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Abstract. This paper presents a novel nodal finite-element

method for either continuous and discontinuous elements,

as applied to the 2-D shallow-water equations on the cubed

sphere. The cornerstone of this method is the construction of

a robust derivative operator that can be applied to compute

discrete derivatives even over a discontinuous function space.

A key advantage of the robust derivative is that it can be ap-

plied to partial differential equations in either a conservative

or a non-conservative form. However, it is also shown that

discontinuous penalization is required to recover the correct

order of accuracy for discontinuous elements. Two versions

with discontinuous elements are examined, using either the

g1 and g2 flux correction function for distribution of bound-

ary fluxes and penalty across nodal points. Scalar and vector

hyperviscosity (HV) operators valid for both continuous and

discontinuous elements are also derived for stabilization and

removal of grid-scale noise. This method is validated using

four standard shallow-water test cases, including geostrophi-

cally balanced flow, a mountain-induced Rossby wave train,

the Rossby–Haurwitz wave and a barotropic instability. The

results show that although the discontinuous basis requires

a smaller time step size than that required for continuous

elements, the method exhibits better stability and accuracy

properties in the absence of hyperviscosity.

1 Introduction

Modeling of the 2-D shallow-water equations is an impor-

tant step in understanding the behavior of a numerical dis-

cretization for atmospheric modeling. In particular, the dy-

namical character of the global shallow-water equations is

governed by features common with atmospheric motions in-

cluding nonlinearity, barotropic Rossby waves and inertia-

gravity waves, without the added complexity of a vertical di-

mension.

A comprehensive literature already exists on the devel-

opment of numerical methods for the global shallow-water

equations spanning the past several decades. Examples in-

clude the spectral transform method (Jakob-Chien et al.,

1995), semi-Lagrangian methods (Ritchie, 1988; Bates et al.,

1990; Tolstykh, 2002; Zerroukat et al., 2009; Tolstykh and

Shashkin, 2012; Qaddouri et al., 2012), finite-difference

methods (Heikes and Randall, 1995; Ronchi et al., 1996),

Godunov-type finite-volume methods (Rossmanith, 2006;

Ullrich et al., 2010), staggered finite-volume methods (Lin

and Rood, 1997; Ringler et al., 2008, 2011), multi-moment

finite-volume methods (Chen and Xiao, 2008; Li et al., 2008;

Chen et al., 2014) and finite-element methods (Taylor et al.,

1997; Côté and Staniforth, 1990; Thomas and Loft, 2005;

Giraldo et al., 2002; Nair et al., 2005; Läuter et al., 2008;

Comblen et al., 2009; Bao et al., 2014).

This paper introduces a novel discrete derivative opera-

tor that is applied to the shallow-water equations on a mani-

fold using continuous and discontinuous finite elements. This

work is motivated by the flux correction methods of Huynh

(2007) and Vincent et al. (2011), is an alternative to for-

mulations with discontinuous elements that discretize the

conservative equations of motion with explicit momentum

fluxes (Giraldo et al., 2002; Nair et al., 2005) and generalizes

both spectral element and discontinuous Galerkin methods.

This approach is also quadrature free, requiring no integral

computation. This paper further introduces a general varia-

tional discretization of the scalar and vector Laplacian oper-
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ator which is valid for continuous or discontinuous elements

and only requires one communication per application of the

Laplacian.

Discontinuous elements are potentially more desirable

than continuous elements for several reasons: first, discon-

tinuous elements only require parallel communication along

coordinate axes, whereas continuous elements also require

parallel communication along diagonals, a doubling of the

total number of communications in 2-D. Second, discontin-

uous elements provide a natural mechanism to enforce stabi-

lization via discontinuous penalization (or Riemann solvers,

for equations in conservation form). Third, discontinuous el-

ements can be used in conjunction with upwind methods,

which are generally better for tracer transport and associ-

ated problems. However, discontinuous elements also have

a number of disadvantages, including higher storage require-

ments (for the same order of accuracy), a maximum time step

size which is typically smaller than that imposed for contin-

uous elements (Ullrich, 2013) and added computational ex-

pense for many hyperbolic operations.

The outline of this paper is as follows. Section 2 presents

the shallow-water equations on a manifold. The cubed-

sphere grid, which will be used for simulations on the sphere,

is described in Sect. 3. The discretizations of the dynamics

and hyperviscosity (HV) are then presented in Sects. 4 and

5, respectively. Results from four standard shallow-water test

cases are given in Sect. 6 and conclusions follow in Sect. 7.

2 The shallow-water equations on a manifold

The 2-D shallow-water equations in on a Riemannian mani-

fold with coordinate indices xs = {α,β} can be written as

∂uα

∂t
+ us∇su

α
+ gαs

∂

∂xs
(gcH)+ f (k×u)

α
= 0, (1)

∂uβ

∂t
+ us∇su

β
+ gβs

∂

∂xs
(gcH)+ f (k×u)

β
= 0, (2)

∂H

∂t
+∇s(hu

s)= 0. (3)

The prognostic variables are free-surface height H and

vector velocity u= uαgα + u
βgβ , where gα = ∂x/∂α and

gβ = ∂x/∂β are the natural basis vectors on the manifold.

The fluid height h and height of the bottom topography z

are related to the free-surface height via H = h+ z. Here

grs denotes the contravariant metric with covariant inverse

grs , J =
√

detgrs is the metric Jacobian, gc is gravity, f is

the Coriolis parameter and k is the vertical basis vector of

unit length. The Einstein summation notation (implied sum-

mation) is used for repeated indices. These equations further

make use of the covariant derivative ∇s , which expands as

us∇su
d
= uα

∂ud

∂α
+ uβ

∂ud

∂β
+0dsru

sur , (4)

∇s(hu
s)=

1

J

∂

∂α
(Jhuα)+

1

J

∂

∂β
(Jhuβ), (5)
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Fig. 1. A 3D view of the cubed-sphere grid shown here with ne = 16. Cubed sphere faces are individually
shaded.
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Figure 1. A 3-D view of the cubed-sphere grid shown here with

ne = 16. Cubed-sphere faces are individually shaded.

where 0dsr denote the Christoffel symbols of the second kind

associated with the coordinate transform (again with summa-

tion over repeated indices s and r implied).

The mass equation, Eq. (3), has been kept in conservative

form to enforce strict mass conservation. On the other hand,

Eqs. (1)–(2) are given in a non-conservative form; this for-

mulation is selected over the flux-form equations (where huα

and huβ are prognostic variables). Angular momentum and

potential enstrophy are particularly relevant to atmospheric

motions (Thuburn, 2008) and can be easily conserved under a

non-conservative formulation of the shallow-water equations

(Taylor and Fournier, 2010). Conservation of these quantities

is more difficult when they are diagnosed from the flux-form

prognostic variables. The non-conservative formulation also

has the advantage of leading to a more accurate treatment of

wave-like motion when formulated appropriately (Thuburn

and Woollings, 2005).

3 The cubed-sphere grid

The Eqs. (1)–(3) are now applied to a particular choice of

coordinate system. The cubed-sphere grid (Sadourny, 1972;

Ronchi et al., 1996) consists of a cube with six Cartesian

patches arranged along each face, which is then inflated onto

a tangent spherical shell, as shown in Fig. 1. The cubed

sphere is a quasi-uniform spherical grid, that is, it is in the

class of grids that provide an approximately uniform tiling

of the sphere (see Staniforth and Thuburn (2012), for exam-

ple, for a review of different options for global grids). On

the equiangular cubed-sphere grid, coordinates are given as

(α,β,p), with central angles α,β ∈ [−π
4
, π

4
] and panel index

p ∈ {1,2,3,4,5,6}. By convention, we choose panels 1–4 to
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be along the equator and panels 5 and 6 to be centered on

the northern and southern pole, respectively. With uniform

grid spacing, each panel consists of a square array of ne×ne

elements.

