
Geosci. Model Dev., 7, 267–281, 2014
www.geosci-model-dev.net/7/267/2014/
doi:10.5194/gmd-7-267-2014
© Author(s) 2014. CC Attribution 3.0 License.

Geoscientific
Model Development

O
pen A

ccess

A distributed computing approach to improve the performance of
the Parallel Ocean Program (v2.1)

B. van Werkhoven1, J. Maassen2, M. Kliphuis 3, H. A. Dijkstra 3, S. E. Brunnabend3, M. van Meersbergen2,
F. J. Seinstra2, and H. E. Bal1

1VU University Amsterdam, Amsterdam, the Netherlands
2Netherlands eScience Center, Amsterdam, the Netherlands
3Institute for Marine and Atmospheric research Utrecht, Utrecht, the Netherlands

Correspondence to:B. van Werkhoven (ben@cs.vu.nl)

Received: 5 July 2013 – Published in Geosci. Model Dev. Discuss.: 12 September 2013
Revised: 17 December 2013 – Accepted: 2 January 2014 – Published: 7 February 2014

Abstract. The Parallel Ocean Program (POP) is used in
many strongly eddying ocean circulation simulations. Ide-
ally it would be desirable to be able to do thousand-year-
long simulations, but the current performance of POP pro-
hibits these types of simulations. In this work, using a new
distributed computing approach, two methods to improve
the performance of POP are presented. The first is a block-
partitioning scheme for the optimization of the load balanc-
ing of POP such that it can be run efficiently in a multi-
platform setting. The second is the implementation of part
of the POP model code on graphics processing units (GPUs).
We show that the combination of both innovations also leads
to a substantial performance increase when running POP si-
multaneously over multiple computational platforms.

1 Introduction

Physical oceanography is currently undergoing a paradigm
shift in the understanding of the processes controlling the
global ocean circulation. Two factors have contributed to this
shift: (i) the now about 20 yr long record of satellite data
and (ii) the possibility to simulate the ocean circulation using
models which include processes on the Rossby deformation
radius (10–50 km). Resolving this scale captures the instabil-
ity processes that lead to ocean eddies which subsequently
interact and affect the large-scale ocean flow (Vallis, 2006).

The level of realism (in relation to available observa-
tions) in simulating the ocean with high-resolution, strongly
eddying models substantially increases compared to the

low-resolution models in which the effects of eddies are
parametrized. For example, it leads to a much better simu-
lation of the different oceanic boundary currents, in particu-
lar the separation of the Gulf Stream in the Atlantic. Also,
the degree to simulate the surface kinetic energy distribu-
tion, which can be compared with satellite data, markedly
improves (Smith et al., 2000; Maltrud et al., 2010).

The use of the strongly eddying models is, even on the
supercomputing platforms currently available, still computa-
tionally expensive, and simulations have a long turn-around
time. Typical performances are from one to a few model
years per 24 h using thousands of cores (Dennis, 2007). Con-
sidering the fact that it takes at least 1000 yr to reach a near-
statistical-equilibrium state, innovations to increase the per-
formance of these models and to efficiently analyse the data
from the simulations have a high priority.

Today many traditional cluster systems are equipped with
graphics processing units (GPUs) because of their ability
to process computationally intensive workloads at unprece-
dented throughput and power efficiency rates. Existing soft-
ware requires modifications such as the expression of fine-
grained parallelism before it may benefit from the added pro-
cessing power that GPUs offer.

GPUs have been used to successfully accelerate numeri-
cal simulations before. For example,Michalakes and Vach-
harajani(2008) used GPUs to improve the performance of
the Weather Research and Forecast (WRF) model. Similarly,
Bleichrodt et al.(2012) implemented a numerical solver for
the barotropic vorticity equation for a GPU.

Published by Copernicus Publications on behalf of the European Geosciences Union.



268 B. van Werkhoven et al.: Improving the performance of the Parallel Ocean Program

However, it is currently not well known which specific
parts of ocean models can benefit the most from execution
on GPUs, how the existing software should be revised to ef-
ficiently use GPUs, and what impact the use of GPUs will
have on performance. In this paper, we aim to answer these
questions.

We present two innovations to improve the performance
of the Parallel Ocean Program (POP). POP is also used as
the ocean component of the much used Community Earth
System Model (CESM). We have applied our modifications
to a standalone version of POP (v2.1). However, we have
confirmed through source code inspection that all of our
changes are also applicable to and fully compatible with
the latest release of CESM (v1.2.0). The main issue is how
to adapt POP such that it can run simultaneously (and ef-
ficiently) on multiple GPU clusters. First, we address al-
ternative domain decomposition schemes and hierarchical
load-balancing strategies which enable multi-platform sim-
ulations such that further scaling can be achieved. Second,
we show how POP can be adapted to run on GPUs and
study the effect of GPU usage on its performance. The source
code of our modified version of POP can be obtained from
https://github.com/NLeSC/eSalsa-POP/.

2 Load balancing

The model considered here is the global version of POP
(Dukowicz and Smith, 1994) developed at Los Alamos Na-
tional Laboratory. We consider the strongly eddying config-
uration, indicated byR0.1, as used in recent high-resolution
ocean model simulations (Maltrud et al., 2010; Weijer et al.,
2012). This version has a nominal horizontal resolution of
0.1◦ using a 3600× 2400 horizontal grid with a tripolar grid
layout, having poles in Canada and Russia. The model has 42
non-equidistantz levels, increasing in thickness from 10 m
just below the upper boundary to 250 m just above the lower
boundary at 6000 m depth. In addition, bottom topography is
discretized using partial bottom cells, creating a more accu-
rate and smoother representation of topographic slopes.

2.1 Domain decompositions and block distributions

POP supports parallelism on distributed memory computers
through the message passing interface (MPI). To distribute
the computation over the processors, POP uses a three-
dimensional mesh, sketched in Fig.1a. The domain is de-
composed into equal-sized rectangular blocks in the hori-
zontal direction. Each block also contains several layers in
the vertical direction (depth). The blocks are then distributed
over the available MPI tasks, where each task receives one
or more blocks. Blocks consisting only of land points may
be discarded from the computation. Below we will assume
that a single MPI task is assigned to a processor core (unless
stated otherwise).

Each block is surrounded by a halo region (Fig.1b)
that contains a copy of the information of the neighbour-
ing blocks. These halos allow the calculations on each block
to be performed relatively independently of its neighbour
blocks, thereby improving parallel performance. Neverthe-
less, the data in the halo regions need to be updated reg-
ularly. This requires a data exchange between the blocks,
which leads to communication between the MPI tasks, the
amount of data depending on the width of the halo, the size
of the blocks, and the block distribution over the MPI tasks.

In POP, the halo width is typically set to 2. For an ex-
ample block size of 60× 60, the number of elements that
need to be exchanged per block in every halo exchange is
4×(60×2)+4×4 = 496. This number may need to be multi-
plied by the number of vertical levels, depending on the data
structure on which the halo exchange is performed. Some
data structures, like the horizontal velocity, store a value for
every grid point at every depth level. As a result, a 3-D halo
exchange is required that exchanges elements from every
depth level. Others data structures, such as surface pressure,
only consist of a single level. There, a 2-D halo exchange is
sufficient.

For neighbouring blocks that are assigned to the same MPI
task, the data exchange is implemented by an internal copy
and no MPI communication is required. Also, no data need
to be exchanged with (or between) land elements. Therefore,
the amount of data that needs to be communicated between
MPI tasks depends heavily on the way the blocks are dis-
tributed over the MPI tasks.

2.2 Existing block-partitioning schemes

POP currently supports three algorithms for distributing the
blocks over the available MPI tasks, Cartesian, rake (Mar-
quet and Dekeyser, 1998), and space-filling curve (Dennis,
2007). The Cartesian algorithm starts by organizing the tasks
in a two-dimensional grid. Next, the blocks are assigned to
these tasks according to their position in the domain. If the
number of MPI tasks does not divide the number of blocks
evenly in either dimension, some tasks may receive more
blocks than others. In addition, some tasks may be left with
less work (or even no work) if one or more blocks assigned
to it only contain land. As shown inDennis(2007), load im-
balance between tasks can significantly degrade the perfor-
mance of high-resolution ocean simulations.

The rake algorithm attempts to improve the load balance
by redistributing the blocks over the tasks. Note that this
requires that the number of blocks is significantly larger
than the number of MPI tasks. The rake algorithm starts
with a Cartesian distribution and the corresponding two-
dimensional MPI task grid. First, the average number of
blocks per task is computed. Then, for each row in the task
grid, the algorithm takes the first task in the row and de-
termines whether the number of blocks exceeds the aver-
age. If so, the excess blocks are passed on to the next task.

