Supplement of Geosci. Model Dev., 7, 2313-2332, 2014
http://www.geosci-model-dev.net/7/2313/2014/
doi:10.5194/gmd-7-2313-2014-supplement

© Author(s) 2014. CC Attribution 3.0 License.

Supplement of

The Wageningen Lowland Runoff Simulator (WALRUS): a lumped
rainfall-runoff model for catchments with shallow groundwater

C. C. Brauer et al.

Correspondence taC. C. Brauer (claudia.brauer@wur.nl)

1 Introduction

In this supplementary document we provide the main code for the Wageningen Lowland Runoff Simulator (WALRUS). The code is
written in R and will be made available as an R package (with additional pre- and postprocessing scripts) on the R CRAN website.
Please contact the first author for more information. WALRUS is licensed under the GPL v3 licence.

2 Script 1: loop over time steps

WALRUS_loop = function (pars)

{

compute number of o_steps

L = length (output_date)

make empty vectors for output states and fluxes

o = data.frame(matrix(nrow=L, ncol=11, dimnames=list (NULL,

C(II ETaCt n ,IIQII ’IIfGSII ,IIfQSII 'IIdVII ,Ildveq n 'IIdGII ,IIhQII 'IIhSII ,IIWII ,"dt_Ok II))))

look up soil type parameters

pars$b = soil_char[["b"]] [soil_char[["st"]]==pars$st]
pars$psi_ae = soil_char [[" psi_ae"]] [soil_char[["st"]]==pars$st]
pars$theta_s = soil_char[["theta_s"]][soil_char[["st"]]J==pars$st]
pars$aG = l—pars$aS

INITIAL CONDITIONS
Q[1] is necessary for stepsize—check (if dQ too large)

o$Q [1] = func_Qobs(output_date[2]) / (output_date[2] —output_date[1l]) %3600
hS from first Q measurement and Qh—relation
o$hS [1] = uniroot(f=function(x){return(

func_Q_hS(x, pars ,hSmin=func_hSmin (output_date[1])) —0$Q[1])},
lower=0, upper=pars$cD)$root

dG and hQ
if(is.null(pars$dG0)==FALSE) # if dGO provided
0o$dG [1] = pars$dGO
if ((pars$cD—0%dG[1]) <o$hS[1]) # if groundwater below surface water level
o$hQ [1] = 0%$Q[1]* pars$cQ # all Q from quickflow
telse{ # if groundwater above surface water level
o$hQ [1] = max(0,(0%$Q[1] —(pars$cD—0$dG[1]—0%hS[1])=*(pars$cD—o0$dG[1])/ pars$cG) =xpars$cQ)
}
telse{ # if dGO not provided
if(is.null(pars$Gfrac)==TRUE){pars$Gfrac=1} # if Gfrac also not provided, make Gfrac 1

if fGS not possible with current hS and cG, make Gfrac smaller

while (((pars$cD—o$hS[1])* pars$cD/pars$cG) < (pars$Gfrac*o$Q[1])) {pars$Gfrac = pars$Gfrac/2}

compute dG leading to the right fGS
0%dG [1] = uniroot(f=function(x){return((pars$cD—x—0$hS[1])*(pars$cD—x)/pars$cG —
0$Q[1]* pars$Gfrac)},
lower=1, upper=(pars$cD—o$hS[1])) $root
o$hQ [1] = 0$Q[1] x(1—pars$Gfrac) xpars$cQ
}
dependent variables
o$dVeq [1] = func_dVeq_dG(o$dG[1l], pars)
o$dV [1] = o$dVeq[1]

o$W [1] = func_W_dV(o$dV[1], pars)

#

o_step =o[1l,]

i = o]1,]

RUN FOR-LOOP OVER ALL TIME STEPS

for (t in 2:L)

{
start_step = output_date[t—1] # start at begin of output step
end_step = output_date[t] # first try whole output step
sums_step = rep(0,4) # to sum fluxes of substeps

as long as you're not at the end of the original time_step yet
while (start_step < (output_date[t] — p_num$min_timestep))
{
o_step[1,] = WALRUS_step(p=p, i=i, tl=start_step, t2=end_step)
if time step too large (and not very small)
if ((o_step$dt_ok = FALSE) & ((end_step—start_step) > p_num$min_timestep))

