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Abstract. The development and validation of the vertical dif-
fusion module of IL-GLOBO, a Lagrangian transport model
coupled online with the Eulerian general circulation model
GLOBO, is described. The module simulates the effects of
turbulence on particle motion by means of a Lagrangian
stochastic model (LSM) consistently with the turbulent dif-
fusion equation used in GLOBO. The implemented LSM in-
tegrates particle trajectories, using the nativeσ -hybrid co-
ordinates of the Eulerian component, and fulfils the well-
mixed condition (WMC) in the general case of a variable
density profile. The module is validated through a series of
1-D offline numerical experiments by assessing its accuracy
in maintaining an initially well-mixed distribution in the ver-
tical. A dynamical time-step selection algorithm with con-
straints related to the shape of the diffusion coefficient pro-
file is developed and discussed. Finally, the skills of a lin-
ear interpolation and a modified Akima spline interpolation
method are compared, showing that both satisfy the WMC
with significant differences in computational time. A prelim-
inary run of the fully integrated 3-D model confirms the re-
sult only for the Akima interpolation scheme while the linear
interpolation does not satisfy the WMC with a reasonable
choice of the minimum integration time step.

1 Introduction

Global- (or hemispheric-) scale transport is recognised as an
important issue in air pollution and climate change studies.
Pollutants can travel across continents and have an influence
even far from their source (see, for recent examples,Fiore

et al., 2011; Yu et al., 2013). Moreover, transport of volcanic
emissions (e.g. the recent Eyjafjallajökull eruption) or acci-
dental hazardous releases (like the Fukushima and Chernobyl
nuclear accidents) are also important at the global scale.

The natural framework for the description of tracer trans-
port inflows is the Lagrangian approach (see, for exam-
ple, the seminal works byTaylor, 1921, and Richardson,
1926). In the Lagrangian framework, the tracer transport is
described by integrating the kinematic equation of motion
for fluid “particles” in a given flow velocity field, provided
by, e.g. a meteorological model. The turbulent motion unre-
solved by Eulerian equations for averaged quantities (in the
Reynolds or volume-filtered sense) can be accounted for by
including a stochastic component into the kinematic equa-
tion.

The stochastic component can be added to the particle
position to give the Lagrangian equivalent of the Eulerian
advection-diffusion equation. This kind of model is usually
called a random displacement model (RDM) and is suit-
able for dispersion over long timescales. When the stochas-
tic component is added to the velocity, the model is usually
called a random flight model (RFM), which is more suit-
able for shorter time dispersion. In both cases, the stochas-
tic model formulation has to be consistent with some basic
physical requirements (Thomson, 1987, 1995).

Various Lagrangian transport models exist which can be
used at the global scale. Some are designed specifically for
the description of atmospheric chemistry (Reithmeier and
Sausen, 2002; Wohltmann and Rex, 2009; Pugh et al., 2012,
see, e.g.), while others focus on the transport of tracers. In
the latter class, two of the most widely used models are
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FLEXPART (FLEXible PARTicle dispersion model) (Stohl
et al., 2005) and HYSPLIT (Hybrid Single Particle La-
grangian Integrated Trajectory Model) (Draxler and Hess,
1998), which are highly flexible and can be easily used in
a variety of situations. Both are compatible with different in-
put types (usually provided by meteorological services like
the European Centre for Medium-Range Weather Forecasts
(ECMWF)), relying on their own parameterisation for fields
not available from the meteorological model output. Models
of this kind are suited for both forward and backward disper-
sion studies.

An alternative approach is to couple the Eulerian and La-
grangian parts online. On one hand, this makes the Eulerian
fields available to the Lagrangian model at each Eulerian
time step, increasing the accuracy for temporal scales shorter
than the typical meteorological output interval. On the other
hand, it also allows the consistent parameterisation of pro-
cesses in the Eulerian and Lagrangian frameworks (e.g. the
vertical dispersion in the boundary layer). Moreover, where
the considered tracer may have an impact on meteorology
(e.g. on radiation or cloud microphysics), online integration
provides a natural way to include these effects (Baklanov
et al., 2014). Online coupling also ensures the consistency
of a mixed Eulerian–Lagrangian analysis of the evolution of
atmospheric constituents (e.g. water or pollutants) along a
trajectory (Sodemann et al., 2008; Real et al., 2010, see, e.g.).

Malguzzi et al.(2011) recently developed a new global nu-
merical weather prediction model, named GLOBO, based on
a uniform latitude–longitude grid. The model is an extension
to the global scale of the Bologna Limited Area Model (BO-
LAM) ( Buzzi et al., 2004), developed and employed during
the early 90s. GLOBO is used for daily forecasting at the
Institute of Atmospheric Sciences and Climate of the Na-
tional Research Council of Italy (ISAC-CNR) and is also
used to produce monthly forecasts. Online integration with
BOLAM family models has already yielded interesting re-
sults in the development of the meteorology and composition
model BOLCHEM (BOLam + CHEMistry) (Mircea et al.,
2008). Considering that experience, the GLOBO model con-
stitutes the natural basis for the further development of an
integrated Lagrangian model.

In the following, the development of the vertical diffusion
module is presented, focusing in particular on its compliance
with basic theoretical requirements (Thomson, 1987, 1995,
the well-mixed condition, see ) in connection with different
numerical issues. In Sect. 2 the theoretical basis of the model
formulation is given, while Sect. 3 describes different aspects
of the numerical implementation. Finally, the model verifica-
tion is presented and discussed in Sect. 4.

2 Lagrangian stochastic model formulation

In application to dispersion in turbulent flows, Lagrangian
stochastic models (LSMs), Markovian at orderM(M =

0,1, . . .), are described by a set of stochastic differential
equations (SDEs). The equation for theMth order derivative
M is

dX
(M)
i = aidt + bij dWj , (1)

wherei andj indicate the components andX(k)
i is thekth-

order time-derivative of the Lagrangian Cartesian coordinate
componentXi ≡ X

(0)
i . Coefficientsai andbij are called drift

and Wiener coefficients, respectively. The remaining equa-
tions of the set (1≤ k ≤ M) are described by

dX
(k−1)
i = X

(k)
i dt . (2)

The set of equations is equivalent to the Fokker–Planck
equation:

∂p

∂t
= −

M∑
k=0

∂

∂x
(k)
i

(Ak
i p) +

∂2

∂x
(M)
i ∂x

(M)
j

(Kijp), (3)

whereAk
i = 1 for k < M andAk

i = ai for k = M, xi is the
Eulerian equivalent ofXi and Kij ≡ bikbjk/2 (Thomson,
1987). Equation (3) describes the evolution of the prob-
ability density functionp(x(0), . . .,x(M), t), where x(k)

=

(x
(k)
1 ,x

(k)
2 ,x

(k)
3 ). For the evolution of(X(0), . . .,X(M)) to be

approximated by a Markov process, the time correlation of
the variableX(M+1) has to be much shorter than the charac-
teristic evolution time ofX(M). If the model has to describe
the evolution of dispersion at timet � τ , whereτ is the cor-
relation time of turbulent velocity fluctuations, the process is
well captured at orderM = 0. When shorter times are consid-
ered, as in the case of dispersion from a single point source
before theTaylor (1921) diffusive regime occurs (t ≤ τ ), or-
der M must be increased to 1. The model of lowest order
(M = 0) is referred to as random displacement model (RDM)
and is sufficiently accurate to describe the transport and mix-
ing of particles at a time and space resolution typical of a
global model.

The correct formulation of a RDM in a variable density
flow was first obtained byVenkatram(1993) and then re-
fined and generalised byThomson(1995) and is briefly re-
called here. Equation (3) is valid for the probability den-
sity functionp of particle position with the initial condition
p((x), t)|t=t0 = p((x), t0). Since the ensemble average con-
centration〈c〉 is proportional top, Eq. (3) can be rewritten as

∂〈c〉

∂t
= −

∂

∂xi

(ai 〈c〉) +
∂2

∂xi∂xj

(Kij 〈c〉) . (4)

If 〈c〉 ∝ 〈ρ〉 at some timet ′, where〈ρ〉 is the ensemble aver-
age of air density, then for allt > t ′ the two quantities must
remain proportional. This condition, called well-mixed con-
dition (WMC) afterThomson(1987), implies that〈ρ〉 is also
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a solution of Eq. (4). Substitutingc with ρ in Eq. (4) and
using the continuity equation

∂〈ρ〉

∂t
= −

∂

∂xi

(ui〈ρ〉) , (5)

whereui is the density weighted mean velocity, defined as
(Thomson, 1995):

ui =
〈uiρ〉

〈ρ〉
= 〈ui〉 +

〈u′

iρ
′
〉

〈ρ〉
, (6)

the following expression is obtained:

−
∂

∂xi

(ui〈ρ〉) = −
∂

∂xi

(ai 〈ρ〉) +
∂2

∂xi∂xj

(Kij 〈ρ〉) . (7)

Then, integrating both sides and rearranging gives

ai =
∂Kij

∂xj

+
Kij

〈ρ〉

∂〈ρ〉

∂xj

+ ui , (8)

where the non-uniqueness implied by the integration is re-
moved considering that in the well-mixed state, the mixing
ratio flux must be proportional toui〈ρ〉. Substituting Eq. (8)
into Eq. (4) gives the equivalent of Eq. (2) inThomson
(1995).

