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1 Introduction
In this supplementary document we provide the main code for the Wageningen Lowland Runoff Simulator (WALRUS). The code is
written in R and will be made available as an R package (with additional pre- and postprocessing scripts) on the R CRAN website.
Please contact the first author for more information. WALRUS is licensed under the GPL v3 licence.

2 Script 1: loop over time steps

WALRUS_loop = f u n c t i o n ( pa r s )
{
# compute number o f o_steps
L = l e ng t h ( output_date )
# make empty v e c t o r s f o r output s t a t e s and f l u x e s
o = data . f rame ( mat r i x ( nrow=L , n co l =11, dimnames= l i s t (NULL ,

c (" ETact " , "Q" , " fGS " , " fQS " , "dV" , " dVeq " , "dG" , "hQ" , " hS " , "W" , " dt_ok " ) ) ) )

# look up s o i l t ype pa ramete r s
pa r s$b = s o i l _ c h a r [ [ " b " ] ] [ s o i l _ c h a r [ [ " s t "]]== pa r s $ s t ]
p a r s $p s i_ae = s o i l _ c h a r [ [ " p s i_ae " ] ] [ s o i l _ c h a r [ [ " s t "]]== pa r s $ s t ]
pa r s $ th e t a_s = s o i l _ c h a r [ [ " the ta_s " ] ] [ s o i l _ c h a r [ [ " s t "]]== pa r s $ s t ]
pars$aG = 1−pars$aS

# INITIAL CONDITIONS
# Q[ 1 ] i s n e c e s s a r y f o r s t e p s i z e−check ( i f dQ too l a r g e )
o$Q [ 1 ] = func_Qobs ( output_date [ 2 ] ) / ( output_date [2]− output_date [ 1 ] ) ∗3600
# hS from f i r s t Q measurement and Qh−r e l a t i o n
o$hS [ 1 ] = un i r o o t ( f=f u n c t i o n ( x ){ r e t u r n (

func_Q_hS ( x , pars , hSmin=func_hSmin ( output_date [1 ] ) ) −o$Q [ 1 ] ) } ,
l owe r =0, upper=pars$cD ) $ roo t

# dG and hQ
i f ( i s . n u l l ( pars$dG0)==FALSE) # i f dG0 p r o v i d ed
{

o$dG [ 1 ] = pars$dG0
i f ( ( pars$cD−o$dG [1]) < o$hS [ 1 ] ) # i f groundwater below s u r f a c e water l e v e l
{

o$hQ [ 1 ] = o$Q [ 1 ] ∗ pars$cQ # a l l Q from qu i c k f l ow
} e l s e { # i f groundwater above s u r f a c e water l e v e l

o$hQ [ 1 ] = max (0 , ( o$Q[1]−( pars$cD−o$dG [1]− o$hS [ 1 ] ) ∗ ( pars$cD−o$dG [ 1 ] ) / pars$cG ) ∗pars$cQ )
}

} e l s e { # i f dG0 not p r o v i d ed
i f ( i s . n u l l ( p a r s $G f r a c)==TRUE){ pa r s $G f r a c=1} # i f G f rac a l s o not p rov ided , make Gf rac 1
# i f fGS not p o s s i b l e w i th c u r r e n t hS and cG , make Gf rac sma l l e r
wh i l e ( ( ( pars$cD−o$hS [ 1 ] ) ∗ pars$cD/pars$cG ) < ( pa r s $G f r a c ∗o$Q [ 1 ] ) ) { pa r s $G f r a c = pa r s $G f r a c /2}
# compute dG l e a d i n g to the r i g h t fGS
o$dG [ 1 ] = un i r o o t ( f=f u n c t i o n ( x ){ r e t u r n ( ( pars$cD−x−o$hS [ 1 ] ) ∗ ( pars$cD−x )/ pars$cG −

o$Q [ 1 ] ∗ pa r s $G f r a c )} ,
l owe r =1, upper=(pars$cD−o$hS [ 1 ] ) ) $ roo t

o$hQ [ 1 ] = o$Q [ 1 ] ∗(1− pa r s $G f r a c ) ∗pars$cQ
}
# dependent v a r i a b l e s
o$dVeq [ 1 ] = func_dVeq_dG (o$dG [ 1 ] , pa r s )
o$dV [ 1 ] = o$dVeq [ 1 ]
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o$W [ 1 ] = func_W_dV(o$dV [ 1 ] , p a r s )

#
o_step = o [ 1 , ]
i = o [ 1 , ]

# RUN FOR−LOOP OVER ALL TIME STEPS
f o r ( t i n 2 : L )
{

s t a r t_ s t e p = output_date [ t−1] # s t a r t a t beg in o f output s t ep
end_step = output_date [ t ] # f i r s t t r y whole output s t ep
sums_step = rep (0 , 4 ) # to sum f l u x e s o f s ub s t e p s
# as l ong as you ’ r e not at the end o f the o r i g i n a l t ime_step ye t
wh i l e ( s t a r t_ s t e p < ( output_date [ t ] − p_num$min_timestep ) )
{

o_step [ 1 , ] = WALRUS_step( p=p , i=i , t1=s t a r t_ s t ep , t2=end_step )
# i f t ime s t ep too l a r g e ( and not v e r y sma l l )
i f ( ( o_step$dt_ok == FALSE) & ( ( end_step−s t a r t_ s t e p ) > p_num$min_timestep ) )
{

end_step = ( s t a r t_ s t e p + end_step )/2 # dec r e a s e s t ep and run model
} e l s e { # i f one s t ep completed ( dt sma l l enough )

s t a r t_ s t e p = end_step # s t a r t o f nex t s t ep
end_step = output_date [ t ] # t r y to the end o f the s t ep
sums_step = sums_step + o_step [ 1 : 4 ] # remember sums o f f l u x e s
i = o_step # i n i t i a l c o n d i t i o n s f o r nex t s t ep

