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Abstract. The detection of Global Navigation Satellite Sys-
tem (GNSS) signals that are reflected off the surface, along
with the reception of direct GNSS signals, offers a unique
opportunity to monitor water level variations over land and
ocean. The time delay between the reception of the direct
and reflected signals gives access to the altitude of the re-
ceiver over the reflecting surface. The field of view of the
receiver is highly dependent on both the orbits of the GNSS
satellites and the configuration of the study site geometries.
A simulator has been developed to determine the location of
the reflection points on the surface accurately by modeling
the trajectories of GNSS electromagnetic waves that are re-
flected by the surface of the Earth. Only the geometric prob-
lem was considered using a specular reflection assumption.
The orbit of the GNSS constellation satellites (mainly GPS,
GLONASS and Galileo), and the position of a fixed receiver,
are used as inputs. Four different simulation modes are pro-
posed, depending on the choice of the Earth surface model
(local plane, osculating sphere or ellipsoid) and the consider-
ation of topography likely to cause masking effects. Angular
refraction effects derived from adaptive mapping functions
are also taken into account. This simulator was developed to
determine where the GNSS-R receivers should be located to
monitor a given study area efficiently. In this study, two test
sites were considered: the first one at the top of the 65 m Cor-
douan lighthouse in the Gironde estuary, France, and the sec-
ond one on the shore of Lake Geneva (50 m above the reflect-
ing surface), at the border between France and Switzerland.
This site is hidden by mountains in the south (orthometric

altitude up to 2000 m), and overlooking the lake in the north
(orthometric altitude of 370 m). For this second test site con-
figuration, reflections occur until 560 m from the receiver.
The planimetric (arc length) differences (or altimetric differ-
ence as WGS84 ellipsoid height) between the positions of the
specular reflection points obtained considering the Earth’s
surface as an osculating sphere or as an ellipsoid were found
to be on average 9 cm (or less than 1 mm) for satellite el-
evation angles greater than 10◦, and 13.9 cm (or less than
1 mm) for satellite elevation angles between 5 and 10◦. The
altimetric and planimetric differences between the plane and
sphere approximations are on average below 1.4 cm (or less
than 1 mm) for satellite elevation angles greater than 10◦ and
below 6.2 cm (or 2.4 mm) for satellite elevation angles be-
tween 5 and 10◦. These results are the means of the differ-
ences obtained during a 24 h simulation with a complete GPS
and GLONASS constellation, and thus depend on how the
satellite elevation angle is sampled over the day of simula-
tion. The simulations highlight the importance of the dig-
ital elevation model (DEM) integration: average planimet-
ric differences (or altimetric) with and without integrating
the DEM (with respect to the ellipsoid approximation) were
found to be about 6.3 m (or 1.74 m), with the minimum el-
evation angle equal to 5◦. The correction of the angular re-
fraction due to troposphere on the signal leads to planimet-
ric (or altimetric) differences of an approximately 18 m (or
6 cm) maximum for a 50 m receiver height above the reflect-
ing surface, whereas the maximum is 2.9 m (or 7 mm) for a
5 m receiver height above the reflecting surface. These errors
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increase deeply with the receiver height above the reflecting
surface. By setting it to 300 m, the planimetric errors reach
116 m, and the altimetric errors reach 32 cm for satellite el-
evation angles lower than 10◦. The tests performed with the
simulator presented in this paper highlight the importance
of the choice of the Earth’s representation and also the non-
negligible effect of angular refraction due to the troposphere
on the specular reflection point positions. Various outputs
(time-varying reflection point coordinates, satellite positions
and ground paths, wave trajectories, first Fresnel zones, etc.)
are provided either as text or KML files for visualization with
Google Earth.

1 Introduction

The Global Navigation Satellite System (GNSS), which in-
cludes the American GPS, the Russian GLONASS, and the
European Galileo (which is getting denser), uses L-band mi-
crowave signals to provide accurate 3-D positioning on any
point of the Earth’s surface or close vicinity. Along with the
space segment development, the processing techniques have
also improved considerably, with a better consideration of the
various sources of error in the processing. Among them, mul-
tipaths still remain a major problem, and the mitigation of
their influence has been widely investigated (Bilich, 2004).
The ESA (European Space Agency) first proposed the idea
of taking advantage of the multipath phenomenon in order to
assess different parameters of the reflecting surface (Martin-
Neira, 1993). This opportunistic remote sensing technique,
known as GNSS reflectometry (GNSS-R), is based on the
analysis of the electromagnetic signals emitted continuously
by the GNSS satellites and detected by a receiver after reflec-
tion on the Earth’s surface. Several parameters of the Earth’s
surface can be retrieved either by using the time delay be-
tween the signals received by the upper (direct signal) and
lower (reflected signal) antennas, or by analyzing the wave-
forms (temporal evolution of the signal power) correspond-
ing to the reflected signal. This technique offers a wide range
of applications in Earth sciences. The time delay can be in-
terpreted in terms of altimetry as the difference in height be-
tween the receiver and the surface. Temporal variations of
sea (Lowe et al., 2002; Ruffini et al., 2004; Löfgren et al.,
2011; Semmling et al., 2011; Rius et al., 2012) and lake lev-
els (Treuhaft et al., 2004; Helm, 2008) were recorded with
an accuracy of a few cm using in situ and airborne anten-
nas. Surface roughness can be estimated from the analysis
of the delay Doppler maps (DDM) derived from the wave-
forms of the reflected signals. They can be related to param-
eters such as soil moisture (Katzberg et al., 2006; Rodriguez-
Alvarez et al., 2009, 2011) over land, wave heights and wind
speed (Komjathy et al., 2000; Zavorotny and Voronovich,
2000; Rius et al., 2002; Soulat et al., 2004) over the ocean,
or ice properties (Gleason, 2006; Cardellach et al., 2012).
The GNSS-R technique presents two main advantages: (1) a

dense spatial and temporal coverage, not only limited to a
single measurement point or a non-repetitive transect as with
using classical GNSS buoys, and (2) a guarantee of service
for the next decades (because of the strategic role played by
these systems). GNSS-R altimetric accuracy is today at the
level of a few cm, but this technique will benefit, in the fu-
ture, from improved processing techniques and from the den-
sification of the GNSS constellation. The commonly used
GNSS-R system consists of two antennas (Fig.1): the first
one is right-hand circular polarized (RHCP) and zenith fac-
ing to receive the direct waves. The second one is left-hand
circular polarized (LHCP) and nadir facing to receive the
reflected waves. These reflected waves will predominantly
change their polarization from RCHP to LHCP by reflecting
at near-normal incidence. The reflected signals have an addi-
tional path delay with respect to the direct ones. The analysis
of the path difference between these direct and reflected sig-
nals is used to estimate the relative height difference between
the two antennas. In order to anticipate the impact of the
geometric configuration of the experiment, a simulator has
been developed to estimate the positions of reflection points
using a specular reflection point assumption. Four different
methods were implemented: approximating the Earth’s sur-
face as a local plane, as an osculating sphere, as an ellipsoid,
or integrating a digital elevation model (DEM). In addition,
the signal bending due to the neutral part of the atmosphere
is taken into account using the adaptive mapping functions
(AMF) from Gégout et al. (2011), and made available by
GRGS (Groupe de Recherche en Géodésie Spatiale). Simula-
tions were performed for different configurations: variations
in the reflectometer height, mask effects due to terrain, and
satellite network geometry.