At the coarse resolution typical of global models, ver-
tical motions can be considered decoupled from the hori-
zontal ones. Therefore, only the vertical coordinatex3 ≡ z

(andX3 ≡ Z in Lagrangian terms) need to be considered. In
this case, the RDM reduces to a single differential stochastic
equation

dZ =

(
w +

∂K

∂z
+

K

〈ρ〉

∂〈ρ〉

∂z

)
dt +

√
2KdW , (9)

wherew ≡ u3 andK ≡ K33.

3 Numerical implementation of the vertical
diffusion module

In its final form, IL-GLOBO is designed to be a fully online
integrated model (or at least an online-access model, accord-
ing to Baklanov et al., 2014), where the different compo-
nents share the same “view” of the atmosphere, i.e. use the
same discretisation, parameterisations, etc. The development
of the vertical diffusion module is based on this principle.

3.1 Vertical coordinate

Within IL-GLOBO, the Lagrangian equations are integrated
in the same coordinate system used in the Eulerian model.
This choice maintains the consistency between the La-
grangian and Eulerian components and reduces the interpo-
lation errors and computational cost.

GLOBO uses a hybrid vertical coordinate system in which
the terrain-following coordinateσ(0 < σ < 1) smoothly

tends, with height above the ground, to a pressure coordinate
P , according to

P = P0σ − (P0 − PS)σα , (10)

whereP0 is a reference pressure (typically 1000 hPa),PS is
the surface pressure andα is a parameter that gives the clas-
sicalσ coordinate forα = 1 (Phillips, 1957). The parameter
α depends on the model orography and, therefore, on resolu-
tion. It is limited by the condition∂

∂p
σ ≥ 0 that results in the

relationship:

α ≤
P0

P0 − min(PS)
, (11)

which is satisfied by the typical settingα = 2, used for a wide
range of resolutions in GLOBO applications (Malguzzi et al.,
2011).

The vertical Lagrangian coordinate is identified by6, cor-
responding to the vertical coordinateσ , and is connected to
the Lagrangian vertical positionZ above the ground through
Eq. (10) and the hydrostatic relationship. In the meteorologi-
cal component, the height above the groundz is a diagnostic
quantity that can be derived from the geopotential8 through
z(σ ) = (8(σ)−8g)g

−1, where8g is the geopotential at the
height of roughness length. Since the determination of the
different terms in Eq. (9) involves discrete Eulerian fields
and their numerical derivatives, the choice of employingσ

also has the advantage of making interpolation straightfor-
ward and consistent with the Eulerian part.

Becauseσ(z) is not linear (σ is not a Cartesian coordi-
nate system), the stochastic chain rule (see, e.g.Kloeden and
Platen, 1992, p. 80) must be used to derive the correct form
of Eq. (9) for 6, giving

d6 =

[
ω +

(
∂σ

∂z

)2 1

〈ρ〉

∂

∂σ
(〈ρ〉K) + K

∂2σ

∂z2

]
dt (12)

+
∂σ

∂z
(2K)1/2dW ,

whereω is the vertical velocity in theσ coordinate system
and z is the Cartesian vertical coordinate. The last term in
square brackets stems from the Itô–Taylor expansion of order
dW2, which must be included for the correct description at
order dt (Gardiner, 1990, p. 63).

3.2 Discretisation and interpolation

The GLOBO prognostic variables are computed on aLorenz
(1960) vertical grid: all the quantities are on “integer” lev-
elsσi , except vertical velocity, turbulent kinetic energy and
mixing length and, consequently, diffusion coefficients, lo-
cated at “semi-integer” levelsσ h

i (see Fig.1). In typical ap-
plications, the GLOBO vertical grid is regularly spaced in
σ (Malguzzi et al., 2011), although it is possible to use a
variable grid spacing, as in its limited-area version BOLAM
(Buzzi et al., 1994).
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Fig. 1. Schematic representation of field value distributions be-

tween integer (continuous lines) and semi integer (dashed lines) lev-

els in the GLOBO model.

for the first order derivative. Following the same consider-

ations made for ρ, the derivatives of σ with respect of z are

computed from relationships similar to Eq. (13) and Eq. (14).255

For the highly varying K profiles, two different methods

are tested, the first with two variants. The first method in-

terpolates the function linearly at the particle position, and

uses finite differences derivatives. In the first variant (labeled

D), the first order two-points derivative is computed and kept260

constant between two grid points. In order to give a smoother

description of the derivatives, a variant (labeled D′) is also

tested in which the three-points centered derivative is com-

puted and interpolated linearly at the particle position. For

D′, the values of first order derivative at the lowest boundary265

is computed as:

∂K

∂σ

∣

∣

∣

∣

NLEV+1

=
KNLEV+1−KNLEV

σNLEV+1−σNLEV

. (15)

This is assumed because K is expected to be linear near

the surface, according to Monin-Obukhov similarity theory

where:270

K(z)=κu∗z, (16)

for the neutral case, with proper modifications for diabatic

cases.

The second method (labeled A) is based on the Akima

(1991) cubic spline. For each interval it considers the pre-275

vious and the next two adjacent intervals (for a total number

of 6 grid points) to compute the coefficients of the interpo-

lating cubic polynomial. This algorithm reduces the number

of oscillations in the interpolating function compared to reg-

ular cubic splines and enforces the linearity when 4 points280

are collinear (Akima, 1991). Using this property, a linear

profile near the ground is imposed to the interpolating func-

tion by adding two fictitious points below the ground that are

collinear with the two lower grid points of the domain. In ad-

dition, to ensure the positivity of the interpolating functions,285

the local algorithm of Fischer et al. (1991) is used, which

also preserves the continuity of first order derivatives.

3.3 Integration scheme and time-step selection

The most common integration scheme for SDE in atmo-

spheric transport models is the Euler-Maruyama forward290

scheme:

Σt+∆t =Σt+a∆t+b∆W . (17)

The coefficients a and b come from Equation (12). The

Euler-Maruyama forward scheme is the simplest strong Tay-

lor approximation and turns out to be of order of strong con-295

vergence γ=0.5 (Kloeden and Platen, 1992, p. 305).

By a rather simple modification of the Euler-Maruyama

scheme, i.e. adding the term:

1

2
bb′(∆W 2−∆t), (18)

where b′ is the first-order derivative of b, the Milstein scheme300

is obtained, which is of order of strong convergence γ = 1.

It is worth noting that the strong order γ =1 of the Milstein

scheme corresponds to the strong order γ=1 of the Euler de-

terministic scheme. Therefore, Milstein can be regarded as

the correct generalization of the deterministic Euler scheme305

(Kloeden and Platen, 1992, p. 345). The additional term

uses only already computed quantities involved in the deter-

mination of the drift term of Equation (12). Preliminary ide-

alized tests do not show any appreciable accuracy improve-

ment with respect to the Euler-Maruyama scheme. However,310

because they confirm the negligible extra computational cost

of this method, the Milnstein scheme will be used to integrate

the model.

In the meteorology component of IL-GLOBO, the Eule-

rian equations are solved with a macro time-step ∆T , which315

depends basically on the horizontal resolution due to the

limitations imposed by the Courant number. Other time-

steps are involved in the Eulerian part but are not relevant

here. In typical implementations, ∆T ranges from 432 s for

362×242 point resolution (used for monthly forecasts1) to320

150 s for 1202×818 point resolution (used for high resolu-

tion weather forecasts2). The macro time-step is taken as the

upper limit for the solution of Equation (12). The time-step

needed to reach the required accuracy depends on the quan-

tities involved in determining the various elements in Equa-325

tion (17).

1http://www.isac.cnr.it/dinamica/projects/forecast dpc/month
2http://www.isac.cnr.it/dinamica/projects/forecasts/glob

Figure 1. Schematic representation of field value distributions be-
tween integer (continuous lines) and semi-integer (dashed lines)
levels in the GLOBO model.

6 being a continuous coordinate, the quantities needed to
compute the terms of Eq. (12) must be interpolated from the
Eulerian fields given at discrete levels. The computation of
first- and second-order derivatives of Eulerian model quan-
tities is also required in the implementation of the LSM. In-
terpolation and derivation algorithms can influence both the
accuracy and the computational cost of the Lagrangian model
and thus require careful assessment.

