Supplement to ” Atmospheric inverse modeling with known
physical bounds: an example from trace gas emissions”

Scot M. Miller, Anna M. Michalak, and Patricia J. Levi

This supplement describes in greater detail the multiple-try Metropolis-Hastings algorithm
and the Gibbs sampler implementation.

1 Existing Metropolis-Hastings implementations

Metropolis-Hastings algorithms can be used in a number of ways to enforce inequality con-
straints, and existing literature in hydrology (Michalak and Kitanidis, 2004; Wang and Zabaras,
2006; Zanini and Kitanidis, 2009) and atmospheric sciences (Rigby et al., 2011; Burrows et al.,
2013) implement different approaches. The algorithms implemented in the cited hydrology pa-
pers use Lagrange multipliers to enforce constraints on individual realizations. Such an approach
is computationally attractive for larger-scale inverse problems, with hundreds or thousands of
elements of the state space for which constraints must be enforced. The cited studies generally
use the following approach:

1. Add noise to the observations and the prior. The vectors of random noise are generated
using the covariance matrices (R and Q, respectively) and the last accepted realization.

2. Create a conditional, constrained realization of the emissions (s.;) by minimizing the
inversion cost function subject to the randomly-generated inputs above and enforcing
constraints on the state vector using the method of Lagrange multipliers.

3. Calculate the likelihood of the candidate realization (s ;) relative to the previous, ac-
cepted realization (s..j—1). Based upon this likelihood, either accept or reject the real-
ization, and begin again with step 1.

These steps are described in more detail in section 2.

The cited existing atmospheric studies use a different approach (Rigby et al., 2011; Burrows
et al., 2013). In these studies, a new realization (s ;) is generated by adding a random quantity
directly to the previous candidate realization (s..j—1). If the candidate realization (s ;) does
not obey the inequality constraints, it is discarded. If the constraints are met in the realization,
it is again accepted or rejected based on its relative probability compared to the last accepted
realization. This implementation omits steps 1 and 2 above. In other words, the modeler is
not required to minimize the cost function and can instead skip directly to step 3. This feature
affords greater flexibility in the inversion setup (e.g., Rigby et al., 2011); the modeler can use a
complex probability density function (pdf) for the inversion even if calculating its maximum is
computationally-intractable. A larger number of multivariate distributions could be used for the
prior pdf, not just a multivariate Gaussian distribution (implemented with Lagrange multipliers
in the hydrology studies above). The fraction of realizations that are rejected, however, can
be very high for two reasons. First, for large state vectors, a very high fraction of candidate
realizations will not obey all bounds and will be rejected. Second, there are no formal steps to

ensure that each proposed realization reproduces the atmospheric observations. Therefore, the
fraction of realizations that are rejected will be high, even among those realizations that obey
the inequality constraints.

The implementation used in the cited hydrology studies is therefore better for larger prob-
lems because it samples the posterior probability space more strategically. The implementation
generates candidate realizations that explicitly sample the covariance matrices (R and Q) and
honor the observations (z). Refer to Chib and Greenberg (1995) or Bolstad (2012) for a gen-
eral discussion on creating candidate realizations. In general, larger problems require strategic
generation of candidate realizations; the efficiency and/or acceptance probability of Metropolis-
Hastings decreases as the number of unknowns increase for problems with comparable imple-
mentation and covariance matrices (Gelman, 2004, ch. 11). This fact makes the approach used
in the cited hydrology literature more suitable for larger problems like the methane case study
in the main manuscript. However, this approach also restricts the inversion setup to pdfs with
computationally-tractable maxima.

2 The multiple-try Metropolis-Hastings

The following section describes the multiple-try Metropolis-Hastings algorithm modified to
accommodate inequality constraints. This algorithm is more computationally tractable for
large problems than many traditional Metropolis-Hastings implementations.