This article is composed of three main parts following the
logical structure of Fig.2. The first part presents the data sets
used for initiating simulations, the second one concerns the
methodologies for the determination of the reflection points,
while the last one deals with the simulator performances and
simulation results.

Design of the simulator

The simulator has been developed in the GNU R language,
generally used for data processing and statistical analysis. A
user manual and a description of the R language can be found
on the websitehttp://www.r-project.org/. The main interest
of such a language remains in that it is distributed under a
GNU GPL license that does R routines in an open source
program, available on various platforms (i.e., GNU/Linux,
FreeBSD, NetBSD, OpenBSD, Mac OS and Windows).

The simulator is composed of three main blocks (Fig.2):
an input block that contains the different elements manda-
tory for the processing, a processing block where the user
can choose which algorithm to use, and an output block con-
taining the different results of the simulation.
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Figure 1. Principle of GNSS reflectometry.T : satellite/transmitter;
S: specular reflection point;ε: satellite elevation;M δAB(t): addi-
tional path covered by the reflected wave;d: interdistance between
the LHCP and RHCP antennas; andh: height of the receiver above
the reflecting surface.

As inputs, this simulator requires the receiver coordinates,
the satellite ephemeris and a set of optional environmental
parameters such as a DEM in order to take the possible mask-
ing of the terrestrial topography into account, as well as adap-
tive mapping functions to integrate atmospheric delays and
bending effects.

As outputs, the simulator provides the time-varying re-
flection point coordinates, but also various KML (Keyhole
Markup Language– the standard format used by Google
Earth) files such as satellite positions and ground paths, wave
trajectories and Fresnel first surfaces that can be opened us-
ing the Google Earth visualization tool.

2 Data sets

2.1 GNSS orbit parameters

The simulations are based on the determination of the
positions of the specular reflection points, once the re-
ceiver and the satellite positions are known. Satellite coor-
dinates can be obtained from the International GNSS Ser-
vice (IGS) ephemeris final products, which provide GNSS
orbit and clock offset data with a temporal resolution of
15 min in the SP3 format for the past epochs, or are de-
rived from the Keplerian parameters (semi-major axis, incli-
nation, and argument of perigee) to predict GNSS satellite

Figure 2. Data flowchart of the simulator. Three main blocks: an
input block that contains the different elements mandatory for the
processing, a processing block where the user can choose which
algorithm is to be used, and an output block containing the differ-
ent results of the simulation, namely KML files to be opened with
Google Earth.

positions. Ephemeris products are available on the IGS web-
site (http://igs.org/), and Keplerian parameters, e.g., athttp:
//www.navcen.uscg.gov.

2.2 Radio-electric mask

Simulations are performed for a given receiver position in the
WGS84 coordinate system and height above the ground. It is
possible to apply an elevation or azimuthal angle mask to the
simulations to avoid satellites with low elevation angles, for
instance. The elevation angle mask commonly used is set to
a 10◦ minimum and a 90◦ maximum, and no mask is set in
the azimuth.

2.3 SRTM digital elevation model

The most realistic simulation needs the integration of a digi-
tal elevation model (DEM) in order not only to take the pos-
sible masking of satellites into account, but to get more ac-
curate and exact positions of the specular reflection points as
well. The hole-filled version 4 of the Shuttle Radar Topogra-
phy Mission (SRTM) DEM, with a spatial resolution of 90 m
at the Equator, is used (Jarvis et al., 2008). The altitudes are
given with reference to the EGM96 geoid model. Uncertainty
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in altitude is around 16 m over mountainous areas (Rodriguez
et al., 2005). It is made available by files of 5◦ × 5◦ for land
areas between 60◦ N and 60◦S by the Consortium for Spatial
Information (CGIAR-CSI;http://srtm.csi.cgiar.org/).

2.4 EGM96 Earth gravitational model

In order to be able to convert between ellipsoidal heights
(with respect to the WGS84 ellipsoid) and altitudes (with re-
spect to the EGM96 geoid model) when producing KML files
or when integrating a DEM, knowledge of the geoid undula-
tion is mandatory. In this study, we interpolate a 15× 15 min
geoid undulation grid file derived from the EGM96 model in
a tide-free system released by the US National Geospatial-
Intelligence Agency (NGA) EGM development team (http://
earth-info.nga.mil/GandG/wgs84/gravitymod/). The error in
the interpolation is lower than 2 cm (NASA and NIMA,
1998).

2.5 Adaptive mapping functions

The neutral atmosphere bends the propagation path of the
GNSS signal and retards the speed of propagation. The range
between the satellite and the tracking site is neither the ge-
ometric distance nor the length of the propagation path, but
the radio range of the propagation path (Marini, 1972).

For GNSS-R measurements, the tropospheric effects in-
duced by the neutral part of the atmosphere are an impor-
tant source of error. Indeed, GNSS-R measurements are often
made at low elevation angles, where the bending effects are
maximal. Accurate models have to be used to mitigate sig-
nal speed decrease and path bending. Modeling tropospheric
delays by calculating the zenith tropospheric delay and ob-
taining the slant tropospheric delays with a mapping function
is commonly accepted. New mapping functions were devel-
oped in the 2000s (Boehm et al., 2006a; Niell, 2001), and sig-
nificantly improve the geodetic positioning. Although mod-
ern mapping functions like VMF1 (Boehm et al., 2006b) and
GPT2/VMF1 (Lagler et al., 2013) are derived from numer-
ical weather models (NWM), most of these mapping func-
tions ignore the azimuth dependency, which is usually intro-
duced by two horizontal gradient parameters – in the north–
south and east–west directions – estimated directly from ob-
servations (Chen et al., 1997). More recently, the use of ray-
traced delays through NWM directly at observation level has
shown an improvement in geodetic results (Hobiger et al.,
2008; Nafisi et al., 2012; Zus et al., 2012). The adaptive map-
ping functions (AMF) are designed to fit most of the informa-
tion available in NWM – especially the azimuth dependency
– preserving the classical mapping function strategy. AMF
are thus used to approximate thousands of atmospheric ray-
traced delays using a few tens of coefficients with millime-
ter accuracy at low elevations (Gégout et al., 2011). AMF
have a classical form, with terms that are functions of the el-
evation, but they also include coefficients that depend on the

