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Figure S1: Real part n and imaginary part κ of refractive indices of various
components used by the column model in section 4.1. The data for ammo-
nium sulphate ((NH4)2SO4) also serves as default for other components. The
background shading represents the shortwave (green, including the AEROPT
sub-bands) and longwave (blue) bands used in EMAC.

Refractive indices

Figure S1 shows refractive indices collected from the OPAC 3.1 database (Hess
et al., 1998) (black carbon, mineral dust) and the HITRAN 2004 database
(Rothman et al., 2005) (organic carbon, sea salt, ammonium sulphate, water).
The mineral dust values have been complemented by data for λ > 2.5 µm
from I. N. Sokolik (unpublished data, 2005), the organic carbon values by data
for λ < 0.7 µm from Kirchstetter et al. (2004). The numerical values of the
refractive indices can be found in Tab. S1 (real part n) and Tab. S2 (imaginary
part κ).
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Table S1: Real part n of the refractive indices displayed in Fig. S1 for the
shortwave (top) and longwave (bottom) bands.

λ/µm n
BC OC Dust SS (NH4)2SO4 H2O

0.25 – 0.36 1.72 1.53 1.53 1.51 1.54 1.35
0.36 – 0.47 1.75 1.53 1.53 1.50 1.54 1.34
0.47 – 0.58 1.75 1.53 1.53 1.50 1.53 1.33
0.58 – 0.69 1.75 1.53 1.53 1.49 1.52 1.33
0.69 – 0.81 1.75 1.53 1.53 1.49 1.52 1.33
0.81 – 0.94 1.75 1.52 1.53 1.48 1.52 1.33
0.94 – 1.06 1.76 1.52 1.53 1.47 1.51 1.33
1.06 – 1.19 1.76 1.51 1.53 1.47 1.51 1.33
1.19 – 1.49 1.76 1.50 1.53 1.47 1.50 1.32
1.49 – 1.78 1.78 1.49 1.53 1.46 1.49 1.32
1.78 – 2.08 1.80 1.47 1.53 1.45 1.47 1.31
2.08 – 2.38 1.81 1.46 1.53 1.44 1.46 1.29
2.38 – 2.78 1.82 1.44 1.48 1.42 1.42 1.24
2.78 – 3.19 1.84 1.42 1.47 1.54 1.36 1.36
3.19 – 3.59 1.87 1.50 1.48 1.48 1.58 1.43
3.59 – 4.00 1.90 1.52 1.47 1.47 1.57 1.37
3.3 – 3.8 1.89 1.52 1.47 1.48 1.59 1.39
3.8 – 4.2 1.92 1.51 1.48 1.48 1.55 1.35
4.2 – 4.4 1.93 1.49 1.49 1.49 1.52 1.34
4.4 – 4.8 1.95 1.47 1.50 1.48 1.49 1.33
4.8 – 5.6 1.98 1.41 1.53 1.45 1.44 1.31
5.6 – 6.8 2.02 1.43 1.42 1.47 1.33 1.31
6.8 – 7.2 2.05 1.49 1.44 1.43 1.69 1.32
7.2 – 8.5 2.11 1.56 1.25 1.42 1.43 1.30
8.5 – 9.3 2.17 1.62 1.60 1.60 1.11 1.27
9.3 – 10.2 2.20 1.73 2.74 1.56 2.39 1.23
10.2 – 12.2 2.23 1.68 1.81 1.48 1.90 1.15
12.2 – 14.3 2.29 1.62 1.70 1.41 1.70 1.17
14.3 – 15.9 2.33 1.61 1.52 1.46 1.76 1.27
15.9 – 20.0 2.40 1.60 1.85 1.71 2.03 1.41
20.0 – 40.0 2.57 1.60 2.54 1.76 1.56 1.53
40.0 – 1000.0 2.69 1.60 2.36 1.74 2.14 2.20
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Table S2: Imaginary part κ of the refractive indices displayed in Fig. S1 for the
shortwave (top) and longwave (bottom) bands.

λ/µm κ
BC OC Dust SS (NH4)2SO4 H2O

0.25 – 0.36 0.46 0.17 0.024 2.1e-06 1.0e-07 1.7e-08
0.36 – 0.47 0.46 0.099 0.012 7.0e-08 1.0e-07 2.4e-09
0.47 – 0.58 0.44 0.038 0.0066 1.4e-08 1.0e-07 2.1e-09
0.58 – 0.69 0.43 0.0098 0.0045 3.8e-08 1.0e-07 1.7e-08
0.69 – 0.81 0.43 0.00099 0.0040 1.1e-06 1.2e-07 1.4e-07
0.81 – 0.94 0.43 0.00086 0.0040 2.8e-05 3.6e-07 8.1e-07
0.94 – 1.06 0.44 0.00077 0.0041 0.00014 1.3e-06 3.1e-06
1.06 – 1.19 0.45 0.00067 0.0045 0.00026 6.1e-06 1.3e-05
1.19 – 1.49 0.45 0.00051 0.0052 0.00043 3.1e-05 5.0e-05
1.49 – 1.78 0.47 0.00028 0.0061 0.00068 7.6e-05 1.0e-04
1.78 – 2.08 0.49 6.3e-05 0.0074 0.00097 0.00065 0.00069
2.08 – 2.38 0.50 8.2e-05 0.011 0.0020 0.0010 0.00068
2.38 – 2.78 0.52 0.0014 0.021 0.0053 0.0040 0.017
2.78 – 3.19 0.54 0.082 0.024 0.0079 0.11 0.18
3.19 – 3.59 0.55 0.089 0.013 0.0021 0.18 0.035
3.59 – 4.00 0.57 0.040 0.0067 0.0014 0.042 0.0045
3.3 – 3.8 0.56 0.067 0.010 0.0016 0.10 0.011
3.8 – 4.2 0.58 0.026 0.0044 0.0014 0.016 0.0055
4.2 – 4.4 0.59 0.011 0.0054 0.0014 0.0097 0.010
4.4 – 4.8 0.59 0.0050 0.0092 0.0017 0.0072 0.013
4.8 – 5.6 0.60 0.0022 0.023 0.0029 0.0072 0.013
5.6 – 6.8 0.62 0.18 0.054 0.010 0.045 0.064
6.8 – 7.2 0.64 0.20 0.098 0.0064 0.38 0.034
7.2 – 8.5 0.67 0.19 0.10 0.014 0.24 0.034
8.5 – 9.3 0.70 0.21 0.44 0.028 1.2 0.039
9.3 – 10.2 0.71 0.15 0.78 0.017 0.48 0.048
10.2 – 12.2 0.74 0.013 0.30 0.014 0.043 0.12
12.2 – 14.3 0.76 0.0054 0.19 0.019 0.020 0.32
14.3 – 15.9 0.79 0.0018 0.23 0.042 0.12 0.40
15.9 – 20.0 0.83 0.0016 0.54 0.12 0.14 0.42
20.0 – 40.0 0.93 0 0.74 0.40 0.34 0.35
40.0 – 1000.0 1.0 0 0.68 1.0 1.1 0.57
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