For densityρ and geopotential8, linear interpolation and
central differences derivative are used assuming that those
fields are regular enough. At the lower boundary, it is re-
quired that

∂2ρ

∂σ 2

∣∣∣∣
NLEV+1

=
∂2ρ

∂σ 2

∣∣∣∣
NLEV

, (13)

which implies

∂ρ

∂σ

∣∣∣∣
NLEV+1

= (14)

∂ρ

∂σ

∣∣∣∣
NLEV

+
∂2ρ

∂σ 2

∣∣∣∣
NLEV

(σNLEV+1 − σNLEV)

for the first-order derivative. Following the same considera-
tions made forρ, the derivatives ofσ with respect ofz are
computed from relationships similar to Eqs. (13) and (14).

For the highly varyingK profiles, two different methods
are tested, the first with two variants. The first method in-
terpolates the function linearly at the particle position and
uses finite differences derivatives. In the first variant (la-
belled D), the first-order two-point derivative is computed
and kept constant between two grid points. In order to give
a smoother description of the derivatives, a variant (labelled
D′) is also tested in which the three-point centered derivative
is computed and interpolated linearly at the particle position.

For D′, the values of the first-order derivative at the lowest
boundary are computed as

∂K

∂σ

∣∣∣∣
NLEV+1

=
KNLEV+1 − KNLEV

σNLEV+1 − σNLEV
. (15)

This is assumed becauseK is expected to be linear near
the surface, according to Monin–Obukhov similarity theory
where

K(z) = κu∗z (16)

for the neutral case, with proper modifications for diabatic
cases.

The second method (labelled A) is based on theAkima
(1991) cubic spline. For each interval it considers the previ-
ous and the next two adjacent intervals (for a total number of
six grid points) to compute the coefficients of the interpolat-
ing cubic polynomial. This algorithm reduces the number of
oscillations in the interpolating function compared to regular
cubic splines and enforces the linearity when four points are
collinear (Akima, 1991). Using this property, a linear pro-
file near the ground is imposed to the interpolating function
by adding two fictitious points below the ground that are
collinear with the two lower grid points of the domain. In ad-
dition, to ensure the positivity of the interpolating functions,
the local algorithm ofFischer et al.(1991) is used, which also
preserves the continuity of first-order derivatives.

3.3 Integration scheme and time-step selection

The most common integration scheme for SDE in atmo-
spheric transport models is the Euler–Maruyama forward
scheme:

6t+1t = 6t + a1t + b1W . (17)

The coefficientsa and b come from Eq. (12). The Euler–
Maruyama forward scheme is the simplest strong Taylor ap-
proximation and turns out to be of the order of strong con-
vergenceγ = 0.5 (Kloeden and Platen, 1992, p. 305).

By a rather simple modification of the Euler–Maruyama
scheme, i.e. adding the term:

1

2
bb′(1W2

− 1t), (18)

whereb′ is the first-order derivative ofb, the Milstein scheme
is obtained, which is of the order of strong convergence
γ = 1. It is worth noting that the strong orderγ = 1 of the
Milstein scheme corresponds to the strong orderγ = 1 of the
Euler deterministic scheme. Therefore, Milstein can be re-
garded as the correct generalisation of the deterministic Euler
scheme (Kloeden and Platen, 1992, p. 345). The additional
term uses only already-computed quantities involved in the
determination of the drift term of Eq. (12). Preliminary ide-
alised tests do not show any appreciable accuracy improve-
ment with respect to the Euler–Maruyama scheme. However,
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because they confirm the negligible extra computational cost
of this method, the Milstein scheme will be used to integrate
the model.

In the meteorology component of IL-GLOBO, the Eule-
rian equations are solved with a macro time step1T , which
depends basically on the horizontal resolution due to the lim-
itations imposed by the Courant number. Other time steps are
involved in the Eulerian part but are not relevant here. In typ-
ical implementations,1T ranges from 432 s for 362× 242
point resolution (used for monthly forecasts1) to 150 s for
1202×818 point resolution (used for high-resolution weather
forecasts2). The macro time step is taken as the upper limit
for the solution of Eq. (12). The time step needed to reach
the required accuracy depends on the quantities involved in
determining the various elements in Eq. (17).

First, a straightforward constraint is that the time step must
satisfy the relationship

√
2K1t1 � K

∣∣∣∣∂K

∂σ

∣∣∣∣−1

, (19)

(Wilson and Yee, 2007, see, e.g.), which expresses the re-
quirement that the average root mean square step length must
be much smaller than the scale of the variations ofK. This
gives rise to a limitation that is consistent with the surface-
layer behaviour of the diffusion coefficient, Eq. (16). The
condition expressed by Eq. (19) makes1t1 vanish forz → 0.
Such behaviour ensures that the WMC is satisfied theoret-
ically, but clearly poses problems for numerical implemen-
tation (Ermak and Nasstrom, 2000; Wilson and Yee, 2007).
However, in the application of a global model, where parti-
cles can be distributed throughout the troposphere, this prob-
lem affects only a small fraction of particles in the vicinity
of the surface. Therefore, it can be dealt with by selecting a
1tmin small enough for the solution to be within the accepted
error and, at the same time, large enough to not impact the
overall computational cost.

In addition to Eq. (19), another constraint is needed to ac-
count also for the presence of maxima in theK profile, which
must be present if one considers the whole atmosphere. At
maxima (or minima), Eq. (19) gives an unlimited1t1, which
is not suitable for the integration of the model as it could
cause the trajectory to cross the maximum (or minimum),
with a significant change inK(z) associated to a change in
∂zK sign. To avoid this problem, a further constraint is in-
troduced, based on the normalised second-order derivative,
which gives an estimation of the width of the maximum. The
constraint reads

2K1t2 � K

∣∣∣∣∂2K

∂σ 2

∣∣∣∣−1

. (20)

1http://www.isac.cnr.it/dinamica/projects/forecast_dpc/month_
en.htm

2http://www.isac.cnr.it/dinamica/projects/forecasts/glob_
newNH/

The above equation has the property of limiting1t2 accord-
ing to the sharpness of theK peak.

Taking the minimum among1T , 1t1 and1t2 (and replac-
ing � with = CT in Eqs.19and20), gives

1t = min

[
1T,

CT

2
K

(
∂K

∂σ

)−2

,
CT

2

∣∣∣∣∂2K

∂σ 2

∣∣∣∣−1]
, (21)

where the parameterCT quantifies the “much less” condition
and, therefore, must be at least 0.1 or smaller.

Figure2 shows the application of Eq. (21) for a K profile
representative of GLOBO (see Sect.4) and aCT = 0.01. The
1t decreases in the presence ofK gradients thanks to con-
dition (19), and is limited around theK maximum (where
∂K/∂σ = 0) by condition (20). The maximum of1t = 1T

is attained at higher levels.
It should be kept in mind that the method is based on local

quantities and may fail if strong variations ofK occur in one
time step along the particle path. To overcome this problem,
an additional constraint is used to make the algorithm non-
local (or “less local”). Using the1t0 computed at the particle
position at timet , two other time steps (1t+ and1t−) are
evaluated at the positions:

6± = 6t + a1t0 ± b1t
1/2
0 . (22)

The minimum1t among1t0, 1t+ and1t− is then used to
advance the particle position6t+1t .

3.4 Boundary conditions

The necessary boundary condition for the conservation of
the probability (and therefore of the mass) is the reflective
boundary (Gardiner, 1990, p. 121).Wilson and Flesch(1993)
show that the elastic reflection ensures the WMC if the inte-
gration time step is small enough. However, in cases of non-
homogeneousK, numerical implementation requires that1t

vanishes as the particle approaches the boundary. For models
that focus on near-surface dispersion, the time step needed to
achieve the required accuracy can become very small.Ermak
and Nasstrom(2000) describe a theoretically well-founded
method to speed up (roughly by a factor of 10) simulations
of this kind.

In the case of IL-GLOBO, it will be shown that the elas-
tic reflection condition atσ = 1, coupled with the adaptive
time-step algorithm described in Sect.3.3, can ensure a good
approximation of the solution while maintaining affordable
the computational cost.

