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Abstract. A Climate Pattern-Scaling Model (CPSM) that extremesT{imaxandTmin). The methodological aspects of the
simulates global patterns of climate change, for a prescribedPSM explored in this study include (1) investigation of the
emissions scenario, is described. A CPSM works by quanadvantage gained in having five predictor time series over
titatively establishing the statistical relationship between ahaving only one predictor time series, (2) investigation of the
climate variable at a specific location (e.g. daily maximum time dependence of the fit coefficients and (3) investigation
surface temperaturdmax) and one or more predictor time of the dependence of the fit coefficients on GHG emissions
series (e.g. global mean surface temperatiliggpa) — re- scenario. Key conclusions are (1) overall, the CPSM trained
ferred to as the “training” of the CPSM. This training uses on simulations based on the Representative Concentration
a regression model to derive fit coefficients that describe thd?athway (RCP) 8.5 emissions scenario is able to reproduce
statistical relationship between the predictor time series andAOGCM simulations ofTmax and Tmin based on predictor

the target climate variable time series. Once that relationshifiime series from an RCP 4.5 emissions scenario; (2) access to
has been determined, and given the predictor time series fdnemisphere average land and ocean temperatures as predic-
any greenhouse gas (GHG) emissions scenario, the chanders improves the variance that can be explained, particularly
in the climate variable of interest can be reconstructed — reover the oceans; (3) regression model fit coefficients derived
ferred to as the “application” of the CPSM. The advantage offrom individual simulations based on the RCP 2.6, 4.5 and
using a CPSM rather than a typical atmosphere—ocean glob&.5 emissions scenarios agree well over most regions of the
climate model (AOGCM) is that the predictor time series re- globe (the Arctic is the exception); (4) training the CPSM
quired by the CPSM can usually be generated quickly us-on concatenated time series from an ensemble of simulations
ing a simple climate model (SCM) for any prescribed GHG does not result in fit coefficients that explain significantly
emissions scenario and then applied to generate global fieldsiore of the variance than an approach that weights results
of the climate variable of interest. The training can be per-based on single simulation fits; and (5) the inclusion of a lin-
formed either on historical measurements or on output fromear time dependence in the regression model fit coefficients
an AOGCM. Using model output from 21st century simu- improves the variance explained, primarily over the oceans.
lations has the advantage that the climate change signal is
more pronounced than in historical data and therefore a more

robust statistical relationship is obtained. The disadvantage

of using AOGCM output is that the CPSM training might 1 |ntroduction

be compromised by any AOGCM inadequacies. For the pur-

poses of exploring the various methodological aspects of the\tmosphere—ocean general circulation models (AOGCMs)
CPSM approach, AOGCM output was used in this study toare currently the primary tool used to project the future
train the CPSM. These investigations of the CPSM method<limate response to a prescribed scenario of greenhouse
ology focus on monthly mean fields of daily temperature gas (GHG) and aerosol emissions. Since AOGCMs are
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computationally demanding and expensive to run, typicallymethod is based on the assumption that the local response of
only a limited number of long-term simulations, for only a a given climate variable, such as daily maximum and min-
few GHG emissions scenarios, can be conducted in suppoitnum surface temperature$(ax and Tin), and to a lesser
of any scientific study. However, a fully probabilistic assess-extent precipitation, can be statistically related to the change
ment of future regional climate change and its potential im-in a more easily modelled climate variable suchTggpa
pacts requires simulations of climate change that span a widéGiorgi et al, 2005 Frieler et al, 2012, irrespective of the
range of possible future GHG and aerosol emissions. Simpldorcing that caused the changeTigobal. Non-linearities can
climate models (SCMs), while computationally less expen-arise, for example, as a result of local climate change depend-
sive than AOGCMs, provide only annually and globally (or ing on the rate of global mean temperature change in addition
sometimes hemispherically) averaged time series of surface® the magnitude of the chang®lifchell, 2003. Giorgi et
temperature and therefore cannot represent spatial patterrad. (2005 showed that the non-linear fraction of the climate
of changes in surface climate variabldditchell, 2003. change signal tends to decrease with increasing magnitude
SCMs can, however, simulate changes in global annual meaaf the signal, suggesting that the linear response assumption
surface temperaturelona) for any prescribed GHG and will be increasingly robust as the climate change signal be-
aerosol emissions scenarios and can be tuned to emulate aspmes more pronounced.
specific AOGCM FErieler et al, 2012 Meinshausen et al. Different methods have previously been developed to de-
2009. termine the statistical relationship between the climate vari-
To generate fields of climate variables for a range of emis-able of interest and its predictors (elduntingford et al,
sions scenarios, the climate pattern-scaling method was de200Q Mitchell, 2003 Ruosteenoja et al2007). Linear least
veloped Mitchell et al, 1999 Mitchell, 2003 and encoded, squares regression models, in general, produce more robust
in what is referred to, in this study, as a climate pattern-statistical results than an approach that uses two time-slice
scaling model (CPSM). This CPSM provides a tool to con- simulations separated in tim&litchell, 2003 Ruosteenoja
duct regional-scale climate projections for a range of climateet al, 2007).
variables such as daily maximum and minimum temperatures In this study, a CPSM is used to explore some of the
(Tmax and Tmin) for a wide range of GHG emissions scenar- methodological aspects of the pattern-scaling approach that
ios. Using maximum and minimum temperatures as opposethave not been, to our knowledge, investigated in detail in the
to monthly mean temperature is more useful for some speexisting literature. The motivation is to define more clearly
cific applications, for example, for agriculture and for public where the assumptions underlying the CPSM approach are
health officials tasked with providing warnings of extreme valid, possible reasons for breakdowns in those assumptions,
climate events. Crop growth, and therefore crop yields, areand potential strategies to improve the CPSM approach to
more sensitive to maximum and minimum temperature thanmitigate the effects of methodological weaknesses. Follow-
to daily mean values. Furthermore, probabilistic projectionsing the best practice approaches outlineaviitchell et al.
of Timax and Tmin provide means to estimate future energy (1999, Huntingford et al.(2000, andMitchell (2003, the
demand (e.g. increase/decrease in the usage of air conditiotimate pattern response is obtained by using a linear least
ing or heating). As a result, this study uses monthly meansquares regression model to relate the anomaly in a surface
of daily maximum and minimum temperature rather than climate variable (the predictand) to the anomaly in the pre-
monthly means of daily mean temperature to explore thedictor. By using anomalies in both the predictor and the pre-
methodological aspects of climate pattern scaling. The cli-dictand with respect to the same baseline period, more sta-
mate pattern-scaling method has been used to capture thestically robust results are obtained than in the case where
statistical relationship between time series of surface climatebsolute values are modelled. CPSM generated patterns of
variables (such as maximum and minimum temperafi change can be added to an observations-based climatology
andTnin) and predictor time series (typicallfyiona), based  over the baseline period to obtain absolute values of the cli-
either on measurement time series or on AOGCM output —-mate variable of interest. Throughout this paper, unless oth-
referred to as the “training” of the CPSM. Those statistical erwise specified, all anomalies are with respect to the 1961—
relationships can then be used to project the spatial patter@990 mean as this is the baseline period recommended by the
of changes in a climate variable for different emissions sce-World Meteorological Organization (WMO) Commission on
narios, or for future time periods, that were not covered byClimatology and is used as the climatological baseline in cli-
the data set used for the training — referred to as the “applimate impact studies@rry et al.2007).
cation” of the CPSM. Once the data required for the train- In this studyTg’lobal, where the prime denotes that it is an
ing are available, the pattern-scaling approach is computaanomaly, is usually used as the predictor. In addition to using
tionally inexpensive and therefore provides a mechanism for‘TéIobal as a predictor, and unlike previous studies, the CPSM
representing a more complete range of uncertainties assocpresented here is also able to use hemispheric ocean and land
ated with climate projections that arise from equally probablemean temperature anomalies as predictors since some SCMs,
emissions scenarios and from uncertainties in our knowledgsuch as MAGICCNeinshausen et al2011), are also able to
of key parameters in the climate system. The pattern-scalinggroduce these as output. One of the methodological aspects
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of the CPSM explored in this study (see Seljtis the ad-  whereF’ is the anomaly field of the climate variable of inter-
vantage gained in having five predictor time seriﬁgﬁogal, est (eitherT,,, or T, in this study) in year¥) and month
the hemispheric ocean and land temperatures) over havinfin) and where the subscriptsand j refer to longitude and
only one predictor time serieg"ggobal). latitude indicesT},, ., is the annual global mean tempera-

