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Abstract. We evaluate the ensemble spread at seasonal-to-
interannual timescales for two perturbation techniques im-
plemented in the ocean component of a coupled model:
(1) lagged initial conditions as commonly used for decadal
predictions; (2) bred vectors as commonly used for weather
and seasonal forecasting. We show that relative to an unini-
tialized reference simulation the implementation for bred
vectors can improve the ensemble spread compared to lagged
initialization at timescales from one month up to three years.

As bred vectors have so far mostly been used at short
timescales, we initially focus on the implementation of the
bred vectors in the ocean component. We introduce a depth-
dependent vertical rescaling norm, accounting for the vertical
dependence of the variability, and extending the commonly
used upper-ocean rescaling norm to the full water column.
We further show that it is sufficient for the (sub-surface)
ocean to breed temperature and salinity (i.e., scalar quanti-
ties), and rely on the governing physics to carry the tempera-
ture and salinity perturbations to the flow field.

Using these bred vectors with a rescaling interval of 12
months, we initialize hindcast simulations and compare them
to hindcast simulations initialized with lagged initial condi-
tions. We quantify the ensemble spread by analyzing Tala-
grand diagrams and spread–error ratios. For both tempera-
ture and salinity, the lagged initialized ensemble is particu-
larly under-dispersive for the first few months of predictable
lead time. The ensemble initialized with bred vectors im-
proves the spread for temperature and salinity for the 0–
700 m and 1000–3500 m means, compared to the lagged en-
semble at lead times of several months to one year. As the
lead time increases to years, the differences between the two
ensemble initialization techniques become more difficult to

discern. While the results need to be confirmed in an initial-
ized framework, the present analysis represents a first step
towards improved ensemble generation at the transition from
seasonal to interannual timescales, in particular at lead times
up to one year.

1 Introduction

The forecast skill of an ensemble mean is generally more
skillful than that of a single deterministic forecast (e.g.,
Lorenz, 1965; Epstein, 1969; Leith, 1974). An ensemble
forecast can provide information pertaining to the likelihood
of the occurrence of a particular event, which a single de-
terministic forecast cannot provide. Hence, ensemble fore-
casting and the generation of the ensemble has itself been
discussed extensively in numerical weather prediction for a
variety of different techniques (e.g.,Toth and Kalnay, 1997;
Hamill et al., 2000; Wang and Bishop, 2003; Keller et al.,
2010). For weather forecasting, typically only atmospheric
perturbations are required.

At seasonal timescales, it also becomes important to per-
turb the ocean. Ensemble generation methods are typically
implemented with the awareness that ocean perturbations are
important, though the effect has mostly been studied for the
surface ocean. For example, singular vectors in combina-
tion with stochastic optimal wind perturbation (Cheng et al.,
2010), perturbing the model coupling physics (Luo et al.,
2005) and also the implementation of bred vectors (Cai et al.,
2003), have been studied. Beyond two months most tech-
niques showed too little ensemble spread as compared to the
forecast error (Vialard et al., 2005).
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Predictability at longer than seasonal timescales is thought
to reside in the slowly varying components of the climate
system. Recently, several studies have shown multi-year pre-
dictive skill for example for surface temperature, hurricane
frequency or the Atlantic meridional overturning circulation
(Smith et al., 2007, 2010; Matei et al., 2012). Addition-
ally, a variety of perfect model studies have analyzed the
predictability of the climate system at multi-year timescales
(e.g.,Pohlmann et al., 2013). However, the issue of ensem-
ble generation has played an ancillary role, and most studies
used simple techniques to perturb their hindcast ensemble
simulations.

Du et al.(2012) compared the impact of three perturbation
strategies, atmosphere only, ocean only, and atmosphere–
ocean. They find that for atmospheric variables the spread
grows at a similar rate independent of the perturbation
method. For ocean-related variables, especially at the sub-
surface, the spread is sensitive to oceanic perturbations.Du
et al.(2012) conclude that any decadal forecast system needs
to consider carefully how to perturb the oceanic initial con-
ditions.

