.1 mm.

Table 1. Coefficients for the mass-size relation x= âDb̂, the maximum dimension as function of particle mass D= axb, the power law
terminal fall velocity v(x) =αxβ of particles with mass x and the shape parameters of the Gamma distributions f(x) =Axν exp(−Bxξ)
and f(Deq) =N0D

µ
eqexp(−λDeq). Note that for the raindrops only the spherical geometry is given here, but the non-spherical correction

is taken into account explicitly by Dr,max =Drexp(ωrDr). For the area-size relation we give the pre-factor γA in the formula A= γAD
2

where A is the cross sectional area and D is the maximum dimension.

â b̂ a b α β ν ξ µ γA

raindrops πρw/6 3.0 - - 159.0 0.2667 0.0 1/3 2.0 π/4
snowflakes 0.038 2.0 5.13 0.5 8.294 0.125 0.0 1/3 2.0 0.45(π/4)
graupel 19.51 2.8 0.346 0.357 17.5 0.17 1.0 1.0 - π/4
hail 500.1 3.18 0.142 0.314 33. 0.187 1.0 1/3 5.0 π/4

cloud ice 1.588 2.564 0.835 0.390 27.7 0.216 0.0 1/3 2.0 3/8
√

3

difference. As mentioned in the introduction, Verlinde et al.
(1990) derived a general analytic solution for particle distri-
butions in form of gamma distributions combined with power
law relations for the terminal fall velocities. However, this
analytic solution leads to the general hypergeometric func-
tion which by itself is very difficult to evaluate. In practice,
the analytic solution is computationally as expensive as the
numerical calculation of the integral itself. Therefore many
schemes do still apply the approximation introduced by Wis-
ner et al. (1972) who replaced the actual terminal fall veloc-
ity by some bulk mean value v̄ which does not depend on D.

Doing the same also for the collision efficiency yields

∂Mj,n

∂t

∣∣∣∣
coll,ij

=
π

4
Ēij |v̄i,n− v̄j,n|

∫ ∞
0

∫ ∞
0

(Di+Dj)
2 (13)

×fi(Di)fj(Dj)x
n
j dDidDj ,

and with

Cn,ij =

∫ ∞
0

∫ ∞
0

(Di+Dj)
2
fi(Di)fj(Dj)x

n
j dDidDj

(14)
we can write this as

∂Mj,n

∂t

∣∣∣∣
coll,ij

=
π

4
Ēij |v̄i,n− v̄j,n|Cn,ij . (15)

Fig. 2. Terminal fall velocity of raindrops as a function of equivalent diameter using different approaches. The empirical relation of Beard
(black solid line) is regarded as the reference. The aerodynamic theory ofKhvorostyanov and Curry(2002) can explain the empirical
behavior, but significant differences exist (grey dashed line). The power-law approximation (blue dotted line) is in general inappropriate, but
the Atlas-type relation (red dash-dotted line) gives a good approximation for raindrops larger than 0.1 mm.

Hobbs, 1974; Brandes et al., 2007),

xs = asD
2
s , (5)

with the maximum dimensionDs , the mass of the snowflake
xs and a constant parameteras . The quadratic mass–size re-
lation is typical for growth regimes dominated by aggrega-
tion as shown byWestbrook et al.(2004a, b). Such relations
are used in many bulk microphysical parameterizations; e.g.,
typical values foras are between 0.038 kg m−2 (Doms and
Schättler, 2002; Baldauf et al., 2011) andas = 0.069 kg m−2

(Wilson and Ballard, 1999; Field et al., 2005). Heymsfield
(2003, his Eqs. 4 and 5) suggests that the lower value might
be more appropriate for the tropics while the higher value is
consistent with data from mid-latitudes.

Figure 3 shows the terminal fall velocity of low-density
snowflakes withas = 0.038 kg m−2. To apply the KC05
aerodynamic model, an additional assumption about the
cross-sectional areaAs has to be made. Based on the ob-
servations ofField et al.(2008), namely the data presented
in their Fig. 3, we chose for simplicity a constant area ratio
âs = As/[(π/4)D2

s ] = 0.45. This should provide a good es-
timate for the small and medium-sized snowflakes, but might
overestimate the cross-sectional area for snowflakes larger
than 3 mm diameter and lead to an underestimation of the
terminal fall velocity. Using, on the other hand, the area–size
relationAs = 0.2285D1.88

s of Mitchell (1996) for aggregates
would result in about 20 % lower terminal fall velocities than
applying âs = 0.45. The uncertainty in the terminal fall ve-
locity of large snowflakes is obviously large, even for a given
mass–size relationship.

For the Atlas-type approximation of resulting terminal fall
velocity of snowflakes, we have the choice between a formu-
lation using equivalent diameter

vs(Deq) = αs − βs exp(−γsDeq), (6)

whereDeq is the diameter of a liquid sphere, i.e.,

Deq =

(
6xs

πρw

) 1
3

, (7)

and a formulation with maximum dimension

vs(Ds) = α̃s − β̃s exp(−γ̃sDs). (8)

Note that we useDeq for the equivalent diameter of snow and
Dr for the equivalent diameter of raindrops. This is only an
attempt to make some of the equations more readable, and
both equivalent diameters are of course identical.

