
Supplement of Geosci. Model Dev., 7, 2313–2332, 2014
http://www.geosci-model-dev.net/7/2313/2014/
doi:10.5194/gmd-7-2313-2014-supplement
© Author(s) 2014. CC Attribution 3.0 License.

Supplement of

The Wageningen Lowland Runoff Simulator (WALRUS): a lumped
rainfall–runoff model for catchments with shallow groundwater

C. C. Brauer et al.

Correspondence to:C. C. Brauer (claudia.brauer@wur.nl)

1 Introduction
In this supplementary document we provide the main code for the Wageningen Lowland Runoff Simulator (WALRUS). The code is
written in R and will be made available as an R package (with additional pre- and postprocessing scripts) on the R CRAN website.
Please contact the first author for more information. WALRUS is licensed under the GPL v3 licence.

2 Script 1: loop over time steps

WALRUS_loop = f u n c t i o n (pa r s)
{
compute number o f o_steps
L = l e ng t h (output_date)
make empty v e c t o r s f o r output s t a t e s and f l u x e s
o = data . f rame (mat r i x (nrow=L , n co l =11, dimnames= l i s t (NULL ,

c (" ETact " , "Q" , " fGS " , " fQS " , "dV" , " dVeq " , "dG" , "hQ" , " hS " , "W" , " dt_ok "))))

look up s o i l t ype pa ramete r s
pa r s$b = s o i l _ c h a r [[" b "]] [s o i l _ c h a r [[" s t "]]== pa r s $ s t]
p a r s $p s i_ae = s o i l _ c h a r [[" p s i_ae "]] [s o i l _ c h a r [[" s t "]]== pa r s $ s t]
pa r s $ th e t a_s = s o i l _ c h a r [[" the ta_s "]] [s o i l _ c h a r [[" s t "]]== pa r s $ s t]
pars$aG = 1−pars$aS

INITIAL CONDITIONS
Q[1] i s n e c e s s a r y f o r s t e p s i z e−check (i f dQ too l a r g e)
o$Q [1] = func_Qobs (output_date [2]) / (output_date [2]− output_date [1]) ∗3600
hS from f i r s t Q measurement and Qh−r e l a t i o n
o$hS [1] = un i r o o t (f=f u n c t i o n (x){ r e t u r n (

func_Q_hS (x , pars , hSmin=func_hSmin (output_date [1])) −o$Q [1]) } ,
l owe r =0, upper=pars$cD) $ roo t

dG and hQ
i f (i s . n u l l (pars$dG0)==FALSE) # i f dG0 p r o v i d ed
{

o$dG [1] = pars$dG0
i f ((pars$cD−o$dG [1]) < o$hS [1]) # i f groundwater below s u r f a c e water l e v e l
{

o$hQ [1] = o$Q [1] ∗ pars$cQ # a l l Q from qu i c k f l ow
} e l s e { # i f groundwater above s u r f a c e water l e v e l

o$hQ [1] = max (0 , (o$Q[1]−(pars$cD−o$dG [1]− o$hS [1]) ∗ (pars$cD−o$dG [1]) / pars$cG) ∗pars$cQ)
}

} e l s e { # i f dG0 not p r o v i d ed
i f (i s . n u l l (p a r s $G f r a c)==TRUE){ pa r s $G f r a c=1} # i f G f rac a l s o not p rov ided , make Gf rac 1
i f fGS not p o s s i b l e w i th c u r r e n t hS and cG , make Gf rac sma l l e r
wh i l e (((pars$cD−o$hS [1]) ∗ pars$cD/pars$cG) < (pa r s $G f r a c ∗o$Q [1])) { pa r s $G f r a c = pa r s $G f r a c /2}
compute dG l e a d i n g to the r i g h t fGS
o$dG [1] = un i r o o t (f=f u n c t i o n (x){ r e t u r n ((pars$cD−x−o$hS [1]) ∗ (pars$cD−x)/ pars$cG −

o$Q [1] ∗ pa r s $G f r a c)} ,
l owe r =1, upper=(pars$cD−o$hS [1])) $ roo t

o$hQ [1] = o$Q [1] ∗(1− pa r s $G f r a c) ∗pars$cQ
}
dependent v a r i a b l e s
o$dVeq [1] = func_dVeq_dG (o$dG [1] , pa r s)
o$dV [1] = o$dVeq [1]

1

o$W [1] = func_W_dV(o$dV [1] , p a r s)

#
o_step = o [1 ,]
i = o [1 ,]

RUN FOR−LOOP OVER ALL TIME STEPS
f o r (t i n 2 : L)
{

s t a r t_ s t e p = output_date [t−1] # s t a r t a t beg in o f output s t ep
end_step = output_date [t] # f i r s t t r y whole output s t ep
sums_step = rep (0 , 4) # to sum f l u x e s o f s ub s t e p s
as l ong as you ’ r e not at the end o f the o r i g i n a l t ime_step ye t
wh i l e (s t a r t_ s t e p < (output_date [t] − p_num$min_timestep))
{

o_step [1 ,] = WALRUS_step(p=p , i=i , t1=s t a r t_ s t ep , t2=end_step)
i f t ime s t ep too l a r g e (and not v e r y sma l l)
i f ((o_step$dt_ok == FALSE) & ((end_step−s t a r t_ s t e p) > p_num$min_timestep))
{

end_step = (s t a r t_ s t e p + end_step)/2 # dec r e a s e s t ep and run model
} e l s e { # i f one s t ep completed (dt sma l l enough)

s t a r t_ s t e p = end_step # s t a r t o f nex t s t ep
end_step = output_date [t] # t r y to the end o f the s t ep
sums_step = sums_step + o_step [1 : 4] # remember sums o f f l u x e s
i = o_step # i n i t i a l c o n d i t i o n s f o r nex t s t ep