Here, we compare two ensemble perturbation methods in
the ocean component of a coupled climate model at seasonal-
to-interannual multi-year timescales: (1) one-day lagged ini-
tialization, a simple ensemble perturbation technique com-
monly used in multi-year prediction studies (e.g.,Müller
et al., 2012), and (2) the implementation of bred vectors as
developed within the context of numerical weather predic-
tion (Toth and Kalnay, 1993). Breeding is based on the prin-
ciple that the difference between an unperturbed and a per-
turbed simulation, i.e., the bred vector, carries information
about the fastest growing modes of the model. Bred vectors
are regularly rescaled following a pre-defined norm, and sub-
sequently used as initial perturbations for a new round of un-
perturbed and bred simulations. From a practical standpoint,
breeding is an attractive method for ensemble generation as it
is relatively simple to implement, yet the resulting perturba-
tions are representative of the model dynamics (Keller et al.,
2008).

We implement bred vectors in the ocean component of
ECHAM/MPIOM, a coupled climate model that has been
used extensively for (perfect model) multi-year prediction
experiments (e.g.,Pohlmann et al., 2009; Matei et al., 2012).
To investigate the impact of oceanic perturbations, we only
perturb the ocean component, while the atmospheric com-
ponent runs freely. We perform perfect model experiments,
in which the reference for the breeding is taken to be the
unperturbed freely running model. At the expense of being
limited to using the model itself as a reference when quan-
tifying the ensemble spread, we avoid the issue of model
drift that is commonly associated with initialized simulations
(e.g.,Pohlmann et al., 2009; Kröger et al., 2012). Such a drift
is likely to dominate the variability at short lead times, hence
bred vector-generated variability and drift are difficult to sep-
arate.

Our breeding implementation focuses on the oceanic com-
ponent within the coupled model, as well as on the transi-
tion from seasonal to multi-year timescales. Previous stud-
ies applying breeding in the oceanic part focused on the
(near-)surface and sub-seasonal rescaling periods (e.g.,Cai
et al., 2003; Yang et al., 2006, 2009; Hoffman et al.,
2009), though longer breeding cycles have been studied at
interannual-to-decadal timescales (Vikhliaev et al., 2007).
Here, we therefore initially test the breeding implementation,
extending it to include the full water column. After testing the
breeding implementation, we compare the ensemble spread
of a set of ensemble hindcasts initialized with either bred
vector perturbations or lagged initialization. In the ensem-
ble spread analysis, we focus on the critical transition from
seasonal to (multi-)year lead times.

2 Model description

We use an updated version of the ECHAM5-MPIOM cou-
pled climate model as used for the IPCC AR4 (Jungclaus
et al., 2006). Here, the ECHAM5 atmospheric component
(Roeckner et al., 2003) is implemented on a spectral grid at
T31 resolution with 19 vertical levels. The MPIOM oceanic
component (Marsland et al., 2003) is implemented on an or-
thogonal curvilinear C-Grid. The northern grid pole is shifted
to Greenland, avoiding the singularity at the geographical
North Pole. The resulting horizontal resolution is on average
about 3◦; the vertical resolution is 40 non-equidistantz lev-
els. The atmospheric and oceanic components are coupled
with the Ocean-Atmosphere-Sea Ice-Soil (OASIS3) coupler
(Valcke, 2006). No flux corrections are applied. The model
setup is the same as used in the decadal prediction analy-
sis of Kröger et al.(2012) andPohlmann et al.(2013), and
we use the same model version but in coarser resolution as,
e.g., Pohlmann et al.(2009). To avoid model drift, which
is commonly associated with hindcast simulations started
from an assimilation experiment, we constrain the present
analysis to perturbations of the uninitialized freely running
model. We use a twentieth century simulation forced with ob-
served greenhouse gas concentrations, and refer to this freely
running simulation as our reference simulation. Simulations
start from 1 January 1970, and we analyze output averaged
to monthly means.