Geosci. Model Dev., 7, 267–281, 2014 www.geosci-model-dev.net/7/267/2014/

https://github.com/NLeSC/eSalsa-POP/


B. van Werkhoven et al.: Improving the performance of the Parallel Ocean Program 269

(a) (b)

Fig. 1. (a) Sketch of the blockwise subdivision of the domain in POP. (b) The halo regions of a block; image

from Smith et al. (2010).

Fig. 2. Examples of the space-filling curve load balancing algorithm, with the Hilbert (left panel), meandering

Peano (middle panel) and Cinco (right panel) curves; image from Dennis (2007).

[2,2] [3,3] [3,3,2] [3,3,2,2]

Fig. 3. Example subdivisions of a square into 4,6,8, and 10 rectangular sections.

21

Fig. 1. (a)Sketch of the block-wise subdivision of the domain in POP.(b) The halo regions of a block; image fromSmith et al.(2010).

(a)

(b)

Fig. 1. (a) Sketch of the blockwise subdivision of the domain in POP. (b) The halo regions of a block; image

from Smith et al. (2010).

Fig. 2. Examples of the space-filling curve load balancing algorithm, with the Hilbert (left panel), meandering

Peano (middle panel) and Cinco (right panel) curves; image from Dennis (2007).

[2,2] [3,3] [3,3,2] [3,3,2,2]

Fig. 3. Example subdivisions of a square into 4,6,8, and 10 rectangular sections.

21

Fig. 2. Examples of the space-filling-curve load-balancing algo-
rithm, with the Hilbert (left panel), meandering Peano (middle
panel), and Cinco (right panel) curves; image fromDennis(2007).

This process is repeated for all tasks in the row. The pro-
cess is repeated for all columns of the task grid. As described
in Smith et al.(2010), the algorithm “can be visualized as
a rake passing over each node and dragging excess work into
the next available hole”. In an attempt to keep neighbouring
blocks close together, constraints are placed on block move-
ments that prevent blocks from moving too far from their di-
rect neighbours. Unfortunately, there are instances where the
rake algorithm actually results in a worse load balance where
blocks get raked into a corner. As a resultDennis (2007)
states that “we do not consider the current implementation
of the rake algorithm. . . sufficiently robust.”

The space-filling-curve algorithm described inDennis
(2007) uses a combination of Hilbert, meandering Peano, and
Cinco curves to partition the blocks (Fig.2). Conceptually,
it draws a single line that visits each of the blocks exactly
once. It then splits this line into equal-sized segments, each
segment visiting the same number of blocks. Due to the way
the line is drawn, the blocks in each segment are also contin-
uous in the two-dimensional domain. This solution degrades
slightly when the land-only blocks are discarded, which in-
troduces “cuts” in the curve. Nevertheless, the space-filling-
curve algorithm significantly improves the load balance be-
tween MPI tasks. A limitation of this approach is that each of
the space-filling curves can only partition domains of a spe-
cific size. For example, a domainP ×P can be partitioned by

a Hilbert curve ifP = 2n, or by a meandering Peano curve if
P = 3m, wheren andm are integers. By using combinations
of different curves, the set of supported problem sizes can be
extended.

2.3 Hierarchical block partitioning

None of the load-balancing algorithms described in the pre-
vious section takes into account the inherent hierarchical na-
ture of modern computing hardware. This typically consists
of multiple cores per processor, multiple processors per node,
multiple nodes per cluster, and even the availability of mul-
tiple clusters for a numerical simulation. The communica-
tion performance drops as we go up in the hierarchy. The
cores in a processor share cache memory and can therefore
communicate almost instantaneously, while communication
between processors has to go through main memory, which
is much slower. Communication between processors on dif-
ferent nodes must go through an external network, which
is orders of magnitude slower, and communication between
clusters in different locations is again orders of magnitude
slower. Therefore, simply balancing the load for the individ-
ual processors (or cores) is not sufficient. Instead, a hierar-
chical load-balancing scheme must be used that takes both
processor load and the communication hierarchy of the target
machine into account. We suggest using a similar approach
to the one used in Zoltan (Zoltan User Guide, 2013; Teresco
et al., 2005). However, where Zoltan supportsdynamic load
balancing(where the work distribution may change during
the application’s lifetime), we compute a singlestatic solu-
tion before the application is started.

Our hierarchical load-balancing scheme, like the rake and
space-filling-curve algorithms described earlier, assumes that
the number of blocks is significantly larger than the number
of processors. Instead of simply specifying the number of
MPI tasks for which to create a partitioning, the user must
now specify a sequence of partitionings. For example, a se-
quence 2: 16 : 8 indicates that the blocks must first be parti-
tioned into 2 sets (preferably of equal size), each of which is

www.geosci-model-dev.net/7/267/2014/ Geosci. Model Dev., 7, 267–281, 2014



270 B. van Werkhoven et al.: Improving the performance of the Parallel Ocean Program

(a)

(b)

Fig. 1. (a) Sketch of the blockwise subdivision of the domain in POP. (b) The halo regions of a block; image

from Smith et al. (2010).

Fig. 2. Examples of the space-filling curve load balancing algorithm, with the Hilbert (left panel), meandering

Peano (middle panel) and Cinco (right panel) curves; image from Dennis (2007).

[2,2] [3,3] [3,3,2] [3,3,2,2]

Fig. 3. Example subdivisions of a square into 4,6,8, and 10 rectangular sections.

21

Fig. 3.Example subdivisions of a square into 4,6,8, and 10 rectan-
gular sections.

then partitioned into 16 pieces, which are further divided into
8 pieces. The sequence of partitionings relates directly to the
hierarchy that is present in the computational platform. For
example, the 2: 16 : 8 partitioning can be used for an exper-
iment on two clusters, each containing 16 nodes of 8 cores.

Once the user has specified the desired partitioning, the al-
gorithm proceeds by repeatedly splitting the available blocks
into N (preferably equal-sized) subsets. We try to partition
the domain in such a way that the shape of each of the sub-
sets is as close to a square as possible. This will reduce the
amount of communication out of each subset in relation to
the amount of work inside each subset.

When splitting a domain, multiple solutions may be avail-
able which are equivalent from a load-balancing perspective.
However, the amount of communication required between
subsets may vary between these solutions due to assignment
of blocks to MPI tasks and the location of land-only blocks.
Our algorithm therefore compares these solutions and selects
the one which generates the least communication between
subsets.

To explain our algorithm in more detail, we use the sim-
plified example domain shown in the upper left panel (a1)
of Fig. 4. This example domain contains 1200× 1000 grid
elements. It is divided into blocks of 100× 100, resulting in
12× 10 blocks, of which 20 are land-only blocks. To divide
this domain into 10 subsets, the algorithm starts by comput-
ing the required number of blocks per subset. The 100 non-
land blocks must be divided into 10 subsets, resulting in 10
blocks per subset. Next, the algorithm tries to arrange the
desired number of subsets in a (roughly) rectangular grid.
The dimensions of this grid, consisting ofN subsets, is de-
termined as follows:

f:= floor(sqrt(N));
c:= ceiling(sqrt(N))

if (f = c) we have found a square grid of [f x f]
if (f * c = N) we have found a rectangular grid of [f x c]
if (N < f * c) we have found a rectangular grid of [f x c]

- (f * c-N)
if (N > f * c) we have found a square grid of [c x c]

- (c * c-N)

In the first two cases of the algorithm shown above,
a square or rectangular decomposition is available contain-
ing exactlyN subsets. In the last two cases, the decompo-
sition contains (f ∗ c − N ) or (c ∗ c − N ) subsets too many
respectively. To correct this, we repeatedly remove a single

subset from each row until the desired number of subsets is
reached. Figure3 shows four example subdivisions, for val-
ues ofN = 4,6,8, and 10, that correspond to each of these
four cases. For our example domain we will use the rightmost
subdivision in Fig.3 for N = 10 named[3,3,2,2], which
represents the number of blocks in each column.

Next, we compute the required number of blocks per col-
umn using the average number of blocks per subset and
the selected subdivision. For our example, we will use the
[3,3,2,2] subdivision as in Fig.3 and the 10 blocks per
subset average, which will result in columns containing
[30,30,20,20] blocks. We then split the domain into sub-
sets by traversing the blocks in a vertical zigzag fashion and
selecting all non-land blocks until the desired number of
blocks for that column in reached. It should be noted that
the partitioning scheme is not a flood-fill type of algorithm,
which may skip over isolated points; instead, our partition-
ing scheme simply skips over any land points encountered
while scanning in a certain direction, and continues scanning
in a zigzag fashion until the required number of ocean (i.e.
non-land) points have been selected.