The contravariant 2-D metric on the equiangular cubed

sphere of radius a is given by

grs =
δ2

a2(1+ tan2α)(1+ tan2β)

 1+ tan2β tanα tanβ

tanα tanβ 1+ tan2α

 , (6)

where δ =
√

1+ tan2α+ tan2β. The Jacobian on the mani-

fold, denoted by J , is then

J =
√

det(grs)=
a2(1+ tan2α)(1+ tan2β)

δ3
, (7)

and induces the infinitesimal area element dA= J dα dβ.

The Christoffel symbols of the second kind are given by

0αij =
2tanαtan2β

δ2

− tanβ (1+ tan2β)

δ2

− tanβ (1+ tan2β)

δ2
0

 , (8)

0
β
ij = 0

− tanα (1+ tan2α)

δ2

− tanα (1+ tan2α)

δ2

2tan2α tanβ

δ2

 . (9)

Spherical coordinates (λ,φ) for longitude λ ∈ [0,2π ] and

latitude φ ∈ [−π/2,π/2] will also be used for plotting and

specification of tests. Coordinate transforms between spheri-

cal and equiangular coordinates can be found in Ullrich and

Jablonowski (2012) Appendix A.

4 Nodal finite-element discretization

4.1 The nodal basis

A nodal finite-element method is employed (Taylor et al.,

1997; Giraldo et al., 2002; Hesthaven and Warburton, 2007).

The 1-D reference element is defined as the interval x ∈

[−1,1] along with a set of test functions φ̂(i)(x). The test

functions are defined such that test function φ̂(i)(x) is the

unique polynomial of degree np that is one at the ith Gauss–

Lobatto–Legendre (GLL) node ,i ∈ (0, . . .,np− 1), and zero

at all other GLL nodes. Each basis polynomial then has a

corresponding weight, defined by

wi =

1∫
−1

φ̂(i)(x)dx. (10)
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Fig. 2. A depiction of the nodal grid for a reference element on GLL nodes for np = 4. Boundary nodes,
which are connected to neighboring elements, are shaded.
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Figure 2. A depiction of the nodal grid for a reference element on

GLL nodes for np = 4. Boundary nodes, which are connected to

neighboring elements, are shaded.

The 2-D element Z = [α1,α2]× [β1,β2] (with boundary

∂Z) has accompanying 1-D basis functions

φ̃(i)(α)= φ̂(i)

(
2(α−α1)

1α
− 1

)
,

φ̃(j)(β)= φ̂(j)

(
2(β −β1)

1β
− 1

)
, (11)

where 1α = α2−α1 and 1β = β2−β1. The accompanying

2-D tensor-product basis is then defined by

φ(i,j)(α,β)= φ̃(i)(α)φ̃(j)(β). (12)

Figure 2 provides a depiction of GLL nodes within a sin-

gle element. For vector quantities (such as velocity u), test

functions are instead vector fields. Uniqueness of the varia-

tional system is retained if exactly 2 degrees of freedom are

allowed at each nodal location for the vector test function

φ. As we shall see, the most natural choice is test functions

φ
(α)
(i,j) and φ

(β)

(i,j) with covariant components

φ
(α)
(i,j)α = φ(i,j),φ

(α)
(i,j)β = 0,φ

(β)

(i,j)α = 0,φ
(β)

(i,j)β = φ(i,j). (13)

4.2 Robust differentiation

A robust differentiation operator is now constructed for

both continuous and discontinuous finite elements. Let f :

(α,β)→ R be defined and continuous on Z ∪ ∂Z with basis

φ(i,j):

f (α,β)=

np−1∑
p=0

np−1∑
q=0

f(p,q)φ(p,q)(α,β), (14)

for coefficients f(p,q) ∈ R. Further, let f̃ : (α,β)→ R be de-

fined and continuous on ∂Z . Here f̃ represents the evalua-

tion of f in neighboring elements. Note that for a continu-

ous finite-element method, f and f̃ must satisfy f̃ (α,β)=

www.geosci-model-dev.net/7/3017/2014/ Geosci. Model Dev., 7, 3017–3035, 2014
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f (α,β) on ∂Z , whereas no such restriction is imposed for

discontinuous finite elements. Following Huynh (2007), ro-

bust differentiation in the α direction is defined at GLL nodes

via

Dαf (αi,βj )=

np−1∑
p=0

f(p,j)
∂φ̃(p)

∂α
(αi)

+
dgR

dα
(αi)(f (np−1,j)− f(np−1,j))

+
dgL

dα
(αi)(f (0,j)− f(0,j)), (15)

where the overscore denotes the co-located average of f and

f̃ ,

f (np−1,j) =
f (αnp−1,βj )+ f̃ (αnp−1,βj )

2
,

f (0,j) =
f (α0,βj )+ f̃ (α0,βj )

2
. (16)

An analogous definition holds in the β direction. Here gL
and gR are the local flux correction functions, which are cho-

sen to satisfy

gL(α0)= 1,gL(αnp−1)= 0,

gR(α0)= 0,gR(αnp−1)= 1, (17)

and otherwise are chosen to approximate zero throughout

[α0,αnp−1]. Several options for gL and gR will lead to a sta-

ble discretization, including g1 (Radau polynomials), which

will lead to the discontinuous Galerkin method, and g2,

which will lead to the mass-lumped discontinuous Galerkin

method (Huynh, 2007). Hereafter discontinuous elements

with the g1 flux correction function will be referred to as dis-

continuous g1 elements, whereas elements using of the g2

flux correction function will be referred to as discontinuous

g2 elements. Observe that for continuous finite elements, the

rightmost two terms in Eq. (15) are exactly zero.

With the definition of a robust discrete derivative Eq. (15),

discretization of the shallow-water system, Eqs. (1)–(3), is

straightforward. Note that for continuous finite elements, this

discretization is identical to the approach of Taylor et al.

(1997) when applied in conjunction with direct stiffness sum-

mation (DSS, that is, projection into the space of continu-

ous functions; see Appendix A). If the conservative form of

the shallow-water equations was employed, this discretiza-

tion would be the same as Giraldo et al. (2002) when mass

lumping is not employed (discontinuous g1) and Nair et al.

(2005) if mass lumping is applied (discontinuous g2). To the

best of the author’s knowledge, no previous work has used

both discontinuous elements and a non-conservative form of

the shallow-water system.

4.3 Discontinuous penalization

At element boundaries, the use of one-sided derivatives will

cause the discontinuity between neighboring elements to ex-

hibit an error with magnitude O(1xnp−1), an effective loss

of 1 order of accuracy from the expected convergence rate.

To reduce errors associated with the discontinuity, a penal-

ization term is added in each coordinate direction. In the α

direction this term reads as

∂H

∂t
(αi,βj )=

. . .+
∂gR

∂α
(αi )
|λ(αnp−1,βj )|

2

[
H̃ (αnp−1,βj )−H(αnp−1,βj )

] J (αnp−1,βj )

J (αi ,βj )

+
∂gL

∂α
(αi )
|λ(α0,βj )|

2

[
H(α0,βj )− H̃ (α0,βj )

] J (α0,βj )

J (αi ,βj )
, (18)

∂ud

∂t
(αi,βj )=

. . .+
∂gR

∂α
(αi )
|λ(αnp−1,βj )|

2

[
ũd (αnp−1,βj )− u

d (αnp−1,βj )
]

+
∂gL

∂α
(αi )
|λ(α0,βj )|

2

[
ud (α0,βj )− ũ

d (α0,βj )
]
, (19)

where λ(α,β)= |uα| +
√
gh/a represents the maximum lo-

cal wave speed in the α direction. An analogous term is added

in the β direction. Note that with this choice of penaliza-

tion, the evolution equation forH is identical to the evolution

equation that would arise from a traditional conservative dis-

continuous Galerkin method with local Lax–Friedrichs flux.