3 Bred vector implementation

3.1 Description

Bred vectors were developed in the 1990s for numeri-
cal weather prediction (Toth and Kalnay, 1993), and have
been applied extensively within this context (e.g.,Toth and
Kalnay, 1997). To compute bred vectors, a series of steps
is necessary, usually termed thebreeding cycle. We first
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describe the breeding cycle in general terms, and subse-
quently present our specific implementation:

1. Small random perturbations are added to a reference
simulation. Here, we use the difference between the
state of the free model at different times at one-month
intervals as initial perturbations for the breeding ex-
periments. However, the specific choice of these ini-
tial perturbations is not important, as the structure of
these initial perturbations is lost after a few breeding
cycles are completed (Toth and Kalnay, 1993; Yang
et al., 2006).

2. Both the unperturbed reference simulation and the per-
turbed initial conditions are then integrated forward for
a short period of time in which the perturbations grow
and propagate.

3. The unperturbed reference simulation is subtracted
from the perturbed simulation.

4. The difference between the reference simulation and
the perturbed simulation is rescaled using the same
procedure as is subsequently used for the breeding it-
self: the amplitude of the difference is rescaled so that
it has the same norm as the variability in the reference
simulation.

5. The rescaled perturbations are added to the reference
simulation, providing the initial conditions for the new
perturbed simulation.

6. Both the unperturbed reference simulation and the per-
turbed simulation are again integrated forward.

7. The breeding cycle itself consists of steps 3 to 6, re-
peated iteratively. Here, we allow for a period of 2 yr
with monthly normalization until the bred vectors have
lost their memory of the initial perturbations, and re-
semble the fastest growing modes of the model. Sub-
sequently, the breeding experiments consist of 10 en-
semble members, each initialized from a different ini-
tial perturbation, and are run for 10 yr.

For the implementation of the breeding algorithm the
length of the breeding cycle (step 3) and the size of the rescal-
ing norm (step 4 of the breeding cycle) have to be chosen.
The exact choice of both parameters depends on the dynami-
cal modes of interest. The length of the breeding cycle should
be chosen to isolate the slowly varying dynamical modes
(e.g., Pena and Kalnay, 2004; Yang et al., 2006). Typical
breeding cycles have a length of several hours in the atmo-
sphere (e.g.,Toth and Kalnay, 1993), and month(s) to years
in ocean (e.g.,Yang et al., 2006; Vikhliaev et al., 2007). For
coupled instabilities, the length of the breeding cycle needs
to be longer than weather instabilities take to saturate well
(Cai et al., 2003). Vikhliaev et al. (2007) use breeding cy-
cles of 6 months and 10 yr to isolate seasonal-to-interannual

and decadal modes of variability in the mid-latitude North
Pacific.

The size of the rescaling norm influences the amplitudes
of the bred vectors, while it does not influence the structure
of the bred vectors (Cai et al., 2003). Usually, the amplitude
of the perturbation is calculated for one variable, and the re-
sulting rescaling factor is applied to all variables (Vikhliaev
et al., 2007). For coupled instabilities, the norm should be
chosen to (also) represent the sub-surface ocean, i.e., mea-
suring the perturbations in the slowly evolving component
(e.g.,Yang et al., 2006). However, small differences in the
choice of the norm do not significantly affect the resulting
bred vectors (Vikhliaev et al., 2007).

For the implementation of oceanic bred vectors, the breed-
ing implementation ofYang et al.(2006) has been repeat-
edly used as a reference setup (e.g.,Vikhliaev et al., 2007).
Yang et al.(2006) use a one-month breeding cycle and a
norm in the equatorial Pacific covering the Niño3.4 region
(15◦ S–15◦ N, 120◦ E–90◦ W). To derive the rescaling factor,
the upper ocean temperature (0–200 m) is averaged over the
Niño3.4 area. All model variables are then normalized with
a constant factor, for example 0.085◦C (Yang et al., 2006).
We describe below how we modify this breeding implemen-
tation.

