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Abstract. We evaluate the performance of the Community

Atmosphere Model’s (CAM) spectral element method on

variable-resolution grids using the shallow-water equations

in spherical geometry. We configure the method as it is

used in CAM, with dissipation of grid scale variance, imple-

mented using hyperviscosity. Hyperviscosity is highly scale

selective and grid independent, but does require a resolution-

dependent coefficient. For the spectral element method with

variable-resolution grids and highly distorted elements, we

obtain the best results if we introduce a tensor-based hy-

perviscosity with tensor coefficients tied to the eigenvalues

of the local element metric tensor. The tensor hyperviscos-

ity is constructed so that, for regions of uniform resolution,

it matches the traditional constant-coefficient hyperviscosity.

With the tensor hyperviscosity, the large-scale solution is al-

most completely unaffected by the presence of grid refine-

ment. This later point is important for climate applications in

which long term climatological averages can be imprinted by

stationary inhomogeneities in the truncation error. We also

evaluate the robustness of the approach with respect to grid

quality by considering unstructured conforming quadrilateral

grids generated with a well-known grid-generating toolkit

and grids generated by SQuadGen, a new open source al-

ternative which produces lower valence nodes.

1 Introduction

In climate and weather forecast applications, there is an in-

creased demand for variable-resolution capabilities. This de-

mand is motivated by the need to resolve various tempo-

ral and spatial scales in forecast and regional climate stud-

ies with limited computational resources. Several approaches

can be employed to this end, including nesting techniques,

multi-physics modeling, and multi-resolution simulations,

recently overviewed in Ringler et al. (2011).

Here, we focus on the multi-resolution approach made

possible by the spectral element method (SEM). We use

global spherical grids, constructed to have uniform high res-

olution over a region of interest, uniform low resolution over

the rest of the globe, and a transition region between them.

The SEM has a long history of running on highly unstruc-

tured grids, including spherical geometry with climate ap-

plications (Fournier et al., 2004; St.-Cyr et al., 2008; Baer

et al., 2006; Marras et al., 2014). Here, our goal is to evaluate

and improve the multi-resolution capabilities of the SEM for-

mulation from the High-Order Method Modeling Environ-

ment (HOMME), recently adopted as the default dynamical

core by the Community Atmosphere Model (CAM) (Dennis

et al., 2012). HOMME uses a locally conservative/mimetic

formulation from Taylor and Fournier (2010) and relies on

a constant-coefficient hyperviscosity term to both dissipate

energy near the grid scale and to damp grid scale modes with

spurious propagation (Ainsworth and Wajid, 2009). This hy-

perviscosity operator is not suitable for variable-resolution
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grids, and thus we consider two resolution-aware exten-

sions. The first is the straightforward extension of allow-

ing the hyperviscosity coefficient ν to depend on the local

element length scale. This approach was used in Zarzycki

et al. (2014a, b) for realistic CAM simulations. Here, we

use the shallow-water equations to show some deficiencies

with this approach and then that better results are obtained

with a tensor-based hyperviscosity operator, which can bet-

ter represent both length scales within non-square spectral

elements. We evaluate this approach using the shallow-water

equations on the sphere with the two-dimensional version

of HOMME’s spectral element dynamical core. There have

been other modifications of the viscosity and hyperviscos-

ity operators. For example, Yu et al. (2014) uses a flow-

dependent coefficient for the Laplacian. In Dobrev et al.

(2012), several tensor coefficient viscosity operators were

considered, including a formulation in which directional vis-

cosity coefficients were chosen to depend on directional

length scales of a deformed Lagrangian volume. Here, we

follow a similar approach, but the length scales come from

the deformation of the elements, especially those in the grid

transition region.

The mimetic SEM requires conforming quadrilateral

grids. To generate variable-resolution grids, we employ

a well-known grid-generating toolkit, CUBIT (https://cubit.

sandia.gov). In the grid-transition region, the CUBIT grids

have many valence 6 nodes (corner nodes shared by six ele-

ments). For grids in spherical geometry, it is possible to con-

struct transition regions with mostly valence 5 nodes, and

such elements will have less acute angles. To generate grids

with low-valence nodes, we use the Spherical Quadrilat-

eral Grid Generator (SQuadGen, http://climate.ucdavis.edu/

squadgen.php). This toolkit uses a paving technique (Blacker

and Stephenson, 1991) in combination with a set of low-

valence tiles to generate smooth quadrilateral grids based

on cubed-sphere geometry. Regions of enhancement are de-

termined via a user-specified image file, which is mapped

onto a cubed-sphere grid. Grid smoothing is performed via

straightforward application of spring dynamics in three-

dimensional geometry (Persson and Strang, 2004). Grids ob-

tained via this technique exhibit several improved character-

istics, including greater uniformity in the transition region,

and elements with angles that are closer to 90 ◦.

In this study, we use multi-resolution grids with a sin-

gle region of quasi-uniform high resolution (1xhigh), which

transitions to a quasi-uniform grid of low resolution (1xlow),

covering most of the globe.

While evaluating the model’s performance, it is natural

to compare the multi-resolution simulation with the corre-

sponding 1xlow and 1xhigh uniform grid simulations. Mo-

tivated by climate applications, and following Weller et al.

(2009); Ringler et al. (2011), we evaluate 1xlow/1xhigh

variable-resolution simulations with two criteria:

1. Refinement does no harm to the global scales. For the

shallow-water equation initial value problem, at short

times, it is reasonable to expect many features in the re-

fined region would not be contaminated by information

from the low-resolution region. In contrast, for longer

times, we expect all features to be influenced by infor-

mation from both the low- and high-resolution regions.