The surface climate variables used to explore selected feaure anomaly and; ;(y,m) is the residual time series. Un-
tures of the CPSM are the monthly means of daily maxi- certainties on the fit coefficients are derived from the diago-
mum and minimum temperatur&{ax and Tnin). While the nal elements of the covariance matrix as described further in
regression model applied in the CPSM training could use ob-Bodeker et al(1998.
servational data as input, the climate signal to date has been
weaker than the signal expected over the 21st century. There2.2  Accounting for autocorrelation in the residuals
fore, the CPSM has been trained on output from the Met Of-
fice Hadley Centre Earth System Model (HadGEM2-ES) per-R; (v, m) in Eq. (1) is the residual (i.e. that part of the signal
formed under the Coupled Model Intercomparison Projectnot explained byy; ;(m) x Téloba,(y)). Due to the timescales
phase 5 (CMIP5) in support of the Intergovernmental Panelassociated with the climate system, temporal correlation be-
on Climate Change (IPCC) 5th assessment report (see Apween these residuals is expected, that is, iftieresidual is
pendix A). The results presented in this paper are thereforgositive there is a greater chance of the-1)th residual be-
contingent on only a single AOGCM being used and only for ing positive rather than negative. This autocorrelatibiaq
simulations to 2100. et al, 1990 Weatherhead et al1998 Reinsel et al.2009

The training of the CPSM is described in detail in S€ct. implies that the data to which the regression model is being
which includes the construction of the regression modelfitted are not completely independent and as a result there
how autocorrelation in the regression model residuals is acare effectively fewer independent values than the number of
counted for to obtain a robust estimate of the regressiomonths of data available. This effectively increases the un-
model fit coefficient uncertainties, a demonstration of thecertainty on the fit coefficients. If this autocorrelation is not
CPSM training, how seasonality in the fit coefficients is cap- correctly accounted for in the regression model, the uncer-
tured, and examples of global maps of fit coefficients. Thetainty on the fit coefficients will be underestimatédap et
application of the CPSM is described in S&tThe first of  al,, 1990. Here, a first order autocorrelation model is used,
the methodological issues explored in this paper — the valuavhere the:th residual is correlated against the(1)th resid-
obtained by including additional predictors (basis functions)ual to determine the coefficient of autocorrelation. The de-
in the regression model — is documented in Sécthis sec-  rived coefficient is then incorporated into a revised estimate
tion includes a discussion of the need to orthogonalise thef the uncertainty on the data to which the model is fitted,
multiple basis functions, presents an example of the use oés described iffiao et al.(1990. This autocorrelation also
a multiple basis function CPSM, and an assessment of th@aries with season and this seasonality is captured in the re-
value of including additional basis functions. The underlying gression model.
assumption in the CPSM approach of linearity across scenar-
ios in the response of the predictor to the predictand(s) is ex2.3 Demonstration of CPSM training
plored in Sect5. The training of the CPSM can be performed
on more than one simulation, either concatenated (the supeffo demonstrate the use of this very simple regression model,
ensemble approach) or in parallel with appropriate weightingtime series of7,,,, at Alexandra, New Zealand (45.3,
of the different outcomes. The methodological aspects of thel69.4 E), extracted from a HadGEM2-ES simulation under
choices involved in the use of multiple simulations for CPSM Representative Concentration Pathway (RCP) 4.5 emissions
training are detailed in Sed. The possibility of time depen-  (see Appendix A), antil”g’Iobal from the same model and emis-
dence in the fit coefficients is examined in S&ctA discus-  sions scenario, are shown in Fi.
sion of the results and the conclusions drawn appear in the Unforced variability within a model simulation (e.g. aris-
final section of the paper. ing from EI Nifio events) can cause tffig, , and Télobal time
series to be correlated in a way that is unigue to this par-
ticular simulation (e.g. a HadGEM2-ES simulation based on
RCP 4.5 emissions). With different initial conditions, how-
ever, this particular simulation might produce an equally
valid Té,obal time series but with weaker correlation than the
2.1 Model construct time series shown in Fid. In the example presented in Fig.

] ) the short-term correlation between the orange and cyan traces

The most simple construct for the regression model Unde”y'appears to be small but the correlation can be greatly exacer-

2 Training of the CPSM

ing the CPSM is bated if additional predictors are included in the CPSM (see
Sect.4). When it comes to the application of the CPSM, the
F j(y,m) = j(m) X Tgopa(y) + Ri j(y,m), (1) Tgiobal time series will come from an independent source,
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Fig. 1. January mean daily minimum temperature anomalies
(with respect to 1961-1990) at 48.8, 169.4 E extracted from a

HadGEM2-ES simulation under RCP 4.5 emissions (orange), the -0.5 : ‘ ‘ ‘ : ‘ :
time series smoothed using the Savitzky—Golay filter (red), the an- 050 O‘i.. ! t 11561 1590 K2'5 3 35
nual mean global mean surface temperature anomaly (with respect gloval W-T-1 i X1

to 1961-1990) time serieg"élobal) from the same model simula-
tion and emission scenario (pale blue), and the smoorl’é%gal
time series (blue).

ig. 2. Smoothed January mean daily minimum temperature
anomalies at 45%2S, 169.4E regressed against annual mean
global mean surface temperature anomalies. The data shown are
from a single simulation, with the blue dots showing data from 1961
to 2012 and the black dots showing data from 2013 to 2100. All

most likelv outout from a SCM that captures onlv long- anomalies are with respect to the 1961-1990 baseline. Regression
Yy P P y 9" model fits (solid lines) are shown for 1961-2012 to indicate how a

term, forced climate_change, and therefo/re it is_essential thaﬁt might look were it based on observations (blue solid line) alone
none of the correlation betwedf;, and 7, arises from 54 1961-2100 to indicate the result obtained using a much longer
short-term, unforced variability. The focus of this study is to time series (black solid line).

apply the CPSM to simulate the underlying forced climate

change. To this end, thg,; and Télobal time series are fil-

tered (smoothed) to reduce unforced variabilify;, time

series are smoothed individually across each calendar month .

to avoid smoothing away the annual cycle. The time seried (shorter) observational record or a (longer) model record to
smoothed with a Savitzky—Golay filteBévitzky and Golay calculate the regression model coefficient(s) that constitute
1964 Press et al.1989, which was found to work well for the training of the CPSM. Hereafter, output from HadGEM2-
this application, are aléo shown in Fiy ES simulations are used to train the CPSM (more detailed in-

The regression of January memm at Alexandra, New formation on the HadGEM2-ES model and simulations used

Zealand (45.2S, 169.4 E), agai”SfTémbm is shownin Fig2, in this study is given in Appendix A).
where the smoothed AOGCM time series shown in Hig.
have been used.