To optimize the parameters in these fits, we apply the
Nelder–Mead downhill simplex method (Press et al., 1992),
and with the resulting parameter values

αs = 1.271 ms−1, βs = 1.252 ms−1, γs = 3.697× 103 m−1

α̃s = 1.206 ms−1, β̃s = 0.949 ms−1, γ̃s = 1.654 × 103 m−1

we find that the formulation using the equivalent diameter
Deq provides the more accurate fit to the KC05 terminal fall
velocity. Especially from the log–log plot in Fig.3b it be-
comes obvious that any power-law approximation can only
provide a good fit for a small size range of snowflakes, but
not for the whole relevant sizes range from, at least, 0.1 mm
to 10 mm maximum dimension.
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For all hydrometeors used in this study, the geometries,
terminal fall velocities and some further assumptions are
summarized in Table1. Hail is assumed as spherical par-
ticles with a (constant) particle density of 920 kg m−3. The
cloud ice is hexagonal plates using the relations as given by
Mitchell (1996), and for graupel we use a mass–size relation
for lump graupel ofLocatelli and Hobbs(1974). Note that
these are not necessarily the particle properties assumed in
the SB2006 two-moment scheme (or later publications using
that scheme), but instead the particle properties here are cho-
sen to span a wide, but typical, range of parameters. Some
more details are discussed in Sects. 2 and 3 of the Supple-
ment.

3 Wisner approximation

The classic gravitational collection kernel as it is found in
most textbooks (e.g.,Rogers and Yau, 1996; Pruppacher and
Klett, 1997) is given by

K(Di,Dj ) =
π

4

(
Di + Dj

)2 (9)

×
∣∣vi(Di) − vj (Dj )

∣∣Eij (Di,Dj ),

with particle diametersDi,Dj ; terminal fall velocitiesvi,vj ;
and the collision–coalescence or aggregation efficiencyEij .
For oblate spheroids the relevant particle diameters are the
maximum dimensions, while for more complicated geome-
tries one would have to use an area-equivalent spherical di-
ameter perpendicular to the fall direction. Assuming, without
loss of generality, thati is the collecting species andj the one
which is collected, the spectral collection rate for the species
j , i.e., the loss term in the budget equation of the particle size
distributionfj (Dj ), is given by

∂fj (Dj )

∂t
= −

π

4

∞∫
0

(
Di + Dj

)2
fi(Di)fj (Dj ) (10)

×
∣∣vi(Di) − vj (Dj )

∣∣Eij (Di,Dj )dDi .

As usual, the particle size distributionf (D) is defined as the
number of particles per unit volume in the size range[D,D+

dD]. Multiplication with xn
j and integration over the internal

coordinateDj leads to the bulk collision rates for the integral
moments of the collected species

∂Mj,n

∂t

∣∣∣∣
coll,ij

=
π

4

∞∫
0

∞∫
0

(
Di + Dj

)2
fi(Di)fj (Dj ) (11)

×
∣∣vi(Di) − vj (Dj )

∣∣Eij (Di,Dj )x
n
j dDidDj ;

i.e.,Mj,1 is the mass densityLj of the collected species and
Mj,0 = Nj its number density. The corresponding tendencies
of the collecting species are

∂Ni

∂t
= 0 and

∂Li

∂t
= −

∂Lj

∂t
. (12)

The integral in Eq. (11) is in general very hard to solve
analytically because of the absolute value of the fall speed
difference. As mentioned in the Introduction,Verlinde et al.
(1990) derived a general analytic solution for particle distri-
butions in the form of gamma distributions combined with
power-law relations for the terminal fall velocities. However,
this analytic solution leads to the general hypergeometric
function, which by itself is very difficult to evaluate. In prac-
tice, the analytic solution is computationally as expensive
as the numerical calculation of the integral itself. Therefore
many schemes do still apply the approximation introduced
by Wisner et al.(1972), who replaced the actual terminal fall
velocity by some bulk mean valuēv which does not depend
onD. Doing the same also for the collision efficiency yields

∂Mj,n

∂t

∣∣∣∣
coll,ij

=
π

4
Ēij

∣∣v̄i,n − v̄j,n

∣∣ ∞∫
0

∞∫
0

(
Di + Dj

)2 (13)

× fi(Di)fj (Dj )x
n
j dDidDj ,

and with

Cn,ij =

∞∫
0

∞∫
0

(
Di + Dj

)2
fi(Di)fj (Dj )x

n
j dDidDj (14)

we can write this as

∂Mj,n

∂t

∣∣∣∣
coll,ij

=
π

4
Ēij

∣∣v̄i,n − v̄j,n

∣∣Cn,ij . (15)

With the usual assumptions about the particle size distribu-
tions, the remaining integral inCn,ij can be solved quite eas-
ily.

