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Abstract. Many inverse problems in the atmospheric sci-
ences involve parameters with known physical constraints.
Examples include nonnegativity (e.g., emissions of some ur-
ban air pollutants) or upward limits implied by reaction or
solubility constants. However, probabilistic inverse modeling
approaches based on Gaussian assumptions cannot incorpo-
rate such bounds and thus often produce unrealistic results.
The atmospheric literature lacks consensus on the best means
to overcome this problem, and existing atmospheric studies
rely on a limited number of the possible methods with little
examination of the relative merits of each.

This paper investigates the applicability of several ap-
proaches to bounded inverse problems. A common method
of data transformations is found to unrealistically skew es-
timates for the examined example application. The method
of Lagrange multipliers and two Markov chain Monte Carlo
(MCMC) methods yield more realistic and accurate results.
In general, the examined MCMC approaches produce the
most realistic result but can require substantial computa-
tional time. Lagrange multipliers offer an appealing option
for large, computationally intensive problems when exact un-
certainty bounds are less central to the analysis. A synthetic
data inversion of US anthropogenic methane emissions illus-
trates the strengths and weaknesses of each approach.

1 Introduction

Inverse modeling and data assimilation have become ubiq-
uitous in the atmospheric sciences, and one of the most
common applications is the estimation of trace gas surface
fluxes. These top-down approaches optimize emissions or

flux estimates such that modeled atmospheric concentrations
reproduce observed concentrations. Most methods are based
on Bayesian statistical principles and assumptions of Gaus-
sian probability density functions (pdfs), implemented in
a variety of ways (e.g.,Gurney et al., 2002; Michalak et al.,
2004; Henze et al., 2007; Peters et al., 2007; Gourdji et al.,
2008; Stohl et al., 2012).

Many applications require estimating emissions or fluxes
that have known physical limits, often referred to simply as
inequality constraints. For example, there are few anthro-
pogenic sinks of carbon dioxide or methane, and the re-
lease history of air toxins from an industrial hazard site is
never negative. In many cases, predicted sources that violate
inequality constraints are not only meaningless but distort
prediction in surrounding regions or times. For example, if
an inversion estimates an unrealistic negative emissions re-
gion, emissions in adjacent regions may become larger than
expected due to mass conservation (e.g.,Michalak, 2008).
Hence, it would not be sufficient to simply reset negative
emissions to zero. Doing so would not correct for distorted
sources elsewhere and would erroneously increase the over-
all estimated emissions budget (i.e., would violate the mass
balance or budget as constrained by the atmospheric obser-
vations).

Additionally, enforcing inequality constraints is often nec-
essary for obtaining realistic uncertainty estimates. Even if
the posterior emissions themselves do not violate the in-
equality constraints, their confidence intervals could very
well extend beyond known limits under Gaussian assump-
tions. In such cases, an unconstrained inversion will pro-
duce both upper and lower confidence intervals that are
unrealistically large (e.g.,Snodgrass and Kitanidis, 1997;
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Michalak and Kitanidis, 2003). The problem occurs because
unrealistically low emissions within the lower confidence in-
terval must be balanced by larger emissions elsewhere in the
upper confidence interval, or vice versa.

In response to the problems associated with unconstrained
inversions, existing trace gas flux estimation studies typically
use one of four methods to apply inequality constraints. One
method employed in previous studies is a data transforma-
tion (refer to Sect.3.1, e.g.,Muller and Stavrakou, 2005;
Bergamaschi et al., 2009). A second method decreases the
uncertainty assigned to many of the prior fluxes until the pos-
terior fluxes obey the known bounds (e.g.,Eckhardt et al.,
2008; Stohl et al., 2012). This adjustment may run counter
to the modeler’s physical understanding of the prior estimate
or associated uncertainties and therefore is not discussed in
great detail here. A third method is that of Lagrange mul-
tipliers (refer to Sect.3.2, e.g.,Henze et al., 2007; Kopacz
et al., 2009; Göckede et al., 2010). Finally, two recent studies
use a class of Markov chain Monte Carlo (MCMC) methods
known as Metropolis–Hastings (Rigby et al., 2011; Burrows
et al., 2013), implemented in a manner that enforces nonneg-
ativity. Existing atmospheric studies provide little guidance
on the merits of one approach over another.

The objective of this study is thus to investigate the merits
of the above approaches and two additional MCMC imple-
mentations. MCMC algorithms are ubiquitous in Bayesian
statistics but are not commonly applied to atmospheric stud-
ies. The remainder of this paper is organized as follows:
Sect.2 examines the statistical assumptions of common in-
version methods that are incompatible with inequality con-
straints. Section3 discusses several possible alternatives to
mitigate these statistical assumptions, including data trans-
formations, Lagrange multipliers, and two specific MCMC
implementations – a multiple-try Metropolis–Hastings algo-
rithm and a Gibbs sampler. Finally, Sects.4 and5 discuss the
costs and benefits of each approach in the context of a syn-
thetic case study estimating North American anthropogenic
methane emissions.

2 Common Bayesian approaches to inverse modeling

This section describes common approaches to inverse mod-
eling and indicates which statistical assumptions are incom-
patible with known bounds.

In a typical inverse problem, the unknown quantity to be
estimated (s, dimensionsm × 1) is different from the quan-
tity actually observed (z, dimensionsn × 1), and the two are
related to one another by a functionh(s). In the case of trace
gas inversions,s are the true, unknown emissions or fluxes;z

are observations of atmospheric concentration; and the func-
tion h is often defined by an atmospheric transport and/or
chemistry model:

z ∼ h(s) +N (0,R), (1)

whereN (0,R), in this case, represents the combined model,
measurement, representation, and spatial/temporal aggrega-
tion errors, collectively termed model–data mismatch. These
errors are most commonly assumed to be random and nor-
mally distributed with a mean of zero and ann×n covariance
matrixR.

Any a priori information on the spatial or temporal distri-
bution of s can be incorporated into a model of the mean,
E[s]:

s ∼ E[s] +N (0,Q). (2)

This model,E[s], rarely matches the unknowns, and the
m × m covariance matrixQ describes the magnitude and
structure of the residuals betweens andE[s]. As with the
model–data mismatch, these residuals are also typically as-
sumed to be normally distributed with a mean of zero.

The model of the mean can be formulated in a number
of ways, but one common method, used in this paper, is as
follows:

E[s] = Xβ, (3)

where them × p matrix X includesp different covariates,
and the unknownp × 1 drift coefficients (β) adjust the mag-
nitude of these covariates to best match the observations.
The model of the mean could be uninformative (e.g.,X is
anm × 1 vector of ones as inMueller et al., 2008) or could
include any number of covariates, including climatological
information or an existing emissions inventory (e.g.,Gour-
dji et al., 2012; Miller et al., 2013, 2014). Some inversion
approaches assume that the drift coefficients are known, in
which caseE[s] becomes anm × 1 vector (e.g.,Rodgers,
2000; Enting, 2002; Tarantola, 2005). An inversion with un-
known coefficients has typically been used within the con-
text of a “geostatistical” representation of the inverse prob-
lem (used in this study), while the coefficients are usually
assumed in the “synthesis Bayesian” approach, though both
approaches are Bayesian in nature.