Figure 3. Determination of the specular reflection point in a local
plane approximation and local difference with the sphere and el-
lipsoid approximations and DEM integration.S: specular reflection
point position.R: receiver position.T : transmitter/satellite position.
h: height of the receiver above the ground surface.

azimuth to represent the azimuthal dependency of ray-traced
delays. In addition, AMF are suitable for adapting to com-
plex weather by changing the truncation of the successive
fractions. Therefore, the AMF are especially suited to cor-
recting the propagation of low-elevation GNSS-R signals. In
our study, we use AMF directly provided by GRGS (Groupe
de Recherche en Géodésie Spatiale) and computed following
Gégout et al. (2011).

2.6 Data used for a simulator usage illustration

In order to assess the ocean tide influence on the posi-
tions of the reflection points estimated at an offshore ex-
perimental site located at the top of the Cordouan light-
house (45◦35′11′′ N; 1◦10′24′′ W), we use 24 h of REFMAR
(Réseau de Référence des Observations Marégraphiques)
tide gauge observations, with a sampling frequency of
5 minutes. The tide gauge records of the station of Royan
(45◦37′14.07′′ N; 1◦01′40.12′′, located 12 km from the light-
house) are the property of MEDDE (Ministère de l’Ecologie,
du Développement Durable et de l’Energie), and they are
available on the REFMAR website (http://refmar.shom.fr).

3 Methodology: determination of the positions
of reflection points

The difference in phase between the two antennas (A-RHCP
and B-LHCP in Fig.1) at an epocht for theith GNSS satel-
lite can be seen as a classical single difference between two
receivers used for relative positioning as follows:

λ1φi
AB(t) = 1δi

AB(t) − λ1N i
AB − c1tAB, (1)

whereλ is the wavelength of the GNSS signal,1φi
AB the

measured carrier phase difference between the direct and
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received signals expressed in cycles,1δi
AB the difference in

distance between the direct and received signals,1N i
AB is

the difference of phase ambiguity between the direct and re-
ceived signals,c the speed of light in a vacuum, and1tAB the
receiver clock bias difference. As the baseline between the
two receivers is short (a few cm to a few tenths of cm), and
in the case of low altitude of the receivers, both tropospheric
and ionospheric effects are neglected due to the spatial res-
olution of the current atmospheric and ionospheric models.
Besides, when both antennas are connected to the same re-
ceiver, the receiver clock bias difference is also cancelled out.
In this study, we only consider the difference in distance be-
tween direct and reflected signals, as illustrated in Fig.1.

The processing block contains four algorithms for deter-
mining the positions of the specular reflection points: the first
considering the Earth as a local plane in the vicinity of the re-
flection point, the second as an osculating sphere, the third as
an ellipsoid that corresponds to the WGS84 ellipsoid, which
has been expanded until the ellipsoid height of the receiver
equals the height of the receiver above the reflecting surface
(see Sect.3.3), and the last one uses the ellipsoid approx-
imation, but takes the Earth’s topography into account: see
Fig.3. Comparisons between the different approximations of
the Earth’s shape will be performed in Sect.4.1.

All of them are based on iterative approaches to solving
the Snell–Descartes law for reflection: the unique assumption
is that the angle of incidence is equal to the angle of reflec-
tion on a plane interface separating two half-space media (a
locally planar approximation is adopted when the surface is
not planar everywhere). In the plane, sphere and ellipsoid ap-
proximations, the specular reflection point of a given satellite
is contained within the plane defined by the satellite, the re-
ceiver and the center of the Earth. With regards to the DEM
integration, reflection can occur everywhere. In order to be
able to compare the specular reflection point positions ob-
tained by integrating a DEM, and to simplify the problem, we
will only consider the reflections occurring within the plane,
even while integrating a DEM.

3.1 Local plane reflection approximation

Refering to Fig.3, let us consider the projection of the
receiverR0 on the osculating sphere approximation (see
Sect.3.2). We define the local planeP as the plane tangent to
the sphere atR0. LetT 0 be the projection of the satellite on
P andR′ the symmetry ofR0 relative toP . We look for the
positions of the specular reflection points onP . Considering
the Thales theorem in trianglesR′SR0 andST T 0, we have
(see Fig.3)

XS

(XT 0 − XS)
=

h

H
. (2)

Thus,

XS =
hXT 0

H + h
. (3)

3.2 Local sphere reflection approximation

The model we consider is an osculating sphere. Its radial di-
rection coincides with the ellipsoidal normal, and its center
is set at an ellipsoidal height equal to the negative value of
the Gaussian radius of curvature defined as

rE =
a′2b′

a′2cos2(ϕ) + b′2sin2(ϕ)
, (4)

with ϕ the latitude of the receiver, anda′ andb′ the semi-
major and semi-minor axes of the modified ellipsoid (see
Sect.3.3). Please refer to Nievinski and Santos (2010) for
further information on the different approximations of the
Earth, particularly on the osculating sphere.

J. Kostelecky and C. Wagner already suggested an algo-
rithm to retrieve the specular reflection point positions by
approximating the Earth as a sphere (Kostelecky et al., 2005;
Wagner and Klokocnik, 2003). Their algorithm is based on
an optimized iterative scheme that is equivalent to making
the position of a fictive specular point vary until verifying
the first law of Snell and Descartes. A similar approach will
be used in this paper in Sect.3.3 with the ellipsoid approxi-
mation. Here, we chose to adopt a more analytical algorithm,
first proposed by Helm (2008). In order to validate this al-
gorithm, comparisons between it and the iterative one devel-
oped for the ellipsoid approach will be performed, by setting
the minor and major axes of the ellipsoid equal to the sphere
radius (see Sect.4.2.1).

Let us consider the vertical plane formed by the transmit-
ter (GNSS) satellite (T ), the receiver (R) andO ′, the center
of the Earth (Fig.4). We assume that the specular reflection
point (S) will be included in that plane. Let us consider the
following orthonormal reference systems of coordinates:

– (O,X,Y,Z)R1: WGS84 Cartesian system (NIMA ,
1997), with O the center of the Earth. WGS84 hasZ

polar andX,Y equatorial. The receiver and transmitter
coordinates are known in this system.

– (O ′,x,y)R2: a local 2-D system, obtained by the rota-
tion of the (O,X,Y,Z) system around theZ axis, in
such a way thatxr equals 0, and a translation00′ with 0′

the center of the osculating sphere.