4 Model verification: the well-mixed condition

In order to verify the vertical diffusion module of IL-
GLOBO, a series of experiments was performed with a 1-D
version of the code and then tested in a preliminary version
of the full 3-D model. Input profiles were obtained by run-
ning the low-resolution version of GLOBO (horizontal grid

www.geosci-model-dev.net/7/2181/2014/ Geosci. Model Dev., 7, 2181–2191, 2014
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First, a straightforward constraint is that the time-step

must satisfy the relationship

√

2K∆t1 ≪K

∣

∣

∣

∣

∂K

∂σ

∣

∣

∣

∣

−1

, (19)

(see, e.g., Wilson and Yee, 2007), which expresses the re-330

quirement that the average root-mean square step length must

be much smaller than the scale of the variations of K. This

gives rise to a limitation that is consistent with the surface

layer behavior of the diffusion coefficient, Eq. (16). The

condition expressed by Equation (19) makes ∆t1 vanish for335

z→ 0. Such behavior ensures the WMC is satisfied theoret-

ically, but clearly poses problems for numerical implemen-

tation (Ermak and Nasstrom, 2000; Wilson and Yee, 2007).

However, in the application of a global model, where parti-

cles can be distributed throughout the troposphere, this prob-340

lem affects only a small fraction of particles in the vicinity

of the surface. Therefore, it can be dealt with by selecting

a ∆tmin small enough for the solution to be within the ac-

cepted error and, at the same time, large enough to not impact

on the overall computational cost.345

In addition to Equation (19), another constraint is needed

to account also for the presence of maxima in the K pro-

file, which must be present if one considers the whole at-

mosphere. At maxima (or minima), Equation (19) gives an

unlimited ∆t1, which is not suitable for the integration of the350

model as it could cause the trajectory to cross the maximum

(or minimum), with a significant change in K(z) associated

to a change in ∂zK sign. To avoid this problem, a further

constraint is introduced, based on the normalized second-

order derivative, which gives an estimation of the width of355

the maximum. The constraint reads:

2K∆t2 ≪K

∣

∣

∣

∣

∂2K

∂σ2

∣

∣

∣

∣

−1

. (20)

The above Equation has the property of limiting ∆t2 accord-

ing to the sharpness of the K peak.

Taking the minimum among ∆T , ∆t1 and ∆t2 (and re-360

placing “≪” by “=CT ” in Equations (19) and (20)), gives:

∆t=min

[

∆T,
CT

2
K

(

∂K

∂σ

)−2

,
CT

2

∣

∣

∣

∣

∂2K

∂σ2

∣

∣

∣

∣

−1
]

, (21)

where the parameter CT quantifies the “much less” condition

and, therefore, must be than at least 0.1 or smaller.

Figure 2 shows the application of Eq. (21) for a K profile365

representative of GLOBO (see Section 4) and a CT =0.01.

The ∆t decreases in the presence of K gradients thanks to

condition (19), and is limited around the K maximum (where

∂K/∂σ=0) by condition (20). The maximum of ∆t=∆T
is attained at higher levels.370

It should be beared in mind that the method is based on

local quantities and may fail in case strong variations of K
occur in one time step along the particle path. To overcome
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Fig. 2. Values of integration time-step ∆t for the diffusivity profile

shown by the red curve. The green line shows the contribution of

Eq. (19), the blue line the contribution of Eq. (20), and the black line

the combined condition (Eq. 21, with ∆T =432 s and CT =0.01).

the problem, an additional constraint is used to make the al-

gorithm non-local (or less local). Using the ∆t0 computed at375

the particle position at time t, two other time-step (∆t+ and

∆t−) are evaluated at the positions:

Σ± =Σt+a∆t0±b∆t
1/2
0 . (22)

The minimum ∆t among ∆t0, ∆t+ and ∆t− is then used to

advance the particle position Σt+∆t.380

3.4 Boundary conditions

The necessary boundary condition for the conservation of

the probability (and therefore of the mass) is the reflective

boundary (Gardiner, 1990, p. 121). Wilson and Flesch

(1993) show that the elastic reflection ensures the WMC if385

the integration time-step is small enough. However, in cases

of non-homogeneous K, numerical implementation requires

that ∆t vanishes as the particle approaches the boundary. For

models that focus on near surface dispersion, the time-step

needed to achieve the required accuracy can become very390

small. Ermak and Nasstrom (2000) describe a theoretically

well founded method to speed-up (roughly by a factor of 10)

simulations of this kind.

In the case of IL-GLOBO, it will be shown that the elastic

reflection condition at σ=1, coupled with the adaptive time395

step algorithm described in Section 3.3, can ensure a good

approximation of the solution while maintaining affordable

the computational cost.

4 Model verification: the well-mixed condition

In order to verify the vertical diffusion module of IL-400

GLOBO, a series of experiments was performed with a 1-D

version of the code and then tested in a preliminary version

Figure 2. Values of integration time step1t for the diffusivity pro-
file shown by the red curve. The green line shows the contribution of
Eq. (19), the blue line the contribution of Eq. (20) and the black line
the combined condition (Eq.21, with 1T = 432s andCT = 0.01).

of 362× 242 cells and 50 vertical levels evenly spaced inσ )
starting at 11 March 2011 00:00 UTC. After 36 h of simula-
tion (12:00 UTC), averaging ofσ = const surfaces were per-
formed forK, ρ and8, obtaining vertical profiles as a func-
tion of σ . Fields ofρ and8 were averaged over the whole
domain. As far asK is concerned, averages were performed
for latitudes between+60 and−60◦ North in daytime (lon-
gitudes between−45 and+45◦ East) and night-time (longi-
tudes between+135 and−135◦ East) conditions, over land
and sea separately. The most intenseK profile is selected
which corresponds to the daytime conditions over land. Pro-
files ofρ andz are rather smooth and regular over space and
time, while K displays large variability. The profiles were
fitted with analytical functions derived by combining the hy-
drostatic equation and the perfect gas law. The following an-
alytical expressions were used:

ρ(σ) = ρ0σ
(Rd0/g+1) , (23)

and

z(σ ) =
(σ−Rd0/g

− 1)T0

0
, (24)

with T0 = 288.0 K, ρ0 = 1.2 kg m−3 and 0 =

−0.007 K m−1. As a consequence of the hydrostatic
perfect gas assumption, by expressing the densityρ in sigma

vertical units
(
ρσ = ρ

∣∣∣ dz
dσ

∣∣∣) and using Eqs. (24) and (23),

the following constant value is obtained:

ρσ =
ρ0RdT0

g
. (25)

Figure3 shows the GLOBO-average profiles and their fitting
functions for the densityρ and the geopotential height8g−1

as function ofσ .
As far as theK profile is concerned, the function

K(z) = Azexp
[
−(Bz)C

]
, (26)
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of the full 3-D model. Input profiles were obtained by run-

ning the low-resolution version of GLOBO (horizontal grid

of 362×242 cells and 50 vertical levels evenly spaced in σ)405

starting at 2011-03-11 00:00 UTC. After 36 hours of simula-

tion (12:00 UTC), averages on σ= const surfaces were per-

formed for K, ρ and Φ, obtaining vertical profiles as a func-

tion of σ. Fields of ρ and Φ were averaged over the whole

domain. As far as K is concerned, averages were performed410

for latitude between +60◦ and -60◦ North in daytime (longi-

tude between -45◦ and +45◦ East) and nighttime (longitude

between +135◦ and -135◦ East) conditions, over land and

sea separately. The most intense K profile is selected, which

corresponds to the daytime conditions over land. Profiles of415

ρ and z are rather smooth and regular over space and time,

while K displays a large variability. The profiles were fitted

with analytical functions derived combining the hydrostatic

equation and the perfect gas law. The following analytical

expressions were used:420

ρ(σ)= ρ0σ
(RdΓ/g+1) , (23)

and:

z(σ)=
(σ−RdΓ/g−1)T0

Γ
, (24)

with T0 =288.0 K, ρ0 =1.2 kgm−3 and Γ=−0.007 K m−1.

As a consequence of the hydrostatic perfect gas assump-425

tion, by expressing the density ρ in sigma vertical units

(ρσ = ρ
∣

∣

dz
dσ

∣

∣) and using Equations (24) and (23), the follow-

ing constant value is obtained:

ρσ =
ρ0RdT0

g
. (25)

Figure 3 shows the GLOBO averaged profiles and their fit-430

ting functions for the density ρ and the geopotential height

Φg−1 as function of σ.
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by Eq. (26).

As far as the K profile is concerned, the function

K(z)=Azexp
[

−(Bz)C
]

, (26)

is used to account for the specific K features: it should dis-435

play a linear behavior near the surface, must tend to zero

near the boundary layer top3 and, therefore, must display a

maximum at some height. In Equation (26), A=0.29ms−1

was first determined according to average surface-layer prop-

erties (the first GLOBO vertical level), and corresponds to440

a friction velocity u∗ ≃ 0.7 ms−1. Then, the other two pa-

rameters were let to vary to fit the average profile giving

B = 1.3×10−3 m−1 and C = 1.6.