Since the penalization term is equivalent to upwinding, it is

weakly diffusive and so allows the discontinuous scheme to

maintain stability even in the absence of explicit viscosity.

4.4 Implementation considerations

On the cubed-sphere grid, the discontinuous method has

6 n2
en

2
p degrees of freedom compared to 8+ 8(ne(np− 1)−

1)+6(ne(np−1)−1)2 for the continuous method. In the limit

as ne→∞, this yields a ratio of (np−1)2/n2
p degrees of free-

dom for the continuous formulation versus the discontinuous

formulation. Note that in practice, the continuous formula-

tion typically stores redundant degrees of freedom in order to

reduce computational expense associated with indexing and

so memory requirements are typically identical.

The primary computational difference between the con-

tinuous and discontinuous formulations is due to the eval-

uation of the penalty terms, Eqs. (18)–(19). Note that al-

though the robust differentiation operation, Eq. (15), does

require additional computation for discontinuous methods,

the cost of evaluating the discontinuous terms in this ex-

pression is roughly equivalent to the computational cost of

the direct stiffness summation operation needed for continu-

ous elements. Nonetheless, from numerical experiments the

discontinuous method has an approximately 30 % overhead

compared with a continuous method (when run with the same

time step size).
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5 Viscosity and hyperviscosity

Stabilization is typically needed for co-located (or unstag-

gered) finite-element methods, whether implicitly in the form

of upwinding or explicitly in the form of a diffusive opera-

tor, to avoid high-frequency dispersive errors associated with

spectral ringing. In general, it is preferred that this operator is

consistent with the underlying geometry of the Riemannian

manifold, which precludes, for example, the Boyd–Vandeven

filter (Boyd, 1996). There has been considerable success with

the use of hyperviscosity in the spectral element method

(Dennis et al., 2011), which maintains geometric consistency

by mimicking the natural fourth-order hyperviscosity opera-

tor. Previously, it has not been clear how to extend this oper-

ator to a discontinuous function space. However, the robust

derivative, Eq. (15), provides a direct mechanism by which

the hyperviscosity operator can be constructed. The viscosity

operator for both the continuous and discontinuous function

space will be discussed here.

Note that any viscosity operator will lead to a loss of en-

ergy conservation of the underlying numerical method. This

loss is exhibited in two obvious ways: first, for geostrophi-

cally balanced flows the error will tend to grow over time.

Second, energy conservation is lost leading to a decay in the

total energy content of the system over time.

5.1 Scalar viscosity

For stabilization of the method, diffusion is added in the form

of either viscosity or hyperviscosity, which corresponds to

multiple applications of the viscosity operator. A scalar vis-

cosity operator is constructed to satisfy

H(ν)ψ ≈ ν∇2ψ, (20)

where ∇2
=∇ ·∇ is the usual scalar Laplacian. The oper-

ator is defined implicitly via a variational construction. If

f =H(ν)ψ then, multiplying Eq. (20) by a test function and

applying integration by parts, one obtains∫∫
f φ(i,j)dA=

ν

∮
∂Z

φ(i,j)∇ψ · dS−

∫∫
Z

∇φ(i,j) · ∇ψdA

 , (21)

where dS is the infinitesimal line element along the bound-

ary of Z and dA is the infinitesimal area element. The two

terms on the right-hand side of this expression correspond to

the viscosity flux through element boundaries and the Lapla-

cian within the element. Under a continuous element formu-

lation, only the rightmost term is retained and fluxes are in-

stead accounted for via direct stiffness summation. Under a

discontinuous formulation, both terms are retained and dis-

cretized. The discrete equation satisfied by f(i,j) that follows

from Eq. (21) is written as

f(i,j) = f
B
(i,j)+ f

A
(i,j), (22)

where f B(i,j) denotes the discretization of the boundary inte-

gral and f A(i,j) denotes the discretization of the area integral.

After a lengthy derivation (see Appendix B), these discretiza-

tions read as

f A(i,j)=−
ν

wiJ (αi,βj )

np−1∑
m=0

∂φ̃(i)

∂α
∇
αψJwm

∣∣
α=αm,β=βj

−
ν

wjJ (αi ,βj )

np−1∑
n=0

∂φ̃(j)

∂β
∇
βψJwn

∣∣
α=αi ,β=βn

, (23)

and

f B(i,j) =

ν

 δi,np−1

wi1α
∇
αψ︸ ︷︷ ︸

Right

+
δj,np−1

wj1β
∇
βψ︸ ︷︷ ︸

Top

−
δi,0

wi1α
∇
αψ︸ ︷︷ ︸

Left

−
δj,0

wj1β
∇
βψ︸ ︷︷ ︸

Bottom

 ,
(24)

where δi,j is the Krönecker delta. Here the contravariant

derivative of ψ has been used, defined via

∇
pψ = gpq∇qψ = g

pα ∂ψ

∂α
+ gpβ

∂ψ

∂β
. (25)

Note that the contravariant derivatives ∇pψ are multi-

valued along this edge, and so must be adjusted using the

robust derivative operator Eq. (15).

5.2 Vector viscosity

Vector viscosity is used for damping of the velocity field, and

takes the form

H(νd,νv)u≈ νd∇(∇ ·u)− νv∇ × (∇ ×u). (26)

Observe that if ν = νd = νv then this expression is exactly

the standard vector Laplacian operator ∇2u, with coefficient

ν. By writing the vector Laplacian as Eq. (26), the combined

operator separates into two distinct operators that affect di-

vergence damping (with coefficient νd) and vorticity damp-

ing (with coefficient νv). This result can be quickly verified

by taking the divergence and curl of Eq. (26),

∇ ·H(νd,νv)u= νd∇
2(∇ ·u), (27)

∇ ×H(νd,νv)u=−νv∇ × (∇ × (∇ ×u))

= νv∇
2(∇ ×u). (28)

For simplicity of calculation, we treat divergence damping

and vorticity damping separately. For divergence damping,

the operator is constructed by taking the inner product of f =

H(νd,νv)u with the vector test function φ, integrating over

Z and applying integration by parts,

νd

∫∫
Z

φ ·f dA= νd

∫∫
Z

φ · ∇(∇ ·u),

www.geosci-model-dev.net/7/3017/2014/ Geosci. Model Dev., 7, 3017–3035, 2014
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= νd

∮
∂Z

(∇ ·u)φ · dS−

∫∫
Z

(∇ ·φ)(∇ ·u)dV

 . (29)

For vorticity damping an analogous procedure leads to

νv

∫∫
Z

φ ·f dA=−νv

∫∫
Z

φ · ∇ × (∇ ×u)dV,

=−νv

∮
∂Z

(∇ ×u)×φ · dS+

∫∫
Z

(∇ ×φ) · (∇ ×u)dV

 .
(30)

Note that for shallow-water flows, only the radial compo-

nent of the vorticity is relevant for this calculation. The dis-

crete value of f α(i,j) and f
β

(i,j) that arises from this calculation

then has contributions from the area integral via f
A,d
(i,j) and

boundary integral via f
B,d
(i,j),

f α(i,j) = f
B,α
(i,j)+ f

A,α
(i,j),f

β

(i,j) = f
B,β

(i,j)+ f
A,β

(i,j). (31)