Regression model fits (solid lines in Fig) are shown
for two time periods, namely, (1) 1961-2012 to indicate
how a fit might look were it is based on observations alone,The Télobal time series are obtained at annual resolution, as
and (2) 1961-2100 to indicate the result obtained using adenoted by the)() dependence in Eql), and yet are re-
much longer time series. A fit using only 1961-2012 dataquired to produce monthly mean fields of the predictand (e.g.
has the benefit that it could be based on observations and ;). The seasonality is captured by the regression model fit
therefore not subject to model inadequacies. However, gapeoefficients which depend on season as denoted bynihe (
free monthly mean data would not be available for all loca-dependence in Eql). One approach is to fit Eql) sepa-
tions for this period. Access to a longer time series, span+ately for each month. However, this ignores the fact that the
ning a greater range ifi;,. and Tg’,obal, produces fit coef- dependence af’ on Télobalin any given month is likely to be
ficients with smaller uncertainties (see fit coefficient valuessimilar to the dependence in the neighbouring months. To ac-
in Fig. 2) but are, of course, subject to any inadequacies ofcount for the seasonality in the fit coefficients, and to reduce
the AOGCM that was used to generate the time series. It bethe number of fit coefficients and thus avoid the likelihood of
comes a judgment call on the part of the user whether to usever-fitting, a more statistically robust approach is to expand

2.4 Fitting for seasonality
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the regression model fit coefficient in a Fourier series, that isexpected due to the differences in the heat capacity of ocean
and land, thex coefficients are larger over land than over the

M
[ howing that land masses are expected to show greater
a(m)=ao+ Y [ax—_1SiN2r xk xm/12 ocean shc : :
o /;[ Zoasi /12 changes inTp,,, and 7., with changes |riTéloba| than the
+ g COS2 x k x m/12)], (2) oceans.

Note that some regions in Fig.exhibit negativex coeffi-
wherem is the month of the year andy is the number of  cients, typically over the sub-polar oceans. Negativalues
Fourier pairs in which the fit coefficients are expanderf-  indicate a temperature trend opposite in sign to thapgf .,

del and Cobb1994 Bodeker et al. 1998 Reinsel et al.  This could occur, for example, if changes in the ocean heat
2009. The value ofM can be set depending on the seasonaltransportin a particular model simulation cause some regions
structure expected in the fit coefficients. For the analysis preof the ocean to warm at the expense of other regions which
sented below)M was set to three for all Fourier expansions. cool.

In addition to reducing the number of fit coefficients by a

factor of 7/12 compared to the approach of fitting the regres-2.6 ~ Area averaging

sion model separately in each month, the method used here

also reduces the statistical uncertainty on the derived fit coln much the same way that regression model fit coefficients
efficients (we now refer to the fit coefficients as plural since N Neighbouring months are related (suggesting the use of
the application of Eq.2) results in more than one coefficient Fourier expansions to capture the seasonal coherence), fit

that relates” to T, p.)- coefficients in neighbouring grid cells are also expected to
globa be closely related. Throughout this paper Eb.i§ applied
2.5 Global maps in isolation in each grid cell of the AOGCM and therefore

does not inherently capture the geospatial correlation of the

Global spatial patterns af for both 7;;,,, and 7, together fit coefficients. This may result in structure in the fit coeffi-
with their 1o uncertainties are shown in Fig. The fit co-  cients that is a function of the specific emissions scenario(s)
efficients were obtained from the fit @fj,p, 10 Tnax @and  on which the CPSM is trained and therefore not represen-
T, time series, respectively, where all time series were ex-ative of the structure of the response of the climate system
tracted from the HadGEM2-ES RCP 4.5 simulation. The de-in general. Previous analyses (ekgieler et al, 2012 have
rived« coefficients are displayed for four selected months ofused area averaging of the fields prior to training the CPSM
the year. to avoid fine-scale structure in the fit coefficients. However,

The « fit coefficient captures the “magnification” of re- this results in sharp discontinuities between regions when
gional temperature change compared to the global mean suthe CPSM is used in application mode. An alternative ap-
face temperature change, that is, a valueref 4 for 7, proach is to further expand the model fit coefficients (e.qg.
indicates that a 1C increase irTélobal corresponds to a4C the oy in Eq. 2) in spherical harmonics where again the or-
increase inT},, at that location. The largest coefficients ~ der of the meridional and zonal expansions can be selected
occur at high latitudes over the Northern Hemisphere in Janto capture the broad-scale features of the fit coefficient fields
uary and October (i.e. it is over the Arctic in winter when but to smooth over the fine-scale features. The spherical har-
feedback processes in the climate system are most efficiedlonic expansion recognises the geospatial correlation in the
in amplifying the effects of increases in GHG emissions). fit coefficients between neighbouring grid cells. This also re-
This indicates that the CPSM faithfully emulates the Arctic quires only a single fit of the regression model to the data. In
amplification observed in HadGEM2-ES (i.e. that the mag-this study, such an approach has not been followed since it is
nitude of the temperature change in the Arctic in response t@®ur goal to explore the issues that may arise when applying
a change in global climate forcing tends to be significantly the regression model in the traditional way (i.e. separately in
larger than the magnitude of the global mean temperatur&@ach grid cell).
change) Koritz et al, 2002. Arctic amplification is most
pronounced in autumn and winte3d€rreze and Barn2011)
which is consistent with the results shown here (i.e. greater 3 Application of the CPSM
and therefore greater sensitivity Tif,,, and 7, t0 7,51, _ _ N
Southern Hemisphere coefficients also maximize at high Once the regression model fit coefficients have been de-
latitudes, particularly around the Antarctic Peninsula, but dorived, the CPSM can be used in application mode. In appli-
not show values as high as over the Arctic. The larger val-cation mode7,, . based on any emissions scenario can be
ues ofa in April over the Weddell Sea may be related to used in Eq. ) to generate”’. Usually, T, would be ob-
long-term changes in sea ice. The results presented irBFig. tained from a source other than an A(g)GCM (otherwise the
indicate that the climate feedbacks that amplify the globalAOGCM simulation itself may just as well be used to pro-
signal in the Arctic (e.g. changes in the ice—albedo feedbackyuce theF” fields), such as a SCM. However, when used in
are stronger than those active in the Antarctic. Overall, aghis way, it is necessary to first ensure that agbébal time
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Fig. 3. Global maps o# fit coefficients forT,y (left column) andr, mm (right column) for four selected months of the year. The coefficients
were obtained by fitting”/ global (EQ. 1) to ThaxandT mm time series from the HadGEM2-ES RCP 4.5 simulation. The colour scale shows
the value ofx while the overlald contours show the Lincertainties o (hatch marks on the contours show the direction towards smaller
uncertainties). Regions in red show whé}g,, and Tr;“n are warming faster than the global mean surface temperature and regions in blue

where they are warming slower than the global mean surface temperature and possibly even cooling ¢negjats.