Although the above profile is representative of the typi-

cal GLOBO diffusivity, real profiles can be remarkably less445

regular, creating challenging conditions for the model. For

this reason, a profile was selected among those showing iso-

lated strong maximum near the ground. This is typical of

strong convective conditions just after sunrise. Fitting Equa-

tion (26) on this second profile gives A= 0.3 ms−1, B =450

4.0×10−3 m−1 and C =4.5. Figure 4 reports the GLOBO

‘averaged’ and ‘peaked’ K profiles as function of σ.

4.1 Determination of the optimal setting for the adap-

tive time-step selection algorithm

The first series of experiments concerns the optimization of455

the adaptive scheme for ∆t, i.e., the selection of the best

suited value for the coefficient CT in Equation 21.

Simulations were performed in flow conditions described

by Equations (23), (24) and (26), distributing particles with

number concentration proportional to ρ. For the WMC to be460

3In GLOBO, K also accounts for a part of the instability gen-

erated by moist convection and therefore it may not vanish at the

boundary layer top.

Figure 3. Average GLOBO profiles ofρ (green symbols) andφ/g

(blue symbols) as a function of vertical coordinateσ and their ana-
lytical fits (Eqs.23and24).

Table 1.RMSE and execution time for differentCT .

CT RMSE Time [s]

0.5 0.044 76
0.1 0.037 238

0.01 0.021 1172
0.001 0.021 7317

is used to account for the specificK features: it should dis-
play a linear behaviour near the surface, must tend to zero
near the boundary layer top3 and, therefore, must display a
maximum at some height. In Eq. (26), A = 0.29 ms−1 was
first determined according to average surface-layer proper-
ties (the first GLOBO vertical level), and corresponds to a
friction velocity u∗ ' 0.7 ms−1. Then, the other two param-
eters were allowed to vary to fit the average profile giving
B = 1.3× 10−3 m−1 andC = 1.6.

Although the above profile is representative of the typi-
cal GLOBO diffusivity, real profiles can be remarkably less
regular, creating challenging conditions for the model. For
this reason, a profile was selected among those showing iso-
lated strong maxima near the ground. This is typical of strong
convective conditions just after sunrise. Fitting Eq. (26) to
this second profile givesA = 0.3 ms−1, B = 4.0×10−3 m−1

and C = 4.5. Figure4 reports the GLOBO “average” and
“peaked”K profiles as function ofσ .

4.1 Determination of the optimal setting for the
adaptive time-step selection algorithm

The first series of experiments concerns the optimisation of
the adaptive scheme for1t , i.e. the selection of the best
suited value for the coefficientCT in Eq. (21).

3In GLOBO,K also accounts for a part of the instability gener-
ated by moist convection and, therefore, it might not vanish at the
boundary layer top.
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tion (12:00 UTC), averages on σ= const surfaces were per-

formed for K, ρ and Φ, obtaining vertical profiles as a func-

tion of σ. Fields of ρ and Φ were averaged over the whole

domain. As far as K is concerned, averages were performed410

for latitude between +60◦ and -60◦ North in daytime (longi-

tude between -45◦ and +45◦ East) and nighttime (longitude

between +135◦ and -135◦ East) conditions, over land and

sea separately. The most intense K profile is selected, which

corresponds to the daytime conditions over land. Profiles of415

ρ and z are rather smooth and regular over space and time,

while K displays a large variability. The profiles were fitted

with analytical functions derived combining the hydrostatic

equation and the perfect gas law. The following analytical

expressions were used:420

ρ(σ)= ρ0σ
(RdΓ/g+1) , (23)

and:

z(σ)=
(σ−RdΓ/g−1)T0

Γ
, (24)

with T0 =288.0 K, ρ0 =1.2 kgm−3 and Γ=−0.007 K m−1.

As a consequence of the hydrostatic perfect gas assump-425

tion, by expressing the density ρ in sigma vertical units
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∣) and using Equations (24) and (23), the follow-

ing constant value is obtained:
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Figure 3 shows the GLOBO averaged profiles and their fit-430

ting functions for the density ρ and the geopotential height
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is used to account for the specific K features: it should dis-435

play a linear behavior near the surface, must tend to zero

near the boundary layer top3 and, therefore, must display a

maximum at some height. In Equation (26), A=0.29ms−1

was first determined according to average surface-layer prop-

erties (the first GLOBO vertical level), and corresponds to440

a friction velocity u∗ ≃ 0.7 ms−1. Then, the other two pa-

rameters were let to vary to fit the average profile giving

B = 1.3×10−3 m−1 and C = 1.6.

Although the above profile is representative of the typi-

cal GLOBO diffusivity, real profiles can be remarkably less445

regular, creating challenging conditions for the model. For

this reason, a profile was selected among those showing iso-

lated strong maximum near the ground. This is typical of

strong convective conditions just after sunrise. Fitting Equa-

tion (26) on this second profile gives A= 0.3 ms−1, B =450

4.0×10−3 m−1 and C =4.5. Figure 4 reports the GLOBO

‘averaged’ and ‘peaked’ K profiles as function of σ.

4.1 Determination of the optimal setting for the adap-

tive time-step selection algorithm

The first series of experiments concerns the optimization of455

the adaptive scheme for ∆t, i.e., the selection of the best

suited value for the coefficient CT in Equation 21.

Simulations were performed in flow conditions described
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number concentration proportional to ρ. For the WMC to be460

3In GLOBO, K also accounts for a part of the instability gen-

erated by moist convection and therefore it may not vanish at the
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Figure 4. Diffusivity profiles used in the experiments. The symbols
represents the data from GLOBO and the lines, their fitting function.
The “average” profile is shown in red, while the “peaked” profile is
shown in green. The functional form of both profiles is described by
Eq. (26).

Simulations were performed in flow conditions described
by Eqs. (23), (24) and (26), distributing particles with num-
ber concentration proportional toρ. For the WMC to be
satisfied, this distribution must remain constant as the time
evolves. Equation (12) was integrated for 4× 105 particles
and for 200 macro time steps, each 432 s long, for a total of
T = 86 400 s= 24 h. The actual time step used is given by
Eq. (21) with the additional lower limit1tmin = 0.01. Sim-
ulations were performed using 12 cores of an Intel Xeon
machine. Since the initial condition was already well-mixed
(C ∝ ρ), the simulation time was considered sufficient to as-
sess the skill of the model in satisfying the WMC. At the end
of the simulation, final concentration profiles were computed
in “σ volume”, i.e.c(σ ) = N(σ)(1σ)−1, whereN(σ) is the
number of particles betweenσ andσ + 1σ . The skill of the
model in reproducing the WMC was evaluated using the root
mean square error (RMSE) of the final normalised concen-
tration profile with respect to the normalised density profile
(derived using Eq.25).

Figure5 reports the different profiles of concentration af-
ter 24 h of simulation computed using different values ofCT .
The shaded region represents the interval between 3 standard
deviations from the expected value. RMSE values for each
simulation are reported in Table1 along with the computa-
tion time. The RMSE error becomes comparable to the sta-
tistical error forCT = 0.01, which is selected as the optimal
value. In order to evaluate the possible dependency ofCT

on the number of particles, two additional sets of runs were
performed with 105 and 16×105 particles that correspond to
halving and doubling, respectively, the statistical error of the
base experiment. Results are reported in Fig.6 which shows
that, in the considered range, the optimalCT is quite inde-
pendent of the number of particles.

It is worth noting that the time-step selection algorithm
with the proper choice ofCT ensures that the WMC is
also satisfied at the reflective boundary too, as mentioned in
Sect.3.4.
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satisfied, this distribution must remain constant as the time

evolves. Equation (12) was integrated for 4×105 particles

and for 200 macro time-steps, each 432 s long, for a total of

T = 86400 s = 24 h. The actual time-step used is given by

Equation (21) with the additional lower limit ∆tmin =0.01.465

Simulations were performed using 12 cores of an Intel Xeon

machine. Since the initial condition was already well-mixed

(C ∝ ρ), the simulation time was considered sufficient to as-

sess the skill of the model in satisfying the WMC. At the end

of the simulation, final concentration profiles were computed470

in “σ volume”, i.e., c(σ)=N(σ)(∆σ)−1, where N(σ) is the

number of particles between σ and σ+∆σ. The skill of the

model in reproducing the WMC was evaluated using the root

mean square error (RMSE) of the final normalized concen-

tration profile with respect to the normalized density profile475

(derived using Equation 25).