The panels (a2–a6) in Fig.4 show how the example do-
main is split into the four columns. We subsequently split
each of the columns in a horizontal zigzag fashion into the
desired number of subsets for that column. Panels b1–b5 of
Fig. 4 show an example for the first column, which needs to
be split into 3 subsets of 10 blocks. A similar subdivision is
applied to the other columns. The final block distribution for
the example domain is shown in Fig.4c.

As explained above, the subdivision shown in panel (c)
of Fig. 4 is only one out of a series of options. Several per-
mutations of the[3,3,2,2] subdivision can be created that
are equivalent from a load-balancing perspective but require
a different amount of communication. In addition, the sub-
division can also be rotated, thereby initially dividing the
domain row-wise instead of column-wise. Finally, when se-
lecting the blocks in a zigzag fashion (as shown in Fig.4),
a choice can be made as to which position to start the selec-
tion from: top or bottom, or left or right. In our algorithm we
simply compute all unique permutations of the subdivision
in all possible rotations, with all possible starting points. We
then select the solution with the lowest average communi-
cation per subset. If multiple equivalent solutions exist, we
select the one with the lowest maximum communication per
subset. Table1 shows the best scoring results for all permuta-
tions of the[3,3,2,2] subdivision. All solutions use the same
number of blocks per task, but the amount of communication
varies per solution. Once a domain has been split into the de-
sired number of subsets, the algorithm is repeated for each of
these subsets for the next split.

2.4 Hierarchical partitioning of tripole grids

In the application of the hierarchical load-balancing scheme
to POP, the tripolar grid layout, where the North Pole is

Geosci. Model Dev., 7, 267–281, 2014 www.geosci-model-dev.net/7/267/2014/



B. van Werkhoven et al.: Improving the performance of the Parallel Ocean Program 271

(a1): initial domain (a2): select 30 blocks

for �rst column

(a3): select 30 blocks

for second column

(a4): select 20 blocks

for third column

(a5): select 20 blocks 

for fourth column

(a6): initial split

completed

(b1): �rst

column

(b2): select

10 blocks

for �rst

set

(b3): select

10 blocks

for second

set

(b4): select

10 blocks 

for third

set

(b5): �rst

column

completed

(c): �nal result

Step 1: Split domain column wise

Step 2: Split column selections row-wise

(only �rst column selection is shown)

Fig. 4. Description of the hierarchical load balancing scheme for an * example of 12×10 blocks, of which 20

are land-only blocks, as shown in panel (a1). The initial columnwise split is shown in panels (a2)–(a6), the

next row wise split in the panels (b1)–(b5) and the final results is shown in panel (c).

22

Fig. 4. Description of the hierarchical load-balancing scheme for an example of 12× 10 blocks, of which 20 are land-only blocks, as shown
in panel(a1). The initial column-wise split is shown in panels(a2)–(a6), the next row wise split in the panels(b1)–(b5), and the final results
is shown in panel(c).

replaced with two poles located (on land) in Canada and Rus-
sia, needs special attention. Note that tripolar grids are fre-
quently used in ocean models because the grid spacing in the
Arctic is much more uniform and the cell aspect ratios are
closer to 1 when compared to traditional latitude–longitude
(dipole) grids (Smith et al., 2010). In this case, additional
communication is required for the blocks located on the line
between these poles, as explained inSmith et al.(2010).
These blocks are located on the upper boundary of the grid,
as shown in Fig.5a. To support a tripolar grid layout in our

hierarchical load-balancing scheme, we add the additional
tripole communication to the communication requirements
of the subset whenever a subset contains a tripole block. The
extra communication will then be taken into account in the
search phase of the algorithm. Although this approach will
improve the partitioning, the result will not be optimal. As
shown in Fig.5a, two communicating tripole blocks may
be located on opposite sides of the grid. This makes it diffi-
cult for our partitioning scheme to put these two blocks into
the same subset. We overcome this problem by remapping

www.geosci-model-dev.net/7/267/2014/ Geosci. Model Dev., 7, 267–281, 2014



272 B. van Werkhoven et al.: Improving the performance of the Parallel Ocean Program

Fig. 5. (a)A subdivision of the topography into 60×40 blocks. The two tripoles are depicted by the red dots on the upper boundary. Note that
the leftmost and rightmost dots represent the same tripole; the tripole communication is (partially) shown by the arrows.(b) A remapping of
the grid that moves an area of 30× 7 blocks. The original tripole boundary is shown as a red line.

Fig. 6. An example of POP running without the MPI wrapper on a single cluster (left panel) and with the MPI wrapper on a multi-cluster
(right panel).

Table 1.Permutations of the [3,3,2,2] example distribution show-
ing the number of assigned blocks and the communication per task
in grid points per level. The entries are sorted by average communi-
cation per task. The topmost entry provides the best solution.

permutation blocks communication per task
per task (min/avg/max)

(3,3,2,2) 10 1440/2186/2888
(2,3,3,2) 10 1244/2187/2888
(2,2,3,3) 10 1240/2188/3100
(2,3,2,3) 10 1240/2188/3300
(3,2,2,3) 10 1240/2229/3720
(3,2,3,2) 10 1440/2265/2876

the grid before we start the partitioning (Fig.5b). By sim-
ply moving blocks from one side of the grid to the other,
we enable our partitioning algorithm to optimize the tripole
communication. Note that this remapping is only performed
on the grid used in our partitioning algorithm. No change to
POP is required, as POP only uses the result of the partition-
ing in which the original block numbering is maintained.

3 Results: load balancing

In this section we will compare the performance of our hier-
archical algorithm to the Cartesian, rake, and space-filling-
curve block-partitioning schemes. In our experiments we
carry out a 10-day simulation with theR0.1 version of POP, as
described at the beginning of Sect.2, and show performance
measures averaged over these 10 days.

Geosci. Model Dev., 7, 267–281, 2014 www.geosci-model-dev.net/7/267/2014/



B. van Werkhoven et al.: Improving the performance of the Parallel Ocean Program 273

3.1 Hardware

The Huygens (http://www.surfsara.nl) is an IBM pSeries
575, a clustered SMP (symmetric multiprocessing) system.
Each node contains 16 dual-core IBM Power 6 processors
running at 4.7 GHz, resulting in 32 cores per node. As the
cores support simultaneous multi-threading (SMT), every
node appears to have 64 CPUs. Most applications will per-
form better by using 64 MPI tasks per node (two MPI tasks
per processor core). Per node, 128 GB of memory is avail-
able (4 GB per core). The nodes are connected using 8×

(4× DDR) InfiniBand, resulting in a 160 Gbit s−1 inter-node
bandwidth.

The DAS-4 (http://www.cs.vu.nl/das4) is a six-cluster,
wide-area distributed system. DAS-4 is heterogeneous in de-
sign, but in this experiment we will use dual quad-core com-
pute nodes containing Intel E5620 CPUs running at 2.4 GHz,
resulting in eight cores per node. The nodes contain 24 GB of
memory (3 GB per core). Nodes are connected using QDR
InfiniBand, resulting in a 20 Gbit s−1 bandwidth. We use
DAS-4 in a single-cluster and two-cluster experiment. In the
two-cluster experiment, the clusters are connected using a in-
ternet link with a maximum bandwidth of 1 Gbit s−1. The av-
erage round-trip time between clusters is 2.6 ms. As the link
is shared with other users, the available bandwidth and round
trip latency may vary over time.

3.2 Using MPI for multiple clusters

For POP to run on multiple clusters, an MPI implementation
is required that is capable of communicating both within and
between clusters. This is far from trivial, as clusters are often
protected by a firewall that disallows any incoming commu-
nication into the cluster. Also, it is common for the compute
nodes to be configured such that they can only communicate
with the cluster frontend, but not directly with the outside
world, as explained inMaassen and Bal(2007). To solve this
problem, we created wrapper code that is capable of inter-
cepting the MPI calls in POP. For each intercepted call, the
MPI wrapper decides whether it should be forwarded to the
local MPI implementation or whether it should be sent to
another cluster. To use the MPI wrapper code, POP needs
to be recompiled using a different MPI library; however, no
changes to the POP code itself are required.

To communicate between clusters, one or more support
processes, so-called hubs, are used. Each hub typically runs
on the cluster frontend, and serves as a gateway to the other
clusters. If necessary, multiple hubs can be connected to-
gether to circumvent communication restrictions caused by
firewalls. In Fig.6, the left panel shows a traditional POP
run on a single machine, while the right image illustrates
how a hub is used in DAS-4 to connect two clusters together.
Only a single hub is needed, as all compute nodes in DAS-
4 can communicate with all head nodes, even those of other

 0

 50

 100

 150

 200

cartesian 225x150 rake 60x60 sfc 60x60 hierarchical 60x60

m
o
d
e
ld

a
y
s
/d

a
y

Huygens (4x64)

Single Cluster DAS4 (32x8)

Two Cluster DAS4 (2x16x8)

1
1

8

1
3

8 1
4

5

1
4

6

9
9

1
4

4 1
5

3

1
5

5

8
9

8
0

9
1

1
4

2

Fig. 7. Performance comparison of POP using cartesian, rake, space-filling curve and hierarchical block parti-

tioning schemes on three different hardware configurations, each using 256 MPI tasks.