So, in general, global errors should depend on 1xlow

and may not be improved by the presence of a 1xhigh

resolution region. However, they should not be wors-

ened by the presence of refinement and we thus expect

global errors in a multi-resolution simulation to be as

low as those obtained by a uniform 1xlow simulation.

2. Local scales are resolved in the refined region. The pur-

pose of the multi-resolution approach in climate mod-

eling is not to reduce the initial value problem error,

but to resolve features of interest, such as hurricanes,

eddies, or topographically driven features in select re-

gions at a lower cost. We thus expect that, in the re-

fined region, the multi-resolution simulation can resolve

the same scales as the uniform 1xhigh resolution simu-

lation. With hyperviscosity, this requires a resolution-

aware formulation, which locally matches what would

be used in a uniform resolution simulation.

In the study, we use the popular set of shallow-water test

cases on the sphere compiled by Williamson et al. (1992) to

show that the SEM satisfies both requirements when tensor

hyperviscosity is used. We show that tensor hyperviscosity is

both more accurate and more robust with respect to grid qual-

ity. The rest of the paper is organized as follows: in Sect. 2,

we introduce two dissipation mechanisms – scalar and tensor

hyperviscosity; in Sect. 3, we discuss grid refinement tech-

niques; in Sect. 4, we describe shallow-water test cases; in

Sect. 5, we present numerical results.

2 Hyperviscosity formulations

In many climate models, a hyperviscosity term is added to

the right hand side of the dynamical equations for both phys-

ical and numerical reasons. Hyperviscosity is preferred over

regular viscosity because it is more scale selective. It strongly

damps grid scale modes while having less of an impact on the

resolved large-scale modes. To introduce the various types of

hyperviscosity that will be considered here, we first consider

a model equation containing only the hyperviscosity opera-

tor:

Qt =−ν1
2Q,ν > 0, (1)

acting on scalar fields with a constant coefficient ν. Here,

subscript t denotes differentiation with respect to time. The

tensor formulation replaces ν12 by (∇ ·τ∇)1 for a symmet-

ric positive definite matrix τ . That is, instead of Eq. (1), we
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Figure 1. A cubed-sphere grid.

consider

Qt =−(∇ · τ∇)1Q. (2)

Our intention is to derive a formulation for τ that is suit-

able for uniform and quasi-uniform grids and that can be ex-

tended to non-uniform grids.

We start by writing equation Eq. (2) in weak form. Since

Eq. (2) is equivalent to the set of equationsQt =−(∇·τ∇)q,

q =1Q, we rewrite the set as a system of integral equations:∫
�

φ1Qt =

∫
�

∇φ1 · τ∇q, (3)

∫
�

φ2q =−

∫
�

∇φ2 · ∇Q. (4)

Here, � is the problem domain, which, in our case, will

be the sphere of the radius R. This system of equations is

discretized by the standard SEM and solved for all SEM test

functions φ1 and φ2. We first decompose the domain � into

a set of quadrilateral elements on the surface of the sphere

(�m, m= 1, . . .,M , as in Fig. 1), and then write∑
m

∫
�m

φ1Qt =

∑
m

∫
�m

∇φ1 · τ∇q, (5)

∑
m

∫
�m

φ2q =−
∑
m

∫
�m

∇φ2 · ∇Q. (6)

Each term in this sum is then written as an integral over

the reference element �ref = [−1,1]× [−1,1]. We define

r(x;m) as the map from �ref to �m, with r ∈�m as a point

on the sphere and x = (x1,x2) ∈�ref. We require this map to

be differentiable and invertible, and further define

D= ∂r/∂x, (7)

where D is a 2× 2 matrix whose columns are the covariant

basis vectors expressed in spherical coordinates. The map

and analytic expressions for D are given in the Appendix.

The integral over each spherical element �m can then be

written with respect to �ref, using derivatives with respect

to the reference element coordinates:∫
�m

∇φ · τ∇q

=

∫
�ref

(
∂φ
∂x1
∂φ
∂x2

)T

D−1τD−T

(
∂q
∂x1
∂q
∂x2

)
det(D)dx1dx2, (8)

where det(D)dx1dx2 is the transformed area measure, and τ

is the tensor expressed in spherical coordinates.

Note that the discrete operator will conserve mass (
∫
Q),

since the change in mass is obtained by taking test function

φ1 = 1, and then the right hand side of Eq. (5) will be 0 if we

ensure ∇1= 0.

We now consider the eigenvalues of the metric tensor and

its inverse:

DTD= E

(
λ1 0
0 λ2

)
ET, D−1D−T = E

(
λ−1

1 0

0 λ−1
2

)
ET, (9)

with the orthonormal matrix E whose columns are the ba-

sis vectors, which diagonalize the Laplace operator. For any

practical grid, both D and D−1 are well defined, and hence

the symmetric metric tensor is guaranteed to have such an

eigenvalue decomposition with positive eigenvalues. We note

that these two eigenvalues can be used to define the two

length scales associated with each element �m. For the spe-

cial case of a grid of rectangular elements in Cartesian geom-

etry of size lx × ly , we have E as the identity matrix and

λ1 = (lx/2)
2λ2 =

(
ly/2

)2
. (10)

For a general, possibly distorted element, we define its two

length scales by 2
√
λ1 and 2

√
λ2.

2.1 Constant-coefficient hyperviscosity

The traditional constant-coefficient hyperviscosity is ob-

tained by taking τ = νI, with the identify matrix I. For uni-

form resolutions with an average grid spacing of 1x, of-

ten ν = c0(1x)
3.2, for some constant c0 > 0. This scaling

is obtained by experimentation and is found to be effective

for several different dynamical cores over a wide range of

resolutions (Boville, 1991; Takahashi et al., 2006; Dennis
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et al., 2012). We take a slightly more general form and al-

low ν = c0(1x)
s for a scaling parameter s. The constant-

coefficient hyperviscosity is used for quasi-uniform grids,

where we follow the convention of defining 1x by the aver-

age number of degrees of freedom on the equator. For square

elements, lx = p1x, where p is the polynomial order of the

basis functions in the SEM.