series from the AOGCM used to train the CPSM, gHBbal by the same AOGCM as used in the training, but from differ-
time series from the SCM for the same emissions scenariognt emissions scenarios, were used in application mode.
are identically correlated. Because the SCM and AOGCM The use of the CPSM in application mode is demonstrated
may have different climate sensitivities, scaling of the SCMin Fig. 4.
data may be required. This introduces some uncertainty. To Regression model fit coefficients derived by regressing
avoid the additional complexity and uncertainty introduced 7, - againstr, /Ioba, using HadGEM2-ES output from an RCP
by such scaling of ., from a SCM, in this paper that ex- 4.5 simulation were used to simulafg, . time series using
plores the methodological aspects of climate pattern-scalingpredictor time seriesT} o Obtained from HadGEM2-ES
Tglobal time series are extracted from simulations generatedsimulations based on RCP 2.6 (dark blue line in Bigand
RCP 8.5 (dark red line in Figl) emissions. The confidence
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4 prrr e R ARARRERAMAEAARRRass To further compare the results of the HadGEM2-ES
g Smeahedadeimscs e as ] RCP45 simulation with the generated fields by the CPSM,
cerss S global maps of the decadal mean (2090 to 2099Y}6f,
CPSMRCP 26 ] and 7, for January and July are displayed in Fig(i.e.

7 the change iMfmax and Thin by the 2090s with respect to

] the baseline period). Decadal means are shown to suppress
the higher inter-annual variability across individual months
displayed by HadGEM2-ES compared to output from the
CPSM. The global pattern df;,,, and7,, derived from the
CPSM output generally agrees well with the HadGEM2-ES
simulation, although there are some regions (e.g. the Arctic
) SN S Ocean) and periods (e.g. January) where the signal, that is,
T s s s s o (€ ChANGe iy and Ty, with respect to the baseline pe-

Year riod 1961-1990, is more pronounced in HadGEM2-ES. This

. . , might be the result of simulation-specific decadal-scale un-
Fig. 4. Annual mean7y;, smoothed time series at Alexandra, forcaq variability in the HadGEM2-ES RCP 4.5 simulation

New Zealand (452S, 169.4 E), from a HadGEM2-ES simula- . . ,
tion based on RCP 4.5 emissions (light green), together with itsWhICh causes regional changesfify,, or Tinin 1O be greater

regression model fit (dark green). Thdit coefficients, resolved by than what is expected from ti, ., time series and the

season, are shown in the lower right inset. When these fit coef‘fi-fit coefficients obtained from the RCP 8.5 simulation. An-

cients are used together with tf . predictor time series from other reason for the unusual behaviour in this region may be
HadGEM2-ES simulations under the RCP 2.6 and RCP 8.5 scenafh@t while two simulations may produce S'm'mcéobal evo-
ios they produce the dark red and dark blue curves, respectively. Thiition, that evolution may result from different balances be-
actual annual mean RCP 2.6 and RCP 8.5 smooftjedtime se- ~ tween long-term and short-term climate forcing agents, for
ries at 45.2 S, 169.2 E are shown as light blue and light red lines, example, one simulation has high g@missions which are
respectively. The insert in the upper left shows the mean annuasignificantly offset by high sulfate emissions while the sec-
cycle, calculated from the monthi . time series, from 2090 to  ond scenario has both lower G@nd sulfate emissions such
2098 for all six time series. that theTy, ., volution in the two simulations is the same. A
location outside of the region of sulfate aerosol-induced cool-
. . . ing would then be under the influence of different £laut
levels required on the monthly medf;, time series, used with the sameT, .., across the two simulations. The effects

to derive weights within the regression model, were pro- £ such diff in short-lived radiative forci tsh
vided as the standard deviations on the differences betweefl SU¢h AIMETeENces in short-ived radiative forcing agents has

the smoothed and unsmoothed time series for each calend5f" been quantitqtively assessed in this study_but are recog-
month. In this way, months exhibiting greater natural vari- nised asa potentlgl facto.r t.hat may affect the I|_near|ty of the
ability are given less weight than those with smaller vari- regression model fit coefficients across scenarios.

ability. The extent of the agreement between these CPSI\/|I_| -LhGeE(,\)/IVZe rgg (;!oae agregénent bstween téhf t(I:PS(I.\:/IP;(lAd
derived time series and the original HadGEM2-ES time se- a i elds provides evidence fhat the

ries (underlying light blue and light red lines in Fig).is in- trained on RCP 8.5 simulations is able to provide a robust

| . , P .
dicative of the applicability of the CPSM. The CPSM tracks ergulat_mn_ Ofmax and_Tmin time series globally for the RCP
the original HadGEM2-ES output for the RCP 2.6 and RCP 'Tﬁm'ss'ons Sce”art')o' ¢ methodological s of th
8.5 simulations well, but tends to underestimate the magni- eére are a numbver of methodological aspects ot the

tude of the RCP 8.5 signal and overestimate the magnitude O?PSM approach which extend or improve upon the simple

the RCP 2.6 signal, suggesting possible non-linearities in thé)edagogmal examp_le given above_. '_I'hese methodological as-
system. Previous studies have found that errors arising l‘ronﬁ)eCtS are explored in greater detail in Sedti 7 below.
pattern-scaling are much greater when scaling from low to
high emissions scenarios than when scaling from high to low N ] .
scenariosKluntingford et al.200Q Mitchell, 2003. 4 Additional basis functions

The seasonality of the fit coefficient (lower-right inset in
Fig. 4) indicates thaf’;,  at this particular location, in late
summer (January—March) increases almost as rapidly as the

global mean temperature, but at only around half this rate . . .
in late winter. The upper-left inset in Fig demonstrates Some SCMs, such as MAGICC, in addition to generating

that this seasonality is consistent with what is seen in thetlme series of annual mean global mean S“Tface tgmperature,
smoothed raw HadGEM2-ES output. are also able to generate annual mean hemispheric mean land

(TsH1and @and TyH land) and ocean sy oceanand TNH ocean
temperature time series — hereafter collectively referred to
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4.1 Regression model structure with multiple basis
functions
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Fig. 5. The change ifj4x and Tr{nin between 1961-1990 and 2090-2099 in January and July derived from the CPSM (left column) and
extracted from the HadGEM2-ES model (right column). Both model simulations are based on RCP 4.5 emissions, while the CPSM was
trained on HadGEM2-ES simulations based on RCP 8.5 emissions.

as T,. These time series, when used as additional predic- As before, all predictor and predictand time series are
tors, may provide a degree of explanatory power above whasmoothed with a Savitzky—Golay filter.

would be available when onl§y,,., is used as the predic-

tor. The construction of the regressmn model underlying the4.2 Orthogonalising multiple basis functions

CPSM would then be of the form:

F j(y,m) = j(m) x

The T/ time series in Eq.3) are not independent from each
other and, not surprisingly, are highly correlated. This lack of

Tyiobal(¥) + Bij (m) X T jand(») orthogonality in the basis functions of the regression model

+ i (m) X T oceary) (3) often results in the variance being assigned rather arbitrarily

+ Sl,j(m) X TéH |anc‘y) + el',j(m)

by the linear least squares algorithm amongst the five basis
functions. As a result, fit coefficients can become very large,

/
X Tsh oceady) + Ri j(y,m). and sometimes negative, since the positive signal from one
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Fig. 6. Plots of the orthogonalised; | time series from the RCP 4.5 simulation B 5, together with their associated annual mean
regression model fit coefficients. denotes that the basis functions have been orthogonalised. Double hatching shows where the coefficients
are not statistically significantly different from zero at thelgével and single hatching where they are not different from zero atd¢Hex2|.

