
Geosci. Model Dev., 7, 2951–2968, 2014

www.geosci-model-dev.net/7/2951/2014/

doi:10.5194/gmd-7-2951-2014

© Author(s) 2014. CC Attribution 3.0 License.

A Lagrangian advection scheme with shape matrix (LASM) for

solving advection problems

L. Dong1, B. Wang1,2, and L. Liu2

1LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
2Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science (CESS),

Tsinghua University, Beijing, China

Correspondence to: L. Dong (dongli@lasg.iap.ac.cn)

Received: 8 July 2014 – Published in Geosci. Model Dev. Discuss.: 29 July 2014

Revised: 21 October 2014 – Accepted: 13 November 2014 – Published: 12 December 2014

Abstract. A new Lagrangian advection scheme with shape

matrix (LASM) is proposed to take advantage of the ex-

treme low numerical diffusion of the Lagrangian methods.

The tracer is discretized into finite parcels, which move along

the downstream trajectories. Different from other Lagrangian

schemes, the parcel shape is simulated explicitly by a linear

transformation matrix. By doing so, the aliasing error in the

Lagrangian schemes is largely reduced without introducing

substantial interparcel mixing in the pure advection stage,

because the flow information will be respected when remap-

ping tracer density onto the fixed model grids. An adaptive

interparcel mixing algorithm is constructed to ensure the va-

lidity of the linear approximation of the parcel shape, where

the mixing is only triggered when it is necessary and resem-

bles the physical mixing. The total tracer mass on the parcels

is conserved exactly. The new scheme is validated by using

several test cases.

1 Introduction

Advection is one of the key problems in geophysical mod-

eling research. Many tracers (or constituents) need to be ad-

vected by the flow simulated by the atmospheric or oceanic

dynamical core and physical parameterization. In an atmo-

spheric global circulation model (AGCM), the most impor-

tant tracers are the water vapor and other phases of the water

(e.g., cloud water and cloud ice), which participate in many

parameterization processes (e.g., convection, microphysics,

and radiation). The quality of the computed water substance

distributions are vital to the successful simulation, although

many other aspects also affect the results.

The numerical schemes can be divided into three cate-

gories: (1) Eulerian schemes, (2) semi-Lagrangian schemes,

and (3) Lagrangian schemes. The Eulerian schemes (Yu,

1994; Lin and Rood, 1996; Putman and Lin, 2007) are

constructed on the fixed meshes and compute the flux of

mass through the Eulerian cell edges. The semi-Lagrangian

schemes (Staniforth and Côté, 1991; Lauritzen et al., 2010)

are also bound to the fixed meshes, but they track the mass in

a cell and restart from grids each time step. Lauritzen et al.

(2011) gave a thorough review on the atmospheric trans-

port schemes emphasized on the semi-Lagrangian view on

finite-volume discretizations. In comparison, the Lagrangian

schemes use mobile parcels as the discretization units and

track them all the time. The most significant advantage of the

Lagrangian schemes over the first two is that the numerical

diffusion is highly suppressed because the simulated tracer

parcels adapt to the flow and do not restart from the fixed

grids. This advantage is praised in Stenke et al. (2008), which

used a Lagrangian scheme to advect water vapor and cloud

water, and gained positive results compared with the semi-

Lagrangian scheme in ECHAM4.

Besides the application in the AGCMs, the Lagrangian

schemes are also suitable for the use in the atmospheric

chemistry transport models (CTMs); see Brunner (2013)

for an overview. With the increasing of the chemical

tracer number (approaching hundreds), the multi-tracer effi-

ciency becomes an important issue. Some Eulerian or semi-

Lagrangian schemes need to advect each tracer species in-

dependently, so this low efficiency may become a significant
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computational bottleneck. In Lagrangian schemes, however,

the trajectory information and some weights are shared by all

the species, so this efficiency is very high. In addition, the tra-

jectory information of individual parcel provided in default is

useful for addressing sources and transport pathways. For the

nonlinear chemical reaction, the unphysical numerical dif-

fusion is a problem which necessitates more efforts to con-

trol in the Eulerian and semi-Lagrangian schemes when the

resolution is coarse, and it will disturb the reaction. On the

other hand, when the resolution is refined, the time step size

must be reduced substantially due to the Courant–Friedrichs–

Lewy constraint for some Eulerian schemes. Contrarily, the

Lagrangian schemes have no numerical diffusion, and the in-

terparcel mixing needs to be implemented explicitly, but this

mixing can be designed in a physical way, which is good for

simulating chemical reaction realistically.

Several Lagrangian schemes have also been proposed

in the last decade: (1) ATTILA (atmospheric tracer trans-

port in a Lagrangian model, Reithmeier and Sausen, 2002);

(2) CLaMS (Chemical Lagrangian Model of the Strato-

sphere; McKenna et al., 2002); (3) TTS-C/I (Trajectory-

tracking scheme – “C” and “I” mean the tracking object is

the centroid and interface, respectively; Dong and Wang,

2012, 2013); and (4) HEL (Hybrid Eulerian–Lagrangian;

Kaas et al., 2013). The discretization unit in the Lagrangian

schemes is the tracer parcel, which carries tracer information

and is advected by the flow passively all the way without

restarting from the fixed model grids each time step as in

the semi-Lagrangian schemes. To be applied in an AGCM,

the carried tracer information must be remapped onto the

the model grids, and some other information like tendencies

from the physical parameterization needs to be remapped

back onto the parcels. In some Lagrangian schemes unre-

alistic “spotty” tracer distribution will occur when the flow

deforms greatly as noted in TTS-C (see Fig. 13 in Dong and

Wang, 2012) and HEL (see Sect. 1.3 in Kaas et al., 2013).

McKenna et al. (2002) also noted that small (unmixed) struc-

tures will arise (see Fig. 8 there). This is caused by the fact

that the parcel spatial extent or shape is not simulated ex-

plicitly, so the remapping is isotropic, e.g., the inverse dis-

tance weighting interpolation in TTS-C. When the parcel is

deformed severely, the tracer mass will not be distributed to

the right grids or resolved well, and the so-called spectral

blocking or aliasing will occur (Kaas et al., 2013). The main

motivation of this work is to address the problem of tracer

mass remapping between the irregularly distributed parcels

and the fixed model grids (e.g., regular latitude–longitude

grids).

ATTILA, CLaMS, and HEL all introduced some kinds of

physical mixing among parcels to solve the above unrealis-

tic tracer distribution problem with different methodologies.

In order to keep the mass of air associated with a parcel as

a compact volume around the parcel centroid, ATTILA re-

defines the parcel boundaries by bringing the mass mixing

ratio c of a species in a parcel closer to an average back-

ground mixing ratio, or called “interaction by exchange with

mean” (Henne et al., 2013). CLaMS uses a Lyapunov expo-

nent to measure for the deformation in the flow, and inserts

or merges parcels based on this exponent. HEL incorporates

the deformation rate of the flow and mixes tracers in a di-

rectionally biased way. In 2-D cases, two passive auxiliary

Lagrangian parcels are associated with the main parcel to

identify the asymptotic dilatation axis caused by the shear.

Only model grids close to the axis are assigned the tracer

mass carried by the main parcel, and this mixing is mainly

along the asymptotic dilatation axis.