This algorithm (Liu et al., 2000) first requires the generation of an unconstrained uncondi-
tional realization, denoted s,,. The realization for step j, denoted s, j, is created by applying
a modification to s,,,;—1. The modification to the previous realization is provided by what is
known as the jumping distribution 7°(). This distribution should create new realizations that
are sufficiently different from the previous one such that the algorithm effectively samples the
entire probability space. However, the jumping distribution should avoid creating subsequent
realizations that are so different such that s, ; gets rejected by the algorithm (e.g., Chib and
Greenberg, 1995).

The jumping distribution used here requires taking the Cholesky decomposition of Q:

Q=cc’ (1)

The distribution 7'() can be chosen in any number of ways (e.g., Chib and Greenberg, 1995),
but we generate new unconditional unconstrained realizations as follows (where u is a random
vector with distribution N(0,1)):

Suu0 = Cu (2)
Suu,j = (bsuu,j—l + V1= ¢2 Cu

In this case, we set ¢ = 0.9, though any value greater than zero and less than one is
acceptable (e.g., Michalak and Kitanidis, 2004). The multiple-try Metropolis-Hasting with
inequality constraints has the following steps:

1. Draw k trial proposals for s, ; from the jumping distribution described by Eq. 2.

2. Compute a conditional constrained realization (s ;) for each of the trial proposals by
minimizing the posterior negative log-likelihood via Lagrange multipliers:

Leg = s(z+v-Hs!)R (z+v-Hs!)+ (3)

cc,j ce,j
1 T
§(SZc,j - SZu,j) G(Szc,j - SZu,j)

where v is a random vector with covariance R. In this case, the asterisk (x) indicates
that the candidate is one of k trial proposals for the realization.

3. Compute the weighting function for each trial proposal:

p//(szc,j"z’ H? X)

T(szc,j ‘Scc,j—l)

(4)

w(see jl8cej—1) =
where p”(sy, ;|z, H,X) indicates the posterior probability of s7. ;, and T'(s}. ;|Scc,j—1) is
the jumping probability of s, ; given Scj—1. The posterior probability and approximate
jumping probability can be calculated as follows (Michalak and Kitanidis, 2004):

p”(szc,j|z7 Ha X) X exp[—%(z - HSZc,j)TRil(z - HSZc,j) (5)
T
— 550 Gl
T(s}e ;|8ccj—1) o< expl=5(sh,; — PSuuj1)" (6)
Q—l
m(szu,j — PSuu,j—1)]

4. Select s, ; from the trial proposals by individually, randomly drawing each element from
8;.; With probability proportional to the weighting function w(sy, ;[Scc,j—1). Select the
*

corresponding elements of s, . to construct Syu,;.

5. Create (k — 1) new trial proposals for s.. ;1. To do this, draw samples from the jumping
distribution T'(sy,, ;1 |8uu,j) (i-.; 8y -1 = #Suu,; + /1 — ¢?*Cu). Calculate the trial
conditional constrained realizations s ;j—1 using the procedure outlined in step 2. Set trail
proposal k to s.. ;1. Finally, calculate the weighting function for each trial conditional
constrained realization, w(sy. ;_1[Scc,j)-

6. Calculate the acceptance/rejection probability (Liu et al., 2000):

(7)

k
§—min{1 > W(SZC,ﬂScc,j—l)}
— —
Z w(‘S:c,jfl‘SCCaj)

Accept s j if € > U(0,1). Otherwise, set Seej = Sec,j—1-

Repeat steps 1 — 6 until a sufficient number of realizations have been generated to sample
across the entire posterior probability space. Note that unlike the Gibbs sampler, this multiple-
try Metropolis-Hastings algorithm does not require discarding realizations from an initial spin-
up period. For this application, we choose k& = 8. Larger values for k can lead to greater
acceptance rates but higher computational cost. Liu et al. (2000) note that an acceptance rate
of 0.4 — 0.5 is ideal for a multiple-try Metropolis-Hastings algorithm.

3 The Gibbs sampler implementation

The Gibbs sampler requires generating the element-wise conditional probability density, the
probability of any individual element in s given an estimate of all other elements in s. This
conditional density is denoted p(s;|s, z) where i is one of m elements in s. The equations for
p(si|s, z) can be found in Michalak (2008) for the inversion setup discussed in this paper.