Equation (1) can be expanded using the formulation ofs

described in Eq. (3):

z ∼ H N (Xβ,Q) +N (0,R), (4)

whereN (Xβ,Q) represents the distribution ofs relative to
the prior or model of the mean (Xβ). The n × m sensitiv-
ity matrix, H, is a linearized form ofh. This setup assumes,
as in most existing studies, that the measurement residuals
(z − Hs) and flux residuals (s − Xβ) follow a multivariate
normal distribution, as will the posterior probabilities ofs

andβ.
The optimal estimate of unknowns can be obtained by

minimizing the sum of squared residuals subject to the co-
variances:

Ls,β =
1

2
(z − Hs)T R−1 (z − Hs)

+
1

2
(s − Xβ)T Q−1 (s − Xβ) . (5)
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If H does not depend on the unknown value ofs, thens

can typically be estimated by solving a system of linear equa-
tions (refer toMichalak et al.(2004) andTarantola(2005) for
more in-depth discussion on estimatings and the associated
posterior uncertainties). Otherwise, the algorithm is usually
iterative.

If s has known bounds, then Eq. (4) must be reformulated
in a way that honors the inequality constraints. Some deter-
ministic methods permanently remove elements ofs from
the optimization if they violate the bounds (e.g., Lagrange
multipliers). In a purely stochastic approach, the first term
in Eq. (4) will instead follow some multivariate distribution
(f u

l ) that is restricted to within the lower and upper con-
straints (l andu, respectively):

z ∼ H f u
l (s|X,Q) +N (0,R). (6)

This alteration modifies the prior probability of the fluxes;
the fluxes (s) will deviate from the prior or expected value
(E[s]) only to the extent that the fluxes remain within the
boundsl andu. In contrast, the distribution of the model-
measurement residuals,N (0,R), remains the same as in the
case without inequality constraints. In Eq. (6), f u

l could be
formulated as a multivariate truncated normal, exponential,
or gamma distribution, among many other choices. Most for-
mulations off u

l result in a cost function that does not have
a straightforward analytical minimum, unlike the multivari-
ate normal case in Eq. (5). Instead, the unknown quantity
(s) must be estimated using an algorithm that samples the
posterior probability density. Even then, it can be difficult
to sample this density efficiently. The next section describes
example deterministic and stochastic approaches in greater
detail.

3 Strategies for enforcing inequality constraints

3.1 Data transformations

Data transformations can enforce inequality constraints with
relatively easy implementation, but transformations typically
render a linear inverse problem nonlinear and therefore re-
quire an iterative solution. A number of different data trans-
formations exist, but the power transformation is a common
approach because it is defined at zero (unlike log transfor-
mations; e.g.,Snodgrass and Kitanidis, 1997; Wilks, 2011,
Chap. 3):

s̃ = α
(
s1/α

− 1
)
, (7)

wheres are the fluxes in normal space andα can be any scalar
value such that̃s > −α, though larger values ofα cause more
extreme transformations. This formulation approaches the
natural logarithm for large values ofα.

For the power transform, the Jacobian or sensitivity ma-
trix (H) is not linear in the transformed space. The algorithm,
as a result, becomes iterative and requires updatingH at ev-
ery iteration until bothH and the best estimate in the trans-
form space (̃s) converge (described in detail bySnodgrass
and Kitanidis(1997) and Fienen et al.(2004), among oth-
ers). Most transformations assume a skewed pdf and there-
fore lead to skewed posterior uncertainty estimates, and such
asymmetry can have a number of implications as discussed
in Sect.5. Furthermore, most common transformations can
only enforce a single upper or lower bound that is the same
for all elements ofs.

3.2 Lagrange multipliers and the trust region algorithm

The method of Lagrange multipliers is commonly used in
deterministic optimization problems to enforce equality or
inequality constraints. The approach has also been adapted
to a number of stochastic inverse problems in hydrology
(Barnes and You, 1992; Walvoort and de Gruijter, 2001;
Michalak and Kitanidis, 2004) and more recently in an at-
mospheric context (Henze et al., 2007; Kopacz et al., 2009;
Göckede et al., 2010). The method of Lagrange multipliers
can be applied to an inversion by modifying the original cost
functionLs,β :

Ls,β,λ = Ls,β − λT (s − l), (8)

wherel in this case is a lower bound ons, where the bound
can be spatially and temporally variable, andλ are the un-
known Lagrange multipliers.

A number of implementations exist, but all methods share
many similarities. Any element ofs that would otherwise
violate the inequality constraints becomes fixed on one of
the bounds. Most algorithms are iterative and add or remove
these elements from the “active” set at each iteration. The
optimization proceeds only on the active set and ignores all
other elements that have been fixed (e.g.,Gill et al., 1981).
A large difference among algorithms is the way in which el-
ements are removed or added to the active set.

One result of this setup is that elements in the fixed set
are not modeled as continuous random variables. Estimated
emissions in these regions have no associated posterior un-
certainty. In other words, Lagrange multipliers compromise
the stochastic nature of the inverse problem in order to en-
force the desired constraints.

Several numerical methods are available for solving con-
strained optimization problems via the method of Lagrange
multipliers, but many are restricted to small or medium-sized
problems (e.g.,s has fewer than 1000 elements). These in-
clude the method of Theil and Van de Panne (Theil and
Panne, 1960; Snyman, 2005, Chap. 3.4) and the active set
method (e.g.,Gill et al., 1981, or Antoniou and Lu, 2007,
Chap. 13.3).
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A number of algorithms can efficiently solve large,
bounded optimization problems, including the trust re-
gion method and the bounded, limited-memory Broyden–
Fletcher–Goldfarb–Shanno approach (L-BFGS-B; e.g.,Byrd
et al., 1995). This paper implements a trust region algorithm.
The method can efficiently handle large, bounded optimiza-
tion problems because it adds and/or subtracts multiple ele-
ments from the fixed set at each iteration (e.g.,More, 1988;
Lin and More, 1999). A trust region algorithm approximates
the objective function at each iteration and estimates the
range over which this approximation can be trusted (referred
to as the trust region). The algorithm optimizess within the
trust region and compares the approximated improvement to
the actual reduction in the cost function (in this case Eq.5).
If the cost function approximation performs well, the algo-
rithm is allowed to make more aggressive moves at each it-
eration. In other words, the algorithm may increase the size
of the trust region if the approximation does well and vice
versa. Though it was originally developed for unconstrained
problems,Gay (1984) extended the trust region method to
constrained optimization. For additional discussion of gen-
eral trust region algorithms, seeSorensen(1982), Lin and
More (1999), Conn et al.(2000, Chap. 1, Chap. 6), orYuan
(2000).

This paper adopts a general algorithm outlined inLin and
More(1999). The reader is referred to a review article (Yuan,
2000) for a broad discussion of possible trust region im-
plementations. Most require the gradient (∇L) and Hessian
(∇2L) of the cost function. For reference, these equations are
listed below for the geostatistical approach:

∇Ls,β = −
1

2
HT R−1(z − Hs) +

1

2
Gs

∇
2Ls,β =

1

2
G +

1

2
HT R−1H (9)

G = Q−1
− Q−1X(XT Q−1X)−1XT Q−1.

To construct these equations, we take the derivative of the
original cost function (Eq.5) with respect toβ and set this
derivative equal to zero (Kitanidis, 1986). We then rearrange
the cost function to omit the unknown drift coefficientsβ.
The resulting Hessian and gradient above are written only
in terms of the unknown vectors. Rodgers(2000) presents
analogous equations for a prior model setup that has prede-
termined coefficients (β).