TTS-I tried another path by computing the parcel inter-

faces explicitly, which are polygons in 2-D cases, so the

shape of each parcel is simulated. The polygons are advected

and deformed by the flow, and new vertices are inserted to

capture the curvature changes of the real interfaces. This

solved the remapping problem to a great extent, and no mix-

ing concept was added at this pure advection stage, though

physical mixing is still needed in the real application. The

drawback of this approach is that the complex geometric cal-

culation, especially on the sphere, hindered its application.

Furthermore, in 3-D cases the parcel polyhedron is almost

impossible to deal with.

In this work a new design of TTS is proposed with the con-

sideration of pros and cons in TTS-C and TTS-I, and other

schemes. To extend the new scheme to 3-D easily, the cen-

troid discretization is used as in TTS-C and other schemes.

The shape of a parcel is still computed explicitly as in TTS-I

to avoid the aliasing error as much as possible, but it is rep-

resented by a linear transformation matrix as in Yserentant

(1999) and Gauger et al. (2000) with some key modifications

that bypass the costly geometric calculations in TTS-I. This

transformation transforms the physical space into a remap-

ping space after translation, rotation, and size change of the

parcel. In this manner the flow deformation can play an im-

portant role in the remapping process. Several computation

difficulties on the sphere have been addressed. Henne et al.

(2013) stated that this type of parcel shape treatments allow

for a more realistic description of the interparticle mixing

and also enable the realization of a fully Lagrangian dynam-

ical core, but these interesting and important topics are not

covered in this work. A flow adaptive interparcel mixing al-

gorithm is also constructed in the new scheme to ensure the

approximation of the parcel shape valid in the nonlinearly

deformational flow. In other words, when the flow deforma-

tion is comparatively linear, the mixing can be turned off. The

new scheme is renamed LASM, which stands for Lagrangian

advection scheme with shape matrix, to better represent its

features.

The paper is organized as following: Sect. 2 presents the

new LASM in detail, i.e., the updating of the deformation

matrix, and the interparcel mixing. Section 3 gives the results

from several test cases to show the performance of LASM.

The conclusion is drawn and discussion presented in Sect. 4.

The code availability is shown in Sect. 5.
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Figure 1. (a) Linear transformation between physical space and remapping space. In this 2-D case, the black ellipse in physical space is

transformed into a red circle in remapping space so that two points marked by 1 and 2 have the same distance to x0 in remapping space, but

their Euclidean distances to x0 are different. (b) The deformed shape function is bell-like.

2 LASM details

The advection equation in the Eulerian framework can be

written as

∂ρm

∂t
+∇ · (ρmV)= 0,m= 0, . . .,M, (1)

where V is the velocity of the flow and ρm is the tracer

density for the tracer species m. The mixing ratio of tracer

(m> 0) relative to the background tracer or dry air (m= 0)

is

φm =
ρm

ρ0

(2)

and will be used in the following tests. In the Lagrangian

framework, this partial differential equation turns into a dif-

ferential equation system as

dx

dt
= V, (3)

dρm

dt
=−ρm∇ ·V,m= 0, . . .,M, (4)

where x is the coordinate of a parcel centroid. So the con-

tinuous tracer field is discretized into tracer parcels with a

finite number accordingly. The parcel carries the tracer den-

sities and masses for each species, and is transported by the

given flow. Equation (3) is the trajectory equation for the par-

cel centroid. Its computation on the sphere is elaborated in

Dong and Wang (2012), which integrates Eq. (3) by using the

fourth-order Runge–Kutta method numerically and projects

the centroids onto the polar stereographic plane when they

are near the poles. Equation (4) describes the evolution of

tracer density, which is affected by the flow divergence. The

divergence on the model grids is evaluated by the second-

order central finite difference in this study. The interpolation

of velocity and divergence onto the parcel centroids is bilin-

ear.

Each parcel is constructed in the following two steps.

Firstly the shape of the parcel is expressed by a linear trans-

formation (see Fig. 1a) as

x = x0i +Hiy, (5)

where x0i is the centroid coordinate of parcel i, x is some

spatial coordinate, y is the body coordinate in the remapping

space with x0i as the origin, and Hi is the transformation

matrix or deformation matrix. In 2-D cases the shape of the

parcel is an ellipse, and in 3-D it is an ellipsoid. The parcels

can overlap each other. The inverse transformation is

y =H−1
i (x− x0i) . (6)

The matrix Hi is the key of this transformation, which con-

trols the shape and size of the parcel. This idea is proposed

by Harry Yserentant through a series of papers (Yserentant,

1997a, b, 1999, 2003; Gauger et al., 2000) in the context of

fully Lagrangian dynamics. Compared with the polygons in

TTS-I which can not overlap each other, the linear transfor-

mation is more feasible in a real application. Secondly the

mass distribution within the remapping space of a parcel is

prescribed by a shape function or kernel function:

ψ(y)=

d∏
k=1

ψ̃(yk), (7)

which is a composite of a B-spline function (see Fig. 1b) as

in Gauger et al. (2000):

ψ̃(yk)=
4

3


2(1+ yk)

3, −1≤ yk ≤−1/2

1− 6y2
k (1+ yk), −1/2≤ yk ≤ 0

1− 6y2
k (1− yk), 0≤ yk ≤ 1/2

2(1− yk)
3, 1/2≤ yk ≤ 1

, (8)

where d is the spatial dimension number and yk is the kth

component of the body coordinate y. This form of a shape

function is adopted in this work, since there is no driving

need to replace it.
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Figure 2. Four skeleton points (black points) associated with a par-

cel. Their spatial coordinates will change with the flow, but the body

coordinates in remapping space are fixed. The red point is the major

axis vertex of the parcel.

2.1 Update of deformation matrix

The core of the new LASM is the deformation matrix Hi

of parcel i, which is updated every time step according to

the advection flow as in the following equation (Yserentant,

2003):

dHi

dt
=∇VH, (9)

where ∇V is the velocity gradient tension (a d × d matrix).

But on the sphere, the solution of Eq. (9) meets some diffi-

culties when parcels traverse the poles in the spherical coor-

dinate system. In some spherical meshes like cubed-sphere

mesh, the coordinate system is on the local (curvilinear) co-

ordinate, so the difficulties may be bypassed. In spite of this,

LASM needs to support the lat–lon mesh, so other solutions

are sought. To avoid the pole problems, the transformation

is conducted on the local stereographic projection plane with

the parcel centroid as the origin. The spatial coordinate is la-

beled as x̃ on that plane, and Eqs. (5) and (6) become

x̃ =Hiy, (10)

y =H−1
i x̃. (11)

The coordinate transformation between spherical coordi-

nate and local stereographic projected coordinate is routine

and omitted here.

In 2-D cases, four auxiliary skeleton points are associated

with each parcel. Their body coordinates are set as (−1,0),

(0,−1), (1,0), and (0,1). Initially the parcels are the shape

of a circle (see the left figure in Fig. 2), and the distance be-

tween centroid and skeleton point is chosen as 1.5 times the

maximum local model grid interval so that all the grids are

covered by some parcels. It is noteworthy that a larger dis-

tance will cause a smoother initial tracer density distribution

when remapping between tracers and grids as in Sect. 2.2.