In order to motivate how we generalize this operator to

a full tensor, we first express τ = νI in the basis, which diag-

onalizes the Laplace operator (the local element basis defined

by E). Some algebra shows that

E−1D−1τD−TE−T =

(
νλ−1

1 0

0 νλ−1
2

)
.

Below, we ensure that the more general tensor formula-

tions retain this scaling in regions in which the grid has a

uniform resolution of λ1 ' λ2.

2.2 Scalar hyperviscosity

For scalar hyperviscosity, we once again take τ = νI and

now allow ν to vary in space. The natural choice is to use

the same scaling as with the constant-coefficient operator,

ν = c0(1x)
s , but with 1x now chosen locally for each el-

ement. To preserve the scaling for the constant-coefficient

operator, but also to ensure that the coefficient does not be-

come too small (and thus provide insufficient dissipation), we

use Eq. (10) and approximate the resolution locally by taking

lx = 2(max{λ1,λ2})
1/2 and 1x = lx/p. For scalar hypervis-

cosity, this tensor scales according to

E−1D−1τD−TE−T =

(
νλ−1

1 0

0 νλ−1
2

)
,ν = c0(1x)

s .

On a Cartesian grid with square elements, λ1 = λ2 =

(lx/2)
2, and so the scalar and constant-coefficient opera-

tors are identical. For a quasi-uniform grid, where λ1 ' λ2 '

(lx/2)
2, the scalar and constant-coefficient operators will

have the same scaling with resolution.

2.3 Tensor hyperviscosity

Now consider a grid with only rectangles of size lx � ly .

Based on our expected scaling hyperviscosity with resolu-

tion, we note that the scalar hyperviscosity above would give

us the desired amount of dissipation in the x direction, but

would have excessive dissipation acting in the y direction.

The natural choice for a grid of rectangles is a tensor coeffi-

cient:

τ =

(
ν1 0

0 ν2

)
ν1 = c0(1x)

s,ν2 = c0(1y)
s . (11)

For a grid of pure rectangles, D is diagonal and E= I, so

τ expressed in the E basis is given by

E−1D−1τD−TE−T =

(
ν1λ
−1
1 0

0 ν2λ
−1
2

)
. (12)

We use this same formulation for unstructured grids

by defining the two locally varying element length scales

as in Eq. (10) and taking ν1 = c0(2
√
λ1/p)

s and ν2 =

c0(2
√
λ2/p)

s . On a Cartesian grid of pure rectangles, the

scalar and tensor operators are identical. For a quasi-uniform

grid of rectangles, where λ1 ' (lx/2)
2 and λ2 ' (ly/2)

2, the

scalar and tensor operators will have the same scaling with

resolution.

For direct comparison, we summarize the three different

approaches:

– Constant-coefficient: for quasi-uniform grids with aver-

age grid spacing 1x;

τ = νI= DE

(
νλ−1

1 0

0 νλ−1
2

)
(DE)T

ν = c0(1x)
s .

– Scalar: ν = ν(r) depends on local element length

scales;

τ = νI= DE

(
νλ−1

1 0

0 νλ−1
2

)
(DE)T

ν = c0(1x)
s

1x = 2
√

max{λ1,λ2}/p.

– Tensor: τ depends on local element length scales;

τ = DE

(
ν1λ
−1
1 0

0 ν2λ
−1
2

)
(DE)T

ν1 = c0(1x)
s,

1x = 2
√
λ1/p

ν2 = c0(1y)
s,

1y = 2
√
λ2/p.

For a smoothly deformed grid, the matrix entries of τ will

be smooth functions over the domain �m. For our discrete

grids, we ensure τ is continuous across element edges by ap-

plying the standard SEM projecting operation to each entry

of τ . We further reduce variations in τ by computing it only

at element corner points, forming a bilinear fit to these cor-

ner values, and using this bilinear approximation at all nodes

within the element.

2.4 Hyperviscosity acting on vector fields

In our method, we represent vector fields u in spherical co-

ordinates, but care must be taken not to differentiate individ-

ual vector components when represented in spherical coor-

dinates, since they are multiply valued at the poles. Instead,

we transform u from spherical to Cartesian coordinates and

solve Eqs. (5–6) for each Cartesian component of the veloc-

ity field, and then transform the result back to spherical co-

ordinates.
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Figure 2. Schematic idea of constructing refined grids for the con-

formation of quadrilaterals on a sphere: we start from uniform grid

with 1xlow. Next, the region of desired refinement is replaced

with uniform elements of size1xhigh. The grey area approximately

defines a transition region, which is constructed by substituting

quadrilaterals with 1xlow by transition templates. After the tran-

sition region is assembled, spring dynamics can be used to smooth

the grid.

3 High- and low-connectivity conforming quadrilateral

grids on the sphere

The mimetic formulation of the SEM that we are using re-

quires the conformation of quadrilateral grids. The cubed

sphere is a popular way to construct these grids on the sphere

with quasi-uniform resolution. An inscribed cube is pro-

jected onto the surface of the sphere and each panel is further

subdivided into a grid of elements, as shown in Fig. 1.

