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Abstract. Existing land surface models (LSMs) describe
physical and biological processes that occur over a wide
range of spatial and temporal scales. For example, biogeo-
chemical and hydrological processes responsible for carbon
(CO2, CH4) exchanges with the atmosphere range from the
molecular scale (pore-scale O2 consumption) to tens of kilo-
meters (vegetation distribution, river networks). Addition-
ally, many processes within LSMs are nonlinearly coupled
(e.g., methane production and soil moisture dynamics), and
therefore simple linear upscaling techniques can result in
large prediction error. In this paper we applied a reduced-
order modeling (ROM) technique known as “proper orthog-
onal decomposition mapping method” that reconstructs tem-
porally resolved fine-resolution solutions based on coarse-
resolution solutions. We developed four different methods
and applied them to four study sites in a polygonal tundra
landscape near Barrow, Alaska. Coupled surface–subsurface
isothermal simulations were performed for summer months
(June–September) at fine (0.25 m) and coarse (8 m) horizon-
tal resolutions. We used simulation results from three sum-
mer seasons (1998–2000) to build ROMs of the 4-D soil
moisture field for the study sites individually (single-site) and
aggregated (multi-site). The results indicate that the ROM
produced a significant computational speedup (> 103) with
very small relative approximation error (< 0.1 %) for 2 vali-
dation years not used in training the ROM. We also demon-
strate that our approach: (1) efficiently corrects for coarse-
resolution model bias and (2) can be used for polygonal tun-
dra sites not included in the training data set with relatively
good accuracy (< 1.7 % relative error), thereby allowing for
the possibility of applying these ROMs across a much larger
landscape. By coupling the ROMs constructed at different

scales together hierarchically, this method has the potential to
efficiently increase the resolution of land models for coupled
climate simulations to spatial scales consistent with mecha-
nistic physical process representation.

1 Introduction

The terrestrial hydrological cycle strongly impacts, and
is impacted by, atmospheric processes. Further, a primary
control on terrestrial biogeochemical (BGC) dynamics and
greenhouse gas (GHG) emissions from soils (e.g., CO2, CH4,
N2O) across spatial scales is exerted by the system’s hydro-
logical state (Schuur et al., 2008). Soil moisture also im-
pacts soil temperature, which is another important controller
of GHG emissions (Torn and Chapin, 1993). Since climate
change is predicted to change the amount and temporal dis-
tribution of precipitation globally, there is a critical need for
models to not only accurately capture subgrid heterogeneity
of terrestrial hydrological processes, but also the impacts of
subgrid hydrological heterogeneity on BGC fluxes.

Terrestrial hydrological states are important for climate
prediction across a wide range of spatial scales, from soil
pores to continental. The critical spatial scale relevant to
soil moisture state and subsurface and surface fluxes may
be as small as∼ 100 m (Wood et al., 2011), although there
is vibrant disagreement about the relative increase in pre-
dictability when trying to explicitly simulate at such high
resolutions with limited observational data to constrain pa-
rameter values (Beven and Cloke, 2012). However, the im-
portance of representing fine-resolution spatial structure in
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hydrological states and fluxes has been demonstrated for sur-
face evapotranspiration budgets (Vivoni et al., 2007; Wood,
1997), runoff and streamflow (Arrigo and Salvucci, 2005;
Barrios and Francés, 2012; Vivoni et al., 2007), and atmo-
spheric feedbacks (Nykanen and Foufoula-Georgiou, 2001).
It remains unclear what the critical spatial scale is for bio-
geochemical dynamics, but it has been shown that “hot spot”
formation is important for wetland biogeochemistry at scales
∼ O(10 cm) (Frei et al., 2012) and for nitrogen cycle varia-
tions at∼ O(m) (McClain et al., 2003). In contrast, the cur-
rent suite of land surface models applicable at watershed
(e.g., PAWS, Riley and Shen, 2014; Shen, 2009; regional,
Maxwell et al., 2012; or climate, Koven et al., 2013; Tang et
al., 2013) scales typically represent hydrological or biogeo-
chemical cycles at∼ O(100 m–km) scales.