The skeleton points will be advected along with the parcel

centroid, and the relative locations of them will be changed if

the flow is deformational (see Fig. 2). So we can say that the

skeleton points sense the flow deformation, and they deter-

mine Hi . From Eq. (10), the elements of Hi can be calculated

as

h11 =
1

2

(
h
(1)
11 +h

(3)
11

)
, h12 =

1

2

(
h
(2)
12 +h

(4)
12

)
,

h21 =
1

2

(
h
(1)
21 +h

(3)
21

)
, h22 =

1

2

(
h
(2)
22 +h

(4)
22

)
,

where the superscripts (∗) are the labels for the skeleton

points, and

h
(1)
11 =−

x̃
(1)
1

y
(1)
1

, h
(1)
21 =−

x̃
(1)
2

y
(1)
1

, h
(3)
11 =

x̃
(3)
1

y
(3)
1

, h
(3)
21 =

x̃
(3)
2

y
(3)
1

,

h
(2)
12 =−

x̃
(2)
1

y
(2)
2

, h
(2)
22 =−

x̃
(2)
2

y
(2)
2

, h
(4)
12 =

x̃
(4)
1

y
(4)
2

, h
(4)
22 =

x̃
(4)
2

y
(4)
2

.

The determinant of Hi is

detHi =
1

4
detH

(1,2)
i +

1

4
detH

(1,4)
i

+
1

4
detH

(3,2)
i +

1

4
detH

(3,4)
i , (12)

where H
(1,2)
i is a matrix with elements h

(1)
11 , h

(2)
12 , h

(1)
21 , h

(2)
22 ,

and similar for the other three matrices. It is obvious that

Hi is composed of four matrices: H
(1,2)
i , H

(1,4)
i , H

(3,2)
i , and

H
(3,4)
i .

The matrix Hi can be decomposed by using the SVD (sin-

gular value decomposition) technique, which provides use-

ful information about the transformation for the subsequent

computation:

Hi = UiSiVi, (13)

where Si is a positive diagonal d× d scaling matrix with the

diagonal elements in descending order, and Ui and Vi are

for rotation. The production of the diagonal elements of Si
is the determinant of Hi , which is also a representation of

the parcel volume Vi . On the other hand, after solving the

density of the tracer from Eq. (4), we can also calculate the

tracer volume by

Vi =
mi

ρi
, (14)

where mi and ρi are the mass and density of one tracer

species (the first species is used, since it should be no differ-

ence for other species). Generally there will be discrepancy

between the determinant of Hi and Vi , so the determinant of

Hi is reset to Vi by scaling Si each time step:

Si = Si

(
Vi∏d
k=1ski

) 1
d

, (15)

where ski is kth diagonal element of Si . Then Hi is recon-

structed by replacing Si in Eq. (13) so that the rotation part

(i.e., Ui and Vi) is kept.
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Figure 3. The neighbor grids of the parcel schema. The black cross

is the parcel centroid, and the black circle represents the parcel

shape that is determined by the deformation matrix. The red filled

circles are the neighbor grids connected with the parcel.

After updating Hi , the shape of the parcel, which affects

the tracer mass remapping, on the new time step under the

deformation of the flow is obtained. The remapping will be

anisotropic so that the flow deformation is respected, and this

is the key: that LASM can reduce the aliasing error with-

out using substantial mixing as in other Lagrangian schemes.

Section 2.3 will discuss the interparcel mixing in more de-

tail. Compared with TTS-I, the deformation matrix is more

practical than the polygon with varying edge number. Addi-

tionally LASM is also 3-D ready, and no quasi-Lagrangian

vertical coordinate is needed when applied to a real AGCM

or oceanic general circulation model (OGCM).

2.2 Remapping between tracers and grids

Since other dynamical and physical processes of the model

take place on the Eulerian grids, the tracer densities carried

by the parcels need to be remapped onto the grids.

After the trajectory calculation and deformation matrix up-

dating, the parcels will be connected with the grids that have

non-zero shape function value. This involves the neighbor

searching algorithm. The searching procedure is as follows:

– the grids covered by the circle (or sphere in 3-D) with

the parcel semi-major axis length as their radius are

searched for;

– the grid coordinates are transformed into the parcel’s

body coordinate system by Eq. (11);

– the corresponding shape function values are calculated

by Eq. (7);

– the grids with non-zero shape function value connect

with the parcel.

Figure 3 shows a result of the neighbor searching. There is

a flaw with this procedure. Imagine a case when a grid (i.e.,

cell center) is not covered by a parcel, but some part of the

cell is; then the grid does not get tracer mass from that par-

cel. This grid is called a partially covered grid. The effect of

this flaw becomes visible when the parcel is stretched into

a filament. Therefore an adaptive interparcel mixing algo-

rithm is proposed in the next subsection to reduce this effect.

In the future, another improved searching procedure may be

designed which can process the partially covered grids, and

the shape function value is modified to a reasonable non-zero

value.

The remapping density for the mth species on the grid I is

ρmI =
1∑

j∈SI
ψj (I )

∑
i∈SI

ψi(I )ρmi, (16)

where the subscripts i and I are for parcel and grid, respec-

tively, and SI is the set of parcels that are connected with

this grid. Since this is a linear remapping, the density on the

grid will be in the range of the minimum and maximum den-

sity on the parcels. The remapping in the reverse direction is

similar to Eq. (16) as

ρmi =
1∑

J∈Si
ψi(J )

∑
I∈Si

ψi(I )ρmI , (17)

where Si is the set of grids that are connected with parcel i.

The density (not the mass) is chosen as the remapping

quantity, because the remapping weight is based on “dis-

tance”, not overlapping area between parcels and grid cells

as in TTS-I. So when the areas of the model grid cells are

highly nonuniform (e.g., lat–lon mesh), large density error

on the grids will occur if the mass is remapped, especially

near the poles on the lat–lon mesh. The grid density will

be constrained directly through Eq. (16) when the density

is remapped, but the drawback is that the total tracer mass

on the grids can not be guaranteed as a constant without

sources and sinks. This dilemma is also encountered by TTS-

C and HEL. A mass correction must be done if the total mass

on the grids must be conserved. Diamantakis and Flemming

(2014) described several mass fixer algorithms for the semi-

Lagrangian schemes, which can be used in LASM. In this

study, the simplest fixer is used as in TTS-C and HEL. This

may make people uncomfortable, but, as stated in Kaas et al.

(2013), it is different from the traditional global methods

in Eulerian and semi-Lagrangian schemes because the cor-

rect values are preserved in the Lagrangian parcels; in other

words, the total mass on the parcel is exactly conserved, and

therefore the total mass on the grids is well constrained. The

profound impact on the model simulation should be analyzed

in the real application. On the other hand, when more uni-

form mesh is used (e.g., cubed-sphere, icosahedral mesh),

www.geosci-model-dev.net/7/2951/2014/ Geosci. Model Dev., 7, 2951–2968, 2014
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(a) Low disorder degree (b) High disorder degree

(c) Interparcel mixing

Figure 4. (a) The low-disorder-degree case, where the black ellipses are the surrounding parcels of the red one. (b) The high-disorder-degree

case. (c) The blue parcel is mixed with its surrounding parcels, whose colors indicate the mixing weights (the redder, the larger). The blue

parcel is shrunk to the green one after mixing.

we can remap the mass and the total mass on the grids is

conserved automatically.