For multi-resolution, we consider grids with a single re-

fined region over an area of interest. We define a coarse reso-

lution1xlow and fine resolution1xhigh. We restrict ourselves

to choices1xhigh =1xlow/N , N = 2,4 and 8. Starting from

a cubed-sphere grid with a resolution of 1xlow, the region

under refinement is substituted by uniform elements with

1xhigh, as shown in Fig. 2. The approximate placement of

the transition region is colored grey. For each N , we gen-

erate a family of grids with different low-resolution regions

(1xlow). Following Ringler et al. (2011), we refer to these

family of grids as×1,×2,×4, and×8. The×1 family is the

set of uniform cubed-sphere grids, with resolutions ranging

from 3 to 0.5◦. The ×2 family (shown in Fig. 3) is similar,

but each ×2 grid has a refined region with twice the resolu-

tion (N = 2). The ×4 family has a refined region with four

times the resolution (N = 4) and the ×8 family has N = 8.

It is nontrivial to construct the transition region. We need

to avoid hanging nodes and prefer the elements to be as close

to squares as possible. In Fig. 4, we provide two example

×8 grids with the same 1xlow = 3◦. Here, we represent two

approaches to construct the transition region. Both are based

on periodic templates, as seen in Fig. 5. The transition region

in Fig. 5a is constructed by CUBIT, a grid-generating soft-

ware for complex geometries in two and three dimensions

(https://cubit.sandia.gov). Figure 5b contains the transition

(a) �xlow = 3�

(b) �xlow = 1.5�

(c) �xlow = 0.75�

Figure 3. A family of ×2 grids with (from left to right) 1xlow = 3,

1.5, and 0.75◦, 1xhigh =1xlow/2.

generated by SQuadGen. SQuadGen was developed to gener-

ate two-dimensional refined spherical grids based on a cubed

sphere (http://climate.ucdavis.edu/squadgen.php).

As seen in Fig. 5, the transition region in Fig. 5a contains

nodes of higher valence comparing to the similar region in

Fig. 5b. In this context, valence of a node is a number of

edges to which it is connected. Node valence greater than

4 results in quadrilaterals with more acute angles and more

distorted elements, and thus lower valence grids are usually

preferred. In Fig. 5a, most nodes are of valence 3–6, with

a few of valence 7. In Fig. 5b, most nodes are of valence

3–5 with a few nodes of valence 6. For the approach used

in Fig. 5a, it is possible to avoid valence-7 nodes altogether

with a less automated, more user-dependent procedure, but it

is not possible with valence-6 nodes.

After the transition has been constructed, it is standard

procedure to apply a smoothing algorithm to further im-

prove grid quality. SQuadGen employs the algorithm of Pers-

www.geosci-model-dev.net/7/2803/2014/ Geosci. Model Dev., 7, 2803–2816, 2014
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(a) Grid with a narrow, more distorted transition region from
CUBIT mesh generation software with grid smoothing turned
off

(b) Grid with a wider, more uniform transition region from
SQuadGen and grid smoothing with spring dynamics

Figure 4. Example of ×8 refined grids with 1xlow = 3◦ and

1xhigh =1xlow/8.

son and Strang (2004) with a uniform spring force function.

Moreover, the user can choose a halo size around the in-

ner and outer boundaries of the transition region, in terms

of graph distances. This halo is then used to define a region

in which smoothing will be applied. To investigate the per-

formance of our resolution-aware hyperviscosity operators,

we take two extremes: non-smooth grids with higher valence

nodes generated by CUBIT, and smoothed grids with lower

valence nodes generated by SQuadGen. We call the former

high-connectivity (or highly distorted) grids and latter low-

connectivity grids.

4 Shallow-water test cases

The shallow-water equations on a rotating sphere are given

by

∂u

∂t
+ (ζ + f )k×u+∇

(
1

2
u2
+ g(h+ b)

)
=−∇ · τ∇1u (13)

∂h

∂t
+∇ · (hu)=−∇ · τ∇1h. (14)

Here, h is the fluid thickness, u represents velocity, ζ =

k · ∇ ×u the vorticity, f is the Coriolis parameter, g is

(a) CUBIT approach (b) SQuadGen approach

Figure 5. Different types of refined conforming quadrilateral grids.

Plots (a) and (b) show close-ups of the transition regions from plots

in Figs. 4a and b, respectively.

gravity, and b denotes bottom topography. The equations

are discretized following Taylor and Fournier (2010) with

the hyperviscosity operator discretized, as per Sect. 2. We

take p = 3 for a fourth-order accurate spatial discretization

and use the second-order accurate leapfrog–trapezoidal time-

stepping method.

For our studies, we choose two standard shallow-water test

cases from Williamson et al. (1992): test case 2 (TC2) and

test case 5 (TC5). TC2 represents a global steady state zonal

geostrophic flow. Since the analytical solution is known, TC2

is often used to investigate convergence rates. The solution

is very smooth, resulting in small errors, but the errors are

very sensitive to local fluctuations in truncation error, such as

those caused by grid irregularities. Following Ringler et al.

(2011), we run TC2 for 12 simulation days, instead of the

originally proposed 5 days, in order to allow longer time for

the error growth to disrupt the steady state solution.

TC5 consists of a more realistic zonal flow over an isolated

mountain run for 15 days. Error measures are obtained from

a high-resolution reference simulation. Establishing conver-

gence rates is difficult as the rate decreases to 0 as the errors

approach the uncertainty in the reference solution. Instead,

global errors are used primarily to measure the impact of

the refined region. TC5 has much larger errors than those in

TC2, which are less sensitive to small fluctuations in the lo-

cal truncation error. In TC5, we examine the vorticity, which

contains small-scale structures that are only captured at high

resolution. We use the vorticity results to ensure that these

structures can also be captured within the high-resolution re-

gion of a variable-resolution grid.