Wisner et al.(1972) specified both bulk terminal fall ve-
locities as the mass-weighted fall speeds. A more detailed
analysis of the asymptotic behavior, which should recover
the continuous growth equations, shows that the bulk termi-
nal fall velocity of the collecting particles should be weighted
with D2 while the bulk fall speed of the collected particles
has to be weighted withD2x (Seifert, 2002). When using a
two-moment scheme the equation for the number densities
should applyD2-weighted fall speeds for both species. The
bulk velocities in the Wisner approximation are therefore cal-
culated by

v̄i,n =

∫
∞

0 vi(Di)D
2
i fi(Di)dDi∫

∞

0 D2
i fi(Di)dDi

(16)

v̄j,n =

∫
∞

0 vj (Dj )D
2
jfj (Dj )x

n
j dDj∫

∞

0 D2
jfj (Dj )x

n
j dDj

, (17)

andn = 0 applies to number density, andn = 1 to the mass
density equation. Note that for the collecting species the bulk
velocity does not depend onn; i.e., the same velocity is used
for all moments.
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a) terminal fall velocity of snowflakes b) terminal fall velocity of snowflakes (lin-log axis)

Fig. 3. Terminal fall velocity of snowflakes with the mass-size relation x= 0.038D2
s and a constant area ratio of âs = 0.45. As reference we

use the aerodynamic theory of Khvorostyanov and Curry (2002, 2005) (black solid line). The approximations are a power law (blue dashed)
and an Atlas-type relation using either equivalent diameter (red dashed) or the maximum dimension (orange dashed).

With the usual assumptions about the particle size distribu-
tions, the remaining integral in Cn,ij can be solved quite eas-
ily.

Wisner et al. (1972) specified both bulk terminal fall ve-
locities as the mass-weighted fall speeds. A more detailed
analysis of the asymptotic behavior, which should recover
the continuous growth equations, shows that the bulk termi-
nal fall velocity of the collecting particles should be weighted
with D2 while the bulk fall speed of the collected particles
has to be weighted with D2x (Seifert, 2002). When using
a two-moment scheme the equation for the number densities
should apply D2-weighted fall speeds for both species. The
bulk velocities in the Wisner approximation are therefore cal-
culated by

v̄i,n =

∫∞
0
vi(Di)D

2
i fi(Di)dDi∫∞

0
D2
i fi(Di)dDi

(16)

v̄j,n =

∫∞
0
vj(Dj)D

2
jfj(Dj)x

n
j dDj∫∞

0
D2
jfj(Dj)xnj dDj

(17)

and n= 0 applies to number density, n= 1 to mass density
equation. Note that for the collecting species the bulk veloc-
ity does not depend on n, i.e., the same velocity is used for
all moments.

4 Variance approximation

The Wisner approximation has one major disadvantage: The
collision rate becomes zero when the two bulk velocities are

equal. For polydisperse particle size distributions this is, of
course, not consistent with the original collection equation.
The true bulk collection rate will have a minimum some-
where, but it never becomes zero. One could argue that
the small collision rates close to that minimum can be ne-
glected anyway, but this may be a false conclusion. For ex-
ample, when graupel grows by collection of raindrops, then
the small graupel particles have fall speeds which are smaller
than those of raindrops, while the large graupel may have
higher fall speeds than rain, i.e., during this growth the grau-
pel has to go through the minimum in the collision rate. If the
bulk collision rate becomes zero due to the Wisner approxi-
mation, it might significantly slow down the growth of grau-
pel because just by collecting rain it is impossible to over-
come this singularity.

Murakami (1990) and Mizuno (1990) suggested a new for-
mulation of the Wisner approximation in which they replaced
the difference of the weighted means in Eq. (15) by an ad-hoc
parameterization of the velocity difference.

∂Mj,n

∂t

∣∣∣∣
coll,ij

=
π

4
ĒijCn,ij

×
√

(αM v̄i,n−βM v̄j,n)2 +γM v̄i,nv̄j,n (18)

with αM90 = βM90 = 1 and γM90 = 0.04 as given by Mu-
rakami (1990) while Mizuno (1990) uses different values.
This parameterization is, for example, used by Mansell et al.
(2010) as well as Milbrandt and Yau (2005b). The disadvan-

Fig. 3. Terminal fall velocity of snowflakes with the mass–size relationx = 0.038D2
s and a constant area ratio ofâs = 0.45. As a reference

we use the aerodynamic theory ofKhvorostyanov and Curry(2002, 2005) (black solid line). The approximations are a power-law (blue
dashed) and an Atlas-type relation using either equivalent diameter (red dashed) or the maximum dimension (orange dashed).

Table 1. Coefficients for the mass–size relationx = âDb̂, the maximum dimension as a function of particle massD = axb, the power-law
terminal fall velocityv(x) = αxβ of particles with massx and the shape parameters of the gamma distributionsf (x) = Axν exp(−Bxξ )

andf (Deq) = N0D
µ
eqexp(−λDeq). Note that for the raindrops only the spherical geometry is given here, but the non-spherical correction

is taken into account explicitly byDr,max= Dr exp(ωrDr ). For the area–size relation we give the pre-factorγA in the formulaA = γAD2,
whereA is the cross-sectional area andD is the maximum dimension.

