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Abstract. Human activities are significantly altering biogeo-

chemical cycles at the global scale, and the scope of these

activities will change with both future climate and socioe-

conomic decisions. This poses a significant challenge for

Earth system models (ESMs), which can incorporate land use

change as prescribed inputs but do not actively simulate the

policy or economic forces that drive land use change. One

option to address this problem is to couple an ESM with

an economically oriented integrated assessment model, but

this is challenging because of the radically different goals

and underpinnings of each type of model. This study de-

scribes the development and testing of a coupling between

the terrestrial carbon cycle of an ESM (CESM) and an inte-

grated assessment (GCAM) model, focusing on how CESM

climate effects on the carbon cycle could be shared with

GCAM. We examine the best proxy variables to share be-

tween the models, and we quantify how carbon flux changes

driven by climate, CO2 fertilization, and land use changes

(e.g., deforestation) can be distinguished from each other by

GCAM. The net primary production and heterotrophic res-

piration outputs of the Community Land Model (CLM), the

land component of CESM, were found to be the most robust

proxy variables by which to recalculate GCAM’s assump-

tions of equilibrium ecosystem steady-state carbon. Carbon

cycle effects of land use change are spatially limited rela-

tive to climate effects, and thus we were able to distinguish

these effects successfully in the model coupling, passing only

the latter to GCAM. This paper does not present results of a

fully coupled simulation but shows, using a series of offline

CLM simulations and an additional idealized Monte Carlo

simulation, that our CESM–GCAM proxy variables reflect

the phenomena that we intend and do not contain erroneous

signals due to land use change. By allowing climate effects

from a full ESM to dynamically modulate the economic and

policy decisions of an integrated assessment model, this work

will help link these models in a robust and flexible framework

capable of examining two-way interactions between human

and Earth system processes.

1 Introduction

Human activities are significantly altering biogeochemical

cycles at the global scale, e.g., by appropriation of net pri-

mary production (Imhoff et al., 2004; Ito, 2011), modifica-

tion of natural fire dynamics (Pechony and Shindell, 2010),

and fossil fuel emissions raising atmospheric CO2 levels (Le

Queré et al., 2009). In addition, land use change (LUC) ex-

erts strong effects on the global carbon cycle (Bonan, 2008;

Caspersen et al., 2000; Arora and Boer, 2010; Laganière et

al., 2009), as well as direct biophysical effects on albedo and

water vapor fluxes, which in turn have significant regional

to global consequences (Brovkin et al., 2013; Jones et al.,

2013b). As a result, different policy choices vis-à-vis LUC

and carbon may result in great differences in the future car-

bon cycle and global climate (Wise et al., 2009; Jones et al.,

2013a), even though the direct LUC fluxes will likely be far

smaller than in the past (Brovkin et al., 2013).

This poses a significant challenge for global Earth system

models (ESMs), in which fully coupled climate models are

used to draw inferences about Earth’s past and future climate

states and understand how changes to the radiative properties
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of Earth’s atmosphere interact with its climate, biogeochem-

istry, and carbon cycle (Brovkin et al., 2013; Todd-Brown et

al., 2014). Such models may incorporate LUC as prescribed

inputs but do not simulate policy options or economic forces,

a significant limitation given how strongly humans can per-

turb the Earth system (Hurtt et al., 2002; Randerson et al.,

2009). Conversely, integrated assessment models (IAMs) are

used to examine the human components of the Earth system,

including greenhouse gas emission sources, and drivers of

land use change. Their representation of the physical climate

and Earth system is simplistic, however, with little spatial

resolution or process fidelity compared to an ESM (Mein-

shausen et al., 2011a, b). These two modeling paradigms –

ESMs with no economic or energy system modeling, and

IAMs with only basic representations of natural processes

– developed largely independently of each other, and their

interactions have historically been limited.

ESMs and IAMs increasingly need each other’s capabil-

ities, however (van Vuuren et al., 2012; Houghton, 2013).

One solution is to couple an ESM to an IAM, letting each

model specialize in its specific domain while passing infor-

mation on the natural and human systems, respectively, be-

tween them. This would provide a two-way coupling within

a single integrated system, whereby economic decisions in

the IAM translate directly into trace gas fluxes and land

use changes in the ESM, and changes in the ESM climate

feed back onto crop yields, heating and cooling demands,

energy production, etc., in the IAM. Successfully linking

such complex, large models would permit integrated and un-

precedented analyses of the interactions between economic

change, climate policy, and the physical Earth system, with

fully coupled feedbacks between the economic and physical-

science components (van Vuuren et al., 2012).