There may be occasions during which some grids are not

connected with any parcel, which are called void grids as in

ATTILA. When this happens, the void grids will be filled

by the density value interpolated from its neighbor grids by

using the inverse-distance weight. In the real application, due

to the continuity condition, the void grids are conjectured to

be very rare.

Finally because the remapping weight ψi(I ) is the same

for all the tracer species, the multi-tracer efficiency will be as

good as HEL, which meets the needs of chemistry transport

models with hundreds of tracer species.

2.3 Interparcel mixing

It would be ideal for all the parcels to move around and keep

good shape, but in the deformational flows the large shear

will elongate some parcels along the asymptotic dilation axis

and the strong vortex will stir the parcels heavily. At some

critical time points, on the one hand the determinant of Hi

may turn out to be negative if the parcel size is not lim-

ited, which is unphysical and means negative volume; on the

other hand the linear deformation approximation of the par-

cel shape may be violated. These are caused by the finite par-

cel resolution. To avoid problems, Klingler et al. (2007) pro-

posed a restart procedure in the finite mass method, which

replaces the old, deformed parcels (particles in their case)

by more regularly distributed parcels (i.e., redistribution).

But the global parcel redistribution will eventually cause un-

acceptable numerical diffusion, and some good features of

the Lagrangian method will be lost (e.g., good preservation

of tracer correlation). Contrarily a different path is taken in

LASM, where a parcel i is mixed with its surrounding parcels

(the connected parcels of the cell where parcel i is contained)

when the ratio γi of the major axis of the parcel shape to the

minor one (i.e., s1i/s2i in 2-D) exceeds any given threshold

γm (normally 100 in this study).

The threshold γm is adjusted by the flow. We define a dis-

order degree Di of parcel i by the angles between the major

axes of it and its surrounding parcels. Firstly the angles are

calculated on the local stereographic plane of parcel i. Sec-

ondly the ratio between the maximum and mean angles1 is

defined as Di . When Di is small, the parcels are well orga-

nized so that they are free to sense the deformation of the

flow, such as the case in Fig. 4a. When Di exceeds any given

threshold D∗ (e.g., 1.05), the parcels are disordered and the

flow is more nonlinearly deformational, such as in Fig. 4b,

1To reduce arccos calculation, the cosine of the angles are used.
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Update trajectories of parcel 
centroids and skeleton points Update densities on parcels

Update parcel deformation matrix

Need mixing? Mix parcels

Remap tracer density/mass
onto grids

Update velocity field and its 
divergence

void cell? handle void cell

Check parcel shapes

Figure 5. The workflow of LASM.

so the interparcel mixing needs to be more easily triggered

to improve the linear deformation approximation by reduc-

ing γm to a strict value γ ∗m (e.g., 5) for the involved parcels.

It is noteworthy that the mixing in LASM is adapted to the

flow deformation, not the tracer density gradient as in the

Eulerian or semi-Lagrangian schemes, so the correlation be-

tween tracers will not be largely disturbed because the mix-

ing degrees of all the tracers are the same. It should also be

noted that the values and formulas of the above parameters

are by no means the optimal ones. The current values are

gained under the objective of making LASM perform well in

both ideal and barotropic test cases. For example, when γ ∗m is

larger, unacceptable results (more aliasing) will be observed,

and when it is smaller, the excessive diffusion will appear. A

better formula of Di could be designed to ensure the mixing

is sufficient so that the aliasing is eliminated entirely.

When parcel i needs to be mixed, its major axis will be

shrunk by a factor α = 0.05 to reduce γi ; so the mixing is

a gradual process. Firstly s1i is reduced to (1−α)s1i . Sec-

ondly the new Hi are reconstructed by using Eq. (13). The

skeleton points are also reset according to the new Hi . The

constant value of α may be changed to a function of Di and

time step size suggested by the reviewer Eigil Kaas, which

will make LASM more adaptive. This will be addressed in

the future works.

Some part (controlled by α) of the tracer mass (omitting

the species index m) carried by parcel i will be distributed to

its surrounding parcels. The mixing weight for a surround-

ing parcel j is calculated on the local stereographic plane of

parcel i as

wj =
1∑

k∈Si
wk

exp
(
−β1d

(1)
j

2
−β2d

(2)
j

2
)
, (18)

where d
(1)
j is the distance parallel to the major axis of parcel

i, d
(2)
j is vertical to the major axis, parameters β1 and β2 are

two scale factors, and Si is the set of the surrounding parcels.

Weight (Eq. 18) is similar to Eq. (29) in Kaas et al. (2013),

so only parcels close to parcel i will be involved; see the

color of the surrounding parcels in Fig. 4c (The redder the

color is, the larger the weight is). Moreover we can control

the lateral mixing by adjusting β2. The larger β2 is, the less

the lateral mixing is. In addition, the lateral mixing can also

be controlled by Di , so when Di is high, β2 is changed to β∗2
(e.g., 10) to allow more lateral mixing. Then the new tracer

mass of parcel j is

m∗j =mj +wjαmi . (19)

www.geosci-model-dev.net/7/2951/2014/ Geosci. Model Dev., 7, 2951–2968, 2014



2958 L. Dong et al.: Lagrangian advection scheme with shape matrix

LASMGEOMTK

SpaceCoord

Domain

Mesh

MeshIndex

Field

Regrid

BodyCoord

SphereCoord

SphereDomain

StructuredMesh

StructuredMeshIndex

StructuredField

StructuredRegrid

RLLMesh

RLLMeshIndex

RLLField

RLLRegrid

AdvectionTestCase SolidRotationTestCase

BarotropicTestCase

BarotropicTestCase

AdvectionManager

TracerManager

MeshAdaptor

TracerSpeciesInfo

Parcel TracerTracerTracer ShapeFunction

Interface class ContainDerive from Library

Armadillo MLPACKBoost NetCDF

IOManager

TimeManager

ConfigManager

Figure 6. The overall programming units of LASM and their relationship. Four external libraries (Boost, Armadillo, NetCDF, and MLPACK)

are used.
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Figure 7. The normalized errors in solid rotation test case. Three

runs with different rotation parameter α have different error levels.

The run that rotates along the Equator has the lowest errors.

The volume of parcel j will be increased accordingly (Hj

is updated) as

V ∗j = Vj +wjαVi, (20)

so the tracer density will be

ρ∗j =
m∗j

V ∗j
=

1

1
Vi
+
wjα

Vj

(
1

Vi
ρj +

wjα

Vj
ρi

)
, (21)

which is clearly a weighted average and reveals the mixing

nature of this operation. No new extreme of tracer density

will be introduced. The total mass on the parcels is also con-

served in this process.

Compared to the mixing in other Lagrangian schemes,

LASM can avoid the mixing as much as possible when the

flow deformation is quite linear because the linear deforma-

tion approximation is sufficient for capturing the parcel shape

changes and then helping to remap the tracer mass onto the

right grids. This is the reason why γm can be set as large as

100 so that the evolution of the parcel shape will not be inter-

rupted when the flow deformation is in order. Only when this

approximation is violated will the interparcel mixing be trig-

gered to compensate for such degeneration when the aliasing

occurs. Additionally, extra mixing can be added by casting

the corresponding formula based on the physical thoughts.