Figure 5 reports the different profiles of concentration af-

ter 24 hours of simulation computed using different values

of CT . The shaded region represents the interval between 3

standard deviations from the expected value. RMSE values480

for each simulation are reported in Table 1 along with the

computation time. The RMSE error becomes comparable to

the statistical error for CT = 0.01, which is selected as the

optimal value. In order to evaluate the possible dependency

of CT on the number of particles, two additional sets of runs485

were performed with 105 and 16×105 particles that corre-

spond to halving and doubling, respectively, the statistical

error of the base experiment. Results are reported in Figure 6

which shows that, in the considered range, the optimal CT is

quite independent of the number of particles.490

It is worth noting that the time-step selection algorithm

with the proper choice of CT ensures that the WMC is also

satisfied at the reflective boundary too, as mentioned in Sec-

tion 3.4.

CT RMSE Time [s]

0.5 0.044 76

0.1 0.037 238

0.01 0.021 1172

0.001 0.021 7317

Table 1. RMSE and execution time for different CT .
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4.2 Evaluation of the interpolation algorithms495

In the subsequent set of experiments, the model skill in re-

producing the WMC was evaluated for the interpolation tech-

niques D, D′ and A described in Section 3.2.

In the first experiment, the analytical fields described by

Equations (23), (24) and (26) with the parameters of the ‘av-500

erage’ diffusivity profile were resampled on a 50 point reg-

ular grid. This provides a discrete version of the experiment

described in the previous section, with the same vertical res-

olution of the GLOBO original fields.

The particle number, initial distribution and simulation505

time are the same as in the experiment described in section

4.1. The integration time-step is selected using the local al-

gorithm. The time-step selection algorithm requires the com-

putation of the second order derivative of K, which is not

possible for the D interpolation scheme. Therefore, it is es-510

timated using finite differences of the first order derivative.

The results of this experiment are shown in Figure 7. In the

upper panel, the integration time-step profiles of the three

simulations and the Akima interpolated diffusion coefficient

profile, are displayed. The lower panel shows the normalized515

distribution of the particle after 24 hours of simulation along

with the expected value. Table 2 displays the integration time

and RMSE obtained for the various experimental settings.

The time-step profiles are similar, except for the A profile

around the region of maximum of K, where it shows strong520

variations and, on the average, is longer than the others.

Looking at the distribution of particles (lower panel), it re-

Figure 5. Dispersion experiment with different choices of param-
eterCT . Top panel: diffusivity profile (black line) and1t profiles
for CT = 0.5 (light blue),CT = 0.1 (green),CT = 0.01 (red) and
CT = 0.001 (blue). Bottom panel: normalised concentration pro-
files for differentCT (line colours as in the top panel).
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ter CT . Top panel: diffusivity profile (black line) and ∆t profiles

for CT =0.5 (light blue), CT =0.1 (green), CT =0.01 (red) and

CT = 0.001 (blue). Bottom panel: normalized concentration pro-

files for different CT (Line colors as in the top panel).

satisfied, this distribution must remain constant as the time

evolves. Equation (12) was integrated for 4×105 particles

and for 200 macro time-steps, each 432 s long, for a total of

T = 86400 s = 24 h. The actual time-step used is given by

Equation (21) with the additional lower limit ∆tmin =0.01.465

Simulations were performed using 12 cores of an Intel Xeon

machine. Since the initial condition was already well-mixed

(C ∝ ρ), the simulation time was considered sufficient to as-

sess the skill of the model in satisfying the WMC. At the end

of the simulation, final concentration profiles were computed470

in “σ volume”, i.e., c(σ)=N(σ)(∆σ)−1, where N(σ) is the

number of particles between σ and σ+∆σ. The skill of the

model in reproducing the WMC was evaluated using the root

mean square error (RMSE) of the final normalized concen-

tration profile with respect to the normalized density profile475

(derived using Equation 25).

Figure 5 reports the different profiles of concentration af-

ter 24 hours of simulation computed using different values

of CT . The shaded region represents the interval between 3

standard deviations from the expected value. RMSE values480

for each simulation are reported in Table 1 along with the

computation time. The RMSE error becomes comparable to

the statistical error for CT = 0.01, which is selected as the

optimal value. In order to evaluate the possible dependency

of CT on the number of particles, two additional sets of runs485

were performed with 105 and 16×105 particles that corre-

spond to halving and doubling, respectively, the statistical

error of the base experiment. Results are reported in Figure 6

which shows that, in the considered range, the optimal CT is

quite independent of the number of particles.490

It is worth noting that the time-step selection algorithm

with the proper choice of CT ensures that the WMC is also

satisfied at the reflective boundary too, as mentioned in Sec-

tion 3.4.

CT RMSE Time [s]

0.5 0.044 76

0.1 0.037 238

0.01 0.021 1172

0.001 0.021 7317

Table 1. RMSE and execution time for different CT .
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4.2 Evaluation of the interpolation algorithms495

In the subsequent set of experiments, the model skill in re-

producing the WMC was evaluated for the interpolation tech-

niques D, D′ and A described in Section 3.2.

In the first experiment, the analytical fields described by

Equations (23), (24) and (26) with the parameters of the ‘av-500

erage’ diffusivity profile were resampled on a 50 point reg-

ular grid. This provides a discrete version of the experiment

described in the previous section, with the same vertical res-

olution of the GLOBO original fields.

The particle number, initial distribution and simulation505

time are the same as in the experiment described in section

4.1. The integration time-step is selected using the local al-

gorithm. The time-step selection algorithm requires the com-

putation of the second order derivative of K, which is not

possible for the D interpolation scheme. Therefore, it is es-510

timated using finite differences of the first order derivative.

The results of this experiment are shown in Figure 7. In the

upper panel, the integration time-step profiles of the three

simulations and the Akima interpolated diffusion coefficient

profile, are displayed. The lower panel shows the normalized515

distribution of the particle after 24 hours of simulation along

with the expected value. Table 2 displays the integration time

and RMSE obtained for the various experimental settings.

The time-step profiles are similar, except for the A profile

around the region of maximum of K, where it shows strong520

variations and, on the average, is longer than the others.

Looking at the distribution of particles (lower panel), it re-

Figure 6. RMSE obtained from experiments made with 105 (red),
4× 105 (green) and 16× 105 (blue) particles as a function ofCT .

4.2 Evaluation of the interpolation algorithms

In the subsequent set of experiments, the model skill in re-
producing the WMC was evaluated for the interpolation tech-
niques D, D′ and A described in Sect.3.2.

In the first experiment, the analytical fields described by
Eqs. (23), (24) and (26) with the parameters of the “average”
diffusivity profile were resampled on a 50-point regular grid.
This provides a discrete version of the experiment described
in the previous section, with the same vertical resolution of
the GLOBO original fields.

The particle number, initial distribution and simulation
time are the same as in the experiment described in Sect.4.1.
The integration time step is selected using the local algo-
rithm. The time-step selection algorithm requires the com-
putation of the second-order derivative ofK, which is not
possible for the D interpolation scheme. Therefore, it is es-
timated using finite differences of the first-order derivative.
The results of this experiment are shown in Fig.7. In the
upper panel, the integration time-step profiles of the three
simulations and the Akima interpolated diffusion coefficient
profile are displayed. The lower panel shows the normalised
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Table 2.Execution time and RMSE for experiments made with the
sampled “average” diffusivity distribution and varying interpolation
method.

Interpolation algorithm Exec. time RMSE

A 237 s 0.025
D 155 s 0.023
D′ 162 s 0.0448 Rossi and Maurizi: IL-GLOBO: vertical diffusion module
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Fig. 7. Experiments with the sampled ‘average’ diffusivity distri-

bution for the interpolation algorithms D (blue), D′ (green) and A

(red). Top panel: Diffusivity profile as interpolated by A (black) and

∆t profiles for the different interpolation settings. Bottom panel:

Normalized final concentration and expected distribution (black).

Interpolation algorithm exec. time RMSE

A 237 s 0.025

D 155 s 0.023

D′ 162 s 0.044

Table 2. Execution time and RMSE for experiments made with

the sampled ‘averaged’ diffusivity distribution, varying interpola-

tion method.

sults that simulations with A and D interpolation algorithms

both satisfy the WMC within the statistical limit, while the

simulation with the D′ algorithm fails to maintain the well525

mixed state, in particular near the ground. Additional ex-

periments (not reported) show that in order to obtain a well

mixed solution with D′, resolution must be doubled, at least.

The problem is probably related to the definition of deriva-

tives of K between grid points. In fact, although D′ computes530

derivatives at higher order of approximation than D, they are

not consistent with a linear variation of K. Although the use

of D′ can be appropriate for slowly varying and monotone

functions like ρ and z, it turns out to be unsuitable for the

more complex K profile which, in addition, affects both the535

Wiener stochastic term and the drift term. For these reasons,

the D′ interpolation scheme is not used in the following ex-

periments.