One of the purposes of this study is to confirm that, in

the SEM with hyperviscosity, the large-scale errors are not

harmed by the presence of refinement and thus are primarily

controlled by coarse resolution (1xlow). For this, we collect

a series of grids with ×2, ×4, and ×8 refinements. For both

TC2 and TC5, the refined region covers a circle with coor-

dinates λ= 3π/2, θ = π/6 and radius π/9. This placement

is centered over the TC5 mountain. We summarize charac-

Geosci. Model Dev., 7, 2803–2816, 2014 www.geosci-model-dev.net/7/2803/2014/
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Table 1. Summary of the ×2, ×4, and ×8 family of grids.

Name 1xlow 1xhigh Refinement Connectivity

deg3 ×2 lowconn 3◦ 1.5◦ ×2 low connectivity

deg1.5 ×2 lowconn 1.5◦ 0.75◦ ×2 low connectivity

deg1 ×2 lowconn 1◦ 0.5◦ ×2 low connectivity

deg0.75 ×2 lowconn 0.75◦ 0.375◦ ×2 low connectivity

deg0.5 ×2 lowconn 0.5◦ 0.25◦ ×2 low connectivity

deg3 ×4 lowconn 3◦ 0.75◦ ×4 low connectivity

deg1.5 ×4 lowconn 1.5◦ 0.375◦ ×4 low connectivity

deg1 ×4 lowconn 1◦ 0.25◦ ×4 low connectivity

deg0.5 ×4 lowconn 0.5◦ 0.125◦ ×4 low connectivity

deg3 ×8 lowconn 3◦ 0.375◦ ×8 low connectivity

deg1.5 ×8 lowconn 1.5◦ 0.1875◦ ×8 low connectivity

deg1 ×8 lowconn 1◦ 0.125◦ ×8 low connectivity

deg3 ×8 highconn 3◦ 0.375◦ ×8 high connectivity

Table 2. Summary for simulations. TC stands for a test case, and the numbers in c0 and s are parameters in the hyperviscosity coefficient

ν = c0(1x)
s .

TC Grid HV method c0 s 1t Figure

TC2 uniform, 3◦ constant coef. 6.12× 10−6 4 50 s Fig. 6a

TC2 deg3 ×8 highconn scalar 6.52× 10−6 4 30 s Fig. 6b

TC2 deg3 ×8 highconn tensor-based 6.12× 10−6 4 30 s Fig. 6c

TC2 deg3 ×8 lowconn scalar 6.52× 10−6 4 30 s Fig. 6d

TC2 deg3 ×8 lowconn tensor-based 6.12× 10−6 4 30 s Fig. 6e

TC5 uniform, 3◦ constant coef. 7.18× 10−2 3.2 50 s Fig. 10a

TC5 deg3 ×8 highconn scalar 7.18× 10−2 3.2 20 s Figs. 9b, 10b

TC5 deg3 ×8 lowconn tensor-based 3.59× 10−2 3.2 50 s Figs. 9c, 10c

TC5 deg3 ×8 highconn tensor-based 3.59× 10−2 3.2 50 s Fig. 10d

teristics of the grids in Table 1. In Table 2, we summarize

some parameters for simulations in Figs. 6–10. Resolutions

1xlow and1xhigh are computed according to the formula for

an equatorial uniform resolution, considering that the whole

sphere is covered by corresponding large or small elements.

5 Numerical results

5.1 Grid and hyperviscosity sensitivity in TC2

We present error plots for the TC2 height field h after 12 days

in Fig. 6. The error

1h= hnumerical−hanalytic (15)

is contoured for several different meshes all with a rela-

tively low 1xlow = 3◦ resolution. Part a contains a plot for

a uniform resolution and constant-coefficient hyperviscosity.

Plots b and d are simulations with the scalar hyperviscosity

on ×8 grids. Plots c and e are simulations with the tensor

hyperviscosity on ×8 grids.

We first note that the errors are quite small relative to the

height field (which ranges from 1000 to 3000 m). The height

field is not plotted since it would be identical to the analytic

solution in Williamson et al. (1992). For the uniform grid

with constant-coefficient hyperviscosity, the error is quite

uniform with no indication of any grid sensitivity. There is

no visiblem= 4 mode that might be expected because of the

cubed-sphere grid.

To investigate performance and robustness of two dissipa-

tion mechanisms, we chose the two×8 grids shown in Fig. 4:

a highly distorted unsmoothed grid generated by CUBIT,

deg3×8highconn, and a grid with low-connectivity nodes

and selectively applied smoothing generated by SQuadGen,

deg3×8lowconn. Both the ×8 grids have the same low-

resolution region as the uniform grid, and thus the errors

in the ×8 grids should be equal or lower than the errors in

panel a. This is obviously not the case when scalar hypervis-

cosity is used, as seen in panels b and d. Those results are

contaminated with significant numerical noise with larger er-

rors than panel a. This is even true in the Southern Hemi-

sphere, away from the region of local refinement. Compar-

ing the distorted grid (panel b) with the low-connectivity grid

(panel d), we see that the scalar hyperviscosity has some grid

sensitivity, as the better quality grid in panel d shows more
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(a) Error plot for the uniform grid. The resolution is �xunit =
3�. The error varies from �6.06⇥ 10�1 to 2.02⇥ 100.