This paper describes the development and testing of a

mechanism linking the terrestrial carbon components of an

ESM (CESM, the Community Earth System Model) with

an IAM (the Global Change Assessment Model, GCAM)

(Fig. 1). The goals of the current study were to develop and

test a robust but tractable coupling allowing GCAM LUC

projections to respond to changes in the CESM climate and

biogeochemical cycles. We focus here on the terrestrial as-

pect of the CESM-to-GCAM coupling, but this is only one

component of a larger effort to create a more general inte-

grated Earth system model (iESM) (Jones et al., 2013a) as

described above.

2 Materials and methods

2.1 Model descriptions

Both CESM’s Community Land Model (CLM) and GCAM

have been extensively described, and here we note only

their most relevant aspects (Gent et al., 2011). The terres-

trial model in the CESM system, CLM simulates the cycling

 33 

Figure 1. High-level overview of the iESM (integrated earth system model) system; a 663 

more detailed schematic is presented by Di Vittorio et al (2014). Oval boxes represent 664 

models, and arrows show data flows. This paper focuses on the information flow between 665 

CLM (part of CESM) and GCAM, in bold. 666 
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Figure 1. High-level overview of the iESM (integrated Earth system

model) system; a more detailed schematic is presented by Di Vitto-

rio et al. (2014). Oval boxes represent models, and arrows show data

flows. This paper focuses on the information flow between CLM

(part of CESM) and GCAM, in bold.

and land–atmosphere exchange of energy, water, carbon, and

trace gases. CLM version 4, used in this study, resulted from

merging the biophysical framework of CLM v3.5 (Oleson

et al., 2008) with the carbon and nitrogen dynamics of the

biogeochemistry model Biome-BGC (Thornton et al., 2002;

Running and Hunt, 1993). The model incorporates biogeo-

physics, surface hydrology, biogeochemistry, and dynamic

vegetation components (Bonan et al., 2002), whose dynamics

have been extensively tested (Shi et al., 2011; Oleson et al.,

2008; Lawrence et al., 2008; Mao et al., 2012a, b). Model

vegetation is based on plant functional types (PFTs) occu-

pying dynamic fractions of each grid cell (typically 0.25–2◦

resolution), with each PFT (one bare ground, eight tree, three

shrub, three grass, one crop) characterized by distinct physio-

logical parameters (Oleson et al., 2010). The model’s carbon

(C) and nitrogen (N) cycles are closely coupled and include

canopy photosynthesis, plant growth and mortality, photo-

synthate allocation, and subsurface C and N cycling (Thorn-

ton et al., 2007); at any point in time, CLM tracks a wide

suite of above- and belowground C pools resulting from the

integrated effects of these and other (Kloster et al., 2010) pro-

cesses.
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The GCAM model, by contrast, is an economic model

driven by assumptions about population size and labor pro-

ductivity that determine potential gross domestic product

in each of 14 regions; these regions are further divided by

GCAM’s agriculture and land use submodel into 18 agro-

ecological zones, or AEZs (Monfreda et al., 2009). GCAM

originated as the energy-economic MiniCAM model (Ed-

monds and Reilly, 1983) and currently integrates energy,

agriculture, forestry, and land markets with a simple terres-

trial carbon cycle (Thomson et al., 2010; Wise et al., 2009).

The model operates on a 5-year time step, computing simul-

taneous market-clearing prices for all energy, agriculture, and

land markets (Kim et al., 2006). The model is typically used

to explore the effects of policy scenarios – for example, car-

bon pricing, emissions constraints, or capped limits on total

radiative forcing (Calvin et al., 2009). Economic land use de-

cisions are based on the relative inherent profitability of using

land for competing purposes. GCAM does not use land use

allocation constraints, but its calibration based on historical

data means that history is reflected in future land allocation

decisions (Wise and Calvin, 2010; Wise et al., 2014).