3.3 MCMC algorithms applied to bounded inversions

The following sections discuss two possible MCMC im-
plementations for inequality-constrained problems. In gen-
eral, MCMC algorithms make it possible to generate realiza-
tions of the unknown quantity from high-dimensional prob-
ability density functions. These algorithms make problems
with non-Gaussian distributions and/or complex joint pdfs
tractable (e.g.,Andrieu et al., 2003).

MCMC algorithms simulate a Markov chain with an equi-
librium distribution that matches the distributions of the
quantities being estimated. The methods rely on the genera-
tion of conditional realizations; each realization is a guess of
the unknown (e.g.,s) that should represent a random draw
from the posterior probability distribution. The algorithms
create a new realization based only upon the previous one,
and the means of doing so differentiate the various MCMC
methods. Many conditional realizations are typically gener-
ated to adequately sample or represent the equilibrium distri-
bution (Geyer, 2011). The point-wise properties of the equi-
librium probability density (e.g., mean, median, percentiles,
standard deviation) can be used to represent the statistics of
the unknown state, including its uncertainties. A thorough in-
troduction to MCMC approaches is given byGeyer(2011).

MCMC methods can also be used for the solution of
bounded problems. Each individual realization of the un-
known quantity is restricted by the inequality constraints
(Gelfand et al., 1992), ensuring that both the posterior best
estimate and associated uncertainties will honor known phys-
ical limits.

3.3.1 Metropolis–Hastings

Metropolis–Hastings algorithms have become widespread in
Bayesian statistics (seeChib and Greenberg, 1995; Bolstad,
2012, for in-depth discussion). The modeler uses an exist-
ing, accepted realization of the unknown quantity (in this
cases) to generate a new proposed realization with a Markov
chain whose properties are defined by the modeler. One pos-
sible approach might generate many realizations ofs by us-
ing slightly modified inputs for Eq. (5). Instead of usingz
in Eq. (5), sample randomly fromN (z,R). Instead of us-
ing E[s], use random, sequentially correlated samples from
N (E[s],Q) (see the Supplement for further discussion).

Each subsequent proposed realization is accepted or dis-
carded based on its likelihood relative to the previous, ac-
cepted realization. Realizations with a relative likelihood
greater than one are always accepted, while those with a rel-
atively likelihood less than one are only sometimes accepted.
A large number of realizations is sequentially generated in
this way to sample across the probability space of the un-
known (in this case the posterior probability distribution of
s).

The modeler must carefully balance two considerations
when proposing new realizations. If each proposed realiza-
tion is too close to the previous accepted realization, the al-
gorithm will sample the probability space very slowly. How-
ever, if the proposed realization is too far from the previous
accepted realization, it will likely have a low relative likeli-
hood and be rejected (e.g.,Chib and Greenberg, 1995).

A number of studies have implemented the general al-
gorithm with an adaptation for inequality constraints, both
in hydrology (e.g.,Michalak and Kitanidis, 2004; Wang
and Zabaras, 2006; Zanini and Kitanidis, 2009) and more
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recently in the atmospheric sciences (e.g.,Rigby et al., 2011;
Burrows et al., 2013).

The cited hydrology studies use an implementation suit-
able for large problems (refer to the Supplement). For the
specific implementation in these studies, each proposed real-
ization is first constrained to be nonnegative with Lagrange
multipliers before being tested for acceptance. This imple-
mentation is a compromise between a purely stochastic ap-
proach that would represent all elements as continuous ran-
dom variables and the method of Lagrange multipliers that
completely removes some elements from the optimization.

Though ideal for small problems, Metropolis–Hastings al-
gorithms can often become stuck in local regions of high
probability when there are many quantities being estimated
(i.e., whenm is large). The acceptance rate can become so
small as to make implementation impractical (Liu et al.,
2000). This study implements a multiple-try Metropolis–
Hastings algorithm (Liu et al., 2000) suitable for larger-scale
inverse problems, described fully in the Supplement.

3.3.2 Gibbs sampler

Unlike the Metropolis–Hastings algorithm, the Gibbs sam-
pler calculates a new realization for each element of the un-
known state sequentially (in this case, each ofm elements in
s). This method involves calculating a probability distribu-
tion for an individual element ofs conditional on the current
realization for all other elements. The algorithm takes a ran-
dom sample from the element-wise conditional probability
density, and this sample becomes the new guess for the given
element. Using this method, the Gibbs sampler sequentially
calculates a conditional distribution and random sample for
each ofm elements ins until an entire new, full conditional
realization has been formed (see the Supplement). Like the
Metropolis–Hastings algorithm, the Gibbs sampler requires
generating a large number of conditional realizations, and the
statistics of these realizations can be used to define a best es-
timate and associated uncertainties. For an in-depth review
of the Gibbs sampler, refer toCasella and George(1992) or
Bolstad(2012, Chap. 10).

Several studies in hydrology apply Gibbs sampler meth-
ods to constrained inverse problems (e.g.,Michalak and Ki-
tanidis, 2003; Wang and Zabaras, 2005; Fienen et al., 2006;
Michalak, 2008). Michalak (2008) describes a flexible im-
plementation in the context of groundwater problems that
can incorporate any kind of spatial or temporal correlation
in the a priori covariance matrixQ, and this implementa-
tion is adapted for the case study here. The implementa-
tion uses a multidimensional truncated normal as the prior
pdf (Michalak, 2008). However, because the Gibbs sampler
uses element-wise pdfs, it avoids the mathematical challenge
of explicitly maximizing a high-dimensional truncated pdf.
The approach thereby enforces the inequality constraints in a
computationally tractable manner.

The implementation in this study differs fromMichalak
(2008) in one important way. Some regions of the United
States and Canada have zero anthropogenic methane emis-
sions, and we alter the shape of the pdfs to allow a high
probability at zero. The implementation here draws a ran-
dom sample from a Gaussian conditional distribution for se-
quential elements ins. If the sample is positive, it becomes
the new realization for that element ofs. If the sample is
negative, we use zero as the realization for that element.
The approach is equivalent to modeling the prior, and sub-
sequently the posterior, distributions as truncated Gaussian
with an added Dirac delta (a function that is zero at every
point except zero). This modification relative toMichalak
(2008) results in a peak in the posterior densities at zero.

4 Methane case study setup

A synthetic case study of estimating US anthropogenic
methane emissions illustrates the comparative drawbacks
and benefits of the approaches described above: the power
transformation, Lagrange multipliers, and two MCMC im-
plementations, with an unconstrained inversion for compar-
ison. The synthetic study setup uses an existing methane
emissions inventory and a model of atmospheric transport
to create an estimation problem with known true emissions.
The prescribed methane emissions are always nonnegative,
so the constraints on this inversion are simple; the estimated
emissions must also be nonnegative (l = 0). The remainder
of this section describes the case study setup in detail.

4.1 Model and synthetic data setup

This study employs a regional-scale, particle-following
model known as STILT, the Stochastic Time-Inverted La-
grangian Transport model (Lin et al., 2003), to quantify the
sensitivity of atmospheric observations to surface sources,
and thereby to estimate the sensitivity matrixH. STILT sim-
ulations are driven by Weather Research and Forecasting
(WRF) wind fields, version 2.2 (Skamarock et al., 2005). In
other words, the combination of WRF and STILT serves as
the forward model for the methane case study.Nehrkorn et al.
(2010) provide a detailed description of the WRF fields used
here.