2.4 Implementation

LASM is implemented in C++ language and incorporates

the object-oriented programming model. The Fortran inter-

faces for application in the existing models will be added in

the future. The workflow is shown in Fig. 5 and the overall

programming units are depicted in Fig. 6, which are divided

into two libraries (LASM and GEOMTK) with different func-

tionalities. The key implementation details can be summa-

rized as follows.

– Parcel and tracer codes: the Parcel class contains

the centroid coordinate, H, U, S, V, and the index to

the mesh cell. It is the core of LASM. The Tracer

class derives from Parcel and adds the members re-

lated to tracer species, such as the density and mass.

The skeleton points (TracerSkeleton) are also con-

tained in Tracer. Tracer objects are managed by

TracerManager, which contains a list of them. The

tracer quantities remapped onto the mesh and the con-

nectivity between parcels and grids are organized in

MeshAdaptor.

– Mesh and field codes: the mesh is specified by the model

(AGCM or OGCM) and is not the core of LASM, so

the mesh details are separated from LASM. Different
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Figure 8. Test of convergence for the deformation test case with Gaussian initial condition using error norms l2 (left) and l∞ (right). The

Courant number is fixed. The upper reference line is for second order, and the lower one is for third order.

Filament preservation 1.5° Filament preservation 0.75°

⌧ ⌧

l f

Figure 9. Diagnostics for filament preservation, lf, for the model grid resolution 1.5 and 0.75◦.

mesh could be used by implementing the correspond-

ing mesh, index, and regrid classes. The field class are

bound with the mesh class to provide a convenient con-

tainer. Currently, only lat–lon mesh is implemented, but

other meshes will be supported in the future.

– Neighbor search codes: the efficient neighbor search

codes should depend on the mesh type, but currently

a general search algorithm is adopted to reduce the

development burden. This algorithm comes from the

MLPACK library2 and is based on the tree data structure.

The fixed grids are organized into a tree structure at the

initialization stage. When searching the connected grids

of a parcel, this tree is walked through and the Euclidean

space distance is used as the judge. In the future, if the

efficiency needs to be improved further, the exclusive

search algorithms for each mesh could be implemented.

– Interparcel mixing codes: the interparcel mixing is con-

ducted after the remapping from parcels to grids, be-

cause this can avoid modification of connectivity be-

2See MLPACK website: http://www.mlpack.org.

tween parcels and grids due to the shape change of

parcels.

– Test case codes: several test cases for testing LASM are

coded in the same interface AdvectionTestCase.

Currently there are three concrete test case classes:

a. SolidRotationTestCase,

b. DeformationTestCase,

c. BarotropicTestCase.

The current implementation is not fully optimized; only the

serial run is tested. The parallel version by using OpenMP

and MPI techniques will be provided in other works.

3 Test case results

In the following subsections, three test cases are performed

to validate LASM. It should be noted that the trajectory cal-

culation in LASM is the same as it will be in a real applica-

tion, whereas some other schemes used semi-analytical tra-

jectory (i.e., use the true velocity at half time step), so the

error caused by the time discretization will be a little larger

www.geosci-model-dev.net/7/2951/2014/ Geosci. Model Dev., 7, 2951–2968, 2014
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(a) Initial condition

(c) Simulation at time t = T/2

(e) Simulation at time t = T

(b) Initial condition

(d) Simulation at time t = T/2

(f) Simulation at time t = T

Figure 10. Results from deformation flow test cases. (a) is the initial slotted cylinders for the non-divergent flow test, and (b) is the initial

cosine hills for the divergent flow test. (c) and (d) are the simulated distributions at time t = T/2 with maximum deformation. (e) and (f) are

the final distributions at time t = T . The model grid resolution is 1.5◦× 1.5◦, and time step size is T/600.

Figure 11. Diagnostics for correlation preservation for the model grid resolution 1.5 and 0.75◦.

in LASM relatively. In order to reduce the unnecessary com-

putation in the lat–lon mesh, the initial distribution of parcels

is chosen as a reduced lat–lon mesh with only four parcels

along the zonal circle closest to the poles, and the latitude of

the transition from the normal region to the reduced region

is 45◦ S/N. The normal key parameters for the test cases are

listed in Table 1. Because γm is large, no mixing occurs in
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Figure 12. The effects of interparcel mixing with the slotted cylinders’ initial condition. There are three parameter configurations as shown

on the top of the each row. By increasing β2, the lateral mixing is decreased. The results for γm = 100 are in Figs. 10 and 11.

the interesting regions in the ideal test cases3. The impact of

interparcel mixing with different parameter configurations is

tested in Sect. 3.2.4. A test case with a barotropic model as

the driver is also included to demonstrate the performance of

LASM in the more complex flow.

3.1 Solid body rotation

The traditional solid body rotation on the sphere test case is

used to illustrate the basic performance of LASM, since no

apparent shape changes will occur. The sphere radius R is

chosen as 1, and the cosine bell radius Rc is R/3. The time

step size of all runs is 1800s.

3Occasional mixing only occurs near poles in the deformation

test cases.

Table 1. Key parameters of LASM.

Parameter Symbol Value

filament_limit γm 100

strict_filament_limit γ ∗m 5

shrink_factor α 0.05

radial_mixing β1 1

lateral_mixing β2 1000

strict_lateral_mixing β∗
2

10

disorder_degree_limit D∗ 1.05

Figure 7 shows the traditional normalized errors (l1, l2,

and l∞) of three runs with rotation parameter α as π/2, π/4,

and 0, respectively. The pole-crossing (α = π/2) run has rel-
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�m = 10, ↵ = 0.1, �1 = 1, �2 = 1000

�m = 10, ↵ = 0.3, �1 = 1, �2 = 1000

�m = 10, ↵ = 0.2, �1 = 1, �2 = 1000

Figure 13. The effects of interparcel mixing with the slotted cylin-

ders initial condition. There are three parameter configurations as

shown on the top of the each row. The tested parameter that controls

the amount of tracer mass distributed to the surrounding parcels is

α.

atively larger errors, whereas another run with rotation along

the Equator (α = 0) has significant error reduction. This re-

veals that the pole-crossing trajectory calculation affects the

overall accuracy. On the other hand, HEL constructed on the

cubed-sphere mesh performs with high accuracy, so the main

inaccuracy sources are from lat–lon mesh (e.g., trajectory

calculation on the polar stereographic projection plane). In

the future, a more elaborate pole-crossing trajectory calcula-

tion may be designed, or computed on other meshes without

pole problems.

3.2 Deformation flow

The deformation flow test cases proposed in Nair and Lau-

ritzen (2010) and Lauritzen et al. (2012) are utilized here

with the emphasis on convergence rate, filamentation preser-

vation, and correlation preservation diagnostics. These tests

are also used in a scheme intercomparison study (Lauritzen

et al., 2014).

The analytical flows selected are the same as the previous

studies (Kaas et al., 2013), including one non-divergent flow

and one divergent flow. The trajectories implied by the two

flows are quite challenging, since the initial compact parcels

will be stretched and bent into long filaments. The deforma-

tion reaches maximum at half simulation duration and is re-

versed after that. Three initial conditions consisting of Gaus-

sian hills, cosine hills, and slotted cylinders defined in Lau-

ritzen et al. (2012) are used for different purposes.