â b̂ a b α β ν ξ µ γA

raindrops πρw/6 3.0 – – 159.0 0.2667 0.0 1/3 2.0 π/4
snowflakes 0.038 2.0 5.13 0.5 8.294 0.125 0.0 1/3 2.0 0.45(π/4)

graupel 19.51 2.8 0.346 0.357 17.5 0.17 1.0 1.0 – π/4
hail 500.1 3.18 0.142 0.314 33. 0.187 1.0 1/3 5.0 π/4
cloud ice 1.588 2.564 0.835 0.390 27.7 0.216 0.0 1/3 2.0 3/8

√
3

4 Variance approximation

The Wisner approximation has one major disadvantage: the
collision rate becomes zero when the two bulk velocities are
equal. For polydisperse particle size distributions this is, of
course, not consistent with the original collection equation.
The true bulk collection rate will have a minimum some-
where, but it never becomes zero. One could argue that the
small collision rates close to that minimum can be neglected
anyway, but this may be a false conclusion. For example,
when graupel grows by collection of raindrops, then the
small graupel particles have fall speeds which are smaller
than those of raindrops, while the large graupel may have
higher fall speeds than rain; i.e., during this growth the grau-
pel has to go through the minimum in the collision rate. If the
bulk collision rate becomes zero due to the Wisner approxi-
mation, it might significantly slow down the growth of grau-
pel because just by collecting rain it is impossible to over-
come this singularity.

Murakami(1990) andMizuno(1990) suggested a new for-
mulation of the Wisner approximation in which they replaced
the difference of the weighted means in Eq. (15) by an ad hoc
parameterization of the velocity difference.

∂Mj,n

∂t

∣∣∣∣
coll,ij

=
π

4
Ēij Cn,ij (18)

×

√
(αM v̄i,n − βM v̄j,n)2 + γM v̄i,nv̄j,n,

with αM90 = βM90 = 1 and γM90 = 0.04 as given by
Murakami (1990), while Mizuno (1990) uses different val-
ues. This parameterization is, for example, used byMansell
et al.(2010) as well asMilbrandt and Yau(2005b). The dis-
advantage of this ad hoc formulation is that the necessary
coefficients cannot be derived, and it is questionable whether
one set of coefficients is good for all possible particle types
and combinations.

Inspired by the parameterization of Murakami and
Mizuno, SB2006 introduced an approximation in which they
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parameterize the bulk velocity difference by the square root
of the second moment of the velocity differences, a quantity
which can be calculated analytically.

For the SB2006 variance formulation we write the Wisner
approximation as

∂Mj,n

∂t

∣∣∣∣
coll,ij

=
π

4
Ēij 1vn,ij Cn,ij (19)

and the bulk velocity difference is parameterized as

1vn,ij =

{
1

Nn,ij

∞∫
0

∞∫
0

[
vi(Di) − vj (Dj )

]2 (20)

×D2
i D

2
jf

m
i (Di)f

m
j (Dj )x

n
j dDidDj

} 1
2

,

with the normalization factorNn,ij given by

Nn,ij =

∞∫
0

∞∫
0

D2
i D

2
jf

m
i (Di)f

m
j (Dj )x

n
j dDidDj . (21)

Here we have introduced an additional exponentm following
a suggestion ofBlahak(2012). SB2006 originally proposed
m = 1, but this choice is not the only possible one. For the
exponentm values between one and two seem reasonable.
This exponent modifies the weight of both size distributions,
and, e.g, by giving more weight to higher moments it essen-
tially shifts the minimum of the collision rate along the inter-
nal coordinate (see Sect. 5 and Fig. 16 of the Supplement for
further details).

5 Graupel–rain collection rates

To specify the integrals of the previous section for the rim-
ing rate of graupel collecting rain, we make the following
assumptions

fr(Dr) = N0,r Dµr
r exp(−λrDr) (22)

fg(xg) = Ag xνg exp(−Bgx
ξg
g ) (23)

Dg = ag x
bg
g (24)

xr =
π

6
ρwD3

r (25)

vg = αg x
βg
g (26)

vr = αr − βr exp(−γrDr) (27)

Dr,max = Dr exp(ωrDr). (28)

First, we solve for the integral including the cross-sectional
area

Cn,gr =

∞∫
0

∞∫
0

[
Dg + Dr,max

]2 (29)

×fr(Dr)fg(Dg)x
n
r dDrdDg.

With the bulk quantities defined as̄xj = Lj/Nj and D̄j =

Dj (x̄j ) = aj x̄
bj

j for any speciesj ∈ {r,g, i, s} we find

Cn,gr = Ng Nr x̄n
r

[
δ∗

g,2D̄
2
g + 2δ∗

g,1D̄g (30)

×
λ

µ+3n+1
r

(λr − ωr)µr+3n+2

0(µr + 3n + 2)

01−n(µr + 1)0n(µr + 4)

+
λ

µr+3n+1
r

(λr − 2ωr)µr+3n+3

0(µr + 3n + 3)

01−n(µr + 1)0n(µr + 4)