(b) Scalar hyperviscosity with the highly distorted⇥8 grid shown
in Fig. 4(a), error varies from �2.61⇥ 100 to 5.44⇥ 100 meters

(c) Tensor hyperviscosity with the highly distorted ⇥8 grid
shown in Fig. 4(a), error varies from�5.32⇥10�1 to 1.90⇥100

meters

(d) Scalar hyperviscosity with the low-connectivity ⇥8 grid
shown in Fig. 4(b), error varies from �3.09⇥ 100 to 7.73⇥ 100

meters

(e) Tensor hyperviscosity with the low-connectivity ⇥8 grid
shown in Fig. 4(b), error varies from�4.85⇥10�1 to 1.91⇥100

meters

Figure 6. Error plots for TC2. A contour spacing of 0.25 m is the same for all plots. Maximum and minimum values of error Eq. (15) are

given in captions. Tensor hyperviscosity produces smoother fields comparing to scalar hyperviscosity, as follows from comparing pairs (b),

(c), (d), and (e). In addition, the quality of the underlying grid significantly improves the outcome around the refined region when using

scalar hyperviscosity, as seen by comparing (b) and (d). Contrary to scalar hyperviscosity, tensor hyperviscosity is more robust with respect

to mesh quality, as follows from comparing (c) and (e). Simulations (c) and (e) with tensor hyperviscosity also exhibit a substantial error

reduction in the vicinity of the refinement compared to the coarse uniform resolution in (a).

zonal contours similar to panel a and somewhat less noise in

the refined mesh region, although panel d does have larger

minimum and maximum errors (given in the figure caption)

than panel b. Both panels b and d have minimum and maxi-

mum errors significantly larger than those in panel a.

Contrary to this, results using the tensor coefficient hyper-

viscosity are very close to panel a and much less sensitive

to the different types of refinement. The minimum and maxi-

mum errors with either the distorted grid (panel c) or the low-

connectivity grid (panel e) are slightly less than the values

obtained on the uniform grid (panel a). In both panels c and

e, the error contours in the Southern Hemisphere are almost

identical to panel a. In the Northern Hemisphere, the errors

are sensitive to the presence of refinement, but are actually

lower in this region than they are with panel a. Thus, with

the tensor hyperviscosity, the presence of mesh refinement

does no harm to the solution and actually results in a minor

local reduction in the error.

5.2 Vorticity in TC5

We now examine the vorticity field for TC5. The vorticity af-

ter 15 days is plotted in Fig. 7. A close-up of the region over

the TC5 mountain is shown in Fig. 8. In both figures, panel a

shows a low-resolution uniform mesh result, and panel b

shows the reference solution that was computed on a uniform
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(a) Coarse resolution solution using a uniform grid with �x = 3�

(b) High resolution reference solution, using a uniform grid with �x = 0.125�

Figure 7. TC5 vorticity contours for low and high uniform resolu-

tions with constant-coefficient hyperviscosity. The contour spacing

is 5.0× 10−6 s−1. A spherical mountain approximately 30◦ in di-

ameter is centered at 30◦ N and 90◦W.

high-resolution grid. Note the sharp gradient in the flow that

is well resolved in our reference solution but not present in

the low-resolution result.

We show results computed using locally refined grids in

Figs. 9 and 10. Based on the results presented for TC2, here

we compare the worst and best performing extremes: scalar

hyperviscosity running on the highly distorted ×8 mesh in

Fig. 4a, and tensor hyperviscosity on the low-connectivity

×8 mesh in Fig. 4b.

The vorticity is plotted over the mesh refinement region for

these two simulations in Fig. 9. The computation with scalar

hyperviscosity develops unphysical oscillations, which are

not present in the tensor hyperviscosity result or reference so-

lution. Figure 9b shows a very smooth field across the highly

non-uniform transition region, and the sharp gradient that is

present in Fig. 8b is resolved without numerical noise. Note

that the exact matching of Figs. 8b and 9b is not expected

because the reference solution used a grid with 3 times finer

resolution than the finest resolution used in the ×8 grids.

To quantify these observations, we plot the error in the

vorticity

1ζ = ζnumerical− ζreference (16)

field in Fig. 10. We show the error for the two ×8 simula-

tions, as well as a uniform low-resolution simulation. The er-

ror is computed using our high-resolution reference solution

as an approximation to the exact solution. The noise seen in

the scalar hyperviscosity vorticity field (Fig. 9) is more evi-

dent throughout the refined region in the vorticity error plot

(Fig. 10b). With the tensor viscosity on the low-connectivity

grid, Fig. 10c shows very little noise in the refinement re-

gion and the mesh transition region. In addition, the error is

substantially reduced in the refinement region as compared

to the low-resolution uniform grid solution (Fig. 10b). The

fact that the error can be reduced by local mesh refinement

after 15 days in this region suggests that the solution con-

tains standing features induced by the mountain, which ben-

efit from mesh refinement and are not sensitive to the solu-

tion in the rest of the domain in which both grids have the

same 1xlow resolution. In fact, the improved resolution of

these standing features leads to slightly less errors than are

obtained by the global 1xlow resolution grid.

To investigate effects of tensor hyperviscosity, one can

compare panels Fig. 10b (scalar hyperviscosity and the

highly distorted grid) and Fig. 10d (tensor hyperviscosity and

the highly distorted grid). The numerical noise in the transi-

tion region present in the simulation with scalar hypervis-

cosity is practically eliminated when tensor formulation is

used. If the simulation in Fig. 10c with a better-quality grid

(low-connectivity grid) is considered optimal, then one can

conclude that the tensor hyperviscosity simulation provides

a very close-to-optimal result, even if a low-quality grid is

used.

5.3 Convergence under grid refinement

We now present mesh convergence results for several choices

of local refinement. We use our best configuration: tensor hy-

perviscosity running with low-connectivity grids. We com-

pare the convergence properties of the method with uni-

form grids using constant-coefficient hyperviscosity, uniform

grids using tensor coefficient hyperviscosity, the ×2 family

of grids, the ×4 family of grids, and the ×8 family of grids.

The ×2, ×4, and ×8 simulations all use tensor hyperviscos-

ity.