In all the following test runs, the sphere radius R is 1, and

the normalized flow period T is 5. The Courant number (CN)

is fixed for different spatial resolutions as about 1 with time

step size 5/600 for 1.5◦ spatial resolution. The selection of

time step size is only subject to the accuracy, not the stabil-

ity, compared with other Eulerian schemes. The simulated

spatial distribution of tracer mixing ratios in the two flows

with different initial conditions is shown in Fig. 10, with

the parameters listed in Table 1, which shows that LASM

can preserve the discontinuity in tracers and perform well in

the deformational flows. The results with the slotted cylin-

ders initial condition of other schemes can be referred to in

Figs. 7–10 in Lauritzen et al. (2014).

3.2.1 Convergence rate and minimal resolution

The numerical convergence rate of LASM is evaluated with

the Gaussian hills’ initial condition in the non-divergent flow.

Figure 8 shows the results for error norms l2 and l∞, where

the rate is calculated by the linear regression from the four

error samples. Currently, the convergence rate of LASM is

first order with CN= 1. The analytical velocity field is also

used, but the convergence rate is still first order (not shown),

because the spatial remapping between tracers and grids is

only first order. In contrast, HEL uses a second-order numer-

ical approximation to the gradient of the tracer density on the

Eulerian mesh (see Eq. 15 in Kaas et al., 2013). In the future,

ρmi and ρmI on the right-hand side of Eqs. (16) and (17) can

be modifed as in HEL to improve the convergence rate of

LASM.

The minimal resolution 1λm is an absolute error mea-

sure that supplements the convergence rate. The initial con-

dition is changed to the cosine hills, which is quasi but not

infinitely smooth, to challenge the schemes.1λm is the eval-

uated resolution at which the l2 error is 0.033; therefore a

larger value is better. For unfiltered CSLAM (conservative

semi-Lagrangian multi-tracer transport scheme) (Lauritzen

et al., 2010) 1λm is 1.5◦ with CN= 5.5 and about 1◦ with
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(a) Topography in subcase 1

(c) Initial geopotential depth in subcase 2

(b) Initial step tracer

Figure 14. (a) The surface geopotential in subcase 1. (b) The initial step tracer mixing ratio. (c) The initial geopotential depth in subcase 2

(wind field is omitted).

CN= 1 (Lauritzen et al., 2012), where 1λm is about 1.40◦

for LASM with CN= 1.

3.2.2 Filamentation preservation

This diagnostics (lf) is used to indicate how well the ad-

vection scheme resolves the thin filaments that develop at

t = T/2, which is defined as

lf =

{
100

A(τ,t)
A(τ,t=0)

, if A(τ, t = 0) 6= 0

0, else
, (22)

whereA(τ, t) is the total area whose tracer mixing ratio value

exceeds τ at time t . Nineteen values across the range [0.1,1]

of τ are selected for the cosine hill initial condition. In non-

divergent flow, the the area spanned by mixing ratio values

larger than any given threshold value should be preserved.

Therefore lf of a good scheme should be close to 100 %.

When evaluating lf on the parcels, the values would be al-

most 100 % as stated in Kaas et al. (2013), which is also true

for LASM. But because we are concerned with the results

on the model grids, lf is evaluated on the model grids even

though LASM is fully Lagrangian.

Figure 9 shows the result of two resolutions (1.5◦ and

0.75◦), which indicates that LASM can preserve the filament

or large gradient very well. All the values of lf are around

100% with a little oscillation at 1.5◦ resolution, and even

better when the resolution is doubled. The results of other

schemes can be found in Fig. 5 of Lauritzen et al. (2014),

where most schemes exhibit diffusive trait; i.e., lf is larger

than 100 % at smaller τ and vice versa.

3.2.3 Correlation preservation

The correlation preservation diagnostics proposed in Lau-

ritzen and Thuburn (2012) and Lauritzen et al. (2012) eval-

uate the potential performance of schemes in the chemistry

transport models, where the pre-existing correlations among

tracer species are chemically significant and influence the

chemical reaction rates and equilibria. In this test two trac-

ers with initial nonlinear functional relation are advected in

the non-divergence flow, where χ corresponds to the cosine

hills’ initial condition and ξ corresponds to the nonlinearly

related hills (see Eqs. 21 and 22 in Lauritzen and Thuburn,

2012, for setup).

The scatterplots of the two tracers on the mesh at t = T/2

are depicted in Fig. 11, including three mixing diagnostics:

real mixing lr, unmixing lu and overshooting lo. The order

of magnitude of unmixing is 10−8. When evaluated on the

parcels, the unmixing and overshooting are both 0 as HEL.

The real mixing is also small ( 10−4), so the scatter points

are almost along the prescribed functional curve. The results

of other schemes can be found in Figs. 11–14 of Lauritzen
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Figure 15. The simulation results after 24 h in subcase 1.

et al. (2014). Therefore LASM is among the schemes which

can preserve the tracer correlation well.

3.2.4 Impact of interparcel mixing

The above deformation test cases have not included appar-

ent interparcel mixing, because the mixing only occasionally

occurs near the poles, where the tracer density is constant,

so the impact of the mixing are demonstrated in this sec-

tion by adjusting the key parameters. The selected test case

is the non-divergent flow with slotted cylinders initial con-

dition. Firstly γm is decreased to 10 (γ ∗m is 5). The results

with different β2 (β∗2 is 10) are in Fig. 12. The effects of

mixing is obvious, especially for β2 = 10, which causes in-

tensive lateral mixing. By increasing β2, the lateral mixing

is largely inhibited, so the simulation result at time t = T

with β2 = 1000 is acceptable for this test case. The results of

HEL can be found in Fig. 7 of Kaas et al. (2013). The corre-

lation preservation results at time t = T/2 are also expected

(see left columns of Fig. 12). Secondly we test the impact of

parameter α, which affects the amount of distributed tracer

mass at each mixing event. As shown in Fig. 13, increasing

α will cause some noise, so it is better to use a small α (0.05)

to make the mixing occur gradually.

In the deformation test cases, LASM can already produce

good results without introducing apparent interparcel mix-

ing. There are two reasons: (1) the linear deformation ap-

proximation of the parcel shape is effective; (2) the two flows

are ideal, so the local deformation can be captured by the ap-

proximation (the disorder degree D of parcels is low). But

when the flow is complicated and the parcels are heavily

elongated, this approximation will be violated (the disorder

degree D of parcels is high), especially near the strong vor-
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(a)

(c) 

(b) 

D⇤ = 10 D⇤ =1(d) 

D⇤ = 1.05 D⇤ = 2

Figure 16. The effectiveness of the interparcel mixing adaptivity. Different disorder degree threshold D∗ are tested. (a) is the same as

Fig. 15b.

tex. In the next, more realistic barotropic test, the adaptivity

of the interparcel mixing will be shown.

3.3 Barotropic model test

To test the new LASM in a more realistic flow, this section

shows the results from a barotropic dynamical model on the

sphere. This dynamical model is solved by using a finite dif-

ference method with an implicit Euler midpoint time integra-

tor that can conserve the total energy and total mass on the

regular lat–lon mesh. The details about the numerical tech-

niques in the model can be referred to in Wang and Ji (1994).