3.2 Implementation

Here, we implement bred vectors to perturb the sub-surface
ocean for seasonal-to-interannual ensemble prediction exper-
iments. Hence, we implement bred vectors in the oceanic
component of the coupled model, while the atmosphere
is running freely. Similarly toYang et al.(2006), we fo-
cus on the equatorial Pacific to assess the implementation
of the bred vectors. Restricting the implementation of the
bred vectors to the oceanic component is likely to prevent
the development of bred vectors at shorter timescales. For
the seasonal-to-interannual timescale of interest, the ENSO
mode is the dominant mode of variability in the tropics, more
pronounced in the sub-surface temperature than in the sur-
face temperature (Vikhliaev et al., 2007). For the parameters
of the bred vector implementation we make the following
choices.

For the length of the breeding cycle, we select 12 months.
In the unperturbed reference simulation, anomalies form in
the eastern equatorial region of the Pacific basin at the start
of summer, and move westward along the equator during the
next few months. Hence, the breeding cycle needs to be long
enough to allow anomalies to form in the eastern Pacific, and
propagate westwards. For short breeding cycles (for example
one month), anomalies are allowed to form, but their ampli-
tudes are reduced significantly shortly after they form, and
the westward propagation of these anomalies cannot occur
(not shown).

For the size of the rescaling norm, we extend the typi-
cal mean temperature upper ocean norm to a norm covering

www.geosci-model-dev.net/7/453/2014/ Geosci. Model Dev., 7, 453–461, 2014



456 J. Baehr and R. Piontek: Ocean ensemble generation through bred vectors

the full water column. As the variability in temperature and
salinity significantly decreases at deeper levels, we imple-
ment a norm that reflects the decreasing amplitude of vari-
ability at depth. This approach is similar to what is used in
oceanic state estimates (e.g.,Stammer et al., 2002). The bred
vectors are normalized individually for each depth level to be
ten percent of the root mean square (RMS) profile, ensuring
an appropriate amplitude of the perturbation in each layer.
The exact choice of the normalization factor is considerably
less important than covering the full vertical extent with the
norm (not shown).

Instead of applying breeding to all field variables in the
model, we limit breeding to temperature and salinity, i.e.,
to scalar quantities. In test experiments, we find no signifi-
cant differences between implementing breeding for all field
variables (that is, including the velocity field) and restrict-
ing breeding to temperature or temperature and salinity (not
shown). By restricting breeding to temperature and salinity
fields, we rely on the governing physics to carry the tem-
perature and salinity perturbations to the velocity field. We
further avoid any potential conflict between perturbations in-
duced in the flow field through breeding the temperature and
salinity fields only, and perturbations induced in the flow
field through breeding the velocity fields themselves.

3.3 Results

Similarly to Yang et al.(2006), we assess the implementa-
tion of the bred vectors by analyzing the spatial structure
of the variability of the sea surface temperature (SST) and
the upper ocean heat content in the equatorial Pacific. The
anomalies of the unperturbed reference experiment show the
expected ENSO characteristics in the equatorial Pacific, i.e.,
an east–west SST gradient (Fig.1a). The resulting bred vec-
tor regression map shows an anomaly in the equatorial Pa-
cific (Fig. 1b), spatially corresponding to the characteristic
ENSO structure seen in the unperturbed simulation. The in-
tensity in the central Pacific is slightly weaker than in the
unperturbed simulation, and the anomaly does not fully ex-
tend to the western boundary, but the essential features of
the unperturbed simulation are reproduced. Also, outside of
the equatorial Pacific, other structures can be identified in the
same locations in both the breeding simulation and the unper-
turbed simulation (for example in the northern Pacific and in
the northern Atlantic).

The regression maps for the temperature averaged over 0–
200 m indicate generally similar characteristics (Fig.1c, d)
as the SST (Fig.1a, b). The unperturbed simulation shows
an anomaly from the eastern boundary of the equatorial Pa-
cific into the central Pacific, though weaker than for the SST
alone, and negative anomalies occur in the western tropical
Pacific (Fig.1c). The regression map for the bred vectors
generally captures these characteristics, although for the bred
vectors, the negative anomalies extend further into the central
equatorial Pacific than the positive anomalies.
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Fig. 1. Regression of Niño3.4-Index on SST anomalies (top) and 0-200m temperature (bottom) averaged
over the Niño3.4-region for the unperturbed simulation (left; a and c), and the breeding experiment (right;
b and d). Colors represent the same value in all figures, as normalized values are shown.
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Fig. 1.Regression of the Niño3.4 Index on SST anomalies (top) and
0–200 m temperature (bottom) averaged over the Niño3.4 region for
the unperturbed simulation (left;a andc), and the breeding experi-
ment (right;b andd). Colors represent the same value in all figures,
as normalized values are shown.