GCAM’s terrestrial carbon model is fundamentally con-

cerned with calculating LUC CO2 emissions resulting from

the model’s economic decisions. It does this by determining

the C stocks changes with every land use change, and allo-

cating those as C fluxes over time. Specifically, each land

use (i.e., the model’s various crops, forest types, etc., in each

AEZ of each political region) has above- (vegetation) and

belowground (soil) steady-state C densities associated with

it, values currently based on Houghton (1999). These values

vary by AEZ and political region and do not change during

the model run; i.e., land is assumed to be in C equilibrium

with the atmosphere in the absence of LUC. When a partic-

ular land use category contracts in area, all the lost above-

ground C (i.e., the land use’s C density multiplied by the

change in area) is emitted instantaneously, while its below-

ground C is emitted in an exponential decay pattern. When a

land use category expands, the resulting C uptake depends on

the length of time it takes for the vegetation to mature (from

1 year for crops to 30–100 years for forests), following a

Bertalanffy–Richards growth function. Carbon emission and

sequestration thus result only from changes in land use, with

emission from shrinking land use categories set against up-

take from growing ones. The model computes these fluxes

across time but, importantly, does not track current C stocks

in the manner of CLM or most land surface models. Further

details on the agriculture, land use, and carbon cycle assump-

tions and algorithms of GCAM may be found in its online

documentation (http://wiki.umd.edu/gcam) and several pub-

lications (Wise et al., 2014; Wise and Calvin, 2010).

In the iESM architecture a third model – the Global Land

Model, or GLM – currently downscales GCAM’s land use

decisions (made on agro-ecological zones at the regional

level) onto CLM’s global grid (Fig. 1). This step uses algo-

rithms and assumptions described by Di Vittorio et al. (2014)

and Lawrence et al. (2012) and is not detailed further here, as

this study focuses only on the coupling from CLM to GCAM.

2.2 Issues in linking the CLM and GCAM carbon cycles

The fundamental conceptual, as opposed to technical, prob-

lem in linking the CLM and GCAM carbon cycle models

is that the former tracks time-varying C pools and fluxes,

while the latter bases its economic optimization on long-term

(equilibrium) C pools for large regions and only computes

LUC fluxes. Replacing GCAM’s entire internal carbon cy-

cle (and its reliance on equilibrium C) may be possible in

the long term, but it would require a fundamental rewriting

of this complex model’s agriculture and land use code. In

this study a looser coupling between CLM and GCAM was

deemed more tractable, while also sufficient for the exper-

iments described here. Such an approach transmits relative

changes between the models while allowing baseline data,

against which the models have been calibrated and tested, to

differ.

Such a “loose” coupling means that, when a CLM grid

cell’s carbon cycle changes, we need to (i) have a suitable

proxy by which to change the values of GCAM’s steady-state

carbon assumptions and (ii) distinguish LUC effects on car-

bon fluxes from climate and other (CO2, N deposition, etc.)

effects, because only the latter should affect GCAM’s as-

sumptions of equilibrium C stocks. For example, if the land

carbon pool size of a grid cell with forested fraction simu-

lated by CLM changes from one time step to the next be-

cause of harvest, this should not affect GCAM’s economic

optimization – the forest will regrow to the same equilibrium

state. If the same forest’s carbon pool rises because of CO2

fertilization, however, this information (i.e., there is more C

sequestration potential available for this land use type) needs

to be propagated to GCAM’s assumptions about long-term

pool potentials. Distinguishing these sources is thus critical

(Gasser and Ciais, 2013).

2.3 Identifying the best proxy variables to link

CLM to GCAM

Given the decision to adjust GCAM’s equilibrium C assump-

tions based on relative changes in the CLM carbon cycle,

one possible proxy variable to pass between the models was

CLM’s time-varying carbon pools, based on the assumption

that short-term pool changes will translate to longer-term

(i.e., equilibrium, as needed by GCAM) storage changes.

These data may be more vulnerable to LUC effects than

carbon flux data, however, as fluxes typically recover much

faster from disturbance than do the slower pools (Amiro et

al., 2010; Goetz et al., 2012). Short-term changes in C fluxes

can be analytically related to steady-state C pools in models,

even in the presence of ecosystem disturbances (Hurtt et al.,

2010). This needed to be tested and demonstrated for CLM,

however.
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Table 1. Summary of simulations performed.

Name Type Purpose

S1 Uncoupled CLM, 1850–2010, constant (1901–1920) climate Control for S2, S3, S4

S2 S1 + changing CO2 Single-factor experiments quantifying how CO2, N

deposition, and LUC affect potential proxy variables

S3 S1 + changing N deposition

S4 S1 + changing LUC

E1 Uncoupled CLM, constant (2005–2009) climate Equilibrium biomass simulations quantifying how ini-

tial NPP predicts final vegetation C

E2 Uncoupled CLM, constant (2090–2094) climate Equilibrium biomass simulation quantifying how

climate-driven changes in NPP predict changes in

vegetation C

M1 Idealized Monte Carlo Assess error that could be introduced to climate effects

scalars by increasing amount of LUC.