We use WRF-STILT to generate synthetic methane mix-
ing ratios in the same locations as aircraft and tall tower
observation sites in the United States (4600 total observa-
tions). The tower sites are those in the NOAA Earth Systems
Research Laboratory and DOE monitoring network and are
displayed in Fig.1. Aircraft data include methane measure-
ments from the NOAA Earth Systems Research Laboratory
aircraft program at a variety of locations over North Amer-
ica, DOE flights over the US southern Great Plains (Biraud
et al., 2013), and observations from the START08 measure-
ment campaign (Pan et al., 2010). This study includes only
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Table 1.Covariance matrix parameters.

Parameter Value

σR,tower (ppb)a 13.1–68.9
σR,aircraft 19.8

Untransformed space

σQ (µmol m−2s−1) 0.017
l (km) 101

Transformed space (α = 6)b

σQ 0.81
l 261

a Each tower has a different estimatedσR .
Refer toMiller et al. (2013).
b In the case of the power transform, we set
α = 6. This value brings the posterior
emissions estimate closest to being normally
distributed in the transformed space.

aircraft measurements within 2500 m of the ground – mea-
surements that are consistently sensitive to surface fluxes (see
Fig. 1, Miller et al., 2013).

The study generates synthetic methane measurements
using the EDGAR v3.2 FT2000 anthropogenic inventory
(Olivier and Peters, 2005). Newer EDGAR inventories are
available (e.g., EDGAR v4.2), but top-down studies suggest
that version 3.2 best captures the magnitude of anthropogenic
sources over the United States (Kort et al., 2008; Miller et al.,
2013, see Fig.1).

We add noise to each synthetic measurement, randomly
sampled from the model–data mismatch covariance matrix
(R with diagonal elementsσ 2

R). The companion studyMiller
et al. (2013) statistically infers this information from in situ
methane measurements using restricted maximum likelihood
estimation (REML) (e.g.,Kitanidis and Lane, 1985; Micha-
lak et al., 2004). Table1 summarizes the model–data mis-
match values inferred for the towers and aircraft.

4.2 The inversion setup

The inversion covers much of North America (25–55◦ N
latitude, 145–51◦ W longitude) on a 1◦ × 1◦ spatial resolu-
tion over the months May–September 2008. Anthropogenic
methane sources do not change markedly from one season
to another (Miller et al., 2013). Therefore, the synthetic data
study here estimates a single set of emissions over the entire
five-month period.

All inversions presented here utilize an uninformative
prior (e.g.,Michalak et al., 2004; Mueller et al., 2008). In
other words, the inversion prior is a single unknown constant
across the entire geographic inversion domain. This method
makes as few a priori assumptions as possible and relies on
the atmospheric data to the fullest extent to infer informa-
tion about the emissions. This framework is particularly well

suited to a synthetic data study; any a priori inventory would
be arbitrary since the true emissions are already known.

Despite the lack of information in the prior itself, the in-
version incorporates important structural information about
the fluxes in the a priori covariance matrix (Q). Specifically,
the diagonal elements ofQ describe the total variability of
the fluxes (σ 2

Q – the variance over long spatial scales), and
the off-diagonal elements describe the degree of spatial cor-
relation in the posterior flux field, assuming an exponential
covariance function. The spatial characteristics of the known
emissions field are listed in Table1 and are used to con-
structQ (σ 2

Q andl, the decorrelation length parameter). The
parameters for the untransformed space are used in the un-
constrained, Metropolis–Hastings, and Gibbs sampler inver-
sions.

5 Results and discussion

The inversion implementations discussed in this study pro-
duce variable results. All methods place large methane emis-
sions in Kentucky, West Virginia, and along the eastern
seaboard, similar to the true synthetic fluxes (see Fig.2), but
the methods differ in many other regards. The remainder of
this section highlights these differences to illustrate the rela-
tive merits of each approach.

5.1 Unconstrained inversion

The unconstrained case causes several undesirable side ef-
fects, including but not limited to negative emissions esti-
mates (Fig.2). It may appear counterintuitive that the emis-
sions estimate (ŝ) could have negative components when the
observations (z) and model transport (H) contain only posi-
tive elements. However, these negative emissions are not nec-
essarily caused by any violation of the statistical assumptions
in the inversion. Rather, the estimate (ŝ) may contain negative
elements due to the effect of model–data mismatch errors.
When these errors are present, the gradients in the observa-
tions can be consistent with adjacent positive and negative
sources. In the methane case study, we synthetically gener-
ate model–data mismatch errors, so these errors are guaran-
teed to obey all assumptions of the statistical model. Nega-
tive emissions, in this case, could not be caused by biases in
wind fields, chemistry, or by a biased prior. In this study, the
true winds are known, chemistry is absent, and the geostatis-
tical inverse model does not assume any prior value for the
emissions.

Aside from unrealistic negative emissions, the uncertain-
ties are also too large. Conditional realizations and confi-
dence intervals based on multi-Gaussian probabilities extend
well beyond the known bounds on the problem (i.e., are not
strictly nonnegative), even in regions where the best esti-
mate itself falls within these bounds (Fig.3). Figure4 vi-
sualizes this problem in terms of the marginal probability
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Fig. 1. The synthetic measurements and synthetic emissions used in this study. Blue numbers (left)
indicate the observation count at each tower site. The red box (right) displays the region represented in
Table 2.
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Fig. 1. The synthetic measurements and synthetic emissions used in this study. Blue numbers (left) indicate the observation count at each
tower site. The red box (right) displays the region represented in Table2.

Table 2. Eastern US/Canada anthropogenic budgets and 95 % confidence intervals (Tg C month−1) for the true synthetic emissions and
inversion estimates.

Type Budget % of true emiss. encapsulated
in the given confidence interval
68.2 % 95 %

True emissions 1.61
Unconstrained inversion 1.60± 0.13 90 97
Transform 1.59± 0.20 64 87
Lagrange multipliers 1.60
Metropolis–Hastings 1.60± 0.08 86 97
Gibbs sampler 1.58± 0.08 86 96

distributions – the probability of an individual element in the
emissions field integrating over all possible values of the re-
maining elements. Even emissions estimated over source re-
gions (Fig.4b) include negative values in the 95% confidence
interval.

Additionally, the unconstrained confidence intervals and
conditional realizations extend too high for reasons noted in
Sect.1. Figure5 shows sample conditional realizations from
each method. Emissions in the unconstrained realization ex-
tend both lower and higher than the realizations estimated by
either MCMC algorithm.

5.2 Data transformations

Transformations can be straightforward to implement, but
this class of methods skews the probability distributions in
the inversion: three of the most important implications are
discussed here. First, the posterior covariances (e.g., prior
and posterior uncertainties) cannot be directly transformed
back to normal space; instead, upper and lower estima-
tion bounds (i.e., percentiles) must be back-transformed to
produce posterior confidence intervals. In other words, the
covariances become central-value-dependent and are oth-
erwise difficult to physically interpret in back-transformed
units. Second, because the covariances are central-value-
dependent, it can be difficult to estimate the a priori

covariance matrix (Q) in the transformed space, particu-
larly for two of the most common estimation methods. One
could use existing knowledge of the emissions to estimate
the covariances, but this approach becomes difficult when
the covariance matrix has little physical meaning in the trans-
formed space. The covariance matrices can also be inferred
from the data and model itself using statistical approaches
such as REML. The transformation necessitates iterating be-
tween covariance parameter estimation and flux estimation
until both converge (Snodgrass and Kitanidis, 1997). The
nonlinearities created by the transformation often hinder con-
vergence.