– (S,x′,y′)R3: a local 2-D system, obtained by a rotation
around thez axis and arE translation of the (O ′,x,y)
system in such a way thatx′ and the local vertical are
colinear, and the system origin coincides with the spec-
ular reflection pointS.
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Figure 4. Local osculating sphere approximation: the three dif-
ferent reference systems of coordinates.S: specular reflection
point position.R: receiver position.T : transmitter/satellite posi-
tion. (0,X,Y,Z)R1: WGS84 Cartesian system.(0′,x,y)R2: local
2-D system, centred on the center of the osculating sphere, obtained
by the rotation of theR1 system around theZ axis, in such a way
that xr equals 0.(S,x′,y′)R3: a local 2-D system, obtained by a
rotation around thez axis and arR translation of the R2 system in
such a way thatx′ and the local vertical are colinear and the system
origin coincides with the specular reflection pointS.

If H is the height of the receiver above the ground, the
position of the receiver is

r r =

(
xr
yr

)
R2

=

(
0

rE + H

)
R2

, (5)

with rE the Gaussian radius of curvature at the latitude of the
receiverϕr.

The position of the GNSS satellite transmitter considering
ε the elevation angle of the satellite (considering the zenith
angle reckoned from the ellipsoidal normal direction) andτ

the angleR̂T O ′ is given by

rt =

(
xt

yt

)
R2

=

(
rt cos(ε + τ)

rt sin(ε + τ)

)
R2

. (6)

Using the trigonometric sine formula in theR−T −0′ tri-
angle,

sin(π
2 + ε)

rt
=

sin(τ )

rE + H
, (7)

we finally obtain

(
xt

yt

)
R2

=



rt cos(ε)
√

1−
(rE+H)2

r2
t

cos2(ε)

−(rE + H)sin(ε)cos(ε)

rt sin(ε)
√

1−
(rE+H)2

r2
t

cos2(ε)

−(rE + H)cos2(ε)


R2

. (8)

The Snell–Descartes law for reflection can be expressed as
the ratios of the coordinates of the receiver and the transmit-
ter in (S,x′,y′):

x′
t

y′
t

=
x′

r

y′
r
. (9)

The coordinates inR3 can be derived from the coordinates
in R2 from(

x′

y′

)
R3

=

(
cos(γ ) sin(γ )

−sin(γ ) cos(γ ))

)
R3

(
x

y

)
R2

−

(
re
0

)
R3

, (10)

where γ is the rotation angle between the two systems
(Fig. 4). Eq. (9) thus becomes

2(xtxr − ytyr)sin(γ )cos(γ )

− (xtyr + ytxr)(cos2(γ ) − sin2(γ ))

− rE(xt + xr)sin(γ ) + re(yt + yr)cos(γ ) = 0 (11)

Following (Helm, 2008), we proceed to the substitution
t = tan( γ

2 ), and Eq. (11) becomes

2(xtxr − ytyr)
2t

1+ t2

1− t2

1+ t2
− xtyr((

1− t2

1+ t2
)2

−(
2t

1+ t2
)2) − rE

2t

1+ t2
(xt + xr)

+rE
1− t2

1+ t2
(yt + yr) = 0. (12)

This finally becomes

c4t
4
+ c3t

3
+ c2t

2
+ c11

t + c0 = 0, (13)

with

c0 = (xtyr + ytxr) − rE(yt + yr) (14)

c1 = −4(xtxr − ytyr) + 2rE(xt + xr) (15)

c2 = −6(xtyr + yrxr) (16)

c3 = 4(xtxr − ytyr) + 2rE(xt + xr) (17)

c4 = (xtyr + ytxr) + rE(yt + yr). (18)

Equation (13) is solved to determine the roots of this
polynomial using an iterative scheme based on the Newton
method (Nocedal et al., 2006).
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3.3 Ellipsoid reflection approximation

We consider an ellipsoid corresponding to the WGS84 one
extended such that the ellipsoid height of the receiver is equal
to the receiver height above the reflecting surface. In other
words, the WGS84 ellipsoid is expanded until its surface
coincides with the reflecting surface, at the nadir of the re-
ceiver (surface base point). The Cartesian coordinates of this
surface base point must remain unchanged when computed
either from the original geodetic coordinates(λ,φ,h)WGS84
and the ellipsoid constant(a,b)WGS84 on the one hand, or
their modified values(λ′,φ′,h′,a′,b′) on the other hand,
where λ = λ′ is the longitude,φ = φ′ is the latitude, and
h′

= 0. The ellipsoid thus remains geocentric, and its axes
are scaled as follows:

a′
=

√
a2 + h2 + hc +

a2h

c
= a

√
1+

h2

a2
+

hc

a2
+

h

c
(19)

b′
=

√
b2 + h2 + hc +

b2h

c
= b ·

√
1+

h2

b2
+

hc

b2
+

h

c
, (20)

wherec =

√
a2cos(φ)2 + b2sin(φ)2

This ellipsoidal extension is only done once as long as the
receiver position remains unchanged with respect to the re-
flecting surface; it is redone if the reflecting surface changes
(e.g., tidal waters), but is not done with changes in the satel-
lite direction.

We define the two normalized anti-incidentr t and scatter-
ing rs vectors. When the Snell–Descartes law is verified, the
sum of these two vectors (bisecting vectordr) coincides with
the local vertical. The determination of the location of the re-
flection point is based on the iterative process proposed ear-
lier by Gleason et al. (2009), and enhanced with a dichotomy
process. Let us consider three points on the ellipsoid:

– S1, the projection of the receiver on the ellipsoid.

– S3, the projection of the transmitter on the ellipsoid.

– S2, the projection of the middle of[S1S3] on the ellip-
soid.

We calculatedr, the correction in direction, considering
the location of each of the three points:

dr(t) =
rs(t) − r r(t)

‖rs(t) − r r(t)‖
+

rs(t) − r t (t)

‖rs(t) − r t (t)‖
. (21)

We then consider the direction of the correctiondr. If the
correction is in the satellite direction, the sign is considered
positive, and negative if the correction is in the receiver direc-
tion. If the signs ofdrS1 anddrS2 are different, it means that
the specular reflection point is located betweenS1 andS2.
We thus consider a new iteration withS1 = S1,S3 = S2 and
S2 the projection on the ellipsoid of the middle of the newS1
andS3 points. We thus eliminate the part between the initial

Figure 5. Determination of the specular reflection point integrating
a DEM. S: specular reflection point position.R: receiver position.
T : transmitter/satellite position. A dichotomous process is applied
for each topographic segment of the DEM to find if there is a point
where the bisecting angle (equal to the sum of the anti-incident and
scattering vectors) is colinear with the local normal vector.