We tested potential proxy variables in two ways. First, we

ran a series of single-forcing-factor experiments in CLM,

looking at how changes in each factor affected CLM car-

bon stocks and fluxes (specifically, gross primary production;

net primary production, or NPP; heterotrophic respiration, or

HR; soil organic matter; vegetation carbon; and total ecosys-

tem carbon). The three forcing factors tested were atmo-

spheric CO2, as alleviating the CO2 constraints on leaf-level

photosynthesis may cascade up to ecosystem carbon storage

(Gedalof and Berg, 2010; Lenton and Huntingford, 2003); ni-

trogen deposition, a potentially strong constraint on the cur-

rent and future global carbon cycle (Galloway et al., 2005;

Norby et al., 2010); and LUC, which affects both immedi-

ate and long-term land–atmosphere interactions (Caspersen

et al., 2000; Pongratz et al., 2009). A “good” proxy variable

would be strongly affected by the first two, CO2 and N, but

not by LUC (as only the former two will affect equilibrium

C; see above), and would accurately reflect climate-driven

changes to equilibrium C stocks in CLM.

In simulation S1 (the control), we used 1901–1920 climate

drivers for the entire period 1850–2010 and kept atmospheric

CO2 concentration, nitrogen deposition, and land cover con-

stant at their 1850 values. In transient 1850–2010 simula-

tions S2–S4, we used the same looped 1902–1920 climate

and varied one of the three factors in each while holding the

other two factors constant (Table 1). The time-varying fac-

tors were based on transient data sets constructed to mimic

as closely as possible the historical record over the period

1850–2010, as described by Shi et al. (2013). The effect of

each individual factor was then calculated by subtracting S1

from simulations S2, S3, and S4. The CRUNCEP data used

to drive these uncoupled simulations is a combination of the

CRU TS.2.1 0.5◦ monthly 1901–2002 climatology (Mitchell

and Jones, 2005) and the 2.5◦ NCEP2 reanalysis data begin-

ning in 1948 and available in near real time (Kanamitsu et

al., 2002; Mao et al., 2012b).
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Figure 2. Response of Community Land Model outputs to changes in atmospheric CO2 669 

(simulation S2), nitrogen deposition (NDEP, simulation S3), and land-use/land cover 670 

change (LULLC, simulation S4; cf. Table 1). Outputs shown are all relative to an 1850 671 

baseline, as described in the text, and include fire emissions (Fire), terrestrial gross 672 

primary production (GPP), heterotrophic respiration (HR), net primary production (NPP), 673 

carbon in soil organic matter (SOMC), total ecosystem carbon (TotC), and total 674 

vegetation carbon (VegC). 675 
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Figure 2. Response of Community Land Model outputs to changes

in atmospheric CO2 (simulation S2), nitrogen deposition (NDEP,

simulation S3), and land use/land cover change (LULLC, simula-

tion S4; cf. Table 1). Outputs shown are all relative to an 1850 base-

line, as described in the text, and include fire emissions (Fire), ter-

restrial gross primary production (GPP), heterotrophic respiration

(HR), net primary production (NPP), carbon in soil organic matter

(SOMC), total ecosystem carbon (TotC), and total vegetation car-

bon (VegC).

Second, we examined how well NPP in particular was

related to equilibrium C stocks in CLM only (i.e., before

any coupling to GCAM). This involved two offline experi-

ments (Table 1) with a repeating 5-year climate drawn ei-

ther from the beginning (2005–2009, simulation E1) or end

(2090–2094, simulation E2) of an Representative Concen-

tration Pathways (RCP4.5) coupled simulation (Taylor et al.,

2012). We quantified how well (i) NPP in the first 5 years of

simulation E1 predicted total vegetation C in the final 5 years

and how well (ii) the change in NPP resulting from an altered

climate state (E2 minus E1) predicted the relative change in

C pools over the final years of the two simulations.
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Figure 3. GCAM model output (energy derived from bioenergy by region of the world) 678 

in three model runs, the RCP4.5 control, a coupled CLM-GCAM run using carbon stocks 679 

as a coupling mechanism, and a run using the final coupling described in the text. In the 680 

second case the model diverged sharply and unrealistically from the RCP4.5 control, 681 