Third, the skewness implied by the power transformation
is, in many cases, not representative of actual uncertainties
in the emissions best estimate. The uncertainties can become
too large in regions of high emissions and too small in re-
gions of low emissions (Fig.2; e.g.,Snodgrass and Kitanidis,
1997; Fienen et al., 2004; Muller and Stavrakou, 2005). For
example, conditional realizations follow the lower bounds in
the methane case study but produce estimates of the sources
that are too large in some high-emissions areas. As a result,
the back-transformed conditional realizations have an aver-
age eastern US budget of 2.1±0.2 Tg C month−1. The mean
of these realizations is much higher than the emissions best
estimate for the transform inversion (Table2). In this case,
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Fig. 2. The posterior best estimate of the emissions and uncertainties associated with each method-
ological approach. The method of Lagrange multipliers does not support a direct means of estimating
uncertainties.
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Fig. 2.The posterior best estimate of the emissions and uncertainties associated with each methodological approach. The method of Lagrange
multipliers does not support a direct means of estimating uncertainties.
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Fig. 3. The number of posterior uncertainty standard deviations before the methane emissions become
negative in the unconstrained estimate.
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Fig. 3.The number of posterior uncertainty standard deviations be-
fore the methane emissions become negative in the unconstrained
estimate.

the best estimate is computed by minimizing the inversion
cost function directly. In contrast, the mean of the conditional
realizations is identical to the emissions best estimate for all
other methods discussed in this paper. In addition, the aver-
age uncertainties in Table2 are larger than any other method,
yet these uncertainties capture a lower percentage of the syn-
thetic fluxes at grid scale than other methods. These pitfalls
illustrate difficulties in interpreting uncertainties or realiza-
tions in the power transform case.Snodgrass and Kitanidis
(1997), Fienen et al.(2004) andMuller and Stavrakou(2005)
provide further discussion on several of the above challenges
associated with data transformations.

5.3 Lagrange multipliers

The emissions estimated via Lagrange multipliers repro-
duce the magnitude and distribution of the true sources.
This method is not truly stochastic, however, and removes
many elements from the optimization entirely (e.g., emis-
sions over most of Manitoba, Ontario, and Quebec, Canada,
in Fig. 2). As such, there is no way to calculate either uncer-
tainty bounds or conditional realizations using this approach.
The uncertainties assigned to the posterior emissions are typ-
ically borrowed from the unconstrained case, though the un-
certainties could be borrowed from any other method. Hence,
estimation via Lagrange multipliers resolves the problem of
unrealistic emissions, but it does not address the challenge
of estimating bounded posterior uncertainties or confidence
intervals.

5.4 MCMC implementations

The MCMC implementations discussed here provide an ap-
pealing option when robust uncertainty bounds are a prior-
ity in the analysis. Both of the explored implementations en-
sure that the best estimate (Fig.2), conditional realizations
(Fig. 5), and confidence intervals respect the known bounds.
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Fig. 4. The marginal posterior density for the estimate of methane emissions at three individual locations.
Case (a) is an estimate of emissions north of Thunder Bay, Ontario, Canada, case (b) is over Indianapolis,
Indiana, and case (c) is over eastern Kentucky. The unconstrained case is plotted as a normal distribution,
and the other plotted probability densities are produced by applying a kernel smoother to the histogram
of realizations. Note that this figure does not include the Lagrange multipliers case because this deter-
ministic approach produces only a best estimate with no associated marginal densities.
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Fig. 4. The marginal posterior density for the estimate of methane
emissions at three individual locations. Case(a) is an estimate
of emissions north of Thunder Bay, Ontario, Canada; case(b) is
over Indianapolis, Indiana; and case(c) is over eastern Kentucky.
The unconstrained case is plotted as a normal distribution, and the
other plotted probability densities are produced by applying a ker-
nel smoother to the histogram of realizations. Note that this figure
does not include the Lagrange multipliers case because this deter-
ministic approach produces only a best estimate with no associated
marginal densities.

Both MCMC implementations produce much narrower
uncertainty bounds relative to the other methods (Fig.2, Ta-
ble2). As discussed in the introduction, the reason for this is
twofold. First, the confidence intervals must be smaller be-
cause they cannot include values outside the inequality con-
straints. Second, if the lower range of the confidence intervals
is limited, then the maximum emissions values in the inter-
val will also be less extreme (and vice versa; see Sect.1).
The uncertainties are smaller, and yet 96–97 % of the syn-
thetic fluxes still fall within the inversion’s 95 % confidence
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Fig. 5. Example conditional realizations from each different optimization approach.
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Fig. 5.Example conditional realizations from each different optimization approach.

interval (Table2). For these reasons, the smaller confidence
intervals estimated by the MCMC implementations are most
realistic.

The estimated emissions and marginal distributions look
very similar between the two MCMC implementations,
but the methods show several subtle differences. Unlike
the Gibbs sampler, the implementation of the Metropolis–
Hastings algorithm here uses Lagrange multipliers and there-
fore does not explicitly model every element ofs in ev-
ery realization as a continuous random variable. As a re-
sult, this Metropolis–Hastings method will always produce
a high probability at the inequality constraints (e.g., Fig.4).
For smaller problems, in contrast, it may be feasible to use
any shape of prior pdf that is defined only within the inequal-
ity constraints. That setup would model every element ofs

as a continuous random variable, but the approach would
likely become computationally intractable for larger prob-
lems (see the supplement for further discussion). Instead, the
Metropolis–Hastings implementation used here is an exten-
sion of Lagrange multipliers to circumstances that require
bounded confidence intervals. The Gibbs sampler implemen-
tation produces a similar peak in the pdf at zero due to the
Dirac delta. In general, however, the Gibbs sampler allows
more flexibility in setting the shape of the marginal distribu-
tions near the bounds.

Appropriate distributional assumptions are important for
any type of inversion, and the inversion with inequality con-
straints is no different. The Gibbs sampler in this case study
models the marginal distributions as a truncated Gaussian
with a Dirac delta function (see Sect.3.3.2). If the fluxes or
emissions are unlikely to be zero, an implementation without
the Dirac delta would be more suitable.

Furthermore, the choice of a truncated normal distribution
may not always be appropriate. If the total budget is poorly
constrained by the data, this distributional choice could in-
crease estimated emissions in remote regions far from mea-
surement sites. A Gaussian pdf that has been truncated at
zero will have a higher mean than the equivalent, full Gaus-
sian distribution, and this effect can shift the posterior mean
in poorly constrained problems. One solution could be to
fix the drift coefficients (β) at predetermined values, but
these coefficients are rarely known in practice. In contrast, if

measurement sites are sensitive to emissions across the entire
geographic domain (as indicated byH), then either distribu-
tional assumption will produce the same trace gas budget.