As in Yang et al.(2008), we analyze the vertical structure
of our bred vector implementation by an empirical orthogo-
nal function (EOF) analysis for the upper ocean temperature
across the equatorial Pacific (Fig.2). The first EOF shows
good agreement between the unperturbed and breeding sim-
ulations (Fig.2a, c), accounting for 61 % of the variability in
the unperturbed simulation, and 69 % in the breeding. While
the first EOF indicates the expected thermocline tilt across
the basin, the second EOF shows sub-surface variability in
the western Pacific (Fig.2b, d), accounting for approximately
18 % and 10 % of the variability in the unperturbed run and
the bred runs, respectively). The temporal evolution of the
principle components for both the first and second EOFs dis-
plays the variability of the Niño3.4 Index (not shown). Al-
though the regression patterns for the SST are somewhat
weaker in our analysis (Fig.1b) than inYang et al.(2006),
we find similar EOF structures and explained variability for
the upper ocean temperature.

To analyze the robustness of our results, we repeat the
analysis both for splitting the analyzed period and also ex-
tending it to 20 yr. Neither choice fundamentally changes
the regression maps, though the bred vector regression maps
show slightly stronger east–west gradients when longer in-
tegration periods are analyzed. Similar results are obtained
when the number of ensemble members is increased. How-
ever, none of these choices fundamentally changes the result-
ing bred vectors, which resemble the ENSO variability of the
reference simulation (not shown).
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Fig. 2. First and second EOFs of temperature computed from an equatorial slice in the Pacific ocean for
the unperturbed simulation (a, b), and for the bred experiment (c, d). The numbers on the plots indicate
the explained variance of the respective EOF pattern.
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Fig. 2. First and second EOFs of temperature computed from an
equatorial slice in the Pacific Ocean for the unperturbed simulation
(a, b), and for the bred experiment(c, d). The numbers on the plots
indicate the explained variance of the respective EOF pattern.

In summary, we find a robust representation of the ENSO
variability for the following bred vector implementation: a
12-month breeding cycle, a full-depth vertically dependent
rescaling norm for temperature, applied to temperature and
salinity in the ocean. As a basis for our further analysis,
we establish that our bred vector implementation is repre-
sentative of the model dynamics at seasonal-to-interannual
timescales.

4 Ensemble generation

4.1 Description of experiments

We use the bred vectors from the previous section to initialize
hindcast experiments. We compare the spread in these hind-
cast experiments initialized with bred vectors to a set of hind-
cast experiments initialized with lagged initial conditions.
We perform perfect model experiments, in which the ref-
erence point is the unperturbed freely running model. Thus
we avoid the issue of model drift that is commonly associ-
ated with simulations initialized with re-analysis products.
The lagged ensembles have a lag interval of one day (as in,
e.g.,Müller et al., 2012), and only the ocean initial conditions
are perturbed. Each bred initialized ensemble member begins
with a bred vector perturbation that has previously cycled
at least twice. Both bred and lagged hindcasts start in Jan-
uary 1973, with six start dates spaced at one-year intervals.
Each hindcast is run out for 10 yr, with ensembles consisting
of 10 members. All quantities presented in this section are
over six start dates and are computed as a function of lead
time. This setup resembles a setup typically used in decadal
prediction analyses (e.g.,Smith et al., 2007).

As we take the uninitialized run as our reference sim-
ulation, we quantify the improvement in the ensemble

generation by the evolution of the ensemble spread rather
than the predictive skill. We evaluate the evolution of the en-
semble spread by two measures: (i) Talagrand diagrams (or
rank histograms;Talagrand et al., 1997; Hamill, 2001), and
(ii) the spread–error ratio (Palmer et al., 2006; Keller et al.,
2008).