because the vulnerability of C stock data to disturbance effects triggered a feedback loop 682 

in GCAM. The final run, incorporating the coupling and outlier-exclusion mechanisms 683 

described in the text, showed no such divergence. Data are from model year 2065, when 684 

the second run was stopped.  685 
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Figure 3. GCAM model output (energy derived from bioenergy by

region of the world) in three model runs, the RCP4.5 control, a cou-

pled CLM–GCAM run using carbon stocks as a coupling mecha-

nism, and a run using the final coupling described in the text. In the

second case the model diverged sharply and unrealistically from the

RCP4.5 control because the vulnerability of C stock data to distur-

bance effects triggered a feedback loop in GCAM. The final run,

incorporating the coupling and outlier-exclusion mechanisms de-

scribed in the text, showed no such divergence. Data are from model

year 2065, when the second run was stopped.

Taken together, these experiments tested how well NPP

could be used to predict equilibrium C under both constant

and changing climate. The state of the terrestrial carbon sys-

tem at the beginning of these simulations reflected the distur-

bance and climate histories of the 20th century, with various

different non-equilibrium C states across different grid cells

and PFTs. Land cover was fixed at 2000 values, and we ran

the E1 and E2 simulations for 150 model years with no ad-

ditional LUC in order to allow the carbon stocks to approach

their equilibrium state. It is important to note that we did

not disable the fire algorithms in CLM. Fire significantly in-

fluences model stocks and fluxes (Li et al., 2014), and thus,

rather than converging to a single steady-state carbon stock,

PFTs influenced by fire converged to a quasi-equilibrium

characterized by periodic carbon losses due to fire followed

by periods of recovery.

2.4 Distinguishing climate from land use signals

As noted above, it is important to distinguish carbon cy-

cle changes caused by LUC from those caused by cli-

mate change. For the CLM-to-GCAM coupling, even a per-

fect proxy variable will be subject to climate and land use

changes during a CESM run, both before the run starts (i.e.,

during spinup or initialization phases) and during a model

run. For example, a cell in which a new PFT is established

immediately prior to an iESM run would have very low C

stocks and NPP in the first time step; as its vegetation re-

grows, the cell would appear, to GCAM, to be undergoing

 36 

Figure 4. Relationship between net primary production (NPP, 2005-2009) to biomass 688 

(2090-2094) in CLM for crops, grasses, shrubs, and trees; cf. Table 2. Lines show best-689 

fit linear regressions. Results are from the E1 and E2 simulations in Table 1. 690 
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  692 Figure 4. Relationship of net primary production (NPP, 2005–2009)

to biomass (2090–2094) in CLM for crops, grasses, shrubs, and

trees; cf. Table 2. Lines show best-fit linear regressions. Results are

from the E1 and E2 simulations in Table 1.

enormous productivity increases. Conversely, significant ex-

pansion of a PFT (e.g., agriculture reverting to forest) dur-

ing the iESM run might appear to have drastically low-

ered productivity, leading GCAM to redirect land away from

that PFT. Both of these cases cause problems for GCAM

because productivity drives decision-making in the model,

which bases its land use decisions on the relative inherent

profitability of using land for competing purposes (Wise and

Calvin, 2010). As a result apparent changes in productivity

produce changes in profit (as measured in US dollars) and

thus land use.

Thus in both cases, we need to exclude cells with anoma-

lously large C changes, driven by LUC, from the final nu-

meric scalars (i.e., the proxy variables signaling how much

GCAM should adjust its assumptions of equilibrium C) com-

putation. They will bias the computation of the scalars and

lead GCAM into a possible feedback loop: if the model sees

highly anomalous values, it may allocate more land to those

PFTs, resulting in higher profits and further land use change

in the region with the anomaly. (A negative feedback is also

possible; both cases occur because the changed productivity

alters the relative profitability of the different land uses, and

profit maximization is the fundamental decision-making cri-

terion in GCAM.)

To distinguish the effect of LUC (as opposed to climate

effects) on primary CO2 fluxes and land carbon pools, we

assumed that climate change will have a broad spatial dis-

tribution, either global or regional, while LUC will affect

www.geosci-model-dev.net/7/2545/2014/ Geosci. Model Dev., 7, 2545–2555, 2014
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relatively small groups of cells in any particular time step;

this obviously may not hold in particular regions and points

in time (Arora and Boer, 2010) but should be broadly true

across the millions of data points (∼ 105 grid cells×PFT

combinations) being output by CLM. Thus a statistical out-

lier test, comparing how much any particular cell’s carbon

cycle has changed relative to the start of the run, should be

able to exclude cells whose inferred change in long-term car-

bon density fall significantly outside of the norm. To do so we

used a method based on median absolute deviation (Davies

and Gather, 1993), a robust (insensitive to outliers) mea-

sure of central tendency. The scalars were then mapped from

CLM’s PFTs and grid cells to GCAM’s land cover types and

AEZ regions, weighted by PFT area, land area in each grid

cell, and cell area in the AEZ.