The second experiment concerns the ‘peaked’ profile. In

this case, the K profile is used directly, without the resam-540

pling of the fitting function. Simulations with A and D algo-

rithms were performed with both local and non-local time-

step selection algorithm. Figure 8 reports the time-step and

concentration profiles, while execution times and RMSEs are

shown in Table 3. Although the integration time-step profiles545

look very similar for the local and non-local algorithms, the

small differences have large impact on the results: the local

algorithm strongly fails in reproducing the WMC for both

Interpolation algorithm ∆t selection exec. time RMSE

A local 313 s 0.042

D local 181 s 0.065

A non-local 1122 s 0.016

D non-local 593 s 0.022

Table 3. Execution time and RMSE for experiments made with the

‘peaked’ diffusivity distribution, varying interpolation method and

∆t selection algorithm.
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Fig. 8. Same as in Fig. 7 for experiments with the ‘peaked’ diffusiv-

ity distribution. Results obtained using the local (left) or non-local

(right) ∆t selection algorithm.

interpolation schemes, especially for D. Conversely, the non-

local algorithm turns out to be effective in selecting the ap-550

propriate time-step even in presence of strong gradients and

isolated maxima. This is reflected on its higher computa-

tional cost (see Table 3).

4.3 Implementation on the 3-D model

A preliminary test of the algorithms on the 3-D model has555

been performed. The interpolation algorithm has been imple-

mented in a simplified quasi-1-D form, where the diffusion

coefficient has been considered to be horizontally constant

between grid points. IL-GLOBO uses the same paralleliza-

tion of GLOBO, with particle exchanged between processes560

at each macro time-step. Particles are first advected horizon-

tally for a macro time-step using their deterministic velocity,

and then ‘diffused’ in the vertical according to Equation (12).

After 12 h of spinup, 5×105 particles are released with a

vertical distribution proportional to the average density pro-565

file, and randomly and homogeneously distributed in the hor-

izontal. Particle statistics are computed after 24 h from the

release.

A and D interpolation algorithm were tested using the non-

local time-step selection. It is found that, while interpolation570

scheme A maintains the WMC reasonably (RMSE=0.024),

the time-step selection algorithm for scheme D requires ex-

tremely short time-steps ( ≪∆tmin, see Section 4.1) in the

Figure 7. Experiments with the sampled “average” diffusivity dis-
tribution for the interpolation algorithms D (blue), D′ (green) and A
(red). Top panel: diffusivity profile as interpolated by A (black) and
1t profiles for the different interpolation settings. Bottom panel:
normalised final concentration and expected distribution (black).

distribution of the particle after 24 h of simulation along with
the expected value. Table2 displays the integration time and
RMSE obtained for the various experimental settings.

The time-step profiles are similar, except for the A pro-
file around the region of the maximum ofK, where it shows
strong variations and, on the average, is longer than the oth-
ers. Looking at the distribution of particles (lower panel), it
can be observed that simulations with A and D interpolation
algorithms both satisfy the WMC within the statistical limit,
while the simulation with the D′ algorithm fails to maintain
the well-mixed state, in particular near the ground. Addi-
tional experiments (not reported) show that in order to obtain
a well-mixed solution with D′, resolution must be doubled
at least. The problem is probably related to the definition of
derivatives ofK between grid points. In fact, although D′

computes derivatives at a higher order of approximation than
D, they are not consistent with a linear variation ofK. Al-
though the use of D′ can be appropriate for slowly varying
and monotone functions likeρ andz, it turns out to be un-
suitable for the more complexK profile which, in addition,
affects both the Wiener stochastic term and the drift term. For
these reasons, the D′ interpolation scheme is not used in the
following experiments.

The second experiment concerns the “peaked” profile. In
this case, theK profile is used directly, without the re-
sampling of the fitting function. Simulations with A and D
algorithms were performed with both local and non-local

Table 3.Execution time and RMSE for experiments made with the
“peaked” diffusivity distribution, varying interpolation method and
1t selection algorithm.

Interpolation algorithm 1t selection Exec. time RMSE

A local 313 s 0.042
D local 181 s 0.065
A non-local 1122 s 0.016
D non-local 593 s 0.022
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Table 2. Execution time and RMSE for experiments made with

the sampled ‘averaged’ diffusivity distribution, varying interpola-

tion method.

sults that simulations with A and D interpolation algorithms

both satisfy the WMC within the statistical limit, while the

simulation with the D′ algorithm fails to maintain the well525

mixed state, in particular near the ground. Additional ex-

periments (not reported) show that in order to obtain a well

mixed solution with D′, resolution must be doubled, at least.

The problem is probably related to the definition of deriva-

tives of K between grid points. In fact, although D′ computes530

derivatives at higher order of approximation than D, they are

not consistent with a linear variation of K. Although the use

of D′ can be appropriate for slowly varying and monotone

functions like ρ and z, it turns out to be unsuitable for the

more complex K profile which, in addition, affects both the535

Wiener stochastic term and the drift term. For these reasons,

the D′ interpolation scheme is not used in the following ex-

periments.

The second experiment concerns the ‘peaked’ profile. In

this case, the K profile is used directly, without the resam-540

pling of the fitting function. Simulations with A and D algo-

rithms were performed with both local and non-local time-

step selection algorithm. Figure 8 reports the time-step and

concentration profiles, while execution times and RMSEs are

shown in Table 3. Although the integration time-step profiles545

look very similar for the local and non-local algorithms, the

small differences have large impact on the results: the local

algorithm strongly fails in reproducing the WMC for both

Interpolation algorithm ∆t selection exec. time RMSE

A local 313 s 0.042

D local 181 s 0.065

A non-local 1122 s 0.016

D non-local 593 s 0.022

Table 3. Execution time and RMSE for experiments made with the

‘peaked’ diffusivity distribution, varying interpolation method and
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(right) ∆t selection algorithm.

interpolation schemes, especially for D. Conversely, the non-

local algorithm turns out to be effective in selecting the ap-550

propriate time-step even in presence of strong gradients and

isolated maxima. This is reflected on its higher computa-

tional cost (see Table 3).

4.3 Implementation on the 3-D model

A preliminary test of the algorithms on the 3-D model has555

been performed. The interpolation algorithm has been imple-

mented in a simplified quasi-1-D form, where the diffusion

coefficient has been considered to be horizontally constant

between grid points. IL-GLOBO uses the same paralleliza-

tion of GLOBO, with particle exchanged between processes560

at each macro time-step. Particles are first advected horizon-

tally for a macro time-step using their deterministic velocity,

and then ‘diffused’ in the vertical according to Equation (12).

After 12 h of spinup, 5×105 particles are released with a

vertical distribution proportional to the average density pro-565

file, and randomly and homogeneously distributed in the hor-

izontal. Particle statistics are computed after 24 h from the

release.

A and D interpolation algorithm were tested using the non-

local time-step selection. It is found that, while interpolation570

scheme A maintains the WMC reasonably (RMSE=0.024),

the time-step selection algorithm for scheme D requires ex-

tremely short time-steps ( ≪∆tmin, see Section 4.1) in the

Figure 8. Same as in Fig.7 for experiments with the “peaked” dif-
fusivity distribution. Results obtained using the local (left) or non-
local (right)1t selection algorithm.

time-step selection algorithms. Figure8 reports the time-step
and concentration profiles, while execution times and RM-
SEs are shown in Table3. Although the integration time-
step profiles look very similar for the local and non-local al-
gorithms, the small differences have a large impact on the
results: the local algorithm mostly fails in reproducing the
WMC for both interpolation schemes, especially for D. Con-
versely, the non-local algorithm turns out to be effective in
selecting the appropriate time step, even in the presence of
strong gradients and isolated maxima. This is reflected in its
higher computational cost (see Table3).

4.3 Implementation on the 3-D model

A preliminary test of the algorithms on the 3-D model has
been performed. The interpolation algorithm has been imple-
mented in a simplified quasi-1-D form, where the diffusion
coefficient has been considered to be horizontally constant
between grid points. IL-GLOBO uses the same parallelisa-
tion of GLOBO, with particles exchanged between processes
at each macro time step. Particles are first advected horizon-
tally for a macro time step using their deterministic velocity
and then “diffused” in the vertical according to Eq. (12).

After 12 h of spin-up, 5×105 particles are released with a
vertical distribution proportional to the average density pro-
file, and randomly and homogeneously distributed in the hor-
izontal. Particle statistics are computed after 24 h from the
release.
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rithms A (left) and D (right).
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Fig. 10. Normalized distribution of particles for the 3D experiment.