The barotropic equations are

∂U

∂t
=−

1

2a cosϕ

[(
∂uU

∂λ
+ u

∂U

∂λ

)
+

(
∂v∗U

∂ϕ
+ v∗

∂U

∂λ

)]
+ f ∗V −

H

a cosϕ

∂φ+φs

∂λ
, (23)

∂V

∂t
=−

1

2a cosϕ

[(
∂uV

∂λ
+ u

∂V

∂λ

)
+

(
∂v∗V

∂ϕ
+ v∗

∂V

∂λ

)]
− f ∗U −

H

a

∂φ+φs

∂ϕ
, (24)

∂φ

∂t
=−

1

a cosϕ

(
∂HU

∂λ
+
∂HV cosϕ

λ

)
, (25)

where H =
√
φ, U = uH , V = vH , v∗ = v cosϕ, and f ∗ =

2�sinϕ+ u
a

tanϕ. u, v, and φ are the zonal wind speed,

meridional wind speed, and geopotential depth, respectively;

φs is the surface geopotential. The gravity acceleration g =

9.8 ms−2, the Earth radius a is 6.371× 106 m, and the rota-

tion velocity � of the Earth is 7.292× 10−5 s−1. The model

spatial resolution is 1.5◦×1.5◦, and the time step size is 20 s

to ensure stability.

The objective of this experiment is to test the effective-

ness of the adaptive interparcel mixing. Three tracers are ad-

vected:

– an initial uniform background tracer used to calculate

mixing ratio of the step tracer;

– the geopotential depth as in the barotropic model;

– a step tracer (Fig. 14b).

Since the current LASM is not fully dynamical, the stan-

dard shallow water tests are not used, instead two subcases

with different initial conditions and topography are con-

ducted:

– subcase 1: isolated cosine topography (Fig. 14a), con-

stant initial geopotential depth, and wind field derived

from geostrophic relation;

– subcase 2: flat topography, initial wind field, and geopo-

tential depth (Fig. 14c) from ERA reanalysis.
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Figure 17. The simulation results after 24 h in subcase 2.

Although the initial flow in subcase 1 is simple, a strong vor-

tex will be generated above the topography. The interparcel

mixing must be effective to control the parcel shape near the

vortex to avoid intensive filamentation, which will degener-

ate the degree of approximation. The results of subcase 1 are

shown in Fig. 15. Two resolutions of parcels are used (21 984

and 87 948). From the geopotential depth results, it can be

concluded that the mixing is working, despite some noise

around the vortex in LASM compared with the barotropic

model. The noise level is reduced when the number of parcels

is increased. Based on this observation, the adaptive refine-

ment of parcels may be incorporated in the future to further

improve the performance of LASM. From the step tracer re-

sults, it is obvious that LASM does a good job simulating the

discontinuous tracer field, where the thin and rolled filament

is preserved very well. The effects of the interparcel mixing

adaptivity can be further illustrated in Fig. 16. When D∗ is

reasonable enough, the sensitivity on it is not very large, but

when it is infinity – i.e., the adaptivity is turned off – the

tracer density is in disorder and many spotty structures come

out due to the degeneration of linear deformation approxima-

tion when parcels turn to be very long. The parcel distribu-

tion after 24 h is depicted in Fig. 15f. The parcels are stirred

heavily by the vortex, and the mixing occurs frequently there

to ensure the good approximation.

In subcase 2, a 200 hPa geopotential depth and wind field

from ERA reanalysis are chosen as the initial conditions. Af-

ter 24 h, the geopotential depth simulated by the barotropic
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model and LASM are compared in Fig. 17a–c. The discrep-

ancy (i.e., wind–mass inconsistency) between the results of

the barotropic model and LASM can not be avoided, but the

difference in percentage is mostly within ±2 %. The step

tracer in Fig. 17d also indicates the good performance on

the discontinuous tracer of LASM, where the discontinuous

tracer is deformed heavily, although no reference solution is

given. The parcels after 24 h (Fig. 17e) are fairly chaotic. The

time duration of this subcase is also extended to 10 days,

and the step tracer is already deformed beyond recogition as

shown in Fig. 15f (the animation can be found in the Sup-

plement or viewed at http://dongli.github.io/dongli/assets/

pictures/lasm.barotropic.240x120.step.cells.gif).

The sensitivity about γm is also tested by reducing it to 10,

and the results (not shown) of the two subcases are almost the

same as the above, because the interparcel mixing is active to

limit the parcel size in the nonlinearly deformational flow, so

no long parcels survive.

4 Conclusions

A new Lagrangian advection scheme, LASM, is proposed in

this work, which takes into account of the pros and cons of

TTS-C/I and other Lagrangian schemes. The core of LASM

is the linear transformation matrix that is used to describe the

parcel shape. The remapping weight is then anisotropic so

that the flow deformation is respected. The test results show

that LASM can reduce the aliasing error that will occur in the

Lagrangian schemes without introducing substantial mixing

when the flow deformation is quite linear. The interparcel

mixing is only triggered in the regions with very strong non-

linear deformation where the linear deformation approxima-

tion will be violated and the parcels will be shrunk to improve

the approximation. The effects of such mixing is verified and

acceptable as compared with HEL. Parameters γm, α, β1,

and β2 can be used to control the degree of mixing. Further-

more the disorder degree D of the parcels is used to adjust

γm and β2. This adjustment is evaluated to be effective in

the barotropic tests. The formulation of the parameters may

be further polished to better control the mixing and judge

the nonlinear deformation. Currently, the convergence rate

of LASM is first order, and this can be improved by adding

the second-order terms when remapping tracer mass.

LASM is ready to be extended into three-dimension with

consideration of the vertical motion and boundaries. Other

spherical meshes except for lat–lon mesh will be supported

in the near future, and the pole-crossing performance will

be better when the mesh does not have the pole problems.

The grid searching procedure may be further polished to

improve the remapping accuracy. The remaining challenges

come from the parallel computing. In the Eulerian models

(AGCM, OGCM, CTM), the spatial domain is decomposed

into several parts, and each part is assigned to one CPU per

node. For some Eulerian or semi-Lagrangian schemes, only

boundary cells need to be communicated among the CPUs.

But because Lagrangian parcels move around, the parcels in

CPU1 initially may travel to the other CPU, and this may

cause some trouble when parallelizing the codes. Efficient

LASM for application in the real models will be imple-

mented in other works.

Code availability

The codes of LASM are managed by using GIT and

hosted in GitHub. The repository URL is https://github.com/

dongli/LASM. There are also two repositories, GEOMTK

(https://github.com/dongli/geomtk) and BARAOTROPIC-

MODEL (https://github.com/dongli/barotropic-model), used

by LASM as submodules.

The Supplement related to this article is available online

at doi:10.5194/gmd-7-2951-2014-supplement.

Acknowledgements. This work is supported by the National

Natural Science Foundation of China (grant no. 41305094).

Edited by: S. Unterstrasser

References

Brunner, D.: Atmospheric chemistry in lagrangian models –

overview, in: Lagrangian Modeling of the Atmosphere, edited

by: Lin, J. C., Brunner, D., Gerbig, C., Stohl, A., Luchar, A., and

Webley, P., Geophysical Monograph Series, vol. 200, American

Geophysical Union, 2013.