The methods to represent spatial heterogeneity in hydro-
logical and biogeochemical dynamics differ between wa-
tershed and regional or climate-scale models. While many
current watershed-scale models explicitly represent lateral
inter-connectivity for subsurface and surface fluxes, regional-
and climate-scale models currently rely on a non-spatially-
explicit tiling approach. For example, CLM4.5 (Koven et al.,
2013; Lawrence et al., 2012; Tang et al., 2013), the land
model integrated in the Community Earth System Model
(Hurrell et al., 2013), represents land-surface grid cells with
the same horizontal extent as the atmospheric grid cells
(which can range from∼ 1◦

× 1◦ for climate change sim-
ulations to∼ 0.25◦ × 0.25◦ for relatively short simulations;
Bacmeister et al., 2014; Wehner et al., 2014). These grid
cells are disaggregated into a subgrid hierarchy of non-
spatially-explicit land units (e.g., vegetated, lakes, glacier,
urban), columns (with variability in hydrological, snow, and
crop management), and plant functional types (accounting
for variations in broad categories of plants and bare ground).
Therefore, we contend that representing the much smaller
spatial scales now recognized to control hydrological and
biogeochemical dynamics in regional and global-scale mod-
els will require a reformulation of the overall design of these
models.

One potential approach to represent spatial heterogeneity
in soil moisture fields at resolutions finer than represented
in a particular modeling framework is to relate the statistical
properties of the soil moisture field with the spatial scale. Hu
et al. (1997) showed that the variance (σ 2

θ ) of the soil mois-
ture (θ) field at different spatial averaging areas (A) can be
related to the ratio of those areas raised to a scaling expo-
nent (γ ). They also showed thatγ is related to the spatial
correlation structure of the soil moisture field and that it de-
creases as soils dry. Observational studies have described a
power law decay of variance as a function of the observa-
tion scale (Rodriguez-Iturbe et al., 1995; Wood, 1998), and
several investigators have demonstrated that the relationship
betweenσ 2

θ and spatial scale is not “simple” (i.e., not log-log
linear across all spatial scales; e.g., Das and Mohanty, 2008;

Famiglietti et al., 1999; Joshi and Mohanty, 2010; Mascaro
et al., 2010, 2011; Nykanen and Foufoula-Georgiou, 2001).

A second potential approach to account for spatial hetero-
geneity in soil moisture states is to relate its higher-order mo-
ments to the mean, and then apply these relationships within
a model that predicts the transient coarse-resolution mean. In
many observationally based studies, an upward convex rela-
tionship between the mean and variance has been reported
(e.g., Brocca et al., 2010, 2012; Choi and Jacobs, 2011;
Famiglietti et al., 2008; Lawrence and Hornberger, 2007; Li
and Rodell, 2013; Pan and Peters-Lidard, 2008; Rosenbaum
et al., 2012; Tague et al., 2010; Teuling et al., 2007; Teuling
and Troch, 2005). Theoretical analyses have also indicated
that an upward convex relationship is consistent with current
understanding of soil moisture dynamics (e.g., Vereecken et
al., 2007). However, as discussed in Brocca et al. (2007), the
relationships between soil moisture mean and statistical mo-
ments have been reported to depend on many factors, includ-
ing lateral redistribution, radiation, soil characteristics, veg-
etation characteristics, elevation above the drainage channel,
downslope gradient, bedrock topography, and specific ups-
lope area. These large number of observed controllers and
the lack of an accepted set of dominant factors argue that
substantial work remains before this type of information can
be integrated with land models to represent subgrid spatial
heterogeneity.

Modeling studies have also been performed to investigate
spatial scaling properties of moisture and how these prop-
erties relate to ecosystem properties. For example, Ivanov
et al. (2010) studied spatial heterogeneity in moisture on an
idealized small hill slope, and found hysteretic patterns dur-
ing the wetting–drying cycle and that the system response
depends on precipitation magnitude. Riley and Shen (2014)
used a distributed modeling framework to analyze relation-
ships between mean and higher-order moments of soil mois-
ture and ecosystem properties in a watershed in Michigan.
They concluded that the strongest relationship between the
observed declines in variance and increases in mean mois-
ture (past a peak in this relationship) was with the gradient
convolved with mean evapotranspiration. Other studies have
focused on upscaling fine-resolution model parameters to ef-
fective coarser-resolution parameters. For example, Jana and
Mohanty (2012) showed that power-law scaling of hydraulic
parameters was able to capture subgrid topographic effects
for four different hill slope configurations.