The thin black line on each map indicates the 0.0 value. Minimum values are shown in blue and pass through cyan, green, yellow and orange
to maximum values in red (see lower left corner in each panel).

basis function can offset the negative signal from another toof the basis functions also precludes a direct comparison of
track a small change in the predictand. In addition to preclud+egression model fit coefficients obtained from training on
ing a physical interpretation of the fit coefficients, this lack of AOGCM simulations from different emissions scenarios.
orthogonality can result in unstable behaviour of the CPSM  To circumvent these problems, tfi¢ time series are or-

if the T time series are obtained from an SCM which may thogonalised using a Gram—Schmidt orthogonalisation algo-
have a slightly different distribution of heat content betweenrithm (Press et al.1989 before they are used as basis func-
ocean and land than in the AOGCM on which the CPSM wastions in the regression model. This ensures that each addi-
trained (hereafter referred to @5, ). The non-orthogonality  tional basis function only describes the variance not already
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explained by the existing basis functions, and that coeffi- i
cients obtained from fits to different emissions scenarios are T'max
directly comparable.

4.3 Demonstration of the use of multiple basis functions

The five basis function time series, extracted from a
HadGEM2-ES RCP 4.5 simulation, were smoothed and or-
thogonalised and are shown together with their associated re-
gression model fit coefficients in Fig. The fit coefficients
were derived globally at every grid point by applying the re-
gression model t@,,,, where the ;.. time series were also
extracted from the HadGEM2-ES RCP 4.5 simulation. 0
The apparent decadal variability seen in the four time se-
ries displayed in Fig6 (excluding Télobau, where the sub- T'min
script L indicates that the basis function has been orthogo-
nalised) should not be confused with unforced decadal-scale
variability in the climate system but rather seen as subtle
decadal-scale departures from the monotonically increasing

Télobal time series which may well be forced changes. Fig-

ure 6a shows that for the primary predictoTé(obaLL), the
associated regression model fit coefficienir{ Eq. 3) is ev-
erywhere statistically significantly different from zero, max-
imizing in the Arctic and with lowest values over the oceans
consistent with what was shown in Fig. When the shape

Frequency

Frequency

of a F/ . time series (see E4) is simply a linear scaling of 0 o1 02 03 04 05 06 07 08 09 1
b . . _ . S8R5 basis functions / SSR1 basis functions
Télobau, all higher order fit coefficients are zero (the zero line

in all Fig. 6 panels is indicated with a thin black line). Care Fig. 7. Histograms of the ratios of the SSR values for the five basis

must be taken when attributing cause and effect in Big. functions CPSM (SSR5) to the one basis function CPSM (SSR1)

For example, in this simulation, additional predictive power for Tpmay (upper panel) andy;, (lower panel). The SSR ratios

appears to be gained from tH&, oeean time series over —Wwere determined for every grid point by dividing SSRS by SSR1.

the Arctic Ocean but also, interestingly, over the SouthernThe grid points and corresponding SSR ratios were aSS|g_ned to pe

Ocean where a longitudinal dipole in response to the Orthoglocated over Iand.or ocean and those values are shown in the.hls-

onalisedT” is apparent. Does this suggest that thetograms. SSR ratios show_n here are based on aI_I three RCP simu-

Northern I’:llgr%ﬁg%nhere ocean isla driver of variabilityrjf, Iatlo:s, where the_ regression model has been trained separately on
X

off the Antarctic coast? This is unlikely. Rather the variability each RCP scenario.

in T2 Off the Antarctic coast, over and above what would be

expected from changes Fg‘lobaLL’ is correlated with changes simulations. In the first version On%obal was used as a pre-

in the orthogonalisedy,; ocean time series. Had the basis dictor whereas in the second all fi& , were used as pre-
functions been orthogonalised in a different order, it is likely dictors. To derive a globally applicable measure of the dif-
that different conclusions would be drawn. ferences between the two model constructs, the sum of the
While additional basis functions may provide additional squares of the residuals (SSR) (i.e. the differences between
predictive power (see below), the need to orthogonalise thesthe HadGEM2-ES time series and the time series produced
basis functions obfuscates a physical interpretation of whafrom the regression model) were calculated for each model
sources of variability they represent. The exact morphologyconstruct. For each AOGCM grid cell, the SSR value, calcu-
of the fit coefficients shown in Fid is also likely to be sim-  lated from the CPSM with five basis functions (SSR5) was
ulation dependent and dependent on the degree of smoothingjvided by the SSR value calculated from the model with a
applied to thel’; time series. Analyses with access to an en-single basis function (SSR1). This was done for each of the
semble of simulations made under the same boundary condihree RCP scenarios for which simulations were available.
tions might provide more robust results. The calculated SSR ratios for every grid point were assigned
to be located either over land or ocean and the resul®&{fgy
4.4 Assessing the value of using multiple basis functions - and7;/,. , for all RCP scenarios, are shown in the histograms
in Fig. 7.
Two different versions of the CPSM were trained Bf,, g
and T, time series obtained from the HadGEM2-ES
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By using the hemispheric annual mean temperatures over
land and ocean as predictors in addition to the global an- "*[Z%
nual mean surface temperature, the SSR over land is typi_ 1
cally reduced by 25 % to 35 %, for boff,,, and 7. Over — Zqgl?™
the oceans, however, the SSR is typically reduced by abou_f;‘,ole_
50 % to 60 % when using additional information about hemi-
spheric ocean and land temperatures as predictors. The n
sults suggest that while adding more basis functions to the [ antarctic sea ice (62°s 26w)
regression model makes a physical interpretation of the as ° [ r
signment of variability across the different basis functions g /
difficult to interpret, it does result in a CPSM that is better
able to track subtle changes if{,,, and 7, that are not
simple linear scalings df,, .- Whether that additional skill b
is physically meaningful or just a statistical artefact requires Lotalelelebilatatutalyl e
further investigation. For the remainder of this paper the Sin- 8 arctic sea ice (79N 128°F) 8 Arctic (77°N 118°W)
gle basis function version of the CPSM (which is the more I
traditional version of the CPSM) is used to explore the re-

maining methodological issues addressed in this paper.

alpha for T'max

alpha for T'min

0.4 Alexandra (45.2S° 169.4°E) 0.4-Alexandra (45.2S° 169.4°E)
I B T S A i TP PO P

—— RCP 2.6
—— RCP 45
—— RCP 8.5

5 Scenario dependence

The key assumption of the pattern-scaling approach is tha
the relationship between the predictors and the predictand
is linear, that is, the regression model fit coefficients should,
ideally, be robust properties of the climate system and shoult
not depend on GHG emissions scenarios or vary with time.
To test these assumptions, regression model fit coefficient
were derived using all three RCP simulations available from
the HadGEM2-ES model where orily,, was used as the - Fig. 8. o fit coefficients for T,y (left column) and7’ . (right
predictor time series. The seasonal cycles of thefecoef- column) at seven selected sites (the Alexandra, New Zealand, site is
ficients, together with theird uncertainties, for four selected ~ examined for bottTj,x andT;, ;) derived by fitting the regression
sites forT,,,, and for four selected sites fat;, (one site in  model to output from three simulations of the HadGEM2-ES model
common), are shown in Fig. based on the RCP emissions scenarios denoted in the legend. The
The two Arctic sites show peaking in October or Novem-  solid lines show the regression model coefficients while the shaded
ber during the onset of sea-ice formation suggesting thategions bordered by dashed lines show theubcertainties on the
long-term changes in sea ice in this season may be drivin it coefficients. The horizontal dashed black line marks the zero line.