Following another lengthy derivation (see Appendix B),

the area integral term appears as

f
A,α
(i,j) =

−
νd

J (αi,βj )wi

np−1∑
m=0

Jgαα
dφ̃(i)

dα
(∇ ·u)wm

∣∣∣∣
α=αm,β=βj

−
νd

J (αi,βj )wj

np−1∑
n=0

Jgβα
dφ̃(j)

dβ
(∇ ·u)wn

∣∣∣∣∣
α=αi ,β=βn

+
νv

J (αi,βj )wj

np−1∑
n=0

dφ̃(j)

dβ
(∇ ×u)rwn

∣∣∣∣∣
α=αi ,β=βn

, (32)

and

f
A,β

(i,j) =

−
νd

J (αi,βj )wi

np−1∑
m=0

Jgαβ
dφ̃(i)

dα
(∇ ·u)wm

∣∣∣∣
α=αm,β=βj

−
νd

J (αi,βj )wj

np−1∑
n=0

Jgββ
dφ̃(j)

dβ
(∇ ·u)wn

∣∣∣∣∣
α=αi ,β=βn

−
νv

J (αi,βj )wi

np−1∑
m=0

dφ̃(i)

dα
(∇ ×u)rwm

∣∣∣∣
α=αm,β=βj

, (33)

whereas the boundary integral term is

f
B,α
(i,j) =

νd

δi,np−1g
αα(∇ ·u)

wi1α︸ ︷︷ ︸
Right

+
δj,np−1g

αβ(∇ ·u)

wj1β︸ ︷︷ ︸
Top

−
δi,0g

αα(∇ ·u)

wi1α︸ ︷︷ ︸
Left

−
δj,0g

αβ(∇ ·u)

wj1β︸ ︷︷ ︸
Bottom


α=αi ,β=βj

+ νv

−δj,np−1(∇ ×u)r

Jwj1β︸ ︷︷ ︸
Top

+
δj,0(∇ ×u)r

Jwj1β︸ ︷︷ ︸
Bottom


α=αi ,β=βj

. (34)

Applying an analogous procedure for test function φ
(β)

(i,j),

f
B,β

(i,j) = νd

δi,np−1g
βα(∇ ·u)

wi1α︸ ︷︷ ︸
Right

+
δj,np−1g

ββ(∇ ·u)

wj1β︸ ︷︷ ︸
Top

−
δi,0g

βα(∇ ·u)

wi1α︸ ︷︷ ︸
Left

−
δj,0g

ββ(∇ ·u)

wj1β︸ ︷︷ ︸
Bottom


α=αi ,β=βj

+νv

δi,np−1(∇ ×u)r

Jwi1α︸ ︷︷ ︸
Right

−
δi,0(∇ ×u)r

Jwi1α︸ ︷︷ ︸
Left


α=αi ,β=βj

. (35)

The divergence and curl, which are needed for evaluation

of the Laplacian, are computed via

∇ ·u=∇pu
p
=∇αu

α
+∇βu

β , (36)

(∇ ×u)r = εrpqg
ps
∇su

q
=

J
[
gαα∇αu

β
+ gαβ∇βu

β
− gβα∇αu

α
− gββ∇βu

α
]
, (37)

where

∇αu
α
=
∂uα

∂α
+0αααu

α
+0ααβu

β ,

∇αu
β
=
∂uβ

∂α
+0βααu

α
+0

β
αβu

β , (38)

∇βu
α
=
∂uα

∂β
+0αβαu

α
+0αββu

β ,

∇βu
β
=
∂uβ

∂β
+0

β
βαu

α
+0

β
ββu

β . (39)

All partial derivatives are evaluated using the robust deriva-

tive operator (15).

5.3 Hyperviscosity

For stabilization of a high-order discretization, hyperviscos-

ity is preferred since it retains the order of accuracy of the un-

derlying scheme. In practice, hyperviscosity is implemented
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Figure 3. L2 errors in Williamson et al. (1992) test case 2, steady-state geostrophically balanced flow for ne = 4 and np = 4 after a 5-day

integration period. Contour spacing for plot (a) is 1 m. Contour spacing for all other plots is 0.5 m. The zero line is enhanced. Long dashed

lines show the cubed-sphere grid.

by repeated application of the viscosity operator. For in-

stance, for fourth-order hyperviscosity, the∇4 operator is ap-

proximated as follows

∂u

∂t
=H(νd,νv)H(1,1)u,

∂h

∂t
=H(ν)H(1)h. (40)

5.4 Computational considerations

Calculation of hyperviscosity in the form presented here re-

quires one parallel exchange per application of the Lapla-

cian operator. For continuous elements, this communication

is manifested through the application of DSS, which aver-

ages away any discontinuity that has been generated along

element edges. For discontinuous elements, scalar viscosity

requires pointwise updates along element edges computed

from Eq. (24), whereas vector viscosity requires both one-

sided values of u, (∇·u) and (∇×u)r , which are in turn used

for computing nodal values of (∇ ·u) and (∇ ×u)r needed

for Eqs. (32)–(35). This constitutes a doubling of the overall

bandwidth requirement relative to continuous elements.

6 Results

In this section selected results are provided to evaluate the

relative performance of the methods described in this pa-

per. Four test cases are evaluated: from the Williamson et al.

(1992) test case suite, steady-state geostrophically balanced

flow, zonal flow over an isolated mountain and the Rossby–

Haurwitz wave will be analyzed, in addition to the barotropic

instability test of Galewsky et al. (2004). For all test cases,

time integration is handled via the strong-stability preserving

three-stage, third-order Runge–Kutta method (Gottlieb et al.,

2001). Note that some improvement in the maximum time

step size for discontinuous elements can be obtained from the

use of the five-stage, third-order Runge–Kutta method (Ru-

uth, 2006), which has a stability region that covers a larger

portion of the negative real plane. The time step 1t for each

test is chosen to be close to the stability limit in each case

(observed empirically). The value of 1t has a negligible ef-

fect on the results (not shown), suggesting that spatial errors

dominate in each case. Further, note that mass conservation

is maintained to machine truncation for all simulations (not

shown). From the shallow-water equations, the values of gc
and f for the Earth are used,

gc = 9.80616 m s−2,

f = 2�sinφ �= 7.29212× 10−5 s−1. (41)

All simulations are performed with np = 4. A thorough in-

vestigation of different values of np would greatly extend the

length of the manuscript, so np was chosen in accordance

with the Community Atmosphere Model spectral element

dynamical core. As argued by Ullrich (2013), this choice is

also optimal when considering the accurate treatment of lin-

ear waves.

When required, the standard L2 error measure is calcu-

lated via

L2(h)=

√
I
[
(h−hT )

2
]

I
[
h2
T

] , (42)

where hT is the height field at the initial time (which is the

analytical solution for steady-state test cases) and I denotes

www.geosci-model-dev.net/7/3017/2014/ Geosci. Model Dev., 7, 3017–3035, 2014



3024 P. A. Ullrich: A global finite-element shallow-water model

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Fig. 4.L2 error time series for geostrophically balanced flow on the cubed-sphere for ne = 16 and np = 4
over a 5 day integration period for all continuous and discontinuous schemes.
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Figure 4. L2 error time series for geostrophically balanced flow on the cubed sphere for ne = 16 and np = 4 over a 5-day integration period

for all continuous and discontinuous schemes.

an approximation to the global integral given by

I [x] =
∑

all elements k

np−1∑
m=0

np−1∑
n=0

xk(αm,βn)Jk(αm,βn)wmwn1α1β

 , (43)

where the subscript k denotes the values of x and J within

the kth element.

When applied, hyperviscosity uses a single coefficient for

both scalar and vector hyperviscosity,

ν = νd = νv = (1.0× 1015m4 s−1)
(ne

30

)3.2

. (44)

This choice of scaling for the hyperviscosity coefficient is

based on Takahashi et al. (2006).