We want to focus only on the spatial error, and, in all cases,

use time steps in which the time truncation error is negligi-

ble, as compared to the spatial error. While running simula-

tions for convergence, we made sure that temporal errors did

not dominate. For TC2, we obtain fourth-order convergence

when using time steps near the CFL limit. For TC5, we re-

duced time steps so that time truncation errors are of fourth

order. For example, for the resolution with spatial scales1x,
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(a) Coarse resolution solution with �x = 3�. (b) High resolution reference solution, using a uniform grid with
�x = 0.125�.

Figure 8. As in Fig. 7 but plotted in a subregion of the global domain.

(a) Scalar hyperviscosity with the highly distorted⇥8 grid shown
in Fig. 4(a).

(b) Tensor hyperviscosity with the low connectivity ⇥8 grid
shown in Fig. 4(b).

(c) The highly distorted grid used in (a) (d) The low connectivity grid used in (b)

Figure 9. Contour plots of TC5 vorticity are shown in the top panels, while the grid is shown in the bottom panel. The contour interval

is 5.0× 10−6 s−1. All panels show a subregion of the global domain, which contains most of the refined region and is identical to the

subregion used in Fig. 8. Panel (a) shows results using scalar hyperviscosity on the highly distorted grid shown in (c). Panel (b) shows results

using tensor hyperviscosity on the low-connectivity grid shown in (d). The improved hyperviscosity and mesh quality result in significantly

improved results.

the time is 1t . For the refined grid with spatial scales 1x/2,

we execute a simulation with 1t/4.

The global l2 errors for the TC2 height field for all these

families of grids are shown in Fig. 11. We use the relative

l2, defined in Williamson et al. (1992). As noted in Sect. 2.1,

the hyperviscosity scaling with resolution is typically cho-

sen as s = 3.2. For TC2, we instead choose s = 4, so that the

hyperviscosity term goes to 0 at a fourth-order rate and we

can confirm the fourth-order accuracy of our p = 3 SEM spa-

tial discretization. For TC2, mesh refinement adds no value

to the simulation, and, as we saw in Sect. 5.1, it can lead

to a slight reduction in the local error, but no reduction in

the error away from the refinement region. We thus exam-

ine convergence with respect to 1xlow for each family of

grids. As expected, the uniform resolution simulations with

fourth-order constant-coefficient hyperviscosity demonstrate
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Figure 10. The error in the TC5 vorticity field is plotted for the global domain. The color scheme given in (a) is the same for all plots. The

tensor hyperviscosity again produces the best results with very little noise. From comparing panel (c) (tensor hyperviscosity and the low-

connectivity grid) and panel (d) (tensor hyperviscosity and the highly distorted grid), we conclude that tensor hyperviscosity is not sensitive

to grid quality.

fourth-order convergence, with the tensor and scalar hyper-

viscosity results being nearly identical. Similar results are

obtained for the ×2, ×4, and ×8 family of grids. The er-

ror is completely determined by 1xlow for all grids, and all

grids show fourth-order convergence under mesh refinement

with respect to 1xlow. Thus, the presence of mesh refine-

ment, with refinements as much as 8×, does no harm to the

global errors.

The global l2 errors for the TC5 height field for all these

families of grids are shown in Fig. 12, again plotted as a
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Figure 11. TC2 l2 errors for uniform and low-connectivity grids

plotted as a function of 1xlow. The solid line shows fourth-order

convergence. The error is controlled by the coarse region 1xlow

and the SEM obtains its formal order of accuracy (fourth order

for p = 3) with respect to 1xlow. This is true for both uniform

grids (blue squares and blue stars) and grids containing mesh re-

fined regions with 1xhigh =1xlow/2 (×2 family, shown as red di-

amonds),1xhigh =1xlow/4 (×4 family, shown as red plus marks),

and 1xhigh =1xlow/8 (×8 family, shown as black squares). All

curves are practically indistinguishable.

function of 1xlow and normalized as in Williamson et al.

(1992). For TC5, we return to the conventional hypervis-

cosity resolution scaling of s = 3.2. For TC5, we compute

the l2 errors from our high-resolution reference solution. The

convergence rates are lower in this case due to the fact that

the mountain is not smooth, limiting the convergence to the

first order in the max norm and second order in the l2 norm.

We first note that, for uniform resolution grids, the constant-

coefficient hyperviscosity performs nearly identically to the

tensor coefficient hyperviscosity. For TC5, we also see that,

for grids with the same 1xlow, the global l2 error is slightly

reduced by the presence of mesh refinement, as conjectured

in Sect. 5.2. The effect is small and fully captured by the ×2

grid with twice the resolution over the TC5 mountain. Fur-

ther local refinement in the×4 and×8 grids does not further

improve the error. Thus, in this case, the presence of mesh

refinement does no harm to the global errors and, in some

special cases, can decrease global error.

6 Conclusions

We compared two resolution-aware hyperviscosity operators

for the SEM running on unstructured grids with a region of

local mesh refinement: a conventional scalar approach based

on a single length scale for each element, and a tensor ap-

proach that respects the resolution scaling of both length

scales within each element. In both shallow-water test case

3 2 1.5 1 0.75 0.5

10−6

10−5

10−4

10−3

10−2

coarse−region grid spacing in degrees

 

 
3rd order slope
Uniform resolution, tensor hyperviscosity
Refinement x2
Refinement x4
Refinement x8
Uniform resolution, constant−coef hyperviscosity

Figure 12. As in Fig. 11, except for TC5. In case of tensor-based

hyperviscosity, three error curves for grid refinement with ×2, ×4

or ×8 local refinement are practically indistinguishable and obtain

the same convergence rates as seen with uniform grids. For a given

1xlow, the presence of some local refinement (×2) does decrease

the global error, but×4 or×8 levels of local refinement produce no

further benefit.