Figure 6. Effect of the neutral atmosphere on the elevation angle.
An exponential correction must be made for satellites with low ele-
vation angles.

S2 andS3 points, else if the signs ofdrS2 anddrS3 are differ-
ent, we consider a new iteration withS1 = S2 andS3 = S3
(andS2 the projection on the ellipsoid of the middle of the
newS1 andS3 points). The iterative process stops when the
difference between incident and reflected angle (with respect
to the local vertical) is close to zero with a fixed tolerance of
10−7◦.

3.4 Ellipsoid reflection approximation combined
with a DEM

The first two approaches presented above are well adapted
in the case of an isolated receiver located on the top of a
lighthouse, for instance. In most of the cases, the receiver
is located on a cliff, a sand dune, or a building overhanging
the sea surface or a lake. It can however be really appropri-
ate and necessary to incorporate a digital elevation model
(DEM) into the simulations, in order not only to take the
mask effects (e.g., a mountain occulting a GNSS satellite)
into account, but also to get more accurate and realistic po-
sitions of specular reflection points. The method we propose
here consists of three steps detailed later in Sects.3.4.1, 3.4.2
and3.4.3.

1. A “visibility” determination approach to determine if
the receiver is in sight of each GNSS satellite.

2. A determination of the specular reflection point posi-
tion.
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Table 1.Cross-validation between ellipsoid approximation and DEM integration.

Receiver height (m)

5 50 300

Distance to the specular reflection point Mean 12 122 729
with respect to the receiver: arc length (m) Maximum 56 557 3349
Position differences (m) Mean 0/0 0.002/0 0.01/0
(planimetric/altimetric) Maximum 0/0 0.04/0 0.2/0

3. A “visibility” determination approach to determine if
the determined specular point is in sight from both re-
ceiver and satellite.

It is important to keep in mind that a DEM gives altitudes
above a reference geoid. For consistency purposes, the posi-
tions of the receiver, the transmitter, and the DEM grid points
all have to be in the same reference system, so it is absolutely
mandatory to convert the EGM96 altitudes from the SRTM
DEM into WGS84 ellipsoidal heights by adding the geoid
undulation interpolated from EGM96.

3.4.1 Visibility of the GNSS satellite from the receiver

This algorithm aims to determine the presence of a mask be-
tween the receiver and the satellite. The visibility of the satel-
lite and the receiver, both from the specular point, will be
checked once the potential specular point position has been
found.

Let R, S, andT be the locations of the receiver, the spec-
ular point and the satellite/transmitter on the ellipsoid. We
interpolate the ellipsoidal heights along the path[T SR] with
a step equal to the DEM resolution, with a bivariate cubic
or bilinear interpolation. Cubic interpolation is used when
the gradient is big, linear interpolation otherwise. Tests show
millimetric differences between cubic and linear interpola-
tion for flat zones but can reach 1 m for mountainous areas.
We thus obtain a topographic profile fromR to T . For each
segment of this topographic profile, we check if it intersects
the path[T R]. If it does, it means that the satellite is not vis-
ible from the receiver. If not, we check the next topographic
segment, until reaching the end of the path (i.e.,T ).

3.4.2 Position of the specular point

Once the satellite visibility from the receiver is confirmed,
the next step consists in determining the location of the spec-
ular reflection pointS along the broken line defined as in
Sect.3.4.1. In order to simplify the process, we only consider
the specular points located in the plane formed by the satel-
lite, the receiver and the center of the Earth. The algorithm is
similar to the one used for the ellipsoid approximation, and
is based on a dichotomous iterative process.

The segments formed by the points of the 2-D DEM (see
Fig. 5) are all considered susceptible to contain a specular
reflection point. For each of this segment the sign of the cor-
rection to apply at each of the two extremities of the segment
is checked following the same principle that for the ellip-
soid approximation (see Sect.3.3), but with a local vertical
component defined as the normal of the considered segment.
If the signs are equal, no reflection is possible on this seg-
ment. Otherwise, we apply the dichotomous iterative method
presented in Sect.3.3 until convergence with respect to the
tolerance parameter (fixed to 10−7◦).

3.4.3 Visibility of the determined specular reflection
point from the satellite and the receiver

Once the position of the specular reflection point has been
determined, we check if it is visible from the satellite and the
receiver thanks to the algorithm presented in Sect.3.4.1.

3.5 Corrections of the angular refraction due to
the troposphere

Our goal is to determine the location of the reflection point.
Only the angular refraction will be considered. The re-
flected minus direct range is left as future work. In order
to correct the anisotropy of the propagation of radio waves
used by the GNSS satellites, we use AMF calculated from
the 3-hourly delayed cut-off in model levels computed by
the ECMWF (European Centre for Medium-Range Weather
Forecasts). AMF tropospheric corrections were computed
following Gegout et al. (2011) and provided by GRGS for
this study. Given the geometric specificities of the specular
reflection point, two paths have to be checked for propaga-
tion error: the first one from the satellite to the surface, and
the second one from the surface to the receiver. The main
steps of the process are the following:

– we consider the position of the specular reflection point
without any correction of the angular refraction;

– we calculate the corrections to apply to this specular
point knowing the incident and reflecting angles cor-
responding to the considered reflection point. We thus
obtain a corrected incident angle. Figure6 shows the
correction to apply as a function of the elevation angle;
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– from the corrected incident angle, a corrected position
of the specular point is calculated, making the reflecting
angle equal to the corrected incident angle;

– with the new position of the specular point, and to reach
a better accuracy of the point position, a second iteration
is performed by computing the corrections to apply to
this new incident angle.

3.5.1 Correction of the satellite-surface path

First and foremost, the parallax problem for the wave emit-
ted by a known GNSS satellite is solved. At first sight, the
position of the specular reflection point calculated without
any correction of the angular refraction is considered, given
by the algorithm approximating the Earth’s shape as a sphere
given in Sect.3.2. We use here AMF calculated from the pro-
jection of the receiver on the surface, considering that the
AMF planimetric variations are negligible for ground-based
observations (i.e., we consider that we can use the same AMF
for every specular reflection points, which is valid only if
the specular reflection points are less than few tens of km
from the receiver and that the specular points lie on an equal-
height surface). We thus obtain the corrected incident an-
gle of the incident wave. Considering the law of Snell and
Descartes, the reflecting angle must be equal to the corrected
incident angle, for the specular reflection point position.