6.1 Steady-state geostrophically balanced flow

Test case 2 of Williamson et al. (1992) describes a zonally

symmetric geostrophically balanced flow. This test utilizes

an unstable equilibrium solution to the shallow-water equa-

tions which is expected to be exactly maintained over time.

However, it is generally true that only methods that satisfy

the curl-grad annihilator property∇×∇φ = 0 maintain some

sort of discrete equilibrium. Nonetheless, since an analytical

solution is known (identical to the initial conditions), this test

is effective at measuring the convergence rate of a numerical

method. Further, the error fields from this test provide some

indication of what effect the grid has on the errors of the un-

derlying method. The analytical height field for this test is

given by

h= h0−
1

gc

(
�u0a+

u2
0

2

)
sin2φ, (45)

with background height h0 and velocity amplitude u0 chosen

to be

h0 =
2.94× 104 m2 s−2

gc
, and u0 =

πa

6
day−1. (46)

This height field also serves as the reference solution. The

non-divergent velocity field is specified in latitude–longitude

(φ,λ) coordinates as

uλ = u0 cosφ, uφ = 0. (47)

Figure 3 shows L2 errors in the height field after a

5-day integration of the model at ne = 4 resolution with

np = 4. Simulations were completed for continuous elements

(a) with hyperviscosity and (d) without hyperviscosity, dis-

continuous elements (b, e) with mass lumping (the g2 flux

correction function), (c, f) without mass lumping (the g1 flux

correction function), (b, c) with discontinuous penalization

and (e, f) without discontinuous penalization. The time step

is 1t = 2200 s for simulations (a, d), 1t = 800 s for simula-

tions (b, c, e) and 1t = 400 s for simulation (f). Increasing

the magnitude of the time step by 100 s led to simulation

instability in each case. Since the addition of hyperviscos-

ity leads to loss of energy conservation, there is a slow de-

cay of the geostrophically balanced flow towards a uniform

height state, hence leading to a nearly zonally symmetric de-

cay in the height field towards the poles. For all configura-

tions (both continuous and discontinuous elements) visually

identical results are observed when hyperviscosity is added,

and so these results are not shown. All simulations exhibit a

characteristic wave number 4 mode triggered by the underly-

ing cubed sphere, although the specific error pattern differs

throughout. Simulation (d) is exactly mimetic and leads to

exact maintenance of geostrophic balance. Simulations (b)
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P. A. Ullrich: A global finite-element shallow-water model 3025

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Fig. 5.L2 errors for geostrophically balanced flow on the cubed-sphere at various resolutions with np = 4
over a 5 day integration period. In (a) errors due to hyperviscosity dominate and so all simulations have
approximately equal error leading to coincident lines. In (b) unstable simulations have been removed.
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Figure 5. L2 errors for geostrophically balanced flow on the cubed sphere at various resolutions with np = 4 over a 5-day integration period.

In (a) errors due to hyperviscosity dominate and so all simulations have approximately equal error leading to coincident lines. In (b) unstable

simulations have been removed.

Figure 6. Height field with ne = 16 and np = 4 at day 15 for zonal flow over an isolated mountain with (a) continuous elements and

hyperviscosity (reference solution). Height difference plot from reference solution with ne = 16 at day 15 for (b) discontinuous g2 elements

with hyperviscosity, (c) discontinuous g1 elements with hyperviscosity, (d) continuous elements without hyperviscosity, (e) discontinuous

g2 elements without hyperviscosity and (f) discontinuous g1 elements without hyperviscosity. The time step used for these runs was (a, d)

1t = 480 s, (b, e) 1t = 240 s and (c, f) 1t = 120 s. Discontinuous penalization was used for both discontinuous schemes. Contour spacing

is 1 m in all difference plots with the zero line removed. Long dashed lines show the cubed-sphere grid.

and (c) are quasi-mimetic, only losing energy conservation

due to the discontinuous penalty term, and so exhibit very

slow error growth with time. Simulations (e) and (f), which

correspond to discontinuous elements without penalization,

show greatly enhanced error norms and substantial imprint-

ing from the ne = 4 pattern.

To understand the growth of error norms associated with

each configuration, additional simulations with ne = 16 have

been performed and L2 error norms plotted as a function

of time in Fig. 4. All simulations show an expected near-

identical growth of errors with time when hyperviscosity is

active. With hyperviscosity disabled the results from each

simulation disentangle: continuous elements are oscillatory
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Fig. 7. Normalized total energy and potential enstrophy change for the zonal flow over an isolated moun-
tain test with ne = 16 and np = 4 over a 15 day simulation. In (a) all simulations show roughly equivalent
energy and enstrophy loss and so all lines are coincident. In (c) and (d) the simulation with continuous
elements is beginning to experience instability, leading to total energy and enstrophy growth after ap-
proximately 6 days simulation time.
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Figure 7. Normalized total energy and potential enstrophy change for the zonal flow over an isolated mountain test with ne = 16 and

np = 4 over a 15-day simulation. In (a) all simulations show roughly equivalent energy and enstrophy loss and so all lines are coincident. In

(c) and (d) the simulation with continuous elements is beginning to experience instability, leading to total energy and enstrophy growth after

approximately 6 days of simulation time.

Figure 8. Height field with ne = 16 and np = 4 at day 14 for the Rossby–Haurwitz wave with (a) continuous elements and hyperviscosity

(reference solution). Height difference plot from reference solution with ne = 16 at day 14 for (b) discontinuous g2 elements with hyper-

viscosity, (c) discontinuous g1 elements with hyperviscosity, (d) continuous elements without hyperviscosity, (e) discontinuous g2 elements

without hyperviscosity and (f) discontinuous g1 elements without hyperviscosity. The time step used for these runs was (a, d) 1t = 480 s,

(b, e)1t = 200 s and (c, f)1t = 120 s. Discontinuous penalization was used for both discontinuous schemes. Contour spacing is 1 m in plots

(b) and (c) and 20 m in plots (d), (e) and (f). Long dashed lines show the cubed-sphere grid.

Geosci. Model Dev., 7, 3017–3035, 2014 www.geosci-model-dev.net/7/3017/2014/



P. A. Ullrich: A global finite-element shallow-water model 3027

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Fig. 9. Normalized total energy and potential enstrophy change for the Rossby-Haurwitz wave test with
ne = 16 and np = 4 over a 15 day simulation. In (a) and (b) all simulations show roughly equivalent
energy and enstrophy loss and so all lines are coincident. In (c) and (d) the simulation with continu-
ous elements is beginning to experience instability, leading to total energy and enstrophy growth after
approximately 6 days simulation time.
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Figure 9. Normalized total energy and potential enstrophy change for the Rossby–Haurwitz wave test with ne = 16 and np = 4 over a 15-day

simulation. In (a) and (b) all simulations show roughly equivalent energy and enstrophy loss and so all lines are coincident. In (c) and (d) the

simulation with continuous elements is beginning to experience instability, leading to total energy and enstrophy growth after approximately

6 days of simulation time.

but show stable error norms, discontinuous elements with

penalization show smaller error norms than continuous ele-

ments but a very slow growth with time due to the upwinding

effect of the discontinuous penalization and discontinuous el-

ements without penalization show rapid growth in errors (and

even instability without mass lumping).

To verify that the model exhibits the correct convergence

rate, Fig. 5 shows the global error norms associated with sim-

ulations with ne ∈ {4,8,16,32,64} over a 5-day integration

period. At ne = 4, the time step is 1t = 2200 s for continu-

ous elements, 1t = 800 s for g2 discontinuous elements and

g1 discontinuous elements with penalization, and1t = 400 s

for g1 discontinuous elements without penalization. Increas-

ing the time step by 100 s led to an unstable simulation.