{

end_step = (start_step + end_step)/2 # decrease step and run model
telse{ # if one step completed (dt small enough)
start_step = end_step # start of next step
end_step = output_date[t] # try to the end of the step
sums_step = sums_step + o_step[l:4] # remember sums of fluxes
i = o_step # initial conditions for next step
}
}
final output of the step
o[t,] = o_step # keep states of last step
o[t,1:4] = sums_step # replace fluxes with sums of steps
}
remove dt_ok column
o=o0[,1:10]
return (o)

} # end function

compile to decrease runtime
WALRUS_loop = cmpfun(WALRUS_loop)

3 Script 2: one time step

WALRUS_step = function(pars, i, tl, t2)

{
44 FORCING
convert input to current stepsize [mm/timestep]
P_t = func_P (t2) — func_P (t1)
ETpot_t = func_ETpot(t2) — func_ETpot(tl)
fXG_t = func_fXG (t2) — func_fXG (t1)
fXS_t = func_fXS (t2) — func_fXS (tl)
hSmin_t = (func_hSmin(t2) + func_hSmin(tl))/2

444 STEPSIZE

dt = (t2 — t1)/3600 # compute dt (in hours because parameters are in hours)
dt_ok = TRUE # stepsize small enough as default
FLUXES (based on states from the start of this timestep [mm/timestep])
PQ =P_t * i$W xpars$aG

PV = P_t * (1-i$W) xpars$aG

PS = P_t xpars$aS
ETV = ETpot_t x func_beta_dV(i$dV) xpars$aG
ETS = ETpot_t xpars$aS

if (i$hS < p_num$min_h*1000){ETS = 0} # no ET from empty channel
ETact = ETV + ETS

fQS = i$hQ /pars$cQ xdt
fGS = (pars$cD — i$dG — i$hS) * max((pars$cD — i$dG),i$hS) /pars$cG =dt
Q = func_Q_hS(i$hS, pars=pars, hSmin=hSmin_t) xdt

#H#4t STATES (at the end of this time step / start of next time step) [mm])
note that fluxes are already for the whole time step (multiplied with dt)

dv = i$dV — (fXG_t + PV — ETV — fGS) /pars$aG
hQ = i$hQ + (PQ — fQS) /pars$aG
hS = i$hS + (fXS_t + PS — ETS + fGS + fQS — Q) /pars$aS
dG — i$dG + (i$dV — i$dVeq) /pars$cV xdt

SPECIAL CASE: LARGE-SCALE PONDING AND FLOODING
if ((dV < 0) | (hS > pars$cD))

{
if ((dV < 0) & (hS <= pars$cD)) # if ponding and no flooding
hS = hS + (—dV) xpars$aG /pars$aS # all ponds to surface water
dv =0 # soil moisture deficit to surface
if ((dV >= 0) & (hS > pars$cD)) # if no ponding and flooding
dV = dV — (hS—pars$cD) xpars$aS /pars$aG # all floods into soil
hS = pars$cD # channel bankfull
if ((dV <= 0) & (hS >= pars$cD)) # if ponding and flooding
{
dV = dVxpars$aG — (hS—pars$cD)=*pars$aS # compute total excess water
hS = pars$cD — dV
}
if (dV < 0){dG = dV} # if ponding, groundwater to pond level
}
###+ TEST IF STEP SIZE 1S SMALL ENOUGH
if (hS < —p_num$min_h) # if hS below channel bottom
{
dt_ok = FALSE
hS = p_num$min_h%100
telse if (hQ < —p_num$min_h) # if hQ below bottom Q-res.
{

dt_ok = FALSE

hQ = p_num$min_h

telse if(P_t > p_num$max_P_step) # if too much rainfall added
{

dt_ok = FALSE
telse if(abs(i$Q—Q) > p_num$max_dQ_step) # if change in Q too big
{

dt_ok = FALSE
telse if(abs(i$hS—hS) > p_num$max_h_change) # if change in hS too big
{

dt_ok = FALSE
telse if(abs(i$dG—dG) > p_num$max_h_change) # if change in dG too big
{

dt_ok = FALSE
}
##4 OUTPUT
compute dependent variables (at end of time step)
W = func_W_dV(dV, pars)
dVeq = func_dVeq_dG(dG, pars)

bind output together in a vector
return(c(ETact, Q, fGS, fQS, dV, dVeq, dG, hQ, hS, W, dt_ok))

} # end function

compile to decrease runtime
WALRUS_step = cmpfun(WALRUS_step)