- Explicit implementation (uses explicit copy statements)

CPU-GPU Comm.

GPU Computation

- Implicit implementation (uses device-mapped host memory)

CPU-GPU Comm.

GPU Computation

- Streams implementation (uses CUDA Streams and explicit copy statements)

CPU-GPU Comm.

GPU Computation

Fig. 8. Schematic of the three different implementations, Explicit, Implicit, and Streams, that shows the potential

overlap between computation and communication.

24

Fig. 7. Performance comparison of POP using Cartesian, rake,
space-filling curve, and hierarchical block-partitioning schemes on
three different hardware configurations, each using 256 MPI tasks.

clusters. However, compute nodes cannot directly communi-
cate with compute nodes in other clusters.

3.3 Performance

Table2 shows the configurations of the partitioning schemes.
For each experiment we use 256 MPI tasks. The Cartesian
distribution uses a 225× 150 block size, resulting in exactly
one block per MPI task (no land blocks are discarded). Both
rake and the space-filling curve use a block size of 60× 60
and discard 628 of 2400 blocks (i.e. 26 %). The table also
shows the minimum, average, and maximum communica-
tion per MPI task, as well as the amount of traffic gener-
ated between the clusters for the two-cluster experiment. We
will discuss these below. As can be seen from Table2, the
hierarchical domain distribution significantly decreases the
amount of traffic between the clusters compared to rake and
the space-filling curve. As a result, the performance overhead
of using two clusters is limited.

The performance results of POP are shown in Fig.7 in
model day−1. On Huygens and single-cluster DAS-4, the
rake and space-filling curve block distribution clearly im-
prove the performance over the Cartesian distribution. On
Huygens, the performance improvement of the space-filling
curve is close to the amount of work discarded (23 % vs.
26 %). On DAS-4 the improvement is much greater (54 %
vs. 26 %) due to the better cache behaviour of smaller blocks.
The space-filling curve distribution outperforms the rake dis-
tribution in all cases, due to the better load-balancing char-
acteristics, as shown in Table2. Figure7 also shows that the
performance degrades in the two-cluster DAS-4 experiments.
Interestingly, the performance reduction for Cartesian is only
10 %, while the space-filling curve (41 %) and rake (44 %)
are much more affected. This difference is caused by the in-
creased communication caused by these two block distribu-
tions, as shown in Table2.

www.geosci-model-dev.net/7/267/2014/ Geosci. Model Dev., 7, 267–281, 2014

http://www.surfsara.nl
http://www.cs.vu.nl/das4


274 B. van Werkhoven et al.: Improving the performance of the Parallel Ocean Program

Table 2.Configuration of the Cartesian, rake, and space-filling curve, and hierarchical distributions.

algorithm block blocks blocks communication communication
size per core discarded per task between clusters

(min/max) (min/avg/max) (messages/volume)

Cartesian 225× 150 1/1 0 (of 256) 0/1267.4/2408 22.3 M/99.0 GB
rake 60× 60 5/8 628 (of 2400) 748/1940.5/3936 77.9 M/337.4 GB
space-filling curve 60× 60 6/7 628 (of 2400) 1007/1707.7/2960 41.0 M/212.7 GB
hierarchical 60× 60 6/7 628 (of 2400) 504/1394.9/2584 20.0 M/82.5 GB

Table 3. Speed-up on DAS-4 for one- and two-cluster configura-
tions using a hierarchical domain distribution.

configuration performance speed-up
(modeldays day−1)

1 cluster, 16 nodes 82 1.0
1 cluster, 32 nodes 155 1.9
2 clusters, 16 nodes each 142 1.7

Although rake and the space-filling curve both decrease
the amount of work per MPI task, they also significantly
increase the amount of communication between tasks. On
supercomputers, where POP is traditionally run, this prob-
lem is mitigated by high-speed network interconnects, but in
a multi-cluster environment, the internet link between clus-
ters becomes a bottleneck. In Table2, the column “commu-
nication between clusters” clearly shows that compared to
Cartesian, rake causes an increase of 3.4 times in the commu-
nication between clusters. The increase caused by the space-
filling curve is smaller, a factor of 2.1, but still significant.

The hierarchical scheme performs slightly better than the
space-filling curve scheme on Huygens and single-cluster
DAS-4 (Fig. 7). This is to be expected, as the communica-
tion overhead is small on these systems due to the fast local
network interconnects. On two-cluster DAS-4, however, the
hierarchical domain distribution provides a significant per-
formance improvement over the existing algorithms. When
running on two clusters, the performance drop compared to
a single-cluster run is only 8 % for the hierarchical domain
distribution, compared to 10 % for Cartesian, 41 % for the
space-filling curve, and 44 % for rake.

Table3 shows the speed-up on DAS-4 compared to a 16-
node run on a single cluster. The speed-up on 32 nodes on
a single cluster is, with a factor of about 1.9, almost perfect.
Although the speed-up on two-clusters (of 16 nodes each)
is slightly lower, about a factor of 1.7, the performance gain
compared to a single cluster is still significant. These results
clearly demonstrate that using multiple clusters can be bene-
ficial, especially to increase the number of machines beyond
the size of a single cluster.

4 Execution on GPUs

This section discusses the main challenges that exist when
moving parts of the computation in POP to a GPU. We
use the CUDA programming model (Nvidia, 2013) in or-
der to have fine-grained control over our GPU implemen-
tation and to be able to explain and improve performance
results. Many different software tools, libraries, (directive-
based) parallelization tools, and compilers aim to assist in
the development of GPU code. However, it is our goal to gain
a deep understanding of the performance behaviour of POP,
which requires more control over the implementation and in
particular how data are transferred between the host mem-
ory and GPU device memory. We are currently not aware of
the capability to implement GPU kernels that overlap GPU
computation with CPU–GPU communication in any of the
existing directive-based parallelization tools for GPUs. How-
ever, if this were possible, it would require a collection of
directives similar to the collection of calls to the CUDA run-
time that are currently responsible for achieving this overlap-
ping behaviour. While directive-based parallelization tools
do leave the kernel code in the same language as the original,
understanding the underlying architecture is still required in
order to modify that parallelized code and assess its correct-
ness. In the following sections, we use CUDA terminology
(Nvidia, 2013), although our methods could just as easily ap-
ply to OpenCL (Khronos Group, 2013).

POP consists of a large Fortran 90 codebase, and in this
paper we therefore limit ourselves to the most compute-
intensive parts of the program and only offload those com-
putations to the GPU. The main challenge with this approach
is to overcome the PCIe bus bottleneck. Whenever compu-
tations are to be performed on the GPU, the input and out-
put data have to be transferred from host memory through
the PCIe bus to GPU device memory and vice versa. The
achieved bandwidth to GPUs connected through the PCIe
2.0 bus is approximately 5.7 GB s−1 from host to device and
6.3 GB s−1 from device to host. This is significantly lower
than the bandwidth between host memory and a CPU and
the bandwidth between GPU device memory and the GPU.
Therefore, it is crucial that we maximize the overlap of data
transfers to the GPU with computation and with transfers
from the GPU back to the host.

Geosci. Model Dev., 7, 267–281, 2014 www.geosci-model-dev.net/7/267/2014/



B. van Werkhoven et al.: Improving the performance of the Parallel Ocean Program 275

Table 4. List of the most compute-intensive functions in POP, covering 76.48 % of the total computation time. The reported time does not
include time spent in functions called by this function.

% time function module #calls computes

15.09 state state_mod 29562112 density of water and derivatives
6.69 hdiffu_del4 hmix_del4 4865280 horizontal diffusion of momentum
5.79 advu advection 4865280 advection of momentum
5.33 bldepth vmix_kpp 115840 ocean boundary layer depth
5.25 hdifft_del4 hmix_del4 4865280 horizontal diffusion of tracers
4.62 chrongear pop_solversmod 115840 preconditioned conjugate-gradient solver
4.07 ri_iwmix vmix_kpp 115840 viscosity and diffusivity coefficients
3.83 vmix_coeffs_kpp vmix_kpp 115840 vertical mixing coefficients
3.66 impvmixt_correct vertical_mix 115840 implicit vertical mixing corrector step
3.34 blmix vmix_kpp 115840 mixing coefficients within boundary layer
3.27 impvmixt vertical_mix 231680 implicit vertical mixing of tracers
3.27 clinic baroclinic 4865280 forcing terms of baroclinic momentum
3.17 advt_centered advection 4865280 tracer advection using centred differencing
3.12 btropoperator pop_solversmod 14705152 applies operator for the barotropic solver
3.10 baroclinic_driver baroclinic 115840 integration of velocities and tracers
2.88 ddmix vmix_kpp 115840 add double-diffusion diffusivities

To overlap GPU communication and computation we need
fine-grained control over how data are transferred to the
GPU. There are several alternative techniques for moving
data between host and device using the CUDA programming
model. The most commonly used approach is to simply use
explicit memory copy statementsto transfer large blocks of
memory to and from the GPU.