e : . ote the different scales on thyeaxes.
the large sensitivity of ., and 7y, to Ty, Interior sites bea

alpha [K/K]

N

0I.I|I.I.I.l||.l.l.||l.l 0 PEN PO P P P . | I
Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov
Month Month

min
in Greenland and Siberia shawpeaking around the begin-

ning and end of winter suggesting that Iong-term.changes Tcontinental site, both the seasonal amplitude and absolute
snow cover and hence surface albedo at these times may b, qnityde ofx are smaller than over the Weddell Sea. This

driving the high values inx. At the beginning and end of g 040t that long-term changes in sea-ice albedo also drive
the winter, the magnitudes of at both sites over the Arctic the changes /.., and 7. in the Antarctic, though to a

Ocean are greater than the magnitudes over the two interi%sser extent th min

. : o : . an in the Arctic.
sites. This amplified seasonal changevirover the Arctic To estimate the extent to which thefit coefficients differ

Ocean indicates that the long-term changes in sea-ice exteny st the three different emissions scenarios, the trend in

and concentration have a stronger impact on the sensitivity, 5cross the three RCP scenarios was determined for every
/ / /

Of Tinay aNd Ty, 10 T than surface albedo changes over o.iq nqint and month, respectively. Global maps of the trend

min
land at high latitudes. The Southern Hemisphere mid-latitudq-n « (in units of radiative forcing (W m?) associated with
each of the RCPs) for the predictaffg,, for four selected

site selected (Alexandra) showspeaking in summer (De-
min months are shown in Fi@. If « does not change across dif-

cember to February; see also F4y.for both 7,,, and 7},

with the seasonal cycle i being slightly more pronounced  foent RCP simulations, all values in FRywould be zero.
for Tj.y At the high southern latitude site over Antarctic

sea ice (Weddell Seay, peaks in July/August which might

be related to changes in sea-ice extent. Over the Antarctic
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Fig. 9. The trend inx for T}, across the three RCP scenarios from whichdithvalues were derived (see colour scale on right). Regions of
dense stippling show where the trend is not statistically significantly different from zero at feeel and less dense stippling shows where
the trend is significant at thesllevel but not at the @ level. Unstippled regions show where the trend is significant at éhkezel. White
dots show the location of the sites presented in &ig.

In most regions of the world, particularly over the North- of these non-linearities, and the seasonality of the amplify-
ern Hemisphere land and the Arctic in January and Octo-ing/damping processes in the response patterns, is beyond
ber, the trend inx is statistically significantly different from the scope of this paper.
zero at the 2 level (unstippled regions in Fi@). These re-
sults indicate that the coefficients are dependent on the emis- ) ) ] o
sions scenario, and non-linearities between the predictor anfi  The use of multiple simulations for training

predictand exists. Those non-linearities are most pronounce%here the rearession model fit coefficients do not show a
at high northern latitudes in January and October. In Octo- 9

ber, in the Arctic, thex coefficients decrease with increas- strong dependence on the emissions scenario (see Sect.

ing GHG concentrations (reflected in the negative trend inabove), it is conceivable to derive the regression model fit
g & ) 9 coefficients from all available scenarios at once, rather than
« in Fig. 9). This suggests that there are processes at Worlfrom a single scenario. As described above and in Ap-
. S . .
Wh'Ch dgmp th.e response O ax 0 Changes iy, With pendix A, three different simulations were available to de-
increasing radiative forcing. In January, on the other hand’rive the regression model fit coefficients. Two different ap-

« increases with increasing GHG concentrations, ampllfylngproaches for making use of multiple simulations to derive the

/ H /
th? requnse_onaX to Ch?‘”ge.s M g1opqr The strength of regression model fit coefficients are described and assessed
this amplification in mid-winter is somewhat weaker than the ., . .
A . in Sects.6.1 and 6.2 Previous studies have found that un-
damping in autumn. Over the oceans and most regions of the

Antarctic, the small trend ia is not statistically significantly certainties in fields derived using pattern scaling are much

different from zero at the® level, indicating that the coeffi- greater when scaling from low to high emissions scenarios

. . L : ._than when scaling from high to low scenaridtuftingford
cients are independent of the emissions scenario from which : . . .

. . et al, 200Q Mitchell, 2003. It is therefore important to in-
they were derived. Whatever processes are causing the nons; . . ) o .
) . i . clude AOGCM simulations from high emissions scenarios
linear behaviour between the predictor and predictand, the - .

: . hen training the regression model.

do not influence the behaviour @f,,, over the ocean and

most parts of the Antarctic. An investigation of the causes
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6.1 The super-ensemble approach are normalised to sum to 1.0. In this approach, fields gen-
erated using regression model fit coefficients derived from
In the super-ensemble approach, the available time series ¢fn AOGCM simulation Wher@élobal is very similar to the
I I H 1 1 . . .
Tax Tmin @NdTgjop, required to train the regression model Tyional from the SCM, will be given greater weight than
are each sequentially concatenated and a single set of rgs|ds generated using regression fit coefficients derived from

gression model fit coefficients is deriveliosteenoja etal.  an AOGCM simulation which was more different. The final
2007. The implicit assumption in this approach is that the anomaly fieldV’ is then calculated using

regression model fit coefficients do not depend significantly

on the scenario on which they are derived (i.e. that the de- N
pendence offy,, and Ty, On T, . is largely linear). This ~ V'(y,m) = > Wi x F'(y,m)i. (5)
assumption was tested in Sest.The advantage of such an k=1

tar]pp][ft)achflf§ Fhat'[ magythmor;a data are a;v?n?bleilfor ge”;/m%hereN is the number of simulations available for deriving

€ Tt coetlicients and theretore, more statistically robust 1€y, o, regression model fit coefficients aRtlare the anomaly
sults are obtained. If the simulations used for the fitting areg4s derived from the application of the regression model
based on a number of different emissions scenarios, the r

. ) . . . eL]sing theN sets of fit coefficients.
sultant regression model fit coefficients will be less sensitive

to any specific scenario. Furthermore, fitting to a number ofg 3 Relative merits of super-ensemble and weighted
simulations reduces the likelihood of generating geospatial contribution approaches
structure in the fit coefficients (see Se2t6) that may re-
sult from multi-decadal variability in any specific simulation To explore the relative performance of the super-ensemble
as discussed further in Se6t3. If, however, the regression and weighted contribution approaches, these two methods
fit coefficients are simulation/scenario dependent, the uncerwere applied for training the CPSM;;,,, and 7., time se-
tainty on the fit coefficients will increase when they are ob- ries from HadGEM2-ES simulations based on RCP 2.6 and
tained from a super-ensemble fit. RCP 8.5 emissions were used to derive the fit coefficients for
As detailed above, to use the CPSM in application mode(j) training the regression model using the super-ensemble
the fit coefficients derived by fitting to multiple simulations approach (Sec#.1) and (i) training the regression model
can then be applied td},, ., ime series obtained from, for on RCP 2.6 and RCP 8.5 separately resulting in two sets of
example, SCM output to produce the final anomaly fields forcoefficients (Sect6.2). These three sets of fit coefficients
any prescribed emissions scenario (provided as input to thgone from the super-ensemble approach and two from the