}
}
# f i n a l output o f the s t ep
o [ t , ] = o_step # keep s t a t e s o f l a s t s t e p
o [ t , 1 : 4 ] = sums_step # r e p l a c e f l u x e s w i th sums o f s t e p s

}

# remove dt_ok column
o = o [ , 1 : 1 0 ]

r e t u r n ( o )
} # end f u n c t i o n

# comp i l e to d e c r e a s e runt ime
WALRUS_loop = cmpfun (WALRUS_loop)

3 Script 2: one time step

WALRUS_step = f u n c t i o n ( pars , i , t1 , t2 )
{
### FORCING
# conve r t i n pu t to c u r r e n t s t e p s i z e [mm/ t ime s t ep ]
P_t = func_P ( t2 ) − func_P ( t1 )
ETpot_t = func_ETpot ( t2 ) − func_ETpot ( t1 )
fXG_t = func_fXG ( t2 ) − func_fXG ( t1 )
fXS_t = func_fXS ( t2 ) − func_fXS ( t1 )
hSmin_t = ( func_hSmin ( t2 ) + func_hSmin ( t1 ) )/2
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### STEPSIZE
dt = ( t2 − t1 )/3600 # compute dt ( i n hour s because pa ramete r s a r e i n hour s )
dt_ok = TRUE # s t e p s i z e sma l l enough as d e f a u l t

### FLUXES ( based on s t a t e s from the s t a r t o f t h i s t ime s t ep [mm/ t ime s t ep ] )
PQ = P_t ∗ i$W ∗pars$aG
PV = P_t ∗ (1−i$W) ∗pars$aG
PS = P_t ∗ pars$aS
ETV = ETpot_t ∗ func_beta_dV ( i$dV ) ∗pars$aG
ETS = ETpot_t ∗ pars$aS
i f ( i$hS < p_num$min_h∗1000){ETS = 0} # no ET from empty channe l
ETact = ETV + ETS
fQS = i$hQ /pars$cQ ∗ dt
fGS = ( pars$cD − i$dG − i $hS ) ∗ max ( ( pars$cD − i$dG ) , i$hS ) / pars$cG ∗ dt
Q = func_Q_hS ( i$hS , pa r s=pars , hSmin=hSmin_t ) ∗ dt

### STATES ( at the end o f t h i s t ime s t ep / s t a r t o f nex t t ime s t ep ) [mm] )
# note tha t f l u x e s a r e a l r e a d y f o r the whole t ime s t ep ( m u l t i p l i e d wi th dt )
dV = i$dV − ( fXG_t + PV − ETV − fGS ) / pars$aG
hQ = i$hQ + (PQ − fQS ) / pars$aG
hS = i$hS + ( fXS_t + PS − ETS + fGS + fQS − Q) / pars$aS
dG = i$dG + ( i$dV − i$dVeq ) / pars$cV ∗ dt

### SPECIAL CASE : LARGE−SCALE PONDING AND FLOODING
i f ( ( dV < 0) | ( hS > pars$cD ) )
{

i f ( ( dV < 0) & (hS <= pars$cD ) ) # i f pond ing and no f l o o d i n g
{

hS = hS + (−dV) ∗pars$aG / pars$aS # a l l ponds to s u r f a c e water
dV = 0 # s o i l mo i s t u r e d e f i c i t to s u r f a c e

}
i f ( ( dV >= 0) & (hS > pars$cD ) ) # i f no ponding and f l o o d i n g
{

dV = dV − ( hS−pars$cD ) ∗ pars$aS / pars$aG # a l l f l o o d s i n t o s o i l
hS = pars$cD # channe l b a n k f u l l

}
i f ( ( dV <= 0) & (hS >= pars$cD ) ) # i f pond ing and f l o o d i n g
{
dV = dV∗pars$aG − ( hS−pars$cD )∗ pars$aS # compute t o t a l e x c e s s water
hS = pars$cD − dV
}
i f (dV < 0){dG = dV} # i f ponding , groundwater to pond l e v e l

}

### TEST IF STEP SIZE IS SMALL ENOUGH
i f ( hS < −p_num$min_h) # i f hS below channe l bottom
{

dt_ok = FALSE
hS = p_num$min_h∗100

} e l s e i f (hQ < −p_num$min_h) # i f hQ below bottom Q−r e s .
{

dt_ok = FALSE
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hQ = p_num$min_h
} e l s e i f (P_t > p_num$max_P_step ) # i f too much r a i n f a l l added
{

dt_ok = FALSE
} e l s e i f ( abs ( i$Q−Q) > p_num$max_dQ_step ) # i f change i n Q too b i g
{

dt_ok = FALSE
} e l s e i f ( abs ( i$hS−hS ) > p_num$max_h_change ) # i f change i n hS too b i g
{

dt_ok = FALSE
} e l s e i f ( abs ( i$dG−dG) > p_num$max_h_change ) # i f change i n dG too b i g
{

dt_ok = FALSE
}

### OUTPUT
# compute dependent v a r i a b l e s ( at end o f t ime s t ep )
W = func_W_dV(dV , pa r s )
dVeq = func_dVeq_dG (dG , pa r s )

# b ind output t o g e t h e r i n a v e c t o r
r e t u r n ( c ( ETact , Q, fGS , fQS , dV , dVeq , dG , hQ , hS , W, dt_ok ) )

} # end f u n c t i o n

# comp i l e to d e c r e a s e runt ime
WALRUS_step = cmpfun (WALRUS_step)
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