(i) For a Talagrand diagram, the ensemble is sorted, and
the range of the sorted ensemble verified against a control
value, verifying whether the control is within or outside the
ensemble distribution. A flat Talagrand diagram indicates
that the ensemble has the same probability distribution as
the control. A U-shaped Talagrand diagram indicates too lit-
tle spread in the ensemble, and a Gaussian-shaped rank his-
togram indicates too much spread. We show Talagrand di-
agrams for different regions, as distributions vary consider-
ably between different regions. For a Talagrand diagram over
a specific region, all grid points and all ensemble members
are included individually in the computation of the histogram
without any prior spatial averaging. Note that Talagrand di-
agrams for very small regions might be too noisy to be in-
terpreted for their ensemble spread, while a global average
might not representative of the spread in a certain region.

To compare two Talagrand diagrams we compute the de-
viation of the respective histogram from a flat distribution.
We assume variations between two ensembles to be signifi-
cant if the difference between the two deviations from a flat
distribution is larger than 10 percent.

(ii) For the spread–error ratio, we compute the spread as
the root mean square difference between the ensemble mean
and each ensemble member. The spread–error ratio is then
the ratio of this spread and the difference to the reference
simulation (here, the uninitialized simulation). An ensemble
with the same spread as the reference simulation would result
in a spread–error ratio of 1. A spread–error ratio of less than
1 indicates an under-dispersive ensemble, and a ratio greater
than 1 indicates an over-dispersive ensemble.

4.2 Results

We first analyze the spread in the global mean upper ocean
temperature. While the lagged initialized ensemble is under-
dispersive at lead times of one to four months (Fig.3),
the bred initialized ensemble shows a flat distribution in
the Talagrand diagram (Fig.3a). After four months of lead
time, the lagged initialized ensemble shows only slightly
less spread than the bred initialized ensemble. Similar under-
dispersive behavior is found in the spread–error analysis for
the global averaged upper ocean temperature (Fig.3b). After
the first months, the spread–error ratio of the lagged ensem-
ble shows mostly values of 0.7 and higher. The spread–error
ratio for the bred initialized ensemble shows considerably
higher spread–error ratios in the first months as compared
to the lagged initialized ensemble. The spread–error ratio for
the bred initialized ensemble is on average about 0.05 higher
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Fig. 3. Globally averaged upper ocean temperature (0-700m): (a) Talagrand diagram for the lagged (blue)
and bred (red) initialized ensemble for a lead time of one month. (b) Spread-error ratio for the lagged
(blue) and bred initialized ensemble (red).
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Fig. 3. Globally averaged upper ocean temperature (0–700 m):(a)
Talagrand diagram for the lagged (blue) and bred (red) initialized
ensemble for a lead time of one month.(b) Spread–error ratio for
the lagged (blue) and bred initialized ensemble (red).

than the lagged initialized ensemble out to 24 months lead
time.

At a regional scale, differences between the two ensem-
ble initialization techniques are considerably larger than the
global mean suggests (Figs.4and5). At one month lead time,
the lagged initialized ensemble in the Talagrand diagram is
under-dispersive for all considered regions, while the bred
initialized ensemble shows a flat histogram in many regions
(Fig. 4a). The bred initialized ensemble also shows variabil-
ity in the shape of the histograms from region to region; the
flatness of the global mean is therefore primarily a result of
averaging. For lead times up to 12 months, the bred initial-
ized ensemble shows more spread than the lagged initialized
ensemble for most regions (Fig.4b–d).

Similarly, the spread–error ratio indicates considerable re-
gional variation (Fig.5). At 2–4 months lead time, the lagged
initialized ensemble shows a spread–error ratio of less than
1 in most regions (Fig.5a). The bred initialized ensem-
ble shows a spread–error ratio of about 1 in many regions
(Fig. 5b), though several regions with values above/below 1
remain. While Fig.4 indicates an increased spread in the bred
initialized ensemble in many regions, the separate inspection
of the error indicates smaller errors in the bred initialized en-
semble in the tropics and in dynamically active regions like
the western boundary currents.