The MCMC implementations produce the most realis-
tic best estimate, conditional realizations, and uncertainty
bounds, but one drawback can be computational cost. The
generation ofj conditional realizations using the Gibbs sam-
pler requires a for loop withjm iterations, andj is usu-
ally 1000 or greater to adequately sample the posterior prob-
ability space. The computational time of the multiple-try
Metropolis–Hastings depends on the convergence rate of the
Lagrange multiplier algorithm and on the number of trial re-
alizations (denotedk; see the Supplement) computed in each
step of the multiple-try implementation. The often large ra-
tio of trial to accepted realizations means that the multiple-
try Metropolis–Hastings may be less efficient than the Gibbs
implementation. This comparison may seem counterintuitive
because Metropolis–Hastings does not require the posterior
pdf to be sampled one element at a time, as is the case for the
Gibbs sampler.

In general, the computational cost of MCMC algorithms
increases both with the number of unknown fluxes (m) and
the number of realizations (j ) required to sample the poste-
rior probability space. Furthermore, the recommended num-
ber of realizations changes depending on the size of the
problem and the degree of correlation among successive it-
erations;Gelman(2004) provides a number of guidelines
for choosing this number. One approach requires initiating
multiple independent Markov chains. The MCMC algorithm
reaches convergence when each individual chain has a simi-
lar distribution to the combination of all chains. Refer toGel-
man(2004, Chap. 11) for more detail. Parallelization can also
alleviate some time expense for MCMC algorithms.

In summary, the Gibbs and Metropolis–Hastings imple-
mentations produce similar results, but the Gibbs sampler
can afford two advantages: greater flexibility in determining
the shape of the marginal distributions at the bounds and re-
duced computational time for the case examined here.
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6 Conclusions

For inverse problems with parameters that have known phys-
ical limits, an unconstrained inversion presents difficulties
that go beyond just an unrealistic estimate, and the common
remedy of using data transformations can have many unde-
sirable side effects. This study uses anthropogenic methane
emissions as a lens to evaluate this approach, as well as sev-
eral less common alternative approaches.

Inverse problems can be constructed to honor known
bounds without compromising the integrity of the estimate.
Lagrange multipliers are a viable approach for large prob-
lems in which computational time is paramount. However,
this method does not provide an explicit means for calculat-
ing uncertainty bounds. Uncertainties are usually borrowed
from the unconstrained case instead, and these are generally
unrealistically large.

Markov chain Monte Carlo (MCMC) methods show the
most promise but are rarely applied in the existing atmo-
spheric literature. Both MCMC implementations here pro-
duce similar results for the methane case study, but the Gibbs
sampler offers better computational efficiency and more flex-
ibility in determining the shape of posterior probability at the
bounds. In general, MCMC algorithms can be applied to in-
verse problems with known bounds to produce the most re-
alistic best estimates, confidence intervals, and conditional
realizations of any of the aforementioned approaches.

Supplementary material related to this article is
available online athttp://www.geosci-model-dev.net/7/
303/2014/gmd-7-303-2014-supplement.pdf.

Acknowledgements.This work was supported by the American
Meteorological Society Graduate Student Fellowship/DOE Atmo-
spheric Radiation Measurement Program, the DOE Computational
Science Graduate Fellowship, and the National Science Founda-
tion Graduate Research Fellowship Program. We thank Thomas
Nehrkorn and Janusz Eluszkiewicz for their help with the WRF
meteorology. We also thank Steven Wofsy, Mary Moore, and Elaine
Gottlieb, all of Harvard University. Support for this research was
provided by NASA grants NNX08AR47G and NNX11AG47G,
NOAA grants NA09OAR4310122 and NA11OAR4310158, NSF
grant ATM-0628575, and Environmental Defense Fund grant
0146-10100.

Edited by: T. Butler

References

Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M.: An Intro-
duction to MCMC for machine learning, Mach. Learn., 50, 5–43,
doi:10.1023/A:1020281327116, 2003.

Antoniou, A. and Lu, W.: Practical Optimization: Algorithms and
Engineering Applications, Springer, New York, NY, 2007.

Barnes, R. and You, K.: Adding bounds to kriging, Math. Geol., 24,
171–176, doi:10.1007/BF00897030, 1992.

Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Vil-
lani, M. G., Houweling, S., Dentener, F., Dlugokencky, E. J.,
Miller, J. B., Gatti, L. V., Engel, A., and Levin, I.: Inverse
modeling of global and regional CH4 emissions using SCIA-
MACHY satellite retrievals, J. Geophys. Res., 114, D22301,
doi:10.1029/2009JD012287, 2009.

Biraud, S. C., Torn, M. S., Smith, J. R., Sweeney, C., Riley, W. J.,
and Tans, P. P.: A multi-year record of airborne CO2 observations
in the US Southern Great Plains, Atmos. Meas. Tech., 6, 751–
763, doi:10.5194/amt-6-751-2013, 2013.

Bolstad, W.: Understanding Computational Bayesian Statistics, Wi-
ley Series in Computational Statistics, John Wiley & Sons, Hobo-
ken, New Jersey, 2012.

Burrows, S. M., Rayner, P. J., Butler, T., and Lawrence, M. G.:
Estimating bacteria emissions from inversion of atmospheric
transport: sensitivity to modelled particle characteristics, Atmos.
Chem. Phys., 13, 5473–5488, doi:10.5194/acp-13-5473-2013,
2013.

Byrd, R., Lu, P., Nocedal, J., and Zhu, C.: A Limited Memory Algo-
rithm for Bound Constrained Optimization, SIAM J. Sci. Com-
put., 16, 1190–1208, doi:10.1137/0916069, 1995.

Casella, G. and George, E. I.: Explaining the Gibbs Sampler, Am.
Stat., 46, 167–174, 1992.

Chib, S. and Greenberg, E.: Understanding the Metropolis–Hastings
Algorithm, Am. Stat., 49, 327–335, 1995.

Conn, A., Gould, N., and Toint, P.: Trust-Region Methods, Mps-
Siam Series on Optimization, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2000.

Eckhardt, S., Prata, A. J., Seibert, P., Stebel, K., and Stohl, A.: Esti-
mation of the vertical profile of sulfur dioxide injection into the
atmosphere by a volcanic eruption using satellite column mea-
surements and inverse transport modeling, Atmos. Chem. Phys.,
8, 3881–3897, doi:10.5194/acp-8-3881-2008, 2008.

Enting, I.: Inverse Problems in Atmospheric Constituent Transport,
Cambridge Atmospheric and Space Science Series, Cambridge
University Press, Cambridge, UK, 2002.

Fienen, M., Kitanidis, P., Watson, D., and Jardine, P.: An ap-
plication of Bayesian inverse methods to vertical deconvolu-
tion of hydraulic conductivity in a heterogeneous aquifer at
Oak Ridge National Laboratory, Math. Geol., 36, 101–126,
doi:10.1023/B:MATG.0000016232.71993.bd, 2004.

Fienen, M. N., Luo, J., and Kitanidis, P. K.: A Bayesian geosta-
tistical transfer function approach to tracer test analysis, Water
Resour. Res., 42, W07426, doi:10.1029/2005WR004576, 2006.

Gay, D.: A trust-region approach to linearly constrained op-
timization, in: Numerical Analysis, edited by: Griffiths, D.,
Springer, Berlin, Heidelberg, Lect. Notes Math., 1066, 72–105,
doi:10.1007/BFb0099519, 1984.