Alternatively,CUDA streamsmay be used to separate the
computation into distinct streams that may execute in par-
allel. This way, communication from one stream can be
overlapped with computation and communication in other
streams. GPUs with 2 copy engines, such as Nvidia’s Tesla
K20, can use the PCIe bus in full duplex with explicit mem-
ory copies in different streams. This way, communication
and computation from different streams can be fully over-
lapped.

Finally, the mapped memoryapproach uses no explicit
copies, but maps part of the host memory into device mem-
ory space. Whether this approach is feasible depends on
the memory access pattern of the kernel. Typically, mapped
memory can only be used efficiently if each input and output
element is read or written only once by the GPU function,
calledkernel. Although this approach results in very clean
host code, requiring no explicit copy statements, it requires
complex kernel implementations with intricate memory ac-
cess patterns to ensure high performance.

4.1 Targets for GPU implementation

To determine which part of POP to port to the GPU, we must
first get an impression of where the most time is spent. It
is well known that the three-dimensional baroclinic solver is
the most computationally intensive part of POP (Kerbyson
and Jones, 2005; Worley and Levesque, 2003). We therefore

limit ourselves to analysing the performance of the baroclinic
solver.

Table 4 gives an overview of the most time-consuming
functions in POP. These profiling results of are obtained from
one month of simulation using theR0.1 version (see begin-
ning of Sect. 2) on the DAS-4 cluster (described in Sect.2).
For this experiment we have used a Cartesian distribution
with blocks of size 255× 300 and 8 processes per node on
16 nodes.

Table 4 lists the percentage of the total execution time
spent in this function, not including subfunctions. All
functions in Table4, except those from the module pop
solversmod, belong to the baroclinic solver. Our profiling re-
sults indicate that the baroclinic solver does not contain any
true computational hotspots; that is, no individual function
consumes a major part of the computation time.

However, the density computations from the equation of
state are requested by several different parts both within the
baroclinic solver and at the end of each time step. The com-
putation of water densities is required so frequently by the
model that their computation time consumes 15.09 % of the
total execution time on average.

The functions from the vmix_kpp module in Table4 are
part of the computation of the vertical mixing coefficients
for the KPP mixing scheme (Large et al., 1994), which in
total consumes about 35.3 % of the total execution time. We
therefore focus on obtaining a GPU implementation for the
equation of state and for the computation of vertical mix-
ing coefficients, in particular the three function states, buoy-
diff (the computation of buoyancy differences) and ddmix.
We focus on buoydiff() and ddmix() since they are among
the most compute intensive functions and are responsible for
64.9 % of the calls to state().

www.geosci-model-dev.net/7/267/2014/ Geosci. Model Dev., 7, 267–281, 2014



276 B. van Werkhoven et al.: Improving the performance of the Parallel Ocean Program

It is well known that kernel-level optimizations focused on
increasing computation throughput are generally not worth-
while when memory bandwidth is the primary factor in lim-
iting performance (Ryoo et al., 2008). A frequently used
tool for performance analysis on multi- and many-core hard-
ware using the Roofline model (Williams et al., 2009) is
thearithmetic intensity. For example, the Nvidia Tesla K20
GPU has a theoretical peak performance of 1173 GFLOP s−1

for double precision and a theoretical peak global mem-
ory bandwidth of 208 GB s−1. However, in practice the
achieved memory bandwidth is (roughly) 160 GB s−1, as re-
ported by the bandwidthTest tool in the Nvidia CUDA SDK.
A rough estimation tells us that an arithmetic intensity of
at least 7.3 FLOP byte−1 is required for the kernel to be-
come compute-bound. Thus, if the arithmetic intensity is less
than 7.3 FLOP byte−1, then we know the kernel is memory-
bandwidth-bound when executed on the K20.

The arithmetic intensity of the state() function is computed
as follows. Although POP supports various implementations
for the equation of state, we focus on the 25-term equation
of state (McDougall et al., 2003) because it is the most com-
monly used implementation. The state() function requires the
temperature and salinity tracers as inputs as well as 25 coef-
ficients, of which 6 depend on the water pressure and the rest
are constant. The state() function outputs the density of wa-
ter and optionally also outputs the derivatives of the water
density with respect to temperature and salinity. When only
the density of water is computed, state() performs 40 float-
ing point operations per grid point with an arithmetic inten-
sity of 2.5 FLOP byte−1, assuming that all 25 coefficients can
be stored in on-chip caches and can be fully reused. When
all outputs are requested, 89 floating point operations are
executed per grid point, resulting in an arithmetic intensity
of 5.56 FLOP byte−1. With an arithmetic intensity of either
2.5 or 5.56, the state() kernel is memory bandwidth-bound.
Therefore, we focus on optimizing the time spent on com-
munication between host and device rather than kernel-level
optimizations.

4.2 Efficient integration of GPU code

We now describe how POP should be revised to efficiently
use GPUs. For our discussion, we focus on three functions
in POP state(), buoydiff(), and ddmix(). Due to a lack in
GPU performance models that consider asynchronous PCIe
transfers, it is currently impossible to predict what kind of
implementation will be the most efficient. For each function
we have therefore implemented three different versions that
we callExplicit, Implicit, andStreams. We first describe the
three versions in general and then discuss the specific im-
plementations for state(), buoydiff(), and ddmix() in detail.
Figure8 provides a schematic overview of the three different
implementations with regard to the way GPU computation
(shown in green) and CPU–GPU communication (shown in
blue) could be overlapped.

 0

 50

 100

 150

 200

cartesian 225x150 rake 60x60 sfc 60x60 hierarchical 60x60

m
o
d
e
ld

a
y
s
/d

a
y

Huygens (4x64)

Single Cluster DAS4 (32x8)

Two Cluster DAS4 (2x16x8)

1
1

8

1
3

8 1
4

5

1
4

6

9
9

1
4

4 1
5

3

1
5

5

8
9

8
0

9
1

1
4

2

Fig. 7. Performance comparison of POP using cartesian, rake, space-filling curve and hierarchical block parti-

tioning schemes on three different hardware configurations, each using 256 MPI tasks.

- Explicit implementation (uses explicit copy statements)

CPU-GPU Comm.

GPU Computation

- Implicit implementation (uses device-mapped host memory)

CPU-GPU Comm.

GPU Computation

- Streams implementation (uses CUDA Streams and explicit copy statements)

CPU-GPU Comm.

GPU Computation

Fig. 8. Schematic of the three different implementations, Explicit, Implicit, and Streams, that shows the potential

overlap between computation and communication.

24

Fig. 8. Schematic of the three different implementations –Explicit,
Implicit, andStreams– that shows the potential overlap between
computation and communication.

 0

 5

 10

 15

 20

 25

 30

state buoydiff ddmix

T
im

e
 (

m
s
)

Explicit
Implicit

Streams

1
2

1
7

2
5

8

2
3

2
3

9

1
2

1
7

Fig. 9. Performance results for the three POP functions on a GPU with three different implementations as

obtained on the Tesla K20 GPU with a 229×304 block size.

 0

 20

 40

 60

 80

 100

 120

4 cores/node 8 cores/node 12 cores/node

m
o
d
e
ld

a
y
s
/d

a
y

8-core DAS4 (CPU only)

8-core DAS4 (CPU + GTX480)

12-core DAS4 (CPU only)

12-core DAS4 (CPU + K20)

3
0

4
1

0

3
6

4
9

0

3
3

6
2

8
7

3
8

7
1

1
0

0

Fig. 10. Performance of POP using 8 computes nodes of the DAS4 cluster, with and without GPUs, using

hierarchical partitioning with 60×60 block size.

25

Fig. 9. Performance results for the three POP functions on a GPU
with three different implementations as obtained on the Tesla K20
GPU with a 229× 304 block size.