Diamantakis, M. and Flemming, J.: Global mass fixer algorithms

for conservative tracer transport in the ECMWF model, Geosci.

Model Dev., 7, 965–979, doi:10.5194/gmd-7-965-2014, 2014.

Dong, L. and Wang, B.: Trajectory-tracking scheme in Lagrangian

form for solving linear advection problems: preliminary tests,

Mon. Weather Rev., 140, 650–663, 2012.

Dong, L. and Wang, B.: Trajectory-tracking scheme in Lagrangian

form for solving linear advection problems: interface spatial dis-

cretization, Mon. Weather Rev., 141, 324–339, 2013.

Gauger, C., Leinen, P., and Yserentant, H.: The finite mass method,

SIAM J. Numer. Anal., 37, 1768–1799, 2000.

Henne, S., Poberaj, C. S., Reimann, S., and Brunner, D.: Global-

scale tropospheric lagrangian particle models with linear chem-

istry, in: Lagrangian Modeling of the Atmosphere, edited by:

Lin, J. C., Brunner, D., Gerbig, C., Stohl, A., Luchar, A., and

Webley, P., vol. 200, American Geophysical Union, 2013.

Kaas, E., Sørensen, B., Lauritzen, P. H., and Hansen, A. B.: A hy-

brid Eulerian–Lagrangian numerical scheme for solving prog-

nostic equations in fluid dynamics, Geosci. Model Dev., 6, 2023–

2047, doi:10.5194/gmd-6-2023-2013, 2013.

www.geosci-model-dev.net/7/2951/2014/ Geosci. Model Dev., 7, 2951–2968, 2014

http://dongli.github.io/dongli/assets/pictures/lasm.barotropic.240x120.step.cells.gif
http://dongli.github.io/dongli/assets/pictures/lasm.barotropic.240x120.step.cells.gif
https://github.com/dongli/LASM
https://github.com/dongli/LASM
https://github.com/dongli/geomtk
https://github.com/dongli/barotropic-model
http://dx.doi.org/10.5194/gmd-7-2951-2014-supplement
http://dx.doi.org/10.5194/gmd-7-965-2014
http://dx.doi.org/10.5194/gmd-6-2023-2013


2968 L. Dong et al.: Lagrangian advection scheme with shape matrix

Klingler, M., Leinen, P., and Yserentant, H.: A restart procedure

for the finite mass method, SIAM J. Sci. Comput, 30, 117–133,

2007.

Lauritzen, P. H. and Thuburn, J.: Evaluating advection/transport

schemes using interrelated tracers, scatter plots and numerical

mixing diagnostics, Q. J. Roy. Meteor. Soc., 138, 906–918, 2012.

Lauritzen, P. H., Nair, R. D., and Ullrich, P. A.: A conservative

semi-Lagrangian multi-tracer transport scheme (CSLAM) on the

cubed-sphere grid, J. Comput. Phys., 229, 1401–1424, 2010.

Lauritzen, P. H., Ullrich, P. A., and Nair, R. D.: Atmospheric trans-

port schemes: desirable properties and a semi-Lagrangian view

on finite-volume discretizations, in: Numerical Techniques for

Global Atmospheric Models, Lecture Notes in Computational

Science and Engineering, Springer-Verlag, Berlin Heidelberg,

185–250, 2011.

Lauritzen, P. H., Skamarock, W. C., Prather, M. J., and Tay-

lor, M. A.: A standard test case suite for two-dimensional lin-

ear transport on the sphere, Geosci. Model Dev., 5, 887–901,

doi:10.5194/gmd-5-887-2012, 2012.

Lauritzen, P. H., Ullrich, P. A., Jablonowski, C., Bosler, P. A.,

Calhoun, D., Conley, A. J., Enomoto, T., Dong, L., Dubey, S.,

Guba, O., Hansen, A. B., Kaas, E., Kent, J., Lamarque, J.-F.,

Prather, M. J., Reinert, D., Shashkin, V. V., Skamarock, W. C.,

Sørensen, B., Taylor, M. A., and Tolstykh, M. A.: A standard test

case suite for two-dimensional linear transport on the sphere: re-

sults from a collection of state-of-the-art schemes, Geosci. Model

Dev., 7, 105–145, doi:10.5194/gmd-7-105-2014, 2014.

Lin, S.-J. and Rood, R. B.: Multidimensional flux-form semi-

Lagrangian transport schemes, Mon. Weather Rev., 124, 2046–

2070, 1996.

McKenna, D. S., Konopka, P., Grooß, J.-U., Günther, G., Müller, R.,

Spang, R., Offermann, D., and Orsolini, Y.: A new Chemical La-

grangian Model of the Stratosphere (CLaMS) 1. formulation of

advection and mixing, J. Geophys. Res.-Atmos., 107, ACH 15-

1–ACH 15-15, doi:10.1029/2000JD000114, 2002.

Nair, R. D. and Lauritzen, P. H.: A class of deformational flow test

cases for linear transport problems on the sphere, J. Comput.

Phys., 229, 8868–8887, 2010.

Putman, W. M. and Lin, S.-J.: Finite-volume transport on various

cubed-sphere grids, J. Comput. Phys., 227, 55–78, 2007.

Reithmeier, C. and Sausen, C.: ATTILA: atmospheric tracer trans-

port in a Lagrangian model, Tellus B, 54, 278–299, 2002.

Staniforth, A. and Côté, J.: Semi-Lagrangian integration schemes

for atmospheric models – a review, Mon. Weather Rev., 119,

2206–2223, 1991.

Stenke, A., Grewe, V., and Ponater, M.: Lagrangian transport of wa-

ter vapor and cloud water in the ECHAM4 GCM and its impact

on the cold bias, Clim. Dynam., 31, 491–506, 2008.

Wang, B. and Ji, Z.: An explicit complete square conservative differ-

ence scheme with adjustable time step intervals, Acta Meteorol.

Sin., 8, 403–409, 1994.

Yserentant, H.: A new class of particle methods, Numer. Math., 76,

87–109, 1997a.

Yserentant, H.: A particle model of compressible fluids, Numer.

Math., 76, 111–142, 1997b.

Yserentant, H.: Particles of variable size, Numer. Math., 82, 143–

159, 1999.

Yserentant, H.: The convergence of the finite mass method for flows

in given force and velocity fields, in: Meshfree Methods for

Partial Differential Equations, Springer, Berlin Heidelberg, 419–

440, 2003.

Yu, R.: A two-step shape-preserving advection scheme, Adv. At-

mos. Sci., 11, 479–490, 1994.

Geosci. Model Dev., 7, 2951–2968, 2014 www.geosci-model-dev.net/7/2951/2014/

http://dx.doi.org/10.5194/gmd-5-887-2012
http://dx.doi.org/10.5194/gmd-7-105-2014
http://dx.doi.org/10.1029/2000JD000114

	Abstract
	Introduction
	LASM details
	Update of deformation matrix
	Remapping between tracers and grids
	Interparcel mixing
	Implementation

	Test case results
	Solid body rotation
	Deformation flow
	Convergence rate and minimal resolution
	Filamentation preservation
	Correlation preservation
	Impact of interparcel mixing

	Barotropic model test

	Conclusions
	Acknowledgements
	References