The time step is scaled inversely with increasing resolution.

Missing simulations correspond to model instability and di-

vergence prior to simulation completion. The use of hyper-

viscosity reduces the convergence rate to O(1x3.2), as ex-

pected from the choice of hyperviscosity coefficient, Eq.

(44). With hyperviscosity disabled, model simulations con-

verge at O(1x4) for continuous elements and discontinu-

ous elements with penalty, and O(1x3) for discontinuous

elements without penalty. The loss of 1 order of accuracy

is due to one-sided differentiation at co-located nodes along

element edges, leading to enhancement of the discontinuity.

Similar results (not shown) are observed when changing np –

that is, continuous elements and discontinuous elements with

penalty converge at O(1xnp), whereas unpenalized discon-

tinuous elements converge at O(1xnp−1).

6.2 Zonal flow over an isolated mountain

Test case 5 in Williamson et al. (1992) considers zonal flow

with underlying topography. The wind and height fields are

defined as in section 6.1, except with h0 = 5960 m and u0 =

20 m s−1, respectively. A conical mountain is used for the

topographic forcing, given by

z= z0(1− r/R), (48)

with z0 = 2000 m, R = π/9 and r2
=

min
[
R2, (λ− λc)

2
+ (φ−φc)

2
]
. The center of the mountain

is at λc = 3π/2 and φc = π/6.

Simulation results for this test case were computed at

ne = 16 and np = 4 after 15 days of integration both with

and without hyperviscosity. For discontinuous elements pe-

nalization is always used. The time step used for these runs

was 1t = 480 s for continuous elements, 1t = 240 s for g2

discontinuous elements and 1t = 120 s for g1 discontinuous

elements. Increasing the time step by 20 s led to an unsta-

ble simulation. These results are visually indistinguishable,

www.geosci-model-dev.net/7/3017/2014/ Geosci. Model Dev., 7, 3017–3035, 2014
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Fig. 10. Relative vorticity field with ne = 32 and np = 4 at day 6 for the barotropic instability test with
(a) continuous elements and hyperviscosity (reference solution). Relative vorticity difference plot from
reference solution with ne = 16 at day 6 for (b) discontinuous g2 elements with hyperviscosity, (c) dis-
continuous g1 elements with hyperviscosity, (d) continuous elements without hyperviscosity, (e) discon-
tinuous g2 elements without hyperviscosity and (f) discontinuous g1 elements without hyperviscosity.
The time step used for these runs was (a,d) ∆t= 150 s, (b,e) ∆t= 75 s and (c,f) ∆t= 50 s. Discontinu-
ous penalization was used for both discontinuous schemes. Contour spacing in all plots is 2× 10−5 s−1

with the zero line removed. Long dashed lines show the cubed-sphere grid.
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Figure 10. Relative vorticity field with ne = 32 and np = 4 at day 6 for the barotropic instability test with (a) continuous elements and

hyperviscosity (reference solution). Relative vorticity difference plot from reference solution with ne = 16 at day 6 for (b) discontinuous g2

elements with hyperviscosity, (c) discontinuous g1 elements with hyperviscosity, (d) continuous elements without hyperviscosity, (e) dis-

continuous g2 elements without hyperviscosity and (f) discontinuous g1 elements without hyperviscosity. The time step used for these runs

was (a, d) 1t = 150 s, (b, e) 1t = 75 s and (c, f) 1t = 50 s. Discontinuous penalization was used for both discontinuous schemes. Contour

spacing in all plots is 2× 10−5 s−1 with the zero line removed. Long dashed lines show the cubed-sphere grid.

so are instead compared against the continuous element run

(with HV) in Fig. 6, where height field h and height field dif-

ference h−hc are plotted (where hc is the height field given

in a). Simulations (b) and (c), corresponding to discontinuous

elements with and without mass lumping, are very similar in

structure and exhibit smooth differences from the continuous

model. With no hyperviscosity applied, continuous elements

(d) show significant noise which is not present for discontin-

uous elements (e, f). These simulations match closely with

results from the literature (Nair et al., 2005; Ullrich et al.,

2010).

To understand conservation of invariants over time, total

energy E and potential enstrophy ξ are computed over the

duration of the simulation. Since these quantities are invari-

ant under the shallow-water equations, it would be expected

that a perfect simulation would conserve these quantities ex-

actly. They are defined via

E =
1

2
hv · v+

1

2
gc(H

2
− z2), and ξ =

(ζ + f )2

2h
. (49)

A time series of energy and potential enstrophy are plot-

ted in Fig. 7. With hyperviscosity (a, b) all simulations ex-

hibit nearly identical conservation properties, suggesting that

both the continuous and discontinuous hyperviscosity opera-

tors (which are responsible for the loss of energy and poten-

tial enstrophy conservation) act in a nearly identical manner

over the course of the simulation. Without hyperviscosity (c,

d) change in energy and potential enstrophy is much smaller.

Continuous elements show initiation of instability at approx-

imately day 6, likely due to high-wave-number oscillations

in the height field caused by nonlinear aliasing. On the other

hand, discontinuous elements instead show a slow decay of

energy and potential enstrophy driven by the weak diffusivity

of the discontinuous penalization.

6.3 Rossby–Haurwitz wave

Test case 6 in Williamson et al. (1992) consists of a

westward-propagating Rossby–Haurwitz wave that exactly

solves the barotropic vorticity equation, but only approxi-

mately solves the nonlinear shallow-water equations. This

test is particularly interesting since it is known to be sensi-

tive to the choice of horizontal viscosity.

Results for the Rossby–Haurwitz wave are given in Figs. 8

and 9 for ne = 16 and np = 4 horizontal resolution, respec-

tively, after 14 days of integration. The time step used for

these runs was 1t = 480 s for continuous elements, 1t =

200 s for g2 discontinuous elements and 1t = 120 s for g1

discontinuous elements. Increasing the time step by 20 s led

to an unstable simulation. As expected, there are significant

differences in the height field which are induced by the addi-

tion of the hyperviscosity (although both simulations appear

reasonable given the coarse horizontal resolution). Except for

this difference, the results are nonetheless analogous to zonal

flow over an isolated mountain: continuous elements are un-
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Fig. 11. Normalized total energy and enstrophy change for the barotropic instability test with ne =
16 and np = 4 over a 12 day simulation. In (c) and (d) the continuous element simulation fails after
approximately 6 days, leading to unbounded growth in energy and enstrophy. The time step used for
these runs was (a,d) ∆t= 300 s, (b,e) ∆t= 150 s and (c,f) ∆t= 75 s. Discontinuous penalization was
used for both discontinuous schemes.
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Figure 11. Normalized total energy and enstrophy change for the barotropic instability test with ne = 16 and np = 4 over a 12-day simulation.

In (c) and (d) the continuous element simulation fails after approximately 6 days, leading to unbounded growth in energy and enstrophy. The

time step used for these runs was (a, d) 1t = 300 s, (b, e) 1t = 150 s and (c, f) 1t = 75 s. Discontinuous penalization was used for both

discontinuous schemes.

stable without the addition of hyperviscosity, whereas dis-

continuous elements with penalization are effective at stabi-

lizing the method for both lumped and non-lumped variants.

6.4 Barotropic instability

The barotropic instability test case of Galewsky et al. (2004)

consists of a zonal jet with compact support at a latitude of

45◦, with a latitudinal profile roughly analogous to a much

stronger version of test case 3 of Williamson et al. (1992).

A small height perturbation is added atop the jet which leads

to the controlled formation of an instability in the flow. The

relative vorticity of the flow field at day 6 can then be vi-

sually compared against a high-resolution numerically com-

puted solution (Galewsky et al., 2004; St-Cyr et al., 2008).