Theoretical work to explicitly include spatial heterogene-
ity in the hydrological governing equations has also been ap-
plied to this problem. Albertson and Montaldo (2003) and
Montaldo and Albertson (2003) developed a relationship for
the time rate of change of soil moisture variance based on the
mean moisture and spatial covariances between soil mois-
ture, infiltration, drainage, and ET. Teuling and Troch (2005)
applied a similar approach to study the impacts of vegetation,
soil properties, and topography on the controls of soil mois-
ture variance. Kumar (2004) applied a Reynolds averaging
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approach, and ignoring second- and higher-order terms, de-
rived a relationship for the time rate of change of the mean
moisture field that depends on the moisture variance. Choi et
al. (2007) applied the model to a∼ 25 000 km2 Appalachian
Mountain region for the summer months of 1 year and found
that subgrid variability significantly affected the prediction
of mean soil moisture.

The approaches described above to capture fine-resolution
spatial heterogeneity within a coarse-resolution modeling
framework have some limitations. First, the soil moisture
probability density function is often very non-normal (Ryu
and Famiglietti, 2005), making the sole use of variance as a
descriptor of moisture heterogeneity insufficient. A similar
problem arises with the Reynolds averaging approach that
does not include higher-order terms. This approach also re-
quires a method to “close” the solution (i.e., relate the higher-
order terms to the mean moisture), and there is no gener-
ally accepted method to perform this closure. Perhaps the
largest constraint of these approaches in the context of cli-
mate change and atmospheric interactions is that they can-
not account for the temporal memory in the system that im-
pacts biogeochemical transformations. In particular, the bio-
geochemical dynamics at a particular point in time depend
on the state and dynamics that occurred in the past, and just
knowing the statistical distribution of moisture at a particular
time may not maintain the continuity required for accurate
prediction. Therefore, for applications related to regional- to
global-scale interactions with the atmosphere, a method is
required that allows for (1) computationally tractable simu-
lations (i.e., relatively coarser resolution); (2) spatially ex-
plicit prediction of the temporal evolution of soil moisture
at relatively finer resolutions; and (3) integration of the rel-
atively finer resolution soil moisture predictions with repre-
sentations of the relevant biogeochemical dynamics.

To that end, we describe a generally applicable reduced-
order modeling technique to reconstruct a fine-resolution
heterogeneous 4-D soil moisture solution from a coarse-
resolution simulation, thereby resulting in significant com-
putational savings. In this study, we built ROMs based on the
proper orthogonal decomposition mapping method (Robin-
son et al., 2012), which first involved training the ROMs
using fine- and coarse-resolution simulations over multiple
years. Hydrologic simulations of coupled surface and subsur-
face processes for an Alaska polygonal tundra system were
performed using the PFLOTRAN model (Bisht and Riley,
2014; Hammond et al., 2012). Simulations were performed
for four study sites in Alaska with distinct polygonal surface
characteristics and individual ROMs were built for each site.
The resulting ROMs were then applied over periods outside
of the ROM training period.

In Sect. 2 we describe the polygonal tundra site used for
our simulations, the PFLOTRAN hydrological simulations
configuration, and the methods used to develop and evaluate
the ROMs. In Sect. 3, these methods are used under differ-
ent scenarios to develop ROMs for the polygonal tundra site

that increase in generality in the following order: single-site
ROMs (limited to a single site), multi-site ROMs (limited
to sites included in the training data) and site-independent
ROMs (applicable even for sites not included in the train-
ing data). For each of the above scenarios, different ROMs
can be developed using methods that we propose in Sect. 2;
the applicability of a method to a given scenario is discussed
in Sect. 2. We then compare the accuracy of the different
ROMs and end with a discussion of limitations of the ap-
proach, possible improvements, and methods to incorporate
the proposed ROM approach within a global-scale hydrolog-
ical and biogeochemical model.

2 Methods

2.1 Site description and hydrologic simulation setup

In this study, we developed ROMs for hydrological simula-
tions performed at four sites in the Barrow Environmental
Observatory (BEO) in Barrow, Alaska (71.3◦ N, 156.5◦ W).
The BEO lies within the Alaskan Arctic costal plain, which
is a relatively flat region, characterized by thaw lakes and
drained basins (Hinkel et al., 2003; Sellmann et al., 1975)
and polygonal ground features (Hinkel et al., 2001; Hubbard
et al., 2013). The Department of Energy (DOE) Next-
Generation Ecosystem Experiments (NGEE-Arctic) project
has established four intensely monitored sites (A, B, C and D,
shown in Fig. 1) within the BEO in 2012 to study the impact
of climate change in high-latitude regions. The four NGEE-
Arctic study sites have distinct micro-topographic features,
which include low-centered (A), high-centered (B), and tran-
sitional polygons (C, and D). The mean annual air tempera-
ture for our study sites is approximately−13◦C (Walker et
al., 2005) and the mean annual precipitation is 106 mm, with
the majority of precipitation falling during the summer sea-
son (Wu et al., 2013). The study site is underlain with contin-
uous permafrost and the seasonally active layer depth ranges
between 30 and 90 cm (Hinkel et al., 2003).