}
}
f i n a l output o f the s t ep
o [t ,] = o_step # keep s t a t e s o f l a s t s t e p
o [t , 1 : 4] = sums_step # r e p l a c e f l u x e s w i th sums o f s t e p s

}

remove dt_ok column
o = o [, 1 : 1 0]

r e t u r n (o)
} # end f u n c t i o n

comp i l e to d e c r e a s e runt ime
WALRUS_loop = cmpfun (WALRUS_loop)

3 Script 2: one time step

WALRUS_step = f u n c t i o n (pars , i , t1 , t2)
{
FORCING
conve r t i n pu t to c u r r e n t s t e p s i z e [mm/ t ime s t ep]
P_t = func_P (t2) − func_P (t1)
ETpot_t = func_ETpot (t2) − func_ETpot (t1)
fXG_t = func_fXG (t2) − func_fXG (t1)
fXS_t = func_fXS (t2) − func_fXS (t1)
hSmin_t = (func_hSmin (t2) + func_hSmin (t1))/2

2

STEPSIZE
dt = (t2 − t1)/3600 # compute dt (i n hour s because pa ramete r s a r e i n hour s)
dt_ok = TRUE # s t e p s i z e sma l l enough as d e f a u l t

FLUXES (based on s t a t e s from the s t a r t o f t h i s t ime s t ep [mm/ t ime s t ep])
PQ = P_t ∗ i$W ∗pars$aG
PV = P_t ∗ (1−i$W) ∗pars$aG
PS = P_t ∗ pars$aS
ETV = ETpot_t ∗ func_beta_dV (i$dV) ∗pars$aG
ETS = ETpot_t ∗ pars$aS
i f (i$hS < p_num$min_h∗1000){ETS = 0} # no ET from empty channe l
ETact = ETV + ETS
fQS = i$hQ /pars$cQ ∗ dt
fGS = (pars$cD − i$dG − i $hS) ∗ max ((pars$cD − i$dG) , i$hS) / pars$cG ∗ dt
Q = func_Q_hS (i$hS , pa r s=pars , hSmin=hSmin_t) ∗ dt

STATES (at the end o f t h i s t ime s t ep / s t a r t o f nex t t ime s t ep) [mm])
note tha t f l u x e s a r e a l r e a d y f o r the whole t ime s t ep (m u l t i p l i e d wi th dt)
dV = i$dV − (fXG_t + PV − ETV − fGS) / pars$aG
hQ = i$hQ + (PQ − fQS) / pars$aG
hS = i$hS + (fXS_t + PS − ETS + fGS + fQS − Q) / pars$aS
dG = i$dG + (i$dV − i$dVeq) / pars$cV ∗ dt

SPECIAL CASE : LARGE−SCALE PONDING AND FLOODING
i f ((dV < 0) | (hS > pars$cD))
{

i f ((dV < 0) & (hS <= pars$cD)) # i f pond ing and no f l o o d i n g
{

hS = hS + (−dV) ∗pars$aG / pars$aS # a l l ponds to s u r f a c e water
dV = 0 # s o i l mo i s t u r e d e f i c i t to s u r f a c e

}
i f ((dV >= 0) & (hS > pars$cD)) # i f no ponding and f l o o d i n g
{

dV = dV − (hS−pars$cD) ∗ pars$aS / pars$aG # a l l f l o o d s i n t o s o i l
hS = pars$cD # channe l b a n k f u l l

}
i f ((dV <= 0) & (hS >= pars$cD)) # i f pond ing and f l o o d i n g
{
dV = dV∗pars$aG − (hS−pars$cD)∗ pars$aS # compute t o t a l e x c e s s water
hS = pars$cD − dV
}
i f (dV < 0){dG = dV} # i f ponding , groundwater to pond l e v e l

}

TEST IF STEP SIZE IS SMALL ENOUGH
i f (hS < −p_num$min_h) # i f hS below channe l bottom
{

dt_ok = FALSE
hS = p_num$min_h∗100

} e l s e i f (hQ < −p_num$min_h) # i f hQ below bottom Q−r e s .
{

dt_ok = FALSE

3

hQ = p_num$min_h
} e l s e i f (P_t > p_num$max_P_step) # i f too much r a i n f a l l added
{

dt_ok = FALSE
} e l s e i f (abs (i$Q−Q) > p_num$max_dQ_step) # i f change i n Q too b i g
{

dt_ok = FALSE
} e l s e i f (abs (i$hS−hS) > p_num$max_h_change) # i f change i n hS too b i g
{

dt_ok = FALSE
} e l s e i f (abs (i$dG−dG) > p_num$max_h_change) # i f change i n dG too b i g
{

dt_ok = FALSE
}

OUTPUT
compute dependent v a r i a b l e s (at end o f t ime s t ep)
W = func_W_dV(dV , pa r s)
dVeq = func_dVeq_dG (dG , pa r s)

b ind output t o g e t h e r i n a v e c t o r
r e t u r n (c (ETact , Q, fGS , fQS , dV , dVeq , dG , hQ , hS , W, dt_ok))

} # end f u n c t i o n

comp i l e to d e c r e a s e runt ime
WALRUS_step = cmpfun (WALRUS_step)

4