Explicit is a bulk-synchronous implementation that uses
explicit memory copy statements to copy all the required
input data to GPU and from the GPU for the entire three-
dimensional grid. The kernel used inExplicit creates a two-
dimensional array of threads, i.e. one thread for each hori-
zontal grid point, which iterate the grid points in the vertical
dimension.Implicit uses mapped memory and therefore re-
quires no explicit memory copy statements. Instead, data are
requested by the GPU directly from the host memory and
sent over the PCIe bus. The performance of accessing the
memory in this way is very sensitive to the order in which
data are requested, and care must be taken not to create gaps
or misalignments from the mapping between threads and
data. Therefore,Implicit uses a kernel implementation that
creates a one-dimensional array of threads with size equal
to the number of grid points in the three-dimensional grid.
Each thread then computes its three-dimensional index from
its one-dimensional thread ID to direct itself to the correct
part of the computation. TheStreamsimplementation creates

Geosci. Model Dev., 7, 267–281, 2014 www.geosci-model-dev.net/7/267/2014/



B. van Werkhoven et al.: Improving the performance of the Parallel Ocean Program 277

one stream for each vertical level and uses explicit copy state-
ments to copy the corresponding vertical level of the input
and output variables to and from the GPU. If the computa-
tion of one vertical level requires input from multiple verti-
cal levels, CUDA events are used to delay the computation
until all inputs have been moved to the device and vice versa.
The kernel used inStreamsis similar to the kernel used in
Explicit except for the fact that the kernel only computes the
grid points of one vertical level.

The three different implementations are very different in
terms of code and the effort to create them. All three imple-
mentations use very distinctive host codes as well as mod-
ified GPU kernels. For example, theImplicit implementa-
tion barely requires any host code, whereas theStreamsim-
plementation requires multiple loops of memory copy oper-
ations and kernel invocations with advancing offsets. Note
that, except for the differences described here, the kernels do
not contain any architecture-specific optimizations.

While the state() function computes the density of water
at a certain vertical levelk, the function is mostly used di-
rectly surrounded by a loop over all vertical levels. These
code blocks can safely be replaced by a call to a single func-
tion that directly computes the water densities for all verti-
cal levels. OurExplicit implementation uses explicit copies
to move the three-dimensional grid of tracer values between
host and device and creates one thread for each horizontal
grid point, which computes all outputs in the vertical direc-
tion. However, this approach is unable to overlap communi-
cation to and from the device with GPU computation. It is
possible to also parallelize the computation of different ver-
tical levels using CUDA streams. OurStreamsimplementa-
tion ensures that GPU computation can be overlapped with
GPU communication of different vertical levels and thus al-
leviates the PCIe bus bottleneck to a large extent. Because
of the simple access pattern in state(), where each input and
output element is read or written only once, it is also a good
candidate for the highly parallelImplicit implementation.

More complex uses of the equation of state are found
within the computation of the vertical mixing coefficients for
the KPP mixing scheme (Large et al., 1994), in particular
in the computation of buoyancy differences (buoydiff) and
double-diffusion diffusivities (ddmix). In POP the vertical
mixing coefficients are sequentially computed for all verti-
cal levels. The computation of buoyancy differences at level
k requires the density of both the surface level and levelk−1
displaced to levelk, as well as the water density at levelk.
These values can be computed for each level in parallel as
long as all the data are present on the GPU. Overlapping data
movement from the host to the GPU with GPU computation
and data movement from the GPU to host becomes signifi-
cantly more difficult, because the tracers for levels 1,k − 1,
andk need to be present on the GPU to compute the buoy-
ancy differences at levelk. TheStreamsimplementation first
schedules memory copies to the GPU for all vertical levels
in concurrent streams and then invokes GPU kernel launches

for all levels. However, before the execution of the kernel
in streamk can start, the memory copies in stream 1,k − 1,
andk need to be complete. The kernel executing in stream
k outputs to different vertical levels for different variables.
Therefore, some of the memory copies from device to host
in streamk have to wait for the kernel in streamk − 1 to
complete. We use the CUDA event management functions
to guarantee that no computations or memory transfers start
prematurely.

In the ddmix function, the computation of diffusivities at
levelk requires the derivatives of density with respect to tem-
perature and salinity at levelk andk − 1; that is, the com-
putation of levelk reuses the derivatives that were used to
compute levelk − 1. At a first glance, it would seem that
the computation of all vertical levels cannot be parallelized.
The sequential approach prevents these values having to be
recomputed, but inhibits the ability to overlap communica-
tion and computation of different vertical levels. Therefore,
our implementation also parallelizes the computation in the
vertical dimension by introducing double work. The cost of
computing the derivatives twice is significantly less than the
inability to overlap computation and communication. Simi-
larly to the buoyancy differences computation, the kernel ex-
ecuting in streamk requires the memory copies of streamk
andk − 1 to be complete. Again, CUDA event management
functions are used to guarantee that no data are copied from
the GPU back to the host before GPU computations have fin-
ished.

5 Performance of POP on GPUs

In this section, we will describe the performance of theR0.1
version of POP on a single cluster and on multiple GPU
clusters. In the first subsection below, we focus on the per-
formance impact on individual POP subroutines when using
a GPU. In the second subsection, we address the performance
of the whole POP code on a single GPU and on multiple GPU
clusters.

5.1 Performance impact of GPU usage:
individual routines

First we evaluate the performance of single functions that
were taken out of POP for individual benchmarking. We test
our three implementations (Explicit, Implicit, andStreams)
for each discussed function of POP on a single node equipped
with a Nvidia Tesla K20 GPU in the DAS-4 cluster. The
Tesla K20 has 2496 CUDA cores running at 705 MHz, pro-
viding a theoretical peak double-precision performance of
1173 GFLOP s−1. The K20 has 5 GB of device memory and
a theoretical peak memory bandwidth of 208 GB s−1. The
K20 is connected through a PCIe 2.0 bus and has two copy
engines which enable full duplex use of the PCIe bus for con-
current explicit memory transfers. The grid dimensions used

www.geosci-model-dev.net/7/267/2014/ Geosci. Model Dev., 7, 267–281, 2014



278 B. van Werkhoven et al.: Improving the performance of the Parallel Ocean Program

for the experiments discussed here are 229× 304× 42. This
is the same block size as used to obtain our profiling results,
with two ghost cells in both horizontal dimensions. The per-
formance results presented here are averaged execution times
of five distinct runs. The execution times of these individual
routines on the tested GPUs show minimal variance.

For all three implementations, most of the execution time
is spent on transferring the data to and from the GPU. For ex-
ample, for theStreamsimplementation of state() only 10.3 %
of the execution time is spent on GPU computation, and only
19.4 and 13.3 % for buoydiff() and ddmix(), respectively.
Note that the reported times for buoydiff() and ddmix() in-
clude the time spent within state() when called as a subfunc-
tion. In fact, calls to state() from the GPU kernels of buoyd-
iff() and ddmix() are inlined to optimize the data access pat-
tern of these kernels.

Figure9 shows the performance results for all three func-
tions with three different GPU implementations. For the
state() function theImplicit implementation provides the best
performance. Although the kernel implementation used by
Implicit is slightly less efficient than the kernel used byEx-
plicit, the total execution time is significantly less because
a large part of the memory transfers between host and de-
vice and computation is overlapped. WhileStreamsachieves
overlapping behaviour similar toImplicit, it is more coarse-
grained, with one vertical level at a time rather than individ-
ual grid points. That explains whyImplicit outperforms the
Streamsimplementation for the state() function.

The buoydiff() function has a very low arithmetic inten-
sity and therefore the computation again accounts for only
a small part of the total execution time. TheImplicit imple-
mentation is slower thanExplicit because the access pattern
in buoydiff() requires several input elements multiple times.
As a result, theImplicit approach transfers more data than
necessary over the PCIe bus. Although these transfers can be
overlapped with computation and with transfers in the oppo-
site direction, the performance penalty for transferring data
multiple times reduces the overall performance. TheStreams
approach again benefits from the fact that data transfers and
computation can be overlapped, but without the restrictions
that come with theImplicit approach. The data access pattern
in buoydiff() requires that operations in some streams may
have to wait for operations in another stream to complete be-
fore they can start. The overhead of these synchronizations
accounts for on average 3.26 % of the total execution time of
theStreamsimplementation.

To parallelize the computation of ddmix() in the verti-
cal dimension, theImplicit and Streamsimplementations
do some double work; that is, some values are computed
twice by different threads operating at different vertical lev-
els, whereas a thread in theExplicit approach may reuse
that value from the computation of a previous vertical level.
Therefore, the time spent in computation forImplicit and
Streamsis higher than that ofExplicit. However, due to the
overlap of computation and PCIe transfers in both directions,

bothStreamsandImplicit do outperform theExplicit imple-
mentation in terms of total execution time. TheImplicit im-
plementation again suffers from the fact that, although over-
lapped with communication and computation, data have to
be transferred multiple times through the PCIe bus.