This technique depends on the overall population mean not

being overly perturbed and thus will not work in extreme sce-

narios of mass deforestation (e.g., Bonan et al., 1992). An

important question is how soon, under increasing amounts of

LUC, bias (i.e., LUC effects masquerading as climate change

to GCAM) will be introduced into the iESM model system.

We used a Monte Carlo simulation (M1 in Table 1), written in

the statistical package R 2.15.1 (R Development Core Team,

2012), to examine how robust this outlier exclusion method

would be to different levels of LUC and what, if any, bias it

might introduce to the GCAM carbon density values. For this

exercise, 10 000 cells (with normalized, unitless data) were

simulated in which a constant +10 % climate change effect

on equilibrium C was presumed to be occurring (Jain and

Yang, 2005). A LUC effect, ranging from −500 to +500 %

and affecting from 5 to 95 % of the cells, was then addition-

ally applied. The outlier exclusion test defined above was

then calculated on the cells, and a putative signal calculated

on the remaining cells. This inferred climate change was then

compared to the original known climate signal to estimate

how much error (i.e., the difference between the two signals)

would be introduced into iESM under such circumstances.

3 Results and discussion

3.1 Single-forcing tests: identifying the best

proxy variables

Clear differences emerged between the potential proxy vari-

ables tested in CLM in response to three different forcing

factors (Fig. 2). Most notably, carbon stocks were much

more sensitive to LUC than were carbon fluxes. This result

matches both theory (Odum, 1969) and a wide variety of field

studies (Amiro et al., 2010; Goetz et al., 2012): stocks are

by their nature integrative and accumulate relatively slowly

compared to C flux changes. In contrast, the C flux variables

were highly sensitive to climate effects but exhibited low sen-

sitivity to LUC.
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Figure 5. Monte Carlo simulation M1 (cf. Table 1) examining if an outlier test can 693 

distinguish between artificial climate and land use change (LUC) signals. Contour lines 694 

(every 20%) show error between the inferred climate change signal and the known signal 695 

as increasing numbers of cells (y axis) are perturbed by LUC with increasing effect (x 696 

axis). The effect (i.e., intensity) is shown as the ratio of perturbed cells’ equilibrium C to 697 

that of unperturbed cells: a doubling (e.g. transitioning from crop to young forest) is an 698 

effect of 2.0, a halving as 0.5, etc. 699 
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Figure 5. Monte Carlo simulation M1 (cf. Table 1) examining

whether an outlier test can distinguish between artificial climate and

land use change (LUC) signals. Contour lines (every 20 %) show er-

ror between the inferred climate change signal and the known signal

as increasing numbers of cells (y axis) are perturbed by LUC with

increasing effect (x axis). The effect (i.e., intensity) is shown as the

ratio of perturbed cells’ equilibrium C to that of unperturbed cells: a

doubling (e.g., transitioning from crop to young forest) is an effect

of 2.0, a halving as 0.5, etc.

A second, related problem arising from the use of carbon

stocks as proxy variables can be seen in Fig. 3. In this case a

test coupling between CLM and GCAM, using carbon stocks

to pass climate change information, produced sharp and un-

realistic changes from the GCAM RCP4.5 control run. (This

occurred even when running the outlier-exclusion protocol

described above.) Global LUC emissions climbed through-

out the 21st century in a departure from the RCP4.5 control,

because a few CLM grid cells, located in GCAM’s “Mid-

dle East” region, were subject to LUC at the end of CLM’s

transient simulation phase. As a result, their C stocks (and

GCAM’s estimation of their long-term potential C) increased

rapidly in the early years of the model run, leading GCAM

to pour more resources into these cells (because these cells’

productivity appeared extraordinarily high, as described in

the methods section). Increasing the area of newly planted

bioenergy crops created an even stronger signal of rapidly

increasing carbon stocks, exacerbating the original problem

and causing GCAM to put even more resources into the

region. By the end of the century, GCAM was mistakenly

growing a huge percentage of the world’s bioenergy crops in

the region, on a very small area of land (Fig. 3). Conversely,

the use of NPP and HR caused no such problems, because
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Table 2. Slope (yr), adjusted R2 value, and number of grid cells for the relationship between change in NPP in response to a climate change

signal and resulting change in equilibrium biomass (simulations E1 and E2 in Table 1). Excluding PFTs whose cumulative carbon loss from

fires exceeds 8 Mg C ha−1 over 150 years generally improved the R2 values and increased the slopes (data not shown).