Gelfand, A. E., Smith, A. F. M., and Lee, T.-M.: Bayesian analy-
sis of constrained parameter and truncated data problems using
Gibbs sampling, J. Am. Stat. Assoc., 87, 523–532, 1992.

www.geosci-model-dev.net/7/303/2014/ Geosci. Model Dev., 7, 303–315, 2014

http://www.geosci-model-dev.net/7/303/2014/gmd-7-303-2014-supplement.pdf
http://www.geosci-model-dev.net/7/303/2014/gmd-7-303-2014-supplement.pdf
http://dx.doi.org/10.1023/A:1020281327116
http://dx.doi.org/10.1007/BF00897030
http://dx.doi.org/10.1029/2009JD012287
http://dx.doi.org/10.5194/amt-6-751-2013
http://dx.doi.org/10.5194/acp-13-5473-2013
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.5194/acp-8-3881-2008
http://dx.doi.org/10.1023/B:MATG.0000016232.71993.bd
http://dx.doi.org/10.1029/2005WR004576
http://dx.doi.org/10.1007/BFb0099519


314 S. M. Miller et al.: Inverse modeling with known bounds

Gelman, A.: Bayesian Data Analysis., Texts in Statistical Science,
Chapman & Hall/CRC, Boca Raton, Florida, 2nd Edn., 2004.

Geyer, C.: Introduction to Markov Chain Monte Carlo, in: Hand-
book of Markov Chain Monte Carlo, Chapman & Hall/CRC
Handbooks of Modern Statistical Methods, Taylor & Francis,
London, 3–48, 2011.

Gill, P. E., Murray, W., and Wright, M. H.: Practical Optimization,
Academic Press, London, 1981.

Göckede, M., Turner, D. P., Michalak, A. M., Vickers, D., and
Law, B. E.: Sensitivity of a subregional scale atmospheric inverse
CO2 modeling framework to boundary conditions, J. Geophys.
Res., 115, D24112, doi:10.1029/2010JD014443, 2010.

Gourdji, S. M., Mueller, K. L., Schaefer, K., and Michalak, A. M.:
Global monthly averaged CO2 fluxes recovered using a geo-
statistical inverse modeling approach: 2. Results including aux-
iliary environmental data, J. Geophys. Res., 113, D21115,
doi:10.1029/2007JD009733, 2008.

Gourdji, S. M., Mueller, K. L., Yadav, V., Huntzinger, D. N.,
Andrews, A. E., Trudeau, M., Petron, G., Nehrkorn, T.,
Eluszkiewicz, J., Henderson, J., Wen, D., Lin, J., Fischer, M.,
Sweeney, C., and Michalak, A. M.: North American CO2 ex-
change: inter-comparison of modeled estimates with results from
a fine-scale atmospheric inversion, Biogeosciences, 9, 457–475,
doi:10.5194/bg-9-457-2012, 2012.

Gurney, K., Law, R., Denning, A., Rayner, P., Baker, D., Bous-
quet, P., Bruhwiler, L., Chen, Y., Ciais, P., Fan, S., Fung, I.,
Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T.,
Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B.,
Randerson, J., Sarmiento, J., Taguchi, S., Takahashi, T., and
Yuen, C.: Towards robust regional estimates of CO2 sources and
sinks using atmospheric transport models, Nature, 415, 626–630,
doi:10.1038/415626a, 2002.

Henze, D. K., Hakami, A., and Seinfeld, J. H.: Development of
the adjoint of GEOS-Chem, Atmos. Chem. Phys., 7, 2413–2433,
doi:10.5194/acp-7-2413-2007, 2007.

Kitanidis, P. K.: Parameter uncertainty in estimation of spatial func-
tions: Bayesian analysis, Water Resour. Res., 22, 499–507, 1986.

Kitanidis, P. K. and Lane, R. W.: Maximum likelihood param-
eter estimation of hydrologic spatial processes by the Gauss-
Newton method, J. Hydrol., 79, 53–71, doi:10.1016/0022-
1694(85)90181-7, 1985.

Kopacz, M., Jacob, D. J., Henze, D. K., Heald, C. L.,
Streets, D. G., and Zhang, Q.: Comparison of adjoint and
analytical Bayesian inversion methods for constraining Asian
sources of carbon monoxide using satellite (MOPITT) mea-
surements of CO columns, J. Geophys. Res., 114, D04305,
doi:10.1029/2007JD009264, 2009.

Kort, E. A., Eluszkiewicz, J., Stephens, B. B., Miller, J. B., Ger-
big, C., Nehrkorn, T., Daube, B. C., Kaplan, J. O., Houweling, S.,
and Wofsy, S. C.: Emissions of CH4 and N2O over the United
States and Canada based on a receptor-oriented modeling frame-
work and COBRA-NA atmospheric observations, Geophys. Res.
Lett., 35, L18808, doi:10.1029/2008GL034031, 2008.

Lin, C. and More, J.: Newton’s method for large bound-constrained
optimization problems, SIAM J. Optimiz., 9, 1100–1127,
doi:10.1137/S1052623498345075, 1999.

Lin, J., Gerbig, C., Wofsy, S., Andrews, A., Daube, B., Davis, K.,
and Grainger, C.: A near-field tool for simulating the upstream
influence of atmospheric observations: the Stochastic Time-

Inverted Lagrangian Transport (STILT) model, J. Geophys. Res.-
Atmos., 108, 4493, doi:10.1029/2002JD003161, 2003.

Liu, J. S., Liang, F., and Wong, W. H.: The multiple-try method and
local optimization in metropolis sampling, J. Am. Stat. Assoc.,
95, 121–134, doi:10.1080/01621459.2000.10473908, 2000.

Michalak, A. M.: A Gibbs sampler for inequality-constrained geo-
statistical interpolation and inverse modeling, Water Resour.
Res., 44, W09437, doi:10.1029/2007WR006645, 2008.

Michalak, A. M. and Kitanidis, P.: A method for enforcing parame-
ter nonnegativity in Bayesian inverse problems with an applica-
tion to contaminant source identification, Water Resour. Res., 39,
1033, doi:10.1029/2002WR001480, 2003.

Michalak, A. M., Bruhwiler, L., and Tans, P.: A geostatistical ap-
proach to surface flux estimation of atmospheric trace gases, J.
Geophys. Res., 109, D14109, doi:10.1029/2003JD004422, 2004.

Michalak, A. M. and Kitanidis, P. K.: Application of geo-
statistical inverse modeling to contaminant source identifica-
tion at Dover AFB, Delaware, J. Hydraul. Res., 42, 9–18,
doi:10.1080/00221680409500042, 2004.

Miller, S. M., Wofsy, S. C., Michalak, A. M., Kort, E. A., Andrews,
A. E., Biraud, S. C., Dlugokencky, E. J., Eluszkiewicz, J., Fis-
cher, M. L., Janssens-Maenhout, G., Miller, B. R., Miller, J. B.,
Montzka, S. A., Nehrkorn, T., and Sweeney, C.: Anthropogenic
emissions of methane in the United States, P. Natl. Acad. Sci.
USA, doi:10.1073/pnas.1314392110, 2013.

Miller, S. M., Worthy, D. E. J., Michalak, A. M., Wofsy, S. C., Kort,
E. A., Havice, T. C., Andrews, A. E., Dlugokencky, E. J., Kaplan,
J. O., Levi, P. J., Tian, H., and Zhang, B.: Top-down controls
on the distribution, seasonality, and environmental predictors of
North American boreal methane emissions, Global Biogeochem.
Cy., doi:10.1002/2013GB004580, 2014.

More, J.: Trust regions and projected gradients, Lect. Notes Contr.
Inf., 113, 1–13, 1988.