]

and

δ∗

g,k =

0
(

kbg+νg+1
ξg

)
0
(

νg+1
ξg

)
0

(
νg+1
ξg

)
0
(

νg+2
ξg

)
kbg

, (31)

whereδ∗

g,2 is equal toδ0
g of Eq. (90) of SB2006. Here0(ξ)

is the gamma function which we evaluate using the method
given inPress et al.(1992). With Fortran 2008,0(ξ) becomes
part of the Fortran standard and optimized codes should be-
come readily available. Nevertheless, the evaluation of the
gamma function remains time consuming in these relations.
In most two-moment bulk schemes the shape parameters like
µr , νg, or ξg and the particle properties that determine, e.g.,
bg or βg are constant during a simulation, and therefore pa-
rameters likeδ∗

g,k or ϑ∗

p,m,k, as given by Eq. (33) below, have
to be calculated only once at the initialization of the micro-
physics scheme. However, the behavior of the particle sed-
imentation can be improved by using a diagnosticµ–λ or
shape–slope relation, i.e., by relating the shape parameters of
the size distributions to the slope or mean size of the distri-
bution (Milbrandt and Yau, 2005a; Seifert, 2008; Milbrandt
and McTaggart-Cowan, 2010). Unfortunately, this makes it
then necessary to recalculate the coefficients which include
the gamma function during runtime. A compromise is to use
the shape–slope relation only for precipitation-sized particles
outside the cloud where the gravitational sorting is domi-
nant, but to revert to a constant shape parameter inside the
clouds where the size distribution is dominated by collision–
coalescence and other growth processes. By doing so, most
parameters become again constant coefficients, and only a
few change with time. Note that with the new parameteri-
zations suggested here, fewer gamma functions occur in the
relations compared to the SB2006 parameterization, which is
based purely on power laws.

For the bulk velocity difference the assumptions lead to

1v
2
n,gr = ϑ∗

g,m,2 v̄2
g − ϑ∗

g,m,1 v̄g

[
αr − βr

(
1+

γr

mλr

)ζ
]

(32)

+α2
r − 2αrβr

(
1+

γr

mλr

)ζ

+ β2
r

(
1+

2γr

mλr

)ζ

,
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with ζ = 3n + mµr + 1 andv̄j = vj (x̄j ) and

ϑ∗

p,m,k =

0
(

kβp+2bp+mνp+k+1
ξp

)
0
(

2bp+mνp+k+1
ξp

)
 0

(
νp+1
ξp

)
m0

(
νp+2
ξp

)
βp

, (33)

which is a coefficient similar, but not equal, to Eq. (92) of
SB2006. Using these approximations the rate equations for
all moments can be parameterized. For number and mass
densities of rain we find

∂Nr

∂t

∣∣∣∣
coll,gr

= −
π

4
NgNr Ēgr (34)

×

[
δ∗

g,2D̄
2
g + 2δ∗

g,1D̄g(µ + 1)
λ

µ+1
r

(λr − ωr)µ+2

+(µ + 1)(µ + 2)
λ

µ+1
r

(λr − 2ωr)µ+3

]
×

[
ϑ∗

g,m,2 v̄2
g − ϑ∗

g,m,1 v̄g

(
αr − βr

(
1+

γr

mλr

)mµr+1
)

+α2
r − 2αrβr

(
1+

γr

mλr

)mµr+1

+ β2
r

(
1+

2γr

mλr

)mµr+1
] 1

2

and

∂Lr

∂t

∣∣∣∣
coll,gr

= −
π

4
NgLr Ēgr (35)

×

[
δ∗

g,2D̄
2
g + 2δ∗

g,1D̄g(µ + 4)
λ

µ+4
r

(λr − ωr)µ+5

+(µ + 4)(µ + 5)
λ

µ+4
r

(λr − 2ωr)µ+6

]
×

[
ϑ∗

g,m,2 v̄2
g − ϑ∗

g,m,1 v̄g

(
αr − βr

(
1+

γr

mλr

)mµr+4
)

+α2
r − 2αrβr

(
1+

γr

mλr

)mµr+4

+ β2
r

(
1+

2γr

mλr

)mµr+4
] 1

2

.

The resulting approximations using these equations in
comparison with the Wisner approximation and the equations
given by SB2006 are shown in Figs.4 and5, in which the
normalized bulk collision rates

KN,gr =
1

NrNg(D̄r + D̄g)2

∂Nr

∂t

∣∣∣∣
coll,gr

(36)

KL,gr =
1

LrNg(D̄r + D̄g)2

∂Lr

∂t

∣∣∣∣
coll,gr

(37)

are compared with the numerical solution. Note that the nor-
malized bulk collision rates have units of m s−1; i.e., they
can also be interpreted as collection velocities. These nor-
malized rates or characteristic bulk collection velocities of
number and mass give a better visual impression of the agree-
ment with the numerical solution than the collision rates

themselves, because the trivial dependencies on the number
or mass density and the cross-sectional area have been re-
moved. For the numerical solution we have applied theBerry
and Reinhardt(1973) higher-order finite-difference method
on a logarithmic grid with 450 bins (mass doubling every 8th
bin). For the particle size distribution of graupel a general-
ized gamma distribution is assumed with a graupel mass den-
sity Lg = 1 g m−3 and shape parametersνg = 1 andξg = 1.
For rain we assume a gamma distribution in equivalent diam-
eter withµr = 2 andLr = 1 g m−3.