Simulation results for this test case were computed at

ne = 32 and np = 4 after 12 days of integration with hy-

perviscosity enabled. The time step used for these runs was

1t = 150 s for continuous elements, 1t = 75 s for g2 dis-

continuous elements and 1t = 50 s for g1 discontinuous el-

ements. Increasing the time step by 10 s led to an unstable

simulation. Simulations are again compared against the con-

tinuous element run (with HV) in Fig. 10, where the relative

vorticity field ζ and relative vorticity field difference ζ − ζc

is plotted (where ζc is the height field given in a). Due to

the presence of sharp frontal activity in this test case and the

strong resolution dependence of this problem (Ullrich et al.,

2010), differences in ζ are of the same magnitude as the orig-

inal field. In particular, the simulations without hyperviscos-

ity (d, e, f) all show enhancement near wave fronts which is

not apparent in the simulations with hyperviscosity (b, c). Al-

though most differences can be found near sharp fronts, there

is also a clear enhancement in the differences near 120 E as-

sociated with a trailing instability. For continuous elements

without hyperviscosity (c), there is also apparent grid-scale

noise which is missing from the other simulations, suggest-

ing that this method is under-diffused.

Normalized total energy and potential enstrophy are plot-

ted for the barotropic instability in Fig. 11 for a 12-day inte-

gration with ne = 16 and np = 4. With hyperviscosity (a, b)

there are small but visible differences in the results associ-

ated with changes in the type of elements. Without hypervis-

cosity (c, d) the simulation with continuous elements exhibit

instability around day 6, leading to rapid growth of energy

and potential enstrophy. On the other hand, with discontin-

uous elements there is a steady loss of energy and potential

enstrophy over time due to diffusivity from discontinuous pe-

nalization. Prior to wave breaking (which occurs around day
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4), energy and potential enstrophy loss are significantly re-

duced compared to the simulations with hyperviscosity. Af-

ter wave breaking, energy and potential enstrophy loss are of

the same order of magnitude for simulations with and with-

out hyperviscosity, associated with the fact that diffusivity is

enhanced near the barotropic fronts where discontinuities are

large.

7 Conclusions

Following Huynh (2007), a novel nodal finite-element

method for continuous and discontinuous elements has been

constructed using a robust derivative operator and discontin-

uous penalization. The resulting methodology can be used

for straightforward discretization of partial differential equa-

tions in either a conservative or a non-conservative form. A

hyperviscosity operator valid for both continuous and dis-

continuous elements was also presented that would provide

a mechanism for numerical stabilization and the removal of

grid-scale noise. Two versions with discontinuous elements

were studied, using either the g1 or g2 flux correction func-

tion for distribution of boundary fluxes and penalty across

nodal points. The resulting method was then applied to the

2-D shallow-water equations in cubed-sphere geometry and

tested on a suite of test problems.

From the Williamson et al. (1992) test case suite, steady-

state geostrophically balanced flow, zonal flow over an iso-

lated mountain and the Rossby–Haurwitz wave were exam-

ined, in addition to the barotropic instability test of Galewsky

et al. (2004). The method was shown to be stable and accu-

rate for both continuous and discontinuous elements, with

fourth-order convergence being verified for cubic basis func-

tions. Discontinuous penalization was shown to be necessary

for stability and for maintaining the correct order of accu-

racy of the discontinuous method. Overall the discontinuous

elements required a smaller time step than for continuous el-

ements, although all methods led to similar error norms when

hyperviscosity was active. When hyperviscosity was deacti-

vated, the discontinuous method exhibited better error norms

than the continuous approach, and discontinuous penaliza-

tion was shown to be sufficient for stability of the method

even for complex flows. Nonetheless, differences between all

three approaches appeared minor, and all methods performed

well for this suite of tests.

The non-conservative discontinuous element formulation

has been shown to be a potential candidate for future atmo-

spheric modeling. It has the advantage of requiring fewer

parallel communications than continuous methods, and ex-

hibits stability even when hyperviscosity is not used for ex-

plicit stabilization. However, with the reduced time step size

it remains unclear whether the discontinuous formulation

would be computationally competitive with continuous el-

ement methods.

The method discussed in this paper has been implemented

in the Tempest atmospheric model, available from https:

//github.com/paullric/tempestmodel.

Geosci. Model Dev., 7, 3017–3035, 2014 www.geosci-model-dev.net/7/3017/2014/

https://github.com/paullric/tempestmodel
https://github.com/paullric/tempestmodel


P. A. Ullrich: A global finite-element shallow-water model 3031

Appendix A: Equivalence of differential and

variational forms

In this appendix equivalence of the variational formulation of

the spectral element method and the differential formulation

using the robust derivative is demonstrated. For continuous

elements, f = f and Eq. (15) reduces to

Dαf (αi,βj )=

np−1∑
p=0

f(p,j)
∂φ̃(p)

∂α
(αi), (A1)

which is simply the derivative of the continuous analogue to

the nodal values along β = βj .

For simplicity consider a single quadrilateral spectral ele-

ment with test functions φij located at nodal points (αi,βj ),

(i,j) ∈ [0, . . .,np− 1]2. The result is shown for an arbitrary

2-D conservation law,

∂ψ

∂t
+∇ ·F = 0. (A2)

Using the derivative operator (A1), this equation reads as

∂ψij

∂t
+

1

Jij
Dα(JF

α)+
1

Jij
Dβ(JF

β)= 0, (A3)

whereas under the variational formulation, (A2) is formu-

lated as∫
∂ψ

∂t
φijdA+

∫
φij∇ ·FdA= 0. (A4)

Then using integration by parts,∑
m,n

(∫
φijφmndA

)
∂ψmn

∂t
+B −

∫
∇φij ·FdA= 0, (A5)

where B is the contribution due to the boundary which dis-

appears under DSS. Introducing coordinates (α,β) with in-

tegration on GLL nodes,∫
f dA=

np−1∑
s=0

np−1∑
t=0

fstJstwswt1α1β, (A6)

and so the first term of Eq. (A5) reads as∑
m,n

(∫
φijφmndA

)
∂ψmn

∂t

=

∑
m,n

(
δi,mδj,nJijwiwj1α1β

) ∂ψmn
∂t

= Jijwiwj1α1β
∂ψij

∂t
. (A7)

For the last term, observe that on a manifold

∇φij ·F = gpqF
p

(
gqr

∂φ

∂xr

)
= F α

∂φ

∂α
+F β

∂φ

∂β
, (A8)

and so∫
∇φij ·FdA=

np−1∑
s=0

np−1∑
t=0

[
F α
∂φij

∂α
+F β

∂φij

∂β

]
α=αs ,β=βt

Jstwswt1α1β. (A9)

On the other hand, by construction

∂φij

∂α
=
∂φ̃(i)

∂α
φ̃(j), (A10)

and φ̃(j)(βt )= δj t . This leads to∫
∇φij ·FdA=np−1∑

s=0

F αsj
∂φ̃(i)

∂α
(αs)Jsjwswj

+

np−1∑
t=0

F
β
it

∂φ̃(j)

∂β
(βt )Jitwiwt

1α1β. (A11)

Furthermore, in conjunction with Eq. (A7), this can be

written as

∂ψij

∂t
−

1

Jij

np−1∑
s=0

JsjF
α
sj

∂φ̃(i)

∂α
(αs)

ws

wi

−
1

Jij

np−1∑
t=0

JitF
β
it

∂φ̃(j)

∂β
(βt )

wt

wj
= 0. (A12)

Equivalence of this equation with Eq. (A3) follows for a

formulation on GLL nodes (Boyd, 2001, Appendix F), since

these basis functions satisfy the property

∂φ̃(i)

∂α
(αs)ws =−

∂φ̃(s)

∂α
(αi)wi . (A13)

Appendix B: Derivation of the viscosity operator

In this appendix the derivation of the discrete viscosity op-

erator is provided for scalar and vector hyperviscosity on a

Riemannian manifold.