In the GPU implementation of the POP we use in the next
subsection, theImplicit implementation for state() and the
Streamsimplementation for buoydiff() and ddmix() are used.
As buoydiff() is executed before ddmix() as part of the com-
putation of vertical mixing coefficients, ddmix() reuses the
tracers that have been copied to the GPU by buoydiff(). Ad-
ditionally, for all three functions, the execution on the GPU
as well as all data transfers are overlapped with the computa-
tion of other functions on the CPU. Therefore, the CPU never
has to wait for the results of GPU computations.

5.2 Performance of POP on multiple (GPU) clusters

In this section, we evaluate the performance of the combina-
tion of the two approaches presented in this paper. The goal
of this evaluation is to assess whether the addition of a GPU
is at all beneficial for performance on the application level.
This is certainly not trivial, considering that large amounts
of data have to be moved back and forth between the differ-
ent memories over a relatively slow PCIe link. Additionally,
only a small number of functions are executed on the GPU
and a single GPU is shared between the various CPU cores.
As such, we compare the performance of two versions of the
program: one that only uses CPUs and one that uses the avail-
able CPUs as well as the GPU.

We recognize that a truly fair comparison between the dif-
ferent experimental setups is very hard to achieve. We take
the achieved performance in terms of the number of model
days per day of simulation as a measure for comparison. We
have chosen not to normalize these results using additional
metrics such as hardware costs or power consumption to keep
the experimental setup as simple as possible. Hardware costs
of both CPUs and GPUs are influenced by different factors in
addition to their performance capabilities. Power consump-
tion is an important factor in the operational costs for mod-
ern supercomputers. However, as only a small fraction of the
code currently executes on the GPU, it is clear that with the
current state of the software, the GPU will be idle for a large
fraction of the execution. Whether a complete GPU imple-
mentation of POP is more efficient than a CPU-only imple-
mentation in terms of power consumption is an interesting
issue, but it is outside the scope of this paper.

For this evaluation we use the DAS-4 cluster (described
earlier in Sect.3.1). First, eight compute nodes each contain-
ing two quad-core Intel E5620 CPUs (eight cores per node
total) running at 2.4 GHz, 24 GB of memory, and a Nvidia
GTX480 GPU are used. In addition, we also use 8 compute
nodes each containing two six-core Intel E5-2620 CPUs (12
cores per node total) running at 2.0 GHz, 64 GB of memory,
and a Nvidia Tesla K20 GPU each. As a reference for the

Geosci. Model Dev., 7, 267–281, 2014 www.geosci-model-dev.net/7/267/2014/



B. van Werkhoven et al.: Improving the performance of the Parallel Ocean Program 279

 0

 5

 10

 15

 20

 25

 30

state buoydiff ddmix

T
im

e
 (

m
s
)

Explicit
Implicit

Streams

1
2

1
7

2
5

8

2
3

2
3

9

1
2

1
7

Fig. 9. Performance results for the three POP functions on a GPU with three different implementations as

obtained on the Tesla K20 GPU with a 229×304 block size.

 0

 20

 40

 60

 80

 100

 120

4 cores/node 8 cores/node 12 cores/node

m
o
d
e
ld

a
y
s
/d

a
y

8-core DAS4 (CPU only)

8-core DAS4 (CPU + GTX480)

12-core DAS4 (CPU only)

12-core DAS4 (CPU + K20)

3
0

4
1

0

3
6

4
9

0

3
3

6
2

8
7

3
8

7
1

1
0

0

Fig. 10. Performance of POP using 8 computes nodes of the DAS4 cluster, with and without GPUs, using

hierarchical partitioning with 60×60 block size.

25

Fig. 10. Performance of POP using eight compute nodes of the
DAS-4 cluster, with and without GPUs, using hierarchical partition-
ing with 60× 60 block size.

CPU-only version of POP we use the original POP code with
the hierarchical partitioning scheme described in Sect.2.3.
Comparisons against other load-balancing schemes can be
derived from Fig.7. All configurations in this section use
a block size of 60× 60.

Figure10 shows the performance of POP using 4, 8, and
12 MPI tasks per node, with and without GPU. Note that only
a single GPU is available in each node. Therefore, the GPU
is shared between the multiple MPI tasks on a single node.
For the eight-core DAS-4 nodes, the performance gained by
using the GPU is approximately 20 %, both when using four
or eight MPI tasks. This directly corresponds with the execu-
tion time consumed by POP code that has been ported to the
GPU. The figure also shows that the scalability of POP itself
is far from perfect. Running on eight MPI task per node, only
provides a speed-up of 1.4 compared to four MPI tasks per
node, both for the CPU-only and GPU versions.

For the 12-core DAS-4 nodes, the performance gained by
using the GPU is approximately 15 % when using 4 MPI
tasks per node, and 13 % when using 8 or 12 MPI tasks per
node. Although this relative performance gain is lower that
for the eight-core nodes, the absolute performance gain is
much higher due to the better performance offered by the
(newer) six-core CPU and K20 GPUs. In addition, the scal-
ability of POP on the 12-core nodes is also much better,
achieving a speed-up of 1.9 on 8 cores and 2.6 on 12 cores
(both relative to the 4-core experiment).

The results show that it is possible to combine the hier-
archical partitioning scheme with GPU execution and still
obtain a performance increase. This is a remarkable result,
as the hierarchical partitioning scheme prefers small block
sizes, such as 60×60, to eliminate as many land-only blocks
as possible and distribute load evenly among MPI tasks,
while the GPU code would prefer larger-sized blocks to in-
crease GPU utilization. However, GPU utilization is already
increased by the fact that all MPI tasks running on a single
node share a single GPU for all their GPU computations. It is

 0

 20

 40

 60

 80

 100

 120

CPU only CPU+GTX480

m
o
d
e
ld

a
y
s
/d

a
y

Single Cluster DAS4 (16 x 8 cores)

Two Clusters DAS4 (2 x 8 x 8 core)

8
2

9
4

7
8

8
8

Fig. 11. Performance of POP using 16 computes nodes of the DAS4 cluster, on one or two clusters, using

hierarchical partitioning with 60×60 block size.

27

Fig. 11.Performance of POP using 16 compute nodes of the DAS-4
cluster, on one or two clusters, using hierarchical partitioning with
60× 60 block size.

important to understand that this would not have been possi-
ble with larger block sizes because of the limited size of the
GPU memory. As such, the two approaches presented in this
paper work in concert to improve the performance of POP.

As a final experiment, we study the performance of POP
on multiple platforms including GPUs. For this experiment,
we use eight-core DAS-4 compute nodes with an Nvidia
GTX480 GPU (described in Sects.3.1and5.2).

Figure11 compares the performance of a 16-node single-
cluster run with a 2× 8-node two-cluster run. Results are
shown for CPU-only and CPU+GPU experiments. The re-
sults show a performance increase of 15 % on one cluster
and 13 % on two clusters when using the GPUs. The perfor-
mance loss when changing from one to two clusters is 5 %
for the CPU-only version and 6 % for the CPU+GPU ver-
sion. These results clearly indicate that running POP on mul-
tiple GPU clusters is feasible and also beneficial in terms of
performance. Moreover, it allows users with access to multi-
ple smaller GPU clusters to scale up to well beyond the size
of a single GPU cluster.

6 Summary, discussion, and conclusions

High-resolution ocean and climate models are becoming
a very important tool in climate research. It is crucially im-
portant that multi-century simulations with these models can
be performed efficiently. In this paper, we presented a new
distributed computing approach to increase the performance
of the POP model.

First of all, we have shown that it is possible to optimize
the load balancing of POP such that it can run successfully
in a multi-platform setting. The hierarchical load-balancing
scheme was shown to perform much better than the existing
load-balancing schemes (Cartesian, rake, and space-filling
curve), mainly due to the reduction in communication be-
tween the MPI tasks. In the future, we plan to take advantage

www.geosci-model-dev.net/7/267/2014/ Geosci. Model Dev., 7, 267–281, 2014



280 B. van Werkhoven et al.: Improving the performance of the Parallel Ocean Program

of the Zoltan library in order to extend our load-balancing
scheme so as to also take performance differences between
machines into account. Secondly, it was demonstrated that it
is advantageous to port part of POP to GPUs (and get a per-
formance increase), even though POP itself does not contain
any real hotspots and is therefore not an obvious candidate
for using GPUs.

In the experiments shown, only three functions in POP
were implemented on a GPU. Another substantial portion of
the execution time is spent computing the advection of mo-
mentum and the horizontal diffusion of momentum and trac-
ers. Obtaining a GPU implementation for these functions is
deferred to future work. The advection of tracers also uses
the equation of state to compute the potential density refer-
enced to the surface layer, which is used to compute a variety
of time-averaged fields. Currently, most of the execution time
is spent on PCIe transfers. When more computation is moved
to the GPU, more data can be reused, and some intermediate
data structures that result from computation may even never
have to leave the GPU. In that case, some PCIe transfers can
be eliminated completely. In future work we hope to produce
a complete GPU implementation of the vertical mixing part
of POP.