The Figs.4a and5a show the well-known problems of
the Wisner approximation, namely that the collision rate be-
comes zero where the correct solution has its local minimum.
This is rectified by the variance approximation, and visually
the SB2006 formulation is superior to the Wisner approxi-
mation using power-law fall speeds. Using the more accurate
Atlas-type approximation of the terminal fall velocity of rain-
drops results in a much better agreement with the numerical
solution, especially for large mean raindrop diameters. This
is the case for both the Murakami and Mizuno (Figs. 4c and
5c) as well as the variance approximation (Figs. 4d and 5d).
Note that this improvement is only achieved by taking into
account both the Atlas-type fall speed and the non-spherical
geometry of the raindrops, while the approximation that ap-
ply power-law fall speeds gives better results when combined
with a purely spherical geometry as already pointed out by
Straka and Gilmore(2006). This error compensation is prob-
ably not coincidence, but reflects the consistency of the as-
sumptions. The agreement of the new variance formulation
with the numerical solution is very good for the mass colli-
sion rate, but larger errors do occur for the number rate, as is
also the case for the other approximations. For both collision
rates the optimal values for the tuning parameter,m = 1.6
for the mass rate andm = 2 for the number rate, have been
used for the new variance approximation (cf. Figs. 13 and 14
of the Supplement and corresponding text). The parameteri-
zation of Murakami and Mizuno gives a result for the mass
rate which is almost as good as for our new scheme, but is
slighly worse for the number rate. Note that we did not re-
tune and optimize the parameters of the Murakami–Mizuno
ansatz, but simply applied the values of Murakami (1990). A
quantitative error analysis is discussed in Sect. 8.

6 Snow–rain collection rates

The collection rate of snow and rain is an example of the
case of both terminal fall velocities being approximated by
Atlas-type relations. For the raindrops we do again take into
account the non-spherical correction, but for the snowflakes
this is already included in thexs ∼ D2

s relationship. Com-
bined with two gamma distributions in equivalent diameter
the assumptions are

fr(Dr) = N0,r Dµr
r exp(−λrDr) (38)
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a) Wisner approx. using power-law fall speed b) SB2006 using power-law fall speed

c) Murakami-Mizuno approx. using Atlas-type fall speed d) Variance approx. using Atlas-type fall speed

Fig. 4. Normalized mass collision rate for graupel and rain using different approximations (dashed) compared to a numerical solution of
the collision integral (solid) as a function of the raindrop mean volume diameter for different mean volume diameters of the graupel size
distribution.

tational expense might be acceptable. The error of the ap-
proximations as measured by the symmetric mean absolute
percentage error (SMAPE) is in general below 10 %. Given
the numerous uncertainties and assumptions in such schemes
like particle geometries, terminal fall velocity, collision and
sticking efficiencies, particle size distributions etc., this error

seems acceptable.

To achieve the best possible result for a specific collec-
tion rate a calibration of the ansatz using the exponent m,
cf. Eq. (20), is necessary, but in most cases m= 1.5 for mass
and m= 2 for number rates of the interaction of two dif-
ferent species, and m= 1 for selfcollection provides a good

Fig. 4. Normalized mass collision rate for graupel and rain using different approximations (dashed) compared to a numerical solution of
the collision integral (solid) as a function of the raindrop mean volume diameter for different mean volume diameters of the graupel size
distribution.

fs(Deq) = N0,s Dµs
eq exp(−λsDeq) (39)

xs = as D2
s (40)

xr =
π

6
ρwD3

r (41)

vs = αs − βs exp(−γsDeq) (42)

vr = αr − βr exp(−γrDr) (43)

Dr,max = Dr exp(ωrDr). (44)

Note that bothDeq andDr are equivalent diameters, i.e., the
diameter of a liquid water sphere. HereDeq is used for the
equivalent diameter of snowflakes andDr for the equivalent
diameter of raindrops, whileDs and Dr,max are the corre-
sponding maximum dimensions.
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a) Wisner approx. using power-law fall speed b) SB2006 using power-law fall speed

c) Murakami-Mizuno approx. using Atlas-type fall speed d) Variance approx. using Atlas-type fall speed

Fig. 5. As Fig. 4, but for the normalized number collision rate of graupel and rain.

approximation.

Whether the analytic approximations resulting from the
variance approach are computationally more efficient than
a look-up table will depend on the specific implementation
and even more on the detailed architecture, cache size and
memory bandwidth of the processor, i.e., whether the perfor-

mance of the model is already limited by memory bandwidth.
In such cases the look-up table leads to additional memory
access which can become a serious performance issue and
the additional floating point operations necessary for the an-
alytic equations of the variance approximation can then be
the smaller computational burden.

Fig. 5. As Fig.4 but for the normalized number collision rate of graupel and rain.

For the collection kernel we use the approximation
(Connolly et al., 2012)

K(Dr ,Deq) =

[
A

1
2
r + A

1
2
s

]2

|vr − vs |Esr (45)

=
π

4

[
Dr,max(Dr) + â

1
2
s Ds(Deq)

]2

×|vr(Dr) − vs(Deq)|Esr ,

which takes into account the area ratio of snowâs . Al-

ternatively, one could say that for snowflakesâ
1
2
s Ds is the

area-equivalent spherical diameter perpendicular to the fall
direction.