Mueller, K. L., Gourdji, S. M., and Michalak, A. M.: Global
monthly averaged CO2 fluxes recovered using a geosta-
tistical inverse modeling approach: 1. Results using at-
mospheric measurements, J. Geophys. Res., 113, D21114,
doi:10.1029/2007JD009734, 2008.

Müller, J.-F. and Stavrakou, T.: Inversion of CO and NOx emissions
using the adjoint of the IMAGES model, Atmos. Chem. Phys., 5,
1157–1186, doi:10.5194/acp-5-1157-2005, 2005.

Nehrkorn, T., Eluszkiewicz, J., Wofsy, S. C., Lin, J. C., Ger-
big, C., Longo, M., and Freitas, S.: Coupled weather re-
search and forecasting-stochastic time-inverted lagrangian trans-
port (WRF-STILT) model, Meteorol. Atmos. Phys., 107, 51–64,
doi:10.1007/s00703-010-0068-x, 2010.

Olivier, J. and Peters, J.: CO2 from non-energy use of fu-
els: a global, regional and national perspective based on the
IPCC Tier 1 approach, Resour. Conserv. Recy., 45, 210–225,
doi:10.1016/j.resconrec.2005.05.008, 2005.

Pan, L. L., Bowman, K. P., Atlas, E. L., Wofsy, S. C., Zhang, F.,
Bresch, J. F., Ridley, B. A., Pittman, J. V., Homeyer, C. R., Ro-
mashkin, P., and Cooper, W. A.: The stratosphere–troposphere
analyses of regional transport 2008 experiment, B. Am. Meteo-
rol. Soc., 91, 327–342, doi:10.1175/2009BAMS2865.1, 2010.

Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Con-
way, T. J., Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Pétron,
G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R., Ran-
derson, J. T., Wennberg, P. O., Krol, M. C., and Tans, P. P.: An

Geosci. Model Dev., 7, 303–315, 2014 www.geosci-model-dev.net/7/303/2014/

http://dx.doi.org/10.1029/2010JD014443
http://dx.doi.org/10.1029/2007JD009733
http://dx.doi.org/10.5194/bg-9-457-2012
http://dx.doi.org/10.1038/415626a
http://dx.doi.org/10.5194/acp-7-2413-2007
http://dx.doi.org/10.1016/0022-1694(85)90181-7
http://dx.doi.org/10.1016/0022-1694(85)90181-7
http://dx.doi.org/10.1029/2007JD009264
http://dx.doi.org/10.1029/2008GL034031
http://dx.doi.org/10.1137/S1052623498345075
http://dx.doi.org/10.1029/2002JD003161
http://dx.doi.org/10.1080/01621459.2000.10473908
http://dx.doi.org/10.1029/2007WR006645
http://dx.doi.org/10.1029/2002WR001480
http://dx.doi.org/10.1029/2003JD004422
http://dx.doi.org/10.1080/00221680409500042
http://dx.doi.org/10.1073/pnas.1314392110
http://dx.doi.org/10.1002/2013GB004580
http://dx.doi.org/10.1029/2007JD009734
http://dx.doi.org/10.5194/acp-5-1157-2005
http://dx.doi.org/10.1007/s00703-010-0068-x
http://dx.doi.org/10.1016/j.resconrec.2005.05.008
http://dx.doi.org/10.1175/2009BAMS2865.1


S. M. Miller et al.: Inverse modeling with known bounds 315

atmospheric perspective on North American carbon dioxide ex-
change: CarbonTracker, P. Natl. Acad. Sci. USA, 104, 18925–
18930, doi:10.1073/pnas.0708986104, 2007.

Rigby, M., Manning, A. J., and Prinn, R. G.: Inversion of long-lived
trace gas emissions using combined Eulerian and Lagrangian
chemical transport models, Atmos. Chem. Phys., 11, 9887–9898,
doi:10.5194/acp-11-9887-2011, 2011.

Rodgers, C.: Inverse Methods for Atmospheric Sounding: The-
ory and Practice, Series on Atmospheric, Oceanic and Planetary
Physics, World Scientific, Singapore, 2000.

Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D.,
Wang, W., and Powers, J.: A description of the advanced re-
search WRF version 2, available at:www.mmm.ucar.edu/wrf/
users/docs/arw_v2.pdf(last access: 16 August 2013), 2005.

Snodgrass, M. and Kitanidis, P.: A geostatistical approach to con-
taminant source identification, Water Resour. Res., 33, 537–546,
doi:10.1029/96WR03753, 1997.

Snyman, J.: Practical Mathematical Optimization: An Introduction
to Basic Optimization Theory and Classical and New Gradient-
Based Algorithms, Applied Optimization, Springer, Boston, MA,
2005.

Sorensen, D. C.: Newton’s method with a model trust region modi-
fication, SIAM J. Numer. Anal., 19, 409–426, 1982.

Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F., Eck-
hardt, S., Tapia, C., Vargas, A., and Yasunari, T. J.: Xenon-
133 and caesium-137 releases into the atmosphere from the
Fukushima Dai-ichi nuclear power plant: determination of the
source term, atmospheric dispersion, and deposition, Atmos.
Chem. Phys., 12, 2313–2343, doi:10.5194/acp-12-2313-2012,
2012.

Tarantola, A.: Inverse Problem Theory and Methods for Model Pa-
rameter Estimation, Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 2005.

Theil, H. and Panne, C. V. D.: Quadratic programming as an exten-
sion of classical quadratic maximization, Manage. Sci., 7, 1–20,
1960.

Walvoort, D. and de Gruijter, J.: Compositional kriging: a spatial in-
terpolation method for compositional data, Math. Geol., 33, 951–
966, doi:10.1023/A:1012250107121, 2001.

Wang, J. and Zabaras, N.: Hierarchical Bayesian models for in-
verse probl. in heat conduction, Inverse Probl., 21, 183–206,
doi:10.1088/0266-5611/21/1/012, 2005.

Wang, J. and Zabaras, N.: A Markov random field model
of contamination source identification in porous me-
dia flow, Int. J. Heat Mass. Tran., 49, 939–950,
doi:10.1016/j.ijheatmasstransfer.2005.09.016, 2006.

Wilks, D.: Statistical Methods in the Atmospheric Sciences, Aca-
demic Press, Oxford, UK, 3rd Edn., 2011.

Yuan, Y.-X.: A review of trust region algorithms for optimization in:
Proceedings of the Fourth International Congress on Industrial
&Applied Mathematics, ICIAM 99, Edinburgh, 5–9 July 1999,
Oxford Univ. Press, Oxford, UK, 271–282, 2000.

Zanini, A. and Kitanidis, P. K.: Geostatistical inversing for large-
contrast transmissivity fields, Stoch. Env. Res. Risk. A., 23, 565–
577, doi:10.1007/s00477-008-0241-7, 2009.

www.geosci-model-dev.net/7/303/2014/ Geosci. Model Dev., 7, 303–315, 2014

http://dx.doi.org/10.1073/pnas.0708986104
http://dx.doi.org/10.5194/acp-11-9887-2011
www.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf
www.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf
http://dx.doi.org/10.1029/96WR03753
http://dx.doi.org/10.5194/acp-12-2313-2012
http://dx.doi.org/10.1023/A:1012250107121
http://dx.doi.org/10.1088/0266-5611/21/1/012
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.09.016
http://dx.doi.org/10.1007/s00477-008-0241-7