PFT Name Slope R2 Count

1 needleleaf_evergreen_temperate_tree 20.4 0.52 3500

2 needleleaf_evergreen_boreal_tree 20.5 0.68 5136

3 needleleaf_deciduous_boreal_tree 24.9 0.92 1643

4 broadleaf_evergreen_tropical_tree 18.0 0.35 2609

5 broadleaf_evergreen_temperate_tree 20.9 0.40 1702

6 broadleaf_deciduous_tropical_tree 25.2 0.56 3909

7 broadleaf_deciduous_temperate_tree 21.9 0.49 3966

8 broadleaf_deciduous_boreal_tree 23.6 0.64 5311

All trees 21.5 0.51 27 776

9 broadleaf_evergreen_shrub 1.9 0.06 299

10 broadleaf_deciduous_temperate_shrub 5.8 0.45 3336

11 broadleaf_deciduous_boreal_shrub 6.5 0.60 5979

All shrubs 6.0 0.50 9614

12 c3_arctic_grass 1.8 0.30 6417

13 c3_non-arctic_grass 2.4 0.38 8061

14 c4_grass 1.1 0.19 5436

All grasses 1.6 0.28 19 914

15 crop 1.7 0.19 9142

of their relatively fast recovery from LUC disturbance (cf.

Fig. 2).

The two primary fluxes determining carbon balance (NPP

and HR) were thus chosen as proxy variables linking CLM to

GCAM, with CLM NPP changes used to scale GCAM’s as-

sumptions of aboveground equilibrium C, while a combina-

tion of NPP and HR provided a relative scaling for GCAM’s

belowground carbon, computed with a 5-year coupling step

as

CA = CA0

NPP

NPP0

, (1)

CB = CB0

[
NPP

NPP0

+
HR0

HR

]
/2. (2)

Here the ratio of NPP (at the current time step) to NPP

at the beginning of the run (NPP0) determines how above-

ground equilibrium C in GCAM (CA) will change relative to

the beginning of the run (CA0). CLM’s NPP and HR together

determine changes in GCAM equilibrium belowground car-

bon (CB); note that as NPP and HR get larger/smaller and

smaller/larger compared to their starting values, GCAM’s

equilibrium C rises/falls.

3.2 Correlation between NPP and equilibrium

pools in CLM

Simulations E1 and E2 provided insight into the relationship

between NPP and equilibrium C pools within CLM. NPP

at the beginning of the E1 simulation was a good predictor

of the equilibrium pool values at the end of the simulation

(Fig. 4), although the slope of this relationship varied for dif-

ferent PFTs. It was also apparent that this relationship breaks

down at very low NPP values for some PFTs. This result is

consistent with ecological theory and observations, as freshly

disturbed ecosystems require a period of initial growth before

NPP stabilizes. These very low NPP values were reliably ex-

cluded by the outlier exclusion method discussed above and

tested below.

We also found that the change in NPP resulting from an al-

tered pattern of climate (comparing simulations E1 and E2)

was a relatively good predictor of the subsequent change in

equilibrium C stocks. Table 2 shows the slopes of the linear

relationships between the change in initial NPP (simulation

E2 minus E1) and change in equilibrium C for each PFT in

CLM. The initial (2005–2009) change in NPP was able to

explain 19–92 % of the variance in the C pool change over

the 21st-century simulation with one exception (broadleaf

evergreen shrubs, 6 %). In general, NPP was a better pre-

dictor for relatively high-carbon forest ecosystems, as com-

pared to grasses, shrubs, and crops. This is good, as high-

C systems are particularly important for GCAM: changes in

their land areas exert disproportionate effects on atmospheric

CO2, which the model is frequently trying to minimize.