With these assumptions we find the bulk collision rates for
the number density

∂Nr

∂t

∣∣∣∣
coll,sr

= −
π

4
NsNr Ēsr (46)

×

[
âsD̄

2
s + 2δ∗

s D̄s â
1
2
s (µr + 1)

λ
µ+1
r

(λr − ωr)µr+2

+(µr + 1)(µr + 2)
λ

µ+1
r

(λr − 2ωr)µr+3

]
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a) Wisner approx. using power-law fall speeds b) SB2006 using power-law fall speeds

c) Murakami-Mizuno using Atlas-type fall speed d) Variance approx. using Atlas-type fall speeds

Fig. 6. Normalized mass collision rate for snow and rain using different approximations (dashed) compared to a numerical solution of
the collision integral (solid) as a function of the raindrop mean volume diameter for different mean volume diameters of the snow size
distribution.

How the revised and improved formulations of the termi-
nal fall velocities and the bulk collision rates affect the sim-
ulations of clouds and precipitation will be investigated in a
future study.

The Fortran code to evaluate, test and optimize the vari-
ance approximation of the bulk collision integrals for a given

set of particle assumptions is available from the correspond-
ing author. It is planned to make this code publicly available
as part of the UCLA-LES code at http://gitorious.org/uclales
when the new relations have been implemented and tested in
the SB two-moment microphysics scheme.
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Fig. 6. Normalized mass collision rate for snow and rain using different approximations (dashed) compared to a numerical solution of
the collision integral (solid) as a function of the raindrop mean volume diameter for different mean volume diameters of the snow size
distribution.
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a) Wisner approx. using power-law fall speeds b) SB2006 using power-law fall speeds

c) Murakami-Mizuno approx. using Atlas-type fall speed d) Variance approx. using Atlas-type fall speeds

Fig. 7. As Fig. 6, but for the normalized number collision rate of snow and rain.
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0
(
µs +
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0
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1
2 (µs + 4)

. (48)

Figures6 and7 compare the four different parameterizations
for the bulk collision rates. For both rain and snow, we as-
sume a gamma distribution in equivalent diameter with a
mass density ofLr = Ls = 1 g m−3, and the shape param-
eters areµr = 2 andµs = 2. For the collision rate of rain
and snow the standard Wisner approximation with power-law
fall gives reasonable results except for the minimum of the

Geosci. Model Dev., 7, 463–478, 2014 www.geosci-model-dev.net/7/463/2014/



A. Seifert et al.: Approximation of bulk collision rates 475

collision rate which occurs for drizzle drops. This is fixed by
the SB2006 approximation, which gives a good approxima-
tion of the whole size range. The Murakami–Mizuno approx-
imation with Atlas-type fall speeds can improve the collision
rates for the very large raindrops when compared to SB2006,
but suffers from the underestimation of the minimum. The
new variance approximation is therefore the best parameter-
ization as it combines both improvements over the classic
Wisner approximation. To achieve the good agreement, the
calibration exponentm is necessary; here we findm = 1.5
for mass andm = 2 for number.

7 Self-collection of snow

Self-collection rates, i.e., loss of particles due to collisions
with particles of the same species, cannot be parameter-
ized by the Wisner approximation. Therefore most double-
moment schemes revert to look-up tables and some apply the
analytic solution ofPassarelli(1978) or the more general one
of Verlinde et al.(1990). The analytic solutions are restricted
to power-law fall speed relations and include the Gaussian
hypergeometric function, which makes them expensive in the
case of a time-dependent shape parameterµs .

With the assumptions

fs(Deq) = N0,s Dµs
eq exp(−λsDeq) (49)

Ds = a
−

1
2

s x
1
2
s =

(
πρw

6as

) 1
2

D
3
2
eq (50)

vs = αs − βs exp(−γsDeq) (51)

the variance approximation can easily be applied to the self-
collection rate of snowflakes, and the resulting parameteriza-
tion
∂Ns

∂t

∣∣∣∣
coll,ss

= −
π

2
√

2
βsN

2
s D̄2

s âs

(
1+ δ∗2

s

)
(52)

×

[(
1+

2γs

mλs

)−(mµs+1)

−

(
1+

γs

mλs

)−2(mµs+1)] 1
2

is relatively simple and computationally efficient. A com-
parison with the numerical solution of the integral forLs =

1 g m−3 is given in Fig.8 for three values of the shape pa-
rameterµs . This shows that the parameterization provides
a good but not perfect approximation and is able to capture
the dependency on the shape parameterµs correctly. For the
calibration exponent we have chosenm = 1. Taking into ac-
count the Atlas-type fall speed relation is clearly superior to
the simple power-law fall speed of the SB2006 formulation
which is shown for comparison. The numerical solution us-
ing power fall speeds should be very close to the analytic
solutions ofPassarelli(1978) andVerlinde et al.(1990) and
provide also the reference for the SB2006 approximation.
This shows that the main advantage of the refined variance
approximation comes from the use of the Atlas-type velocity
relations.

Fig. 8. Normalized bulk number collision rate in m s−1 for the
self-collection of snow as a function of the mean maximum diam-
eter of snowflakes. Shown are the results for three different values
of the gamma shape parameter,µs = 2, µs = 6 andµs = 10, for
the SB2006 approximation (dotted), the revised variance approxi-
mation using the Atlas-type terminal fall velocity (dashed) and the
numerical solution of the integral with Atlas-type (solid) and power-
law (dash-dotted) fall speed.