SCM) and time. weighted contributions approach) were then used to model
. o Tmax and Tp,, where Ty, from the HadGEM2-ES RCP
6.2 The weighted contributions approach 4.5 simulation was used as the predictor time series. As men-

. o ) tioned in Sect3, in this study the focus is on exploring the
In the weighted contributions approach, multiple sets of re-p o dological aspects of the pattern-scaling approach and
gression model fit coefficients are obtained by fitting By ( therefore output from the same AOGCM (but different emis-
individually to the available simulations that are based Ongjqng scenario) is used in application mode instead of using
different emissions. When the CPSM is used in applicationgme series from a SCM. By comparing time series generated
mode, and the fit coefficients are applied/fy, the mul-  py the cpSM with time series from the HadGEM2-ES RCP
tiple sets of regression model coefficients result in multiple 4’5 simulation, a validation of the CPSM can be achieved.
realisations of thel,,, and 7, fields. A weighted sum of o Savitzky—Golay smoothetl,,, and T’ annual mean
these_ fields then produces a single time_ serie$;of and time series from the raw HadGEal\)>I2-ES nl%r(]:P 4.5 simulation
Tinin fields. The weights are calculated using are compared to the annual mean time series derived from
the CPSM output for four selected locations and are shown
AW; S
Wi=— - - 5 4) in Fig. 10. _ o
2~ y=1Tgiobar scM¥) ~ Tgiobal aocem () The results from the weighted contributions approach
(blue line in Fig.10) agree reasonably well with the re-
where AW are prescribed a priori weights that, if desired, sults derived from the super-ensemble approach (red line
can be used to give a regression coefficient set greater emn Fig. 10) for both 7., and 7., .. Both the output from
phasis in the derivation of the surface climate variable fieldsthe weighted contributions approach and from the super-
Tgiobal scm @€ the global mean temperature anomalies fromensemble approach reproduces the HadGEM2-ES time se-
the prescribed SCM simulatioffiy ..., aoccm @r€ the global  ries well for most of the selected sites. The largest differ-
mean temperature anomalies ?rom the AOGCM simulationences in the simulation d@f;,,, between the two methods, but
used to derive that particular set of regression model coalso between the HadGEM2-ES time series and the CPSM
efficients, andY is the total nhumber of years for which output, occur over Alexandra, New Zealand. The increase
both T ona1 scm@NAT gopal socem@re available. The weights in 7y, at Alexandra ceaseth around 2070 but occurs later
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for RCP 2.6 emissions scenario is similar to the one from
the RCP 4.5 emissions scenario, using the coefficients from
the weighting contribution approach in the CPSM applica-
tion will reproduce the evolution of the climate variable un-
der RCP 4.5 better than the application of the super-ensemble
coefficients (e.g. the USA site in Fid0). If, however, the

Alexandra (45.2°S, 169.4°E) evolution of the climate variable of interest for RCP 8.5 is
similar to that from RCP 4.5, using the fit coefficients from
the super-ensemble approach will reproduce the evolution of

[ the climate variable slightly better (e.g, for Alexandra

in Fig. 10).

To derive a more robust and global measure of how well
the CPSM (based on (a) the weighted contribution, and
(b) the super-ensemble approaches) can reproduce the RCP
4.5T,;, time series modelled by HadGEM2-ES when trained
on the RCP 2.6 and RCP 8.5 simulations, time serie of
obtained from the CPSM were regressed against smoothed
time series of the same variable from the AOGCM. The
slopes of linear fits to the scatter plots of CPSM data against
Canada (59°N, 117°W) AOGCM data from the two approaches are shown in Eig.

— together with the probability distribution function of the
F| = G ovmt (o ol approach) slopes (histogram in the rightmost panel of Flg). If the
[ | CPSM output (wlghted cotrbutions approach) i time series from the CPSM and from the AOGCM out-
put at each grid point showed the same secular variation, all
values plotted in Figl1 would be 1.0.

The calculated slopes using results from both methods
Atiantic Ocean (2°S, 0.75°W) bracket the range 0.8 to 1.2 almost everywhere, with regions
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1960 2000 2040 2080 1960 2000 2040 2080 in the high northern and southern latitudes exhibiting slopes
Year Year that are statistically significantly different from 1.0 at the

20 level (hatched area in Fig.1). The probability distribu-

tion functions of the slopes indicate that the super-ensemble

(smoothed) compared to annual mean CPSM output based on thapproach seems to be marginally better in reproducing the

1

Fig. 10. Annual meanTp,y (left column) and7; . (right col-
umn) time series from the HadGEM2-ES RCP 4.5 simulation

same emissions scenario using the regression model fit coe1‘ficient§OGC'\/I results than the individual weighting approach; the

from the super-ensemble (Se6tl) and the weighted contributions MOSt likely value derived from a Gaussian fit to the his-
(Sect6.2) approaches based on RCP 2.6 and RCP 8.5 training. Notéograms is 1.006: 0.0991 for the super-ensemble approach
the different scales on theaxes. compared 0.983 0.107 for the weighted contributions ap-

proach.

The results presented here do not robustly discriminate
in both the super-ensemble and weighted contribution apbetween the super-ensemble and individual weighting ap-
proach. Furthermord,.., warms faster than it would be ex- proaches. Which of the two approaches gives better agree-
pected from7;, .- Thea value for RCP 4.5 is effectively ment with the AOGCM signal depends on the location,
greater than for RCP 2.6 and RCP 8.5 (see 8jigind, there-  for example, in the north-east of Scandinavia the individ-
fore, when the training is performed on RCP 2.6 and RCPual weighting approach reproduces the AOGCM time se-
8.5, the amplitude of th&,,,, signal is underestimated. ries more accurately while over India the super-ensemble ap-

Since thel, . time series from the RCP 4.5 simulationis proach might be a better choice.
more similar in magnitude to the RCP 2.6 simulation than the
RCP 8.5 simulation, in the weighted contributions approach
the fields derived from the RCP 2.6 derived fit coefficients 7 Time dependence of the fit coefficients
(F'" in Eq.5) is weighted more than the fields obtained using
the regression model fit coefficients derived from the RCPThe regression model fit coefficients should, ideally, not vary
8.5 simulation. In contrast, in the super-ensemble approachyith time. However, non-linearities may result in fit coeffi-
the correlation betweeff,, and Tg’lobaI is driven primar-  cients being different at the end of the period (e.g. through
ily by the strongest signal which, in this study, comes from the 2080s) compared to the beginning of the period (e.g.
the Ty, time series obtained from the RCP 8.5 simulation. the 2000s). To investigate whether the fit coefficients show
Therefore, if the evolution of the climate variable of interest any time dependence, they were expanded to include a linear
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are not statistically significantly different from 1.0 at the vel. Small black dots show the locations of the sites from E®.The
rightmost panel shows the PDF of the linear slopes for both the weighting contributions approach and the super-ensemble approach.