To determine whether fire dynamics were responsible for

some of the unexplained variance in equilibrium C pools,
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we performed the same analysis a second time, excluding

PFT–gridcell combinations in which the cumulative carbon

loss from fire over the 150-year E1 simulation exceeded

800 g C m−2. This led to moderate (generally 5–10 %) im-

provements in the R2 values in all PFTs except the two

broadleaf evergreen PFTs and to moderate increases in the

regression slopes, indicating that fire-influenced regions tend

to have lower C values than others. This is consistent with

both observations and CLM’s general fire characteristics (Li

et al., 2014), and it suggests that fire dynamics and fire

regime changes in response to climate change are impor-

tant to account for when constructing simple proxies that can

predict changes in future terrestrial carbon stocks based on

evolving climatic and ecological conditions.

3.3 Distinguishing the effects of LUC from climate

The initial experiments thus established the best available

variables to loosely couple CESM and GCAM. But how well

could the coupling – specifically, statistically excluding CLM

grid cells whose carbon fluxes were changing “too fast” –

separate LUC and climate signals? The M1 experiment re-

sults (Fig. 5) suggested that, as long as fewer than ∼ 25 %

of the simulation cells were disturbed, the error (between the

known climate signal and that inferred by the outlier test)

remained relatively small (< 20 %). Even when larger num-

bers of cells were perturbed, the LUC effect had to be quite

large to exceed this level. Because the outlier test is applied

to the global population, and not sub-regions, this implies

that only under extreme scenarios will this mechanism start

to introduce substantial error. (In test iESM runs attempting

to reproduce RCP 4.5, 4–8 % of the global grid cells were

excluded – i.e., failed the outlier test – at each time step.)

3.4 Implications of the loose coupling between

CLM and GCAM

For the initial construction of the iESM system, we chose

a loose coupling between the ESM and IAM, in which

GCAM’s equilibrium C assumptions of various ecosystems

tracked the relative changes in CLM’s short-term C fluxes,

after exclusion of LUC effects. This has the advantage of not

requiring a fundamental rewriting of GCAM, as the mathe-

matical formulae and economic principles underlying its land

use decisions are based on equilibrium C (Wise and Calvin,

2010). In addition, it guarantees that, if climate change af-

fects the carbon cycle, GCAM’s equilibrium assumptions

will change correspondingly for the same vegetation type and

spatial location, feeding back into economic and land use de-

cisions that propagate back to CLM (Di Vittorio et al., 2014).

This is a powerful improvement over the fixed assump-

tions of both IAMs and ESMs in these areas, sidestepping the

lack of process fidelity and spatial resolution (for the IAM)

and addressing the lack of human agency (for the ESM).

The loose coupling does have disadvantages, however, re-

quiring the statistical identification of outlier grid cells and

inevitable mismatches between the models’ definitions of

PFTs, C pools, and time steps (Di Vittorio et al., 2014). In

addition, the outlier-exclusion step will break down under

extreme LUC scenarios, scenarios that while unrealistic can

be a useful research tool (Bonan, 2008; Nobre et al., 1991;

Thomson et al., 2010). This is a particular concern given that

the current mechanism was only tested under the relatively

moderate RCP 4.5. For these reasons, we anticipate that the

long-term solution is a full incorporation of an IAM into an

ESM, with a unified C cycle.

4 Conclusions

Here we have implemented and tested a coupling mechanism

between the carbon cycles of an Earth system model (CLM)

and an integrated assessment (GCAM) model. CLM’s net

primary production and heterotrophic respiration outputs

were found to be the most robust proxy variables by which

to manipulate GCAM’s assumptions of long-term ecosys-

tem steady-state carbon, with short-term forest NPP shifts

strongly correlated with long-term biomass changes in par-

ticular. By assuming the carbon cycle effects of land use

change are short-term and spatially limited relative to widely

distributed climate effects, we were able to distinguish these

effects successfully in the model coupling, passing only the

latter to GCAM. Increasingly extreme LUC scenarios will

eventually break down this mechanism, however.

This work is only one step to a full coupling of an ESM and

IAM; the second is described by Di Vittorio et al. (2014), and

it consists of land use and land cover harmonization steps that

allow CLM to achieve higher afforestation and wood harvest

rates than possible in the CMIP5 (Couple Model Intercom-

parison Project 5) process. By allowing climate effects on the

CLM carbon cycle to modulate, in real time, the economic

and policy decisions of an integrated assessment model, it

provides a foundation for further development of the iESM

project linking these models in a robust and flexible frame-

work. Such a framework will, in turn, facilitate future mod-

eling of the two-way interactions between human and Earth

system processes.
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