3.5.2 Correction of the surface-receiver path

The aim here is to adjust the surface-receiver path to accom-
modate the consequences of angular refraction. With the cor-
rected reflection angle, we can deduce the corrected geomet-
ric distance between the reflection point and the receiver, this
time using AMF calculated from the receiver, assuming that
the AMF altimetric variations are non-negligible (i.e., the
part of the troposphere corresponding to the receiver height
will have a non-negligible impact on the AMF). Consider-
ing the corrected geometric distance between the reflection
point and the receiver, the corrected position of the reflection
point is obviously determined. It is indeed obtained as the
intersection of a circle whose radius is equal to the correct
geometric distance, with the surface of the Earth assimilated
as a sphere, an ellipsoid, or with a DEM, depending on which
approximation of the Earth is taken into account.

The whole process is iterated a second time to reach a bet-
ter accuracy of the reflection point location. In fact, the first
corrections were not perfectly exact, since they were com-
puted from an initially false reflection point location, and
the second iteration brings the point closer to the true loca-
tion. More iterations are useless (corrections to apply are not
significant). Figure6 shows an example of elevation correc-
tions to apply as functions of the satellite elevations. This fig-
ure has been computed from simulations done on a receiver

placed on the Lake Geneva shore (46◦24′30′′ N, 6◦43′6′′ E;
471 m); see Sect.4.1.

3.6 Footprint size of the reflected signal

The power of the received signal is mostly due to coherent
reflection, and most of the scattering comes from the first
Fresnel zone (Beckmann and Spizzichino, 1987). The first
Fresnel zone can be described as an ellipse of a semi-minor
axis (ra) and a semi-major axis (rb) equal to (Larson and
Nievinski, 2013)

rb =

√
λh

sin(ε′)
+

(
λ

2sin(ε′)

)2

(22)

ra =
b

sin(ε′)
, (23)

with λ the wavelength (m),h the receiver height (m) andε′

the satellite elevation seen from the specular reflection point
(rad) (i.e., corresponding to the reflection angle).

4 Simulator performance and results

4.1 Simulation case studies

Simulations and tests of parameters have been performed on
two main sites:

– the Cordouan lighthouse (45◦35′11′′ N; 1◦10′24′′ W), in
the Gironde estuary, France. This lighthouse is about
60 m high, and it is surrounded by the sea.

– the shore of Lake Geneva (46◦24′30′′ N; 6◦43′6′′ E).
This site is hidden by mountains in the south (ortho-
metric altitude of up to 2000 m), and overlooks the lake
in the north (orthometric altitude of 370 m).

For both sites, precise GPS and GLONASS ephemeris at
a 15 min time sampling come from IGS standard products
(known as “SP3 orbit”).

4.2 Validation of the surface models

Simulations were performed in the case of the Lake Geneva
shore, for a 24 h experiment, on 4 October 2012.

4.2.1 Cross-validation between sphere and
ellipsoid approximations

Local sphere and ellipsoid approximation algorithms have
been compared by putting the ellipsoid semi- major and mi-
nor axis equal to the sphere radius. Planimetric and altimetric
differences between both are below 6×10−5 m for a receiver
height above reflecting surface between 5 and 300 m and are
then negligible. The two algorithms we compare are com-
pletely different: the first is analytical and the second is based
on a iterative scheme and both results are very similar, which
confirms their validity.
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Figure 7. Positions of the specular reflection points and first Fresnel zones for one week of simulation on the Cordouan lighthouse with a
15 min sampling rate (i.e., satellite positions actualized every 15 min). Only GPS satellites with elevation angles greater than 5◦ have been
considered. Note the gap in the northerly direction.

Figure 8. First Fresnel zones and some direct and reflected waves displaying the 24 h Cordouan lighthouse simulation with the GPS constel-
lation.

4.2.2 Cross-validation between ellipsoid approximation
and DEM integration

The algorithm integrating a DEM has been compared to the
ellipsoid approximation algorithm by using a flat DEM as in-
put (i.e., a DEM with orthometric altitude equal to the geoid
undulation). Results for satellite elevation angles above 5◦

are presented in Table1.

As we can see in Table1, planimetric and altimetric mean
differences are subcentimetric for a 5 and 50 m receiver
height and centimetric for a 300 m receiver height. How-
ever, some punctual planimetric differences reach 20 cm in
the worst conditions (reflection occurring at 3449 m from the
receiver corresponding to a satellite with a low elevation an-
gle), which can be explained with the chosen tolerance pa-
rameters but mainly because due to the DEM resolution, the
algorithm taking a DEM into account approximating the el-
lipsoid as a broken straight line, causing inaccuracies. For a
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Figure 9. Variation of the distance between the receiver and the specular reflection point(a) and the first Fresnel zone area(b) as a function
of the satellite elevation angle, for different receiver heights.

Figure 10. Assessment of the tidal influence. The impact of the tide on the size of the reflecting area is non-negligible (decametric 3-D
differences), and it is worth noticing that the gaps would have been even bigger by integrating satellites with low elevation angles. Note also
that the periodic variations of the 3-D differences are only linked to the tide, since the mean of the satellite elevation angles does not show
periodic variations during the day of the simulation (43.3± 3.5◦ over the period).

50 m receiver height, planimetric differences are below 4 cm
(reflections occurring until 557 m from the receiver). With
regards to the altimetric differences, even for reflections oc-
curring far from the receiver, the differences are negligible
(submillimetric).

4.3 Results

4.3.1 Cordouan lighthouse

Outputs

Examples of outputs for simulations in the case of the Cor-
douan lighthouse are presented in Figs.7 and 8. These
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Figure 11. Planimetric and altimetric differences between the specular reflection points obtained with the different algorithms. Receiver
height above the reflecting surface: 5 m.(a) Planimetric differences as arc length (m).(b) Altimetric differences as ellipsoid height (m).
Note the dispersion within results for a fixed elevation angle, which is a consequence of the azimuth variability in the ellipsoidal radius of
curvature.

simulations were performed considering the sphere approxi-
mation algorithm and a 15 min time step.

Figure9a shows the variation of the distance between re-
flected points and the receiver, as a function of the satellite
elevation angle, and for several receiver heights above the re-
flecting surface, and Fig.9b shows the variation of the area
of the first Fresnel surface. Such figures have been produced
by performing simulations on the Cordouan lighthouse and
varying the receiver height above the reflecting surface. The
map of the reflected points obtained for a high receiver height
above the reflecting surface will in fact be the same as the one
obtained for a smaller receiver height, but more stretched.
Henceforth, the higher the receiver height, the bigger the
“measurable” area, but the less dense the ground coverage
of the data (less reflection points per surface unit).