2 and 5, the scalar approach had noticeable noise and oscil-

lations near regions of local mesh refinement, which was not

present with the tensor formulation. Results for both formu-

lations were sensitive to the grid quality, as shown by com-

paring results on a highly distorted grid with sharp mesh

transitions and a smooth grid with less acute angles due to

its lower valence nodes. But, in TC2, the tensor formulation

showed less grid sensitivity and obtained excellent results on

both grids.

When running with tensor hyperviscosity in the SEM, the

presence of local mesh refinement in TC2 had no impact on

the global errors. The SEM obtained its formal order of ac-

curacy for all grids tested (up to 8× regional refinement). In

TC5, with refinement over the mountain, the presence of re-

finement, again, did no harm to the global errors and actually

resulted in a small improvement. Asymptotically, the global

errors were controlled by the coarse resolution, and the lo-

cally refined meshes obtained the same convergence rates as

the global uniform meshes.

The tensor and scalar hyperviscosity operators were con-

structed to be resolution aware and to preserve the resolution

scaling often used with uniform grids. In a high-resolution

region of quasi-uniform elements, the resolution-aware op-

erators are very similar to the SEM’s well-proven constant-

coefficient operator. Hence, we expect that, within the high-

resolution region of a locally refined mesh, the SEM can lo-

cally resolve the same types of structures that the uniform

high-resolution grid can resolve. This was verified by look-

ing at steep gradients in TC5 and comparing them to coarse

and high uniform resolution solutions.
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Appendix A: An element-local map for quadrilaterals on

a sphere

Numerical methods for the sphere based on cubed-sphere

grids need to define a map r(x) from the reference element

to the sphere (in the case of finite element methods) or from

each cube face to the sphere for finite difference or finite

element methods. Most approaches use the equidistant cen-

tral projection (Sadourny, 1972), the equiangular central pro-

jection (Rancic et al., 1996), or their combination (Fournier

et al., 2004). All three of these approaches were compared in

Nair et al. (2005), where the equiangular mapping was found

to be the most accurate. However, all three aforementioned

projections are based on an inscribed cube and cannot cor-

rectly treat elements lying across cube edges. In particular,

for an edge of such an element, the reference element maps

for the two elements that share this edge may not agree, re-

sulting in a loss of the SEM’s mimetic properties. Here, we

present a map that avoids this issue by using a map local to

each element. The map uses a bilinear transformation based

on elements’ physical coordinates and does not make use of

an inscribed cube. It is similar to the map used for triangular

elements in Lauter et al. (2008).

For each quadrilateral element �m on the surface of the

unit sphere, we denote the map and its inverse by r(x;m)

and x(r;m), where x = (x1,x2). To construct r(x;m), let

c1, c2, c3, and c4 be Cartesian coordinates of the vertices of

�m with c1 = (c
x
1 ,c

y

1 ,c
z
3)

T, etc. and define

r = r̃/‖̃r‖2

with

r̃ =
1

4
((1− x1)(1− x2)c1+ (1+ x1)(1− x2)c2+ (A1)

(1+ x1)(1+ x2)c3+ (1− x1)(1+ x2)c4) .

We now give an analytical expression for D= ∂r/∂x,

needed in Sect. 2. We use both Cartesian and longi-

tude–latitude coordinates:

r =

(
cosλcosθ
sinλcosθ

sinθ

)
where λ ∈ [0,2π ], θ ∈ [−π/2,π/2]. (A2)

Since dr = cosθ dλ eλ+ dθ eθ ,, it follows that

D=

(
cosθ 0

0 1

)
∂(λ,θ)

∂x
=

(
cosθ 0

0 1

)
∂(λ,θ)

∂r

∂r

∂x
. (A3)

To avoid the singularity at the poles in the term(
cosθ 0

0 1

)
∂(λ,θ)

∂r
=

(
−sinλ cosλ 0

0 0 1
cosθ

)
,

we further decompose the term ∂r
∂x
=

∂r
∂ r̃

∂ r̃
∂x

, so that we can

extract a factor of cosθ from ∂r
∂ r̃

. Some algebra shows

∂r

∂ r̃
=

1

||̃r||2

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,
where a11 = sin2λcos2θ + sin2θ , a12 =−

1
2

sin2λcos2θ ,

a13 =−
1
2

cosλsin2θ , a21 =−
1
2

sin2λcos2θ , a22 =

cos2λcos2θ + sin2θ , a23 =−
1
2

sinλsin2θ , a31 =

−
1
2

cosλsin2θ , a32 =−
1
2

sinλsin2θ , and a33 = cos2θ .

Also,

∂ r̃

∂x
=

1

4

cx1 cx2 cx3 cx4
c
y

1 c
y

2 c
y

3 c
y

4

cz1 cz2 cz3 cz4



−1+ x2 −1+ x1

1− x2 −1− x1

1+ x2 1+ x1

−1− x2 1− x1

 .
Altogether, we have

D=
1

||̃r||2

1

4

(
−sinλ cosλ 0

0 0 1

)

·

 a11 a12 a13

a21 a22 a23

a31/cosθ a32/cosθ a33/cosθ



·

cx1 cx2 cx3 cx4
c
y

1 c
y

2 c
y

3 c
y

4

cz1 cz2 cz3 cz4



−1+ x2 −1+ x1

1− x2 −1− x1

1+ x2 1+ x1

−1− x2 1− x1

 ,
where

r̃ =
1

4

cx1 cx2 cx3 cx4
c
y

1 c
y

2 c
y

3 c
y

4

cz1 cz2 cz3 cz4



(1− x1)(1− x2)

(1+ x1)(1− x2)

(1+ x1)(1+ x2)

(1− x1)(1+ x2)

 .
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