B1 Scalar viscosity

From the natural quadrature rule that arises from the nodal

finite-element formulation, the left-hand side of Eq. (21) is

discretized as∫∫
f φ(i,j)dA=

∫∫
f φ̃(i)(α)φ̃(j)(β)dA

= f(i,j)wiwjJ1α1β, (B1)
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and so, pointwise, the H operator is applied via

f(i,j) =
ν

wiwj1α1βJ(αi,βj )∮
∂Z

φ(i,j)∇ψ · dS−

∫∫
Z

∇φ(i,j) · ∇ψdA

 . (B2)

The area integral term in Eq. (B2) is then computed:∫∫
∇φ(i,j) · ∇ψdA=∫∫
∇pφ∇

pψdA=

∫∫
∂φ(i,j)

∂α
∇
αψ +

∂φ(i,j)

∂β
∇
βψdA,

=1α1β

np−1∑
m=0

np−1∑
n=0

φ̃(j)
∂φ̃(i)

∂α
∇
αψJwmwn

∣∣
α=αm,β=βn

+1α1β

np−1∑
m=0

np−1∑
n=0

φ̃(i)
∂φ̃(j)

∂β
∇
βψJwmwn

∣∣
α=αm,β=βn

(B3)

=1α1βwj

np−1∑
m=0

∂φ̃(i)

∂α
∇
αψJwm

∣∣
α=αm,β=βj

+1α1βwi

np−1∑
n=0

∂φ̃(j)

∂β
∇
βψJwn

∣∣
α=αi ,β=βn

.

From Eq. (B2), Eq. (23) then follows. The boundary inte-

gral term in Eq. (21) takes the form∮
∂Z

φ(i,j)∇ψ · dS =

∫
∂ZR

φ(i,j)∇ψ · dS

+

∫
∂ZT

φ(i,j)∇ψ · dS+

∫
∂ZL

φ(i,j)∇ψ · dS

+

∫
∂ZB

φ(i,j)∇ψ · dS, (B4)

where R, T , L and B denote the right, top, left and bottom

edges, respectively. The quantity dS =Nd` denotes the nor-

mal vector to the edge with magnitude equal to the infinites-

imal length element. Only the covariant components of the

face normals need to be known, at each edge given by

NR
p =

(
1
√
gαα

,0

)
,NT

p =

(
0,

1√
gββ

)
,

NL
p =

(
−

1
√
gαα

,0

)
,NB

p =

(
0,−

1√
gββ

)
. (B5)

The infinitesimal length element along each edge is given

by the covariant metric,

d`R =
√
gββdβ,d`T =

√
gααdα,

d`L =
√
gββdβ,d`B =

√
gααdα. (B6)

Then along the right edge, using the nodal discretization

of the boundary integral,∫
∂ZR

φ(i,j)∇ψ · dS =

δi,np−1

np−1∑
n=0

φ̃(j)(β)∇
αψNR

α wn
√
gββ1β

∣∣∣
α=αnp−1,β=βn

= δi,np−1wj1β J∇
αψ
∣∣
α=αnp−1,β=βj

, (B7)

where we have used gββ = J
2gαα . Repeating for all edges

and using Eq. (B2) then yields Eq. (24).

B2 Vector viscosity

The area integral that appears on the left-hand side of

Eqs. (29) and (30) takes the form∫∫
Z

f ·φ
(α)
(i,j)dA=

∫∫
Z

f αφ̃(i)(α)φ̃(j)(β)dA

= f α(i,j)wiwjJ1α1β, (B8)∫∫
Z

f ·φ
(β)

(i,j)dA=

∫∫
Z

f β φ̃(i)(α)φ̃(j)(β)dA

= f
β

(i,j)wiwjJ1α1β. (B9)

B2.1 Discretization of the area integral

In nodal form, the divergence expands as

(∇ ·φ
(α)
(i,j))=

1

J

∂

∂α

(
Jgααφ(i,j)α

)
+

1

J

∂

∂β

(
Jgβαφ(i,j)α

)
, (B10)

=
φ̃(j)(β)

J

∂

∂α

(
Jgααφ̃(i)(α)

)
+
φ̃(i)(α)

J

∂

∂β

(
Jgβαφ̃(j)(β)

)
, (B11)

and so∫∫
Z

(∇ ·φ(i,j))(∇ ·u)dA

=1α1β

np−1∑
m=0

np−1∑
n=0

[
φ̃(j)(βn)

J

∂

∂α

(
Jgααφ̃(i)(α)

)
+
φ̃(i)(αm)

J

∂

∂β

(
Jgβαφ̃(j)(β)

)]
(∇ ·u)Jwmwn

=1α1βwj

np−1∑
m=0

Jgαα
dφ̃(i)

dα
(∇ ·u)wm

∣∣∣∣
α=αm,β=βj
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+1α1βwi

np−1∑
n=0

Jgβα
dφ̃(j)

dβ
(∇ ·u)wn

∣∣∣∣∣
α=αi ,β=βn

.

(B12)

Further, the radial component of the vorticity expands as

(∇ ×φ(i,j))
r
=−

1

J

∂φ(i,j)α

∂β
=−

φ̃(i)

J

dφ̃(j)

dβ
, (B13)

and so∫∫
Z

(∇ ×φ(i,j))
r(∇ ×u)rdA

=1α1β

np−1∑
m=0

np−1∑
n=0

[
−
φ̃(i)(αm)

J

dφ̃(j)

dβ

]
(∇ ×u)rJwmwn

∣∣∣∣∣
α=αm,β=βn

=−1α1βwi

np−1∑
n=0

dφ̃(j)

dβ
(∇ ×u)rwn

∣∣∣∣∣
α=αi ,β=βn

. (B14)

Combining Eqs. (B8), (B12) and (B14) then gives

Eq. (32). An analogous procedure for β leads to Eq. (33).

B2.2 Discretization of the boundary integral

Using Eqs. (B5)–(B6) and
√
gββ = J

√
gαα , the contour in-

tegral in Eq. (29) along the right edge becomes∫
∂ZR

(∇ ·u)φ
(α)
(i,j) · dS =

δi,np−1 (∇ ·u)g
ααJwj1β

∣∣
α=αnp−1,β=βj

, (B15)

and along the top edge, also using
√
gαα = J

√
gββ ,∫

∂ZT

(∇ ·u)φ
(α)
(i,j) · dS =

δj,np−1 (∇ ·u)g
αβJwi1α

∣∣
α=αi ,β=βnp−1

. (B16)

Repeating for all edges and using Eq. (B8), the complete

boundary integral for divergence damping then leads to the

divergence damping contribution to Eq. (34). An analogous

procedure for test function φ
(β)

(i,j) leads to Eq. (35).

For vorticity damping, along the right edge, Eq. (30) reads

as∫
∂ZR

(∇ ×u)×φ · dS =

δi,np−1 ε
βrα(∇ ×u)rφ(i,j)αNβwj

√
gββ1β

∣∣
α=αnp−1,β=βj

= 0,

and along the top edge,∫
∂ZT

(∇ ×u)×φ · dS =

δj,np−1 ε
βrα(∇ ×u)rφ(i,j)αNβwi

√
gαα1α

∣∣
α=αi ,β=βnp−1

,

= δj,np−1(∇ ×u)rwi1α.

Repeating for all edges and using Eq. (B8) then leads to

the vorticity damping contribution to Eq. (34). An analogous

procedure for test function φ
(β)

(i,j) leads to Eq. (35).
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