Case study: the influence of tides

As an illustration of a possible application of the simulator,
tide influence on the position of the specular reflection points

was assessed. Simulations at the Cordouan lighthouse were
achieved by integrating the ocean tide from the tide gauge in
Royan, and by time-varying the receiver height above the sea
surface in order to simulate the tide. The vertical visibility
mask was set to 10–90◦, in order to avoid the weaker ac-
curacy of determination of the specular reflection point posi-
tions for satellites with low elevation angles, as highlighted in
Sect.4.3.2. By comparing the results with simulations made
with a fixed-receiver height of 60 m above the sea surface, it
appears that the 3-D offsets reach values higher than 12 m for
the maximum tide values (< 3 m) (Fig. 10). We can expect
even higher discrepancies by taking into account satellites
whose elevation angles would be lower than 10◦.

4.3.2 Lake Geneva

Three sets of simulation have been performed in the case of
the Lake Geneva shore, for a 24 h experiment, on 4 Octo-
ber 2012:
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Table 2.Maximum differences between the positions of the specular reflection points obtained with the different algorithms and for different
receiver heights above the reflecting surface. For each cell of this table, the first number is the result obtained with the minimum satellite
elevation angle set to 5◦, and the second number is the result obtained with the minimum satellite elevation angle set to 10◦.

Receiver Differences Sphere vs. Plane sphere vs. ellipsoid Ellipsoid vs. DEM
height (m) (m)

Arc length 0.015/ 0.003 0.108/ 0.054 14.594/ 4.417
5 Ellipsoid height 0/ 0 0/ 0 1.500/ 1.500

3-D geometric distance 0.011/ 0.002 0.084/ 0.044 10.261/ 3.383

Arc length 1.163/ 0.142 1.081/ 0.536 1226.606/ 42.982
50 Ellipsoid height 0.025/ 0.006 0/ 0 84.363/ 15.002

3-D geometric distance 0.823/ 0.107 0.837/ 0.440 1235.834/ 43.755

Arc length 41.127/ 5.043 6.438/ 3.215 5429.975/ 5429.975
300 Ellipsoid height 0.885/ 0.222 0.001/ 0 897.785/ 897.785

3-D geometric distance 29.092/ 3.769 4.994/ 2.634 5461.230/ 5461.230

Figure 12. Planimetric and altimetric differences between the specular reflection points obtained with the different algorithms. Receiver
height above the reflecting surface: 50 m.(a) Planimetric differences as arc length (m).(b) Altimetric differences as ellipsoid height (m).
Note the dispersion within results for a fixed elevation angle, which is a consequence of the azimuth variability in the ellipsoidal radius of
curvature.
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Figure 13. Planimetric and altimetric differences between the specular reflection points obtained with the different algorithms. Receiver
height above the reflecting surface: 300 m.(a) Planimetric differences as arc length (m).(b) Altimetric differences as ellipsoid height (m).
Note the dispersion within results for a fixed elevation angle, which is a consequence of the azimuth variability in the ellipsoidal radius of
curvature.

– the first configuration, considering a receiver height of
5 m above lake level,

– the second configuration, considering a receiver height
of 50 m above lake level,

– the third configuration, considering a receiver height of
300 m above lake level, as for an airborne experiment
(e.g., a hovering helicopter).

Each series has been computed using the four algorithms
of determination of the reflection points (local planimetric
approximation, local osculating sphere approximation, ellip-
soid approximation and the algorithm taking a DEM into ac-
count). Results are presented in Figs.11to 14and in Table2.
They show the distances between the specular points and the
receiver (arc lengths), and the differences between the posi-
tions given by each algorithm.

Influence of the receiver height above the
reflecting surface

It appears that both planimetric and altimetric differences be-
tween the methods used increase with the receiver height
above the reflecting surface. This is explainable by the fact
that the higher the receiver is, the farther the reflection points
will be from the receiver, and the bigger the impact of the
Earth approximation will be. For a 5 m receiver height, re-
flection occurs up to approximately 60 m from the receiver,
whereas for a 300 m receiver height, it occurs at up to 3400 m
(6700 m when integrating the DEM). It means that, in the
second case, reflections occur in the mountains to the south
of the receiver; hence big differences between the sphere al-
gorithm and the algorithm, taking the DEM into account. For
a 5 m receiver height above the reflecting surface, and consid-
ering satellites with elevation angles above 5◦, mean plani-
metric differences are below 1.3 cm between the osculating
sphere and ellipsoid approximations, and below 1.3 mm be-
tween the sphere and plane approximations. With regards to
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Figure 14.3-D differences between the specular reflection points obtained with the different algorithms. Receiver heights above the reflecting
surface of 5 m(a), 50 m(b) and 300 m(c). Note the dispersion within results for a fixed elevation angle, which is a consequence of the azimuth
variability in the ellipsoidal radius of curvature.

the comparison between the plane and ellipsoid approxima-
tions, the mean planimetric differences are about 1.4 cm. Al-
timetric differences are negligible for all of them.

With a 50 m receiver height above the reflecting surface,
mean planimetric (or altimetric) differences reach 14 cm (or
less than 1 mm) between the sphere and ellipsoid approxi-
mations, 6.2 cm (or 2 mm) between the sphere and plane ap-
proximations, and 15 cm (or 2 mm) between the plane and
ellipsoid approximations.

With a 300 m receiver height above the reflecting surface,
mean planimetric (or altimetric) differences reach 83 cm (or
less than 1 mm) between the sphere and ellipsoid approxi-
mations, 2.19 m (or 8 cm) between the sphere and plane ap-
proximations, and 2.35 m (or 8 cm) between the plane and
ellipsoid approximations.
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Figure 15. Influence of the topography – direct and reflected waves
are displayed (topography amplified by a factor of 3). Yellow lines:
direct waves, sphere approximation algorithm; green lines: direct
waves, taking a DEM into account; blue lines: reflected waves,
sphere approximation algorithm; red lines: reflected waves, taking
a DEM into account. It can be noticed that some yellow and blue
lines (direct and reflected waves, sphere approximation algorithm)
go through the mountain (reflection points having been calculated
insidethe mountain), whereas any red or green lines (direct and re-
flected waves, integrating a DEM) go through it.

It is worth noticing that the sphere approximation is closer
to the plane than the ellipsoid approximation when reflec-
tions occur not too far from the receiver (below 560 m), and
conversely if reflection occurs far from the receiver.