The Gibbs sampler has the following steps:

1. Make an initial guess for s; where the subscript ‘1’ denotes the first realization of s.

2. Obtain a new realization, s;, from the previous realization, s;_1. To do this, successively
generate a conditional probability for each element in s, and draw a random sample from
each one:

81,5]82,j=15 -+ Sm,j—1)
82,7181, 83,515 -+ Sm,j—1)

§i,jS1,5s +e0s Sim1gs Sit1,j—15 +o0s Sm,j—1)

I
vTRVRYT
A~ o~ Y~

Sm,j|81,j5 s Sm—1,5)

3. Update j to j + 1 and continue generating realizations.

Create a large number of realizations (in this case 1200) to fully sample across the posterior
probability space. The initial realizations are usually discarded as a “spin-up” period (in this
case, the first 200).

In this implementation p(s;|s, z) is Gaussian. To enforce the inequality constraints, Micha~
lak (2008) draws a random sample from p(s;|s, z) until the random draw falls within the bounds.
This draw becomes the estimate for s; ;. The approach is equivalent to using a truncated Gaus-
sian as a the prior probability density function, but this implementation avoids the computa-
tional challenge of directly computing a multivariate, truncated probability distribution.

This study uses a modified approach for the methane case study. If the random sample
from p(s;i|s, z) is positive, it becomes the estimate for s; ;. If the random sample is negative,
set s;; = 0. This approach is equivalent to sampling from a truncated normal distribution
with an added Dirac delta function. The method adapted here increases the probability of
estimating zero emissions for a given flux or emissions location.

References

Bolstad, W.: Understanding Computational Bayesian Statistics, Wiley Series in Computational
Statistics, John Wiley & Sons, 2012.

Burrows, S. M., Rayner, P. J., Butler, T., and Lawrence, M. G.: Estimating bacteria emissions
from inversion of atmospheric transport: sensitivity to modelled particle characteristics, At-
mospheric Chemistry and Physics, 13, 5473-5488, d0i:10.5194/acp-13-5473-2013, 2013.

Chib, S. and Greenberg, E.: Understanding the Metropolis-Hastings Algorithm, Am. Stat., 49,
pp. 327-335, 1995.

Gelman, A.: Bayesian Data Analysis., Texts in Statistical Science, Chapman & Hall/CRC,
Boca Raton, Florida, 2 edn., 2004.

Liu, J. S., Liang, F., and Wong, W. H.: The Multiple-Try Method and Local Optimization in
Metropolis Sampling, J. Am. Stat. Assoc., 95, 121-134, doi:10.1080,/01621459.2000.10473908,
2000.

Michalak, A. M.: A Gibbs sampler for inequality-constrained geostatistical interpolation and
inverse modeling, Water Resour. Res., 44, doi:10.1029/2007WR006645, 2008.

Michalak, A. M. and Kitanidis, P. K.: Application of geostatistical inverse modeling to con-
taminant source identification at Dover AFB, Delaware, Journal of Hydraulic Research, 42,
9-18, d0i:10.1080/00221680409500042, 2004.

Rigby, M., Manning, A. J., and Prinn, R. G.: Inversion of long-lived trace gas emissions using
combined Eulerian and Lagrangian chemical transport models, Atmospheric Chemistry and
Physics, 11, 9887-9898, doi:10.5194 /acp-11-9887-2011, 2011.

Wang, J. and Zabaras, N.: A Markov random field model of contamination source identification
in porous media flow, Int. J. Heat Mass. Tran., 49, 939-950, doi:10.1016/j.ijheatmasstransfer.
2005.09.016, 2006.

Zanini, A. and Kitanidis, P. K.: Geostatistical inversing for large-contrast transmissivity fields,
Stoch. Env. Res. Risk. A., 23, 565-577, doi:10.1007/s00477-008-0241-7, 2009.

	Existing Metropolis-Hastings implementations
	The multiple-try Metropolis-Hastings
	The Gibbs sampler implementation