The initial distribution ∝ 〈ρ〉 (black) and the final distributions ob-

tained using the A interpolation scheme (red) and the D interpo-

lation scheme (blue). Dashed lines show the limit of 3 standard

deviation around the initial distribution.

region between σ = 0.9 and the lowest boundary (see Fig-

ure 9). Figure 10 shows the result of an experiment where575

the WMC compliance of schemes A and D was tested with

the lower limit for ∆t changed to ∆tmin = 10−5 for D. It

can be observed that, for the D scheme, strong fluctuations

are still present in the same region where the required time-

step exceeds the lower limit. This is likely to be caused by the580

occurrence of strong gradients that can be even larger than in

the ‘peaked’ case, near points with extremely small values of

K. In these cases, the A scheme interpolates with a smoother

function which reduces the problem.

5 Conclusions585

The development of a vertical Lagrangian diffusion model

is presented. This constitutes the first step in building IL-

GLOBO, a Lagrangian particle model integrated in the Eule-

rian global circulation model GLOBO. Critical details of the

implementation have been analyzed and discussed.590

The model is developed including the variable density

term and the proper coordinate transformation term. The

numerical scheme selected to integrate the SDE is the Mil-

stein scheme, which is of order of strong convergence γ=1.

Therefore, it should be regarded as the natural extension of595

the deterministic Euler scheme, in contrast to the so-called

Euler-Maruyama scheme, which is merely the “transcrip-

tion” of the deterministic Euler scheme, but not its equiva-

lent.

An adaptive time-step scheme is proposed to ensure the600

consistency of the model implementation with the WMC re-

quirements. The time-step selection algorithm is limited not

only by the condition imposed by the spatial scale of gra-

dients, but also takes into account the scale of the width of

maxima and minima of the diffusion coefficient, where the605

former criterium fails. It is shown that this algorithm ensures

that the error is within an acceptable range also at the reflect-

ing boundaries. However, in case of isolated maxima, this

scheme may fail. The implementation of a non-local algo-

rithm, which evaluates ∆t in 2 additional points, is proposed610

in order to solve the problem.

Two numerical interpolation and derivation schemes are

implemented and tested. The first is based on the linear in-

terpolation of K and it is presented in two versions: one

(D) keeps a constant first order derivative between two grid615

points, while the other (D′) uses linearly interpolated deriva-

tives in the same interval. The second scheme (A) is based

on a modified Akima (1991) interpolation algorithm with a

local algorithm that ensures the positivity of the interpolating

function (Fischer et al., 1991).620

It is found that, although the method D′ uses derivatives

of higher order of approximation, it creates a local incon-

sistency between the linearly interpolated function and its

derivatives and prevents the model from fulfilling the WMC.

The other two schemes (D and A) both satisfy the WMC but625

extremely peaked profiles of K may require the use of the

non-local time-step selection algorithm.

A test with a preliminary implementation of the fully 3D

model (IL-GLOBO) shows that, while the A scheme display

a correct behavior, the D interpolation scheme requires and630

extremely strong reduction of the integration time-step that

prevents the WMC to be satisfied in reasonable time.

Code availability

The numerical code of the vertical diffusion module (Fortran

90) is released under the GNU Public Licence and is avail-635

able at the BOLCHEM website4.

The software is packed as a library using autoconf,

automake and libtools which allows for configuration

4http://bolchem.isac.cnr.it/source code

Figure 9. Distribution of1t requirement for the conditions of the
first-order derivative (Eq.19) as a function ofσ for interpolation
algorithms A (left) and D (right).

A and D interpolation algorithms were tested using
the non-local time-step selection. It is found that while
interpolation scheme A maintains the WMC reasonably
(RMSE= 0.024), the time-step selection algorithm for
scheme D requires extremely short time steps (� 1tmin,
see Sect.4.1) in the region betweenσ = 0.9 and the lowest
boundary (see Fig.9). Figure10shows the result of an exper-
iment where the WMC compliance of schemes A and D was
tested with the lower limit for1t changed to1tmin = 10−5

for D. It can be observed that, for the D scheme, strong fluctu-
ations are still present in the same region where the required
time step exceeds the lower limit. This is likely to be caused
by the occurrence of strong gradients that can be even larger
than in the “peaked” case, near points with extremely small
values ofK. In these cases, the A scheme interpolates with a
smoother function which reduces the problem.

5 Conclusions

The development of a vertical Lagrangian diffusion model
is presented. This constitutes the first step in building IL-
GLOBO, a Lagrangian particle model integrated in the Eule-
rian global circulation model GLOBO. Critical details of the
implementation have been analysed and discussed.

The model is developed with the variable density term and
the proper coordinate transformation term. The numerical
scheme selected to integrate the SDE is the Milstein scheme,
which is of the order of strong convergenceγ = 1. There-
fore, it should be regarded as the natural extension of the de-
terministic Euler scheme, in contrast to the so-called Euler–
Maruyama scheme, which is merely the “transcription” of
the deterministic Euler scheme, but not its equivalent.

An adaptive time-step scheme is proposed to ensure the
consistency of the model implementation with the WMC re-
quirements. The time-step selection algorithm is limited not
only by the condition imposed by the spatial scale of gradi-
ents, but also by taking into account the scale of the width of
maxima and minima of the diffusion coefficient, where the
former criterium fails. It is shown that this algorithm ensures
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maxima and minima of the diffusion coefficient, where the605

former criterium fails. It is shown that this algorithm ensures

that the error is within an acceptable range also at the reflect-

ing boundaries. However, in case of isolated maxima, this

scheme may fail. The implementation of a non-local algo-

rithm, which evaluates ∆t in 2 additional points, is proposed610

in order to solve the problem.

Two numerical interpolation and derivation schemes are

implemented and tested. The first is based on the linear in-

terpolation of K and it is presented in two versions: one

(D) keeps a constant first order derivative between two grid615

points, while the other (D′) uses linearly interpolated deriva-

tives in the same interval. The second scheme (A) is based

on a modified Akima (1991) interpolation algorithm with a

local algorithm that ensures the positivity of the interpolating

function (Fischer et al., 1991).620

It is found that, although the method D′ uses derivatives

of higher order of approximation, it creates a local incon-

sistency between the linearly interpolated function and its

derivatives and prevents the model from fulfilling the WMC.

The other two schemes (D and A) both satisfy the WMC but625

extremely peaked profiles of K may require the use of the

non-local time-step selection algorithm.

A test with a preliminary implementation of the fully 3D

model (IL-GLOBO) shows that, while the A scheme display

a correct behavior, the D interpolation scheme requires and630

extremely strong reduction of the integration time-step that

prevents the WMC to be satisfied in reasonable time.

Code availability

The numerical code of the vertical diffusion module (Fortran

90) is released under the GNU Public Licence and is avail-635

able at the BOLCHEM website4.

The software is packed as a library using autoconf,

automake and libtools which allows for configuration

4http://bolchem.isac.cnr.it/source code

Figure 10. Normalised distribution of particles for the 3-D exper-
iment. The initial distribution∝ 〈ρ〉 (black) and the final distribu-
tions obtained using the A interpolation scheme (red) and the D in-
terpolation scheme (blue). Dashed lines show the limit of 3 standard
deviations around the initial distribution.

that the error is within an acceptable range also at the reflect-
ing boundaries. However, in case of isolated maxima, this
scheme may fail. The implementation of a non-local algo-
rithm, which evaluates1t in two additional points, is pro-
posed in order to solve the problem.

Two numerical interpolation and derivation schemes are
implemented and tested. The first is based on the linear in-
terpolation ofK, and it is presented in two versions: one
(D) keeps a constant first order derivative between two grid
points, while the other (D′) uses linearly interpolated deriva-
tives in the same interval. The second scheme (A) is based
on a modifiedAkima (1991) interpolation algorithm with a
local algorithm that ensures the positivity of the interpolating
function (Fischer et al., 1991).

It is found that although the method D′ uses derivatives
of higher order of approximation, it creates a local incon-
sistency between the linearly interpolated function and its
derivatives and prevents the model from fulfilling the WMC.
The other two schemes (D and A) both satisfy the WMC, but
extremely peaked profiles ofK may require the use of the
non-local time-step selection algorithm.

A test with a preliminary implementation of the fully 3-D
model (IL-GLOBO) shows that, while the A scheme displays
a correct behaviour, the D interpolation scheme requires an
extremely strong reduction of the integration time step that
prevents the WMC to be satisfied in reasonable time.

Code availability

The numerical code of the vertical diffusion module (Fortran
90) is released under the GNU Public Licence and is avail-
able at the BOLCHEM website4.

The software is packed as a library usingautoconf ,
automake andlibtools which allows for configuration

4http://bolchem.isac.cnr.it/source_code.do
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and installation on a variety of systems. The code is devel-
oped in a modular way, permitting the easy improvement of
physical and numerical schemes.

The GLOBO model is available upon agreement with
the CNR-ISAC Dynamic Meteorology Group (contact:
p.malguzzi@isac.cnr.it).
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