Influence of the satellite elevation angle

Secondly, by plotting the differences as functions of the satel-
lite elevation angles, we can observe that the lapses between
the different algorithms vary in an inversely proportional way
to the satellite elevation angle (and so, proportionally to the
point distance from the receiver). The lower the satellite ele-
vation angle is, the farther the specular reflection points from
the receiver, and the larger the impact of the Earth approxi-
mation is. The choice of the algorithm used to perform the
simulations thus becomes really important for the farthest
reflection points (i.e., for low satellite elevation angles, and
high receiver heights above the reflecting surface). For exam-
ple, mean planimetric differences between the local sphere
and ellipsoid approximations with a 50 m receiver height are
about 14 cm when considering satellites with elevation an-
gles above 5◦, and are about 9 cm when considering only
satellites with elevation angles above 10◦. With a 300 m re-
ceiver height above the reflecting surface, the mean planimet-
ric difference between sphere and ellipsoid approximations is
about 83 cm for satellites with an elevation angle above 5◦,
and 54 cm for a minimum elevation angle set to 10◦.

Influence of the DEM integration

For continental surfaces, the full integration of the DEM in
the simulation plays a crucial role in a good calculation of
the reflection points. The integration of a DEM leads to the
suppression of 245 specular reflection points out of the 905
points determined during the 24 h of 4 October 2012 with the
sphere approximation algorithm (Fig.15). These 245 points
came from a wave emitted by a satellite hidden by a moun-
tain located in the southern part of the area. In the northern
part, any reflection point is valid when taking a DEM into
account, because in that direction, the topography is flat over
Lake Geneva, and so, the satellites are all visible and reflec-
tions are possible. Moreover, the point positions have been
rectified while taking a DEM into account, since the other
algorithms consider that reflections occur (in first approxi-
mation) in a plane around the projection of the receiver, and
without integrating the problem of the presence of topogra-
phy.

Comparison between the different models of
the Earth surface

For a 5 m receiver height, and for satellite elevations greater
than 10◦, the mean planimetric difference between the ellip-
soid and the sphere algorithm is equal to 1.4 cm whereas for
a 300 m receiver height it is equal to 83 cm. The approxima-
tion done by considering the Earth as a sphere, an ellipsoid
or a plane does not really affect the precision of the specular
reflection point determination when reflections do not occur
too far from the receiver, i.e., for low receiver height and high
satellite elevation. For example, if we consider that we need
an uncertainty on the determination of the specular reflection
position below 20 cm, the choice of the approximation of the
Earth shape will have no influence if reflections occur until
125 m approximately (Fig.14b). In order to get reflections
below 125 m from the receiver, considering satellites with
elevation angle above 5◦, the receiver height above the re-
flecting surface should not exceed 25–30 m (Fig.9a), which
would correspond to a first Fresnel zone area between 300
and 400 m2.

Concerning the algorithm taking the DEM into account,
the differences obtained with respect to the sphere or ellip-
soid algorithms are quite big even if the specular reflection
point is close enough to the receiver. For instance, the mean
planimetric (or altimetric) difference between the ellipsoid
algorithm and the one integrating the DEM is equal to 70 cm
(or 18 cm) for a 5 m receiver height, and is equal to 78 m (or
25 m) for a 300 m receiver height, and with a satellite eleva-
tion angle above 5◦. It is worth noticing that these differences
will greatly depend on the flatness of the considered area.
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Figure 16. Angular refraction correction as a function of the satellite elevation angle and for different receiver heights above the reflecting
surface.(a) Planimetric differences as arc length (m).(b) Altimetric differences as ellipsoid height (m).

Angular refraction due to the troposphere

Given the geometric configuration of the satellite, the reflec-
tion point and the receiver, the same elevation angle cor-
rection will have a different effect according to the receiver
height above the reflecting surface. It turns out that consider-
ing a same satellite at a given time, the corresponding reflec-
tion point will be farther for a big receiver height above the
reflecting surface than for a smaller one. Consequently, for
the same elevation angle correction, the resulting correction
of the reflection point position will be higher in the first case
than in the second one. Figure16 shows the differences, in
terms of geometric distances, between the reflection points
positions obtained with and without correcting the angular
refraction and for different receiver heights. It appears that
for low satellite elevation angle and high receiver height, the
angular refraction has a non-negligible influence on the spec-
ular point positions (116 m (or 32 cm) for a 300 m receiver
height and satellites elevation angle lower than 10◦).

5 Conclusions

In this paper, we presented a simulator based on real GNSS
satellite ephemeris, as a user-friendly tool for modeling the
trajectories of GNSS electromagnetic waves that are reflected
on the surface of the Earth and therefore preparing GNSS-
R campaigns more efficiently. The originality of this simu-
lator remains mainly in the integration of a DEM and the
correction of the angular refraction due to the troposphere.
The results of simulations led us to a better understanding
of the influence of some parameters on the reflection geome-
try, namely by quantifying the impact of the receiver height,

but also the influence of the satellite elevations, the natural
topography (DEM), and the troposphere perturbation.

The different simulations realized near quite rugged to-
pography lead us to the following conclusions:

– the DEM integration is really important for mountain-
ous areas: planimetric differences as arc length (or alti-
metric differences as ellipsoid height) can reach 5.4 km
(or 1.0 km) for a 300 m receiver height, considering
satellite with elevation angle greater than 5◦.

– differences between sphere and ellipsoid approxima-
tions are negligible for specular reflection points close
to the receiver (closer than 50–60 m), i.e., small receiver
heights and/or high satellite elevations. For instance,
planimetric differences are smaller than 11 cm for a 5 m
receiver height, considering satellites with elevation an-
gles greater than 10◦. Altimetric differences are negligi-
ble.

– sphere and plane approximations show really small dif-
ferences in the vicinity of the receiver (smaller differ-
ences than between the sphere and ellipsoid approx-
imations): maximum differences are about 1.5 cm (or
3 mm), with a 5 m receiver height (i.e., reflections oc-
curring until 56 m from the receiver).

– with regards to the plane and ellipsoid approxima-
tions, differences are bigger than between the plane and
sphere approximations when reflections occur farther
than 550 m from the receiver. For farther reflections, dif-
ferences between planes and ellipsoids become smaller
than between planes and spheres.
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– the angular refraction due to troposphere can be negligi-
ble with regards to the position of the specular reflection
point when the receiver height is below 5 m, but is ab-
solutely mandatory otherwise, particularly for satellites
with low elevation angles where the correction to apply
is exponential.

As a final remark, it is worth reminding the reader that the
farther the specular reflection point is from the receiver, the
more important the influence of the different error sources
will be: Earth approximation, DEM integration, angular re-
fraction. The farthest specular reflection points will be ob-
tained for high receiver height and low satellite elevation.
This simulator is likely to be of great help for the prepara-
tion of in situ experiments involving the GNSS-R technique.
Further developments of the simulator will be implemented
soon, such as a receiver installed on a moving platform in
order to map the area covered by airborne GNSS-R measure-
ment campaigns and on-board a LEO satellite.
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