dependence on time, that is, tlagof Eq. ) were expanded common reduction of 30 % or less. Over the Weddell Sea and
as over the Arctic ocean, the sum of the squares of the residu-
als of the regression model fit to HadGEM2-ES time series
o = ok + kL X 1, (6)  of Ty andT’, can be reduced by up to 50 % by including
time dependence in the regression model fit coefficients. The
. blue patches in Figl2 over the Pacific and Indian oceans
tive for years bfafore 1980). , , indicate that including this time dependence can reduce the
. The regression model was then trainedZ&ip, an_d Trmin . SSR by about 70 %. While including time dependence in the
time setles from the HadGEI\/!2-ES RCP 4.5 S'mUI".’mon’fit coefficients can improve the variance explained by the re-
Where TglObal was the only predictor was expanded first gression model, these gains are observed more over ocean
as shown in Eq.2) and then, secondly, with each of the than over land. We consider the gains over land to be suffi-

of Eq._(Z)SexpandedhfurtShSer as iln Ec) lculated f h ciently small as to not warrant including time dependence in
As in Sect.4.4, the R value was calculated for eac the fit coefficients.

AOGCM grid cell, where the SSR value, calculated from the

model with time dependent fit coefficients, was divided by

the SSR value calculated from the model where time depeng Discussion and conclusions

dent in the fit coefficients was excluded. The resultant ratios

for Tacand7,,,, usingTy, .., from the RCP 4.5 emissions  The results presented above indicate that the climate pattern-

scenario as the sole predictor, are shown in EB. scaling approach faithfully emulates the behaviour of an
Over most of the globe the inclusion of time dependenceAOGCM (in this case HadGEM2-ES) over most regions of

in the regression model fit coefficient reduces the sum of thehe globe; the Arctic poses a particular challenging region

squares of the residuals. Reductions are smallest over nortHer the application of a CPSM. A key test of the performance

ern hemispheric land and Antarctic landmass with a mosiof the CPSM is the extent to which it can reproduce fields

wheret represent the number of years after 198% (hega-
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(a) % CPSM, primarily over the oceans. Access to additional pre-
X ] dictor time series, such as hemispheric mean ocean and land
temperatures also improves model performance, again pri-
marily over the oceans. However, when more than one pre-
dictor time series is used, it is essential that the predictor
basis functions are orthogonalised prior to use. Where more
than a single simulation are available to train the CPSM, two
different approaches were explored, namely, (1) the super-
ensemble approach and (2) the weighted contributions ap-
proach. Our CPSM diagnostics did not provide a robust in-
dication which of these two methods best reproduces the cli-
- _ mate response pattern from an AOGCM.
B 10 %0 g0 0 a0 o 30 6o o0 130 1% 180 The RCP scenarios which formed the basis for the sim-
(o) Longitude (deg) ulations used in this study do not only differ in their long-

3 term forcing agents (such as @X®ut also in their short-term
forcing agents (such as black carbon aerosol) and differences
in the balance between short-lived and long-lived radiative
forcing agents in the RCP scenarios may affect the robust-
ness of the derivation of the regression model fit coefficients.
The effects of such differences in short-lived radiative forc-
ing agents, which act locally, and long-lived radiative forcing
agents, which act globally, across the RCP scenarios has not
been quantitatively assessed in this study. This might, in part,
cause the non-linearity which manifests as emissions sce-
nario dependence in the fit coefficients at some locations. The
90— \ A differing effects of short-term and long-term forcing agents
-180 -150 -120 -90 -60 -30 O 30 60 90 120 150 180 ) N | ) o )

Longitude (deg) on the derivation of the regression model fit coefficients will
be investigated in a future study.
The scope of this study was to present a newly developed
CPSM and to investigate some methodological aspects of the
) time Seriirza's pattern-scaling_ approach. For that purpose the climate pat-
terns were derived from one AOGCM only, HadGEM2-ES.
.gg a future study we intend to apply the pattern-scaling ap-
where (i) the time dependence was included (§SRime, Ed. 6), prqach. to a number o_f simulations from different A.C.)G.CMS.
and (ii) time dependence was excluded ($SR¢ime Eq. 2). This will allow an estimate of the spread of sensitivities of
climate variables to changes in global mean temperature due
to different model parameterisations.

This study focussed on generating anomalies with respect
on which it was not trained. This study has shown that thisto the baseline period 1961-1990 as more statistically robust
test is passed over most regions of the globe; again the Arcresults can be derived. Once thg,, and7,,;, anomaly fields
tic is where it is most likely to fail. However, validating the have been obtained using the CPSM in application mode,
performance of the CPSM with a single AOGCM simulation they can be added to 1961-1990 monthly mean observations-
may be partially compromised by unforced variability (e.g. based climatologies of these fields to obtain absolute values.
El Niflo—Southern Oscillation, ENSO) in the AOGCM, al- These climatologies can be obtained, for example, from the
though in this study we have smoothed the time series withrdatabase of monthly climate observations from meteorologi-
the goal of removing such variability. Access to ensemblescal stations held by the Climatic Research Unit (CRU) of the
of simulations would be valuable in this regard. Dealing with University of Easy Anglia (UEAMitchell and Jones2005.
non-linearities in the response of a local climate variable toThe monthly mean data are interpolated onto a regular high-
global forcings also presents a challenge to the CPSM. Crosgesolution (0.8) longitude—latitude grid, extending over the
scenario linearity and linearity in time-dependence of the fitglobal land surface, excluding Antarctica, for the period 1901
coefficients were both explored. It was found that a break-to 2009. This data set is known as CRU TS 3.1 and is avail-
down in linearity across scenarios (i.e. regression model fitable online ahttp://www.cru.uea.ac.uk/cru/data/hrg/
coefficients are scenario dependent) occurs primarily in the
Arctic. Including a linear time dependence in the regres-
sion model fit coefficients improves the performance of the
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Appendix A simulations were initialised using the historical simulation, a
smooth transition from the historical to the future simulations
The HadGEM2-ES AOGCM is ensured.

The HadGEMZ2-ES simulations were obtained from the _

World Climate Research Programme’s (WCRP’s) CMIP5 AcknowledgementslVe acknowledge the modelling groups,

multi-model data set which is collected, organised angthe Program for Climate Model Diagnosis and Intercomparison

archived by the Program for Climate Model Diagnostics (PCMDI) and the WCRP's Working Group on Coupled Modelling
. . o WGCM) for their roles in making available the WCRP CMIP5

and Intercomparison (PCMDI). Only a brief description of ( . s

HadGEMZ—ESpis provifjed herg sincgdetailed documpentatio multi-model data set. For CMIP the US Department of Energy's

i . rfDrogram for Climate Model Diagnosis and Intercomparison
can be found irCollins et al.(2011) andJones et a2013. provides coordinating support and led development of software

HadGEM2-ES is a coupled AOGCM with a spectral infrastructure in partnership with the Global Organization for Earth
horizontal resolution of the atmospheric model componentsystem Science Portals. This work was funded under Ministry
of N96, comparable to 1.87%1.25 on a transformed of Primary Industries contract CX09X1004 and, in part, under
longitude—latitude grid. The atmospheric component of thethe Ministry of Business, Innovation and Employment contract
model consists of 38 vertical layers, extending to over 39 kmC01X1225.
in altitude. The ocean component has a horizontal resolution
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