We applied a version of the three-dimensional subsurface
reactive transport simulator PFLOTRAN, which was modi-
fied to include surface water flows, for simulating surface–
subsurface hydrologic processes at the four NGEE-Arctic
study sites. The subsurface flows in PFLOTRAN are solved
with a finite volume and an implicit time integration scheme,
and are sequentially coupled to a finite-volume-based sur-
face flow solution that is solved explicitly in time. Simula-
tions at the four study sites were conducted using meshes at
horizontal resolutions of 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0 m.
A constant vertical resolution of 5 cm with a total depth of
50 cm was used for all simulations. The simulations were car-
ried out for four summer months (July–September) of each
year between 1998 and 2006. Evapotranspiration and effec-
tive precipitation boundary conditions for the PFLOTRAN
simulations were obtained from offline simulations of the
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Community Land Model (CLM4.5; Oleson et al., 2013). Ver-
tical heterogeneity in soil properties was prescribed using
data from Hinzman et al. (1991). A static active layer depth
of 50 cm, corresponding approximately to the maximum sea-
sonal value, was assumed for all simulations. Details of the
model setup are provided in Bisht and Riley (2014). In the
current study, the ROM was trained on 3 years of data (1998–
2000), and the ROM predictions for 2002 and 2006 were
compared against fine-resolution simulations.

2.2 Development of the reduced-order
modeling approach

The multifidelity ROM approach used in this study is based
on the gappy proper orthogonal decomposition (POD) map-
ping approach (Robinson et al., 2012). Letp be a set of
parameters that defines a particular solution or observation.
The set of parameters could include system parameters (e.g.,
vegetation distribution, soil types, and topography), climate
forcings, time, and other quantities that have an influence
on the system response. In this paper, the parameters that
vary in the simulations that we have performed for each
site are time (days for summer seasons in a year) and the
climate forcings (precipitation and evapotranspiration rates)
prescribed at that particular time. Then, given a sample set
SN = {q1, . . .,qN }, whereqi is a set of parametersp, andN

is the number of samples, we can compute the corresponding
solution{f (q1), . . .,f (qN )}. In this paper,f corresponded
to a simulated fine-resolution three-dimensional soil mois-
ture field, but in general,f can be any spatial quantity of
interest (e.g., soil temperature or GHG emission).

2.2.1 POD method

The POD approximation off , f POD, is given by

f (p) ≈ f POD(p) = f ref
+

M∑
i=1

αi(p)ζPOD
i , (1)

whereM ≤ N �N , N is the degree of freedom off , f ref

is the reference basis (here,f ref
= f̄ =

1
N

N∑
i=1

f (qi)), ζPOD
i

are the POD bases andM is the number of POD bases.
The POD bases are determined through a singular value de-
composition (SVD) of the data matrix given byWPOD

=[
f (q1) − f̄ , . . .,f (qN ) − f̄

]
:

WPOD
= UDVT , (2)

whereU ∈ RN×N are the left eigenvectors,V ∈ RN×N are
the right eigenvectors, andD = diag(λ1, . . .,λN ) ∈ RN×N ,
with λ1 ≥ λ2 ≥ . . . ≥ λN > 0. The POD basesζPOD

i ,1 ≤ i ≤

N are thus given byWPODV, andλi are the associated eigen-
values with each POD basis. The POD method is similar
to the principal component analysis (Jolliffe, 2002) and the

Karhunen–Loeve decomposition (Moore, 1981). We com-
puted the POD bases based on the kernel eigenvalue ap-
proach (Everson and Sirovich, 1995).

The number of POD bases (denoted byM) used to recon-
struct the approximate solution to a certain level of error (ελ)

can be determined by findingM that satisfies

eλ
M = 1−

M∑
i=1

λi/λT ≤ ελ, (3)

whereλT =

N∑
i=1

λi . As mentioned in Wilkinson (2011), the

dimensional reduction afforded by the POD method depends
on the extent to which the components off are correlated.
We note that Eq. (1) only states howf is represented in a
linear space spanned by the POD bases, but there are mul-
tiple approaches of determiningα(p) = {α1(p), . . .,αM(p)}

for a givenp. One optimal solution ofα that minimizes the
least squares error betweenf (p) andf POD(p), denoted by
αPOD(p), is given by

αPOD
i (p) = ζ

POD,T
i (f