At a lead time of one year, both ensemble initialization
methods show a spread–error ratio closer to 1 for many
regions, though the lagged initialized ensemble tends to a
spread–error ratio of less than 1, while the bred initialized
ensemble tends towards a spread–error ratio of higher than
1 for several regions. At one year lead time, the improve-
ments in the spread–error ratio in the bred initialized en-
semble stem almost exclusively from the improvement in the
spread, while the errors are of comparable structure and mag-
nitude in both ensembles.

For lead times of two or more years, the differences be-
tween the lagged initialized ensemble and the bred initialized
ensemble become harder to distinguish (not shown). In the
northern and southern Atlantic, the Talagrand diagrams for
the bred initialized ensemble tend to be flatter than those for
the lagged initialized ensemble, while for most other regions
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Fig. 4. Talagrand diagrams of the 0-700m temperature for the lagged (blue) and bred (red) initialized
ensembles for lead times of (a) one month, (b) 2 - 4 months, (c) 6 - 12 months, (d) one year. Histograms
are averaged over the grid cell underneath each histogram (4◦x8◦ grid from 60S to 60N). The shading of
the boxes indicates which ensemble is closer to a flat distribution: lagged (blue) or bred (pink) initialized
ensemble, or a similar dispersion (green).
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Fig. 4. Talagrand diagrams of the 0–700 m temperature for the
lagged (blue) and bred (red) initialized ensembles for lead times of
(a) one month,(b) 2–4 months,(c) 6–12 months,(d) one year. His-
tograms are averaged over the grid cell underneath each histogram
(4◦

× 8◦ grid from 60◦ S to 60◦ N). The shading of the boxes indi-
cates which ensemble is closer to a flat distribution: lagged (blue)
or bred (pink) initialized ensemble, or a similar dispersion (green).

the results for both initialization techniques are comparable.
At three years lead time, both initialization strategies show
similar spread, which continues for longer lead times (not
shown). The spread–error ratio at a lead time of one year
is generally closer to 1 for the bred initialized ensemble than
for the lagged initialized ensemble, though for both ensemble
initialization methods large areas with either over-dispersive
or under-dispersive ensembles remain (Fig.6c, d).

For the deeper ocean temperature, the bred initialized en-
semble shows a better spread–skill ratio than the lagged ini-
tialized ensemble for nearly all lead times up to three years
(Fig. 6a). The Talagrand diagram for the lagged initialized
ensemble for one year lead time shows biased ensembles in
several regions (Fig.6b). For several – though not all – of
these regions the bred initialized ensemble shows a reduced
bias (Fig.6b). As for the upper ocean temperature, Talagrand
histograms indicate comparable spread for the lagged and
bred initialized ensembles at longer lead times (not shown).

For upper ocean salinity, both initialization methods yield
comparable results for the upper ocean temperature at all an-
alyzed lead times (Fig.7). The effect of the respective ini-
tialization method on the ensemble spread is not only over-
all similar for temperature and salinity, but is also consis-
tent for most individual regions (Figs.4a and d, and7). For
one month lead time, the lagged initialized ensemble is con-
siderably less dispersive than the bred initialized ensemble.
With longer lead times, the rank histograms for the two ini-
tialization techniques converge. However, for lead times up
to about two years, the lagged initialized ensemble shows a
larger bias and/or less spread than the bred initialized ensem-
ble in most regions.

Geosci. Model Dev., 7, 453–461, 2014 www.geosci-model-dev.net/7/453/2014/
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Fig. 5. Spread–error ratios for temperature averaged over 0–700 m
depth, and for lead times of 2–4 months(a, b), and one year(c, d)
for the lagged initialized ensemble(a, c), and the bred initialized
ensemble(b, d).