8 Other collection rates

The previous sections have shown three examples of hy-
drometeor collision rates which include non-spherical par-
ticles, and applying an Atlas-type fall speed approximation
and the variance formulation of the differential fall velocity
seems to be an appropriate parameterization. This basically
applies to all collision rates that include either raindrops or
snowflakes. Further examples are discussed in the Supple-
ment. Here we show some quantitative error measures which
help to summarize the quality of the various approximations
for such collision interactions. As error measures we have
chosen the root mean square error (RMSE)

RMSEφ,ij =

√√√√1

n

n∑
z=1

(Kφ,ij,num−Kφ,ij,para)2 (53)

and the symmetric mean absolute percentage error (SMAPE)

SMAPEφ,ij =
1

n

n∑
z=1

|Kφ,ij,num−Kφ,ij,para|

Kφ,ij,num+Kφ,ij,para
. (54)

Hereφ can either beN for the number rate orL for the mass
rate, andi,j identify the chosen binary collision interac-
tion. Using a simple relative error instead of SMAPE would
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Fig. 9. Root mean square error (RMSE, left) and symmetric mean absolute percentage error (SMAPE, right) of the normalized bulk number
and mass collection rates for seven different binary collision interactions.
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Fig. 9. Root mean square error (RMSE, left) and symmetric mean absolute percentage error (SMAPE, right) of the normalized bulk number
and mass collection rates for seven different binary collision interactions.

give an advantage to the Wisner approximation, because in
the standard relative error overestimations are more strongly
penalized than underestimations. Note that the RMSE de-
pends strongly on the normalization of the rates. Applying
the RMSE directly to the number and mass rates can give
very misleading results, because then only some asymptotic
regime may dominate the error. Using the normalization

KN,ij =
1

NiNj (D̄i + D̄j )2

∂Ni

∂t

∣∣∣∣
coll,ij

(55)

KL,ij =
1

LiNj (D̄i + D̄j )2

∂Li

∂t

∣∣∣∣
coll,ij

(56)

is an attempt to give the errors of all particle sizes a more
similar weight.

The quantitative results for seven different collisions in-
cluding either rain or snow and other species like graupel,
hail or cloud ice in the form of hexagonal plates are shown
in Fig. 9. When using SMAPE as a metric, the most difficult
collision interaction is the one between cloud ice and snow,
because the fall speeds of both species are very similar. The
simple Wisner approximation leads to errors in SMAPE of
about 20–35 %, which can be reduced below 10 % by using
the variance parameterization as suggested here. The ansatz
of Murakami and Mizuno shows a significant improvement
over the Wisner approximation (even for a Wisner approx-
imation which makes use of the Atlas-type fall speed re-
lations). That the variance approximation is slightly worse
than the Wisner approximation for the collection of snow by
hail is due to the fact that the variance approximation is not
asymptotically consistent with the continuous growth solu-
tion, at least not perfectly, but for the hail–snow collection
the errors of all parameterization are actually small. In that

case the Wisner approximation would be, on the one hand,
the method of choice if computational efficiency is impor-
tant. On the other hand, the variance approximation may be
more flexible and robust, e.g., in the case of sensitivity stud-
ies in which the fall speeds of hail and snow are changed.

9 Conclusions

We have presented an approach for the approximation of bulk
collision rates of non-spherical hydrometeors undergoing bi-
nary collisions. FollowingSeifert and Beheng(2006) we use
the variance approximation of the differential fall speed to ar-
rive at integrals that can be evaluated analytically. The result-
ing parameterization equations are more complicated than
the standard Wisner approximation, which so far has been
used in most atmospheric models, but given that those pa-
rameterizations are only a very small part of a numerical
weather prediction or cloud-resolving model the additional
computational expense might be acceptable. The error of the
approximations as measured by the symmetric mean absolute
percentage error (SMAPE) is in general below 10 %. Given
the numerous uncertainties and assumptions in such schemes
like particle geometries, terminal fall velocity, collision and
sticking efficiencies, particle size distributions, etc., this error
seems acceptable.

To achieve the best possible result for a specific collec-
tion rate, a calibration of the ansatz using the exponentm,
(cf., Eq.20) is necessary, but in most casesm = 1.5 for mass
andm = 2 for number rates of the interaction of two differ-
ent species, andm = 1 for self-collection provides a good
approximation.
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Whether the analytic approximations resulting from the
variance approach are computationally more efficient than
a look-up table will depend on the specific implementation
and even more on the detailed architecture, cache size and
memory bandwidth of the processor, i.e., whether the perfor-
mance of the model is already limited by memory bandwidth.
In such cases the look-up table leads to additional memory
access, which can become a serious performance issue, and
the additional floating point operations necessary for the ana-
lytic equations of the variance approximation can then be the
smaller computational burden.

How the revised and improved formulations of the termi-
nal fall velocities and the bulk collision rates affect the sim-
ulations of clouds and precipitation will be investigated in a
future study.

The Fortran code to evaluate, test and optimize the vari-
ance approximation of the bulk collision integrals for a given
set of particle assumptions is available from the correspond-
ing author. It is planned to make this code publicly available
as part of the UCLA-LES code athttp://gitorious.org/uclales
when the new relations have been implemented and tested in
the SB two-moment microphysics scheme.

Supplementary material related to this article is
available online athttp://www.geosci-model-dev.net/7/
463/2014/gmd-7-463-2014-supplement.pdf.
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