The software presented in this paper has the same portabil-
ity properties as the original POP. The GPU code is written in
CUDA, which is a widely used language for GPU computing
applications. To increase portability across different GPU ar-
chitectures, no architecture-specific optimizations have been
included. OpenCL is a well-known alternative to CUDA that
aims at a wider set of many-core compute devices and differ-
ent compilers are available for different platforms. However,
there are no real linguistic differences between CUDA and
OpenCL, and porting the code will be a simple engineering
effort; furthermore, automated source-to-source translation
tools are also available. The use of both extensions (domain
decomposition or GPU functions) can be enabled, disabled,
and controlled individually through the well-known pop_in
namelist file.

Finally, we have shown that the combination of these
two approaches also improves performance. Although we
demonstrated this only for the DAS-4 cluster, it opens up
the possibility to submit a POP job in the near future over
multiple supercomputing platforms (with or without GPUs).
The new hierarchical load-balancing scheme and the MPI
wrapper methodology are crucial elements for maintaining
the performance of POP. Future work is to port more of POP
to GPUs and to scale up the multi-cluster experiments to pro-
duction size hardware.

Acknowledgements.This publication is part of the eSALSA
project (An eScience Approach to determine future Local Sea-level
chAnges) of the Netherlands eScience Center (NLeSC), Institute
for Marine and Atmospheric research Utrecht (IMAU) at Utrecht
University, and VU University Amsterdam. This publication was
supported by the Dutch national program COMMIT. Part of the

computations were done on the Huygens IBM Power6 at SURFsara
in Amsterdam (www.surfsara.nl). Use of these computing facilities
was sponsored by the Netherlands Organisation for Scientific
Research (NWO) under the project SH244-13. Support from NWO
to cover the costs of this open access publication is also gratefully
acknowledged.

Edited by: R. Redler

References

Bleichrodt, F., Bisseling, R., and Dijkstra, H. A.: Accelerating a
barotropic ocean model using a GPU, Ocean Model., 41, 16–21,
doi:10.1016/j.ocemod.2011.10.001, 2012.

Dennis, J. M.: Inverse space-filling curve partitioning of a
global ocean model, IPDPS 2007, IEEE International, 1, 1–10,
doi:10.1109/IPDPS.2007.370215, 2007.

Dukowicz, J. K. and Smith, R. D.: Implicit free-surface method
for the Bryan-Cox-Semtner ocean model, J. Geophys. Res., 99,
7991–8014, doi:10.1029/93JC03455, 1994.

Kerbyson, D. J. and Jones, P. W.: A performance model of the
parallel ocean program, Int. J. High Perform. C., 19, 261–276,
doi:10.1177/1094342005056114, 2005.

Khronos Group: OpenCL, available at:http://www.khronos.org/
opencl/(last access: August 2013), 2013.

Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic
vertical mixing: a review and a model with a nonlocal
boundary layer parameterization, Rev. Geophys., 32, 363–403,
doi:10.1029/94RG01872, 1994.

Maassen, J. and Bal, H. E.: Smartsockets: solving the connec-
tivity problems in grid computing, in: Proceedings of the
16th IEEE International Symposium on High-Performance
Distributed Computing (HPDC), Monterey, CA, USA, 1–10,
doi:10.1145/1272366.1272368, 2007.

Maltrud, M., Bryan, F., and Peacock, S.: Boundary impulse re-
sponse functions in a century-long eddying global ocean simu-
lation, Environ. Fluid Mech., 10, 275–295, doi:10.1007/s10652-
009-9154-3, 2010.

Marquet, C. P. and Dekeyser, J. L.: Data-parallel load balancing
strategies, Parallel Comput., 24, 1665–1684, doi:10.1016/S0167-
8191(98)00049-0, 1998.

McDougall, T. J., Jackett, D. R., Wright, D. G., and Feis-
tel, R.: Accurate and computationally efficient algo-
rithms for potential temperature and density of seawater,
J. Atmos. Ocean. Tech., 20, 730–741, doi:10.1175/1520-
0426(2003)20<730:AAACEAF>2.0.CO;B2, 2003.

Michalakes, J and Vachharajani, M: GPU acceleration of numerical
weather prediction, in: Proceedings of the International Sympo-
sium on Parallel and Distributed Processing (IPDPS), IEEE, 1–7,
2008.

Nvidia: CUDA Programming Guide, available at:http://docs.
nvidia.com/cuda/(last access: August 2013), 2013.

Ryoo, S., Rodrigues, C. I., Stone, S. S., Baghsorkhi, S. S., Ueng, S.-
Z., Stratton, J. A., and Hwu, W.-M. W.: Program optimization
space pruning for a multithreaded GPU, in: Proceedings of the
6th Annual IEEE/ACM International Symposium on Code Gen-
eration and Optimization, ACM, doi:10.1145/1356058.1356084,
195–204, 2008.

Geosci. Model Dev., 7, 267–281, 2014 www.geosci-model-dev.net/7/267/2014/

www.surfsara.nl
http://dx.doi.org/10.1016/j.ocemod.2011.10.001
http://dx.doi.org/10.1109/IPDPS.2007.370215
http://dx.doi.org/10.1029/93JC03455
http://dx.doi.org/10.1177/1094342005056114
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://dx.doi.org/10.1029/94RG01872
http://dx.doi.org/10.1145/1272366.1272368
http://dx.doi.org/10.1007/s10652-009-9154-3
http://dx.doi.org/10.1007/s10652-009-9154-3
http://dx.doi.org/10.1016/S0167-8191(98)00049-0
http://dx.doi.org/10.1016/S0167-8191(98)00049-0
http://dx.doi.org/10.1175/1520-0426(2003)20%3C730:AAACEAF%3E2.0.CO;B2
http://dx.doi.org/10.1175/1520-0426(2003)20%3C730:AAACEAF%3E2.0.CO;B2
http://docs.nvidia.com/cuda/
http://docs.nvidia.com/cuda/
http://dx.doi.org/10.1145/1356058.1356084


B. van Werkhoven et al.: Improving the performance of the Parallel Ocean Program 281

Smith, R. D., Maltrud, M. E., Bryan, F. O., and Hecht, M. W.: Nu-
merical simulation of the North Atlantic Ocean at1

10
◦
, J. Phys.

Oceanogr., 30, 1532–1561, 2000.
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G.,

Dennis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P.,
Hecht, M., Jayne, S., Jochum, M., Large, W., Lindsay, K., Mal-
trud, M., Norton, M., Peacock, S., Vertenstein, M., and Yea-
ger, S.: The Parallel Ocean Program (POP) Reference Manual:
Ocean Component of the Community Climate System Model
(CCSM), 2010.

Teresco, J. D., Faik, J., and Flaherty, J. E.: Resource-aware scientific
computation on a heterogeneous cluster, Comput. Sci. Eng., 7,
40–50, doi:10.1109/MCSE.2005.38, 2005.

Vallis, G. K.: Atmospheric and Oceanic Fluid Dynamics: Fun-
damentals and Large-Scale Circulation, Cambridge University
Press, Cambridge, UK, 2006.

Weijer, W., Maltrud, M. E., Hecht, M. W., Dijkstra, H. A., and
Kliphuis, M. A.: Response of the Atlantic Ocean circulation to
Greenland Ice Sheet melting in a strongly-eddying ocean model,
Geophys. Res. Lett., 39, L09606, doi:10.1029/2012GL051611,
2012.

Williams, S., Waterman, A., and Patterson, D.: Roofline: an insight-
ful visual performance model for multicore architectures, Com-
mun. ACM, 52, 65–76, doi:10.1145/1498765.1498785, 2009.

Worley, P. and Levesque, J.: The performance evolution of the par-
allel ocean program on the Cray X1, in: Proceedings of the 46th
Cray User Group Conference, 17–21, 2003.

Zoltan User Guide: Hierarchical Partitioning, available at:http:
//www.cs.sandia.gov/Zoltan/ug_html/ug_alg_hier.html(last ac-
cess: December 2013), 2013.

www.geosci-model-dev.net/7/267/2014/ Geosci. Model Dev., 7, 267–281, 2014

http://dx.doi.org/10.1109/MCSE.2005.38
http://dx.doi.org/10.1029/2012GL051611
http://dx.doi.org/10.1145/1498765.1498785
http://www.cs.sandia.gov/Zoltan/ug_html/ug_alg_hier.html
http://www.cs.sandia.gov/Zoltan/ug_html/ug_alg_hier.html