These results indicate that at seasonal-to-interannual, i.e.,
one to two years lead time, the bred initialized ensemble
shows comparable if not improved spread compared to a
lagged initialized ensemble. The lagged initialized ensemble
is especially under-dispersive at lead times of a few months.
For temperature averaged from 0 to 700 m, the bred initial-
ized ensemble maintains a clear advantage up to lead times
of approximately 18 months. For temperature averaged from
1000 to 3500 m, the bred initialized ensemble maintains an
advantage out to approximately three years lead time, though
the advantage weakens with increasing lead time.

5 Discussion

We implement bred vectors in the ocean component of a cou-
pled model, and perturb the sub-surface ocean by introduc-
ing a depth-dependent vertical rescaling norm for the bred
vectors. At seasonal-to-annual timescales, the bred initial-
ized ensemble outperforms the lagged initialized ensemble
in terms of its spread, and spread–error ratio.

All simulations are conducted in a perfect model frame-
work, and we use an unperturbed control simulation as a ref-
erence. We adopt this approach in order to avoid the issue of
model drift, which often occurs when initializing with the ob-
served state of the climate system via a re-analysis product.
What we present here is a first step, and more experiments in
an initialized framework, as well as at higher resolution and

Fig. 6. Spread–skill scores(a, c, d)and Talagrand diagram(b) for
1000–3500 m temperature:(a) globally averaged spread–error ra-
tios for the lagged (blue) and bred initialized ensemble (red),(b)
Talagrand diagram (as in Fig.4) for the lagged (blue) and bred (red)
initialized ensembles for a lead time of one year; spread–error ratios
for one-year lead time for the lagged initialized ensemble(c), and
the bred initialized ensemble(d).

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Fig. 7. Talagrand diagrams (as in figure 4) for 0-700m salinity for the lagged (blue line) and bred (red
line) initialized ensembles for lead times of one month (left), and one year (right).

26

Fig. 7.Talagrand diagrams (as in Fig.4) for 0–700 m salinity for the
lagged (blue line) and bred (red line) initialized ensembles for lead
times of one month (left), and one year (right).

larger ensemble size, are necessary to transfer the results to a
realistic forecast setup.

In the present study, we restrict breeding to the ocean, and
let the atmosphere run freely. The assumption is that by per-
turbing the ocean, we perturb the atmosphere as well, at least
at timescales of two weeks and longer. We therefore focus on
a one-year breeding cycle, where our simulations yield com-
parable results to those ofYang et al.(2006), where breeding
has been implemented in both the atmosphere and the ocean.
Furthermore, we focus in the analysis on oceanic quantities,
where we find a more realistic representation of the ensem-
ble spread in the bred initialized ensemble. An improvement
in the spread of atmospheric quantities, however, is more
likely to be expected when breeding is additionally imple-
mented in the atmosphere. In the present study, we focus

www.geosci-model-dev.net/7/453/2014/ Geosci. Model Dev., 7, 453–461, 2014
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on the different choices of implementing bred vectors in the
ocean component, and the sensitivity to the different choices
in the bred variables, and the rescaling norm. We maintain
that performing the initial analysis in an uninitialized setup
where breeding is restricted to the ocean allows us to attribute
the effects of the different choices in the bred vector imple-
mentation. In a next step, the full depth ocean norm could be
combined with breeding in the atmosphere to initialize cou-
pled ocean–atmosphere bred vectors.

6 Conclusions

Based on our analysis of the ocean component within simu-
lations of the ECHAM5/MPIOM coupled climate model, we
conclude:

– A breeding implementation restricted to temperature
and salinity, relying on the model physics to perturb
the velocity field, yields similar results as breeding of
all variables that is typically used byYang et al.(e.g.,
2006).

– Using a full watercolumn depth-dependent vertical
norm allows us to include the deep ocean in the breed-
ing norm, resulting in a representation of the sub-
surface instabilities in the bred vectors.

– Analyzing the ensemble spread for individual regions
for the two different ensemble initialization techniques
yields considerably different results than restricting the
analysis to the global mean.

– For seasonal-to-interannual lead time, the bred initial-
ized ensemble shows for most analyzed regions at least
similar if not improved spread compared to a lagged
initialized ensemble for ocean temperatures averaged
over 0–700 m and 1000–3500 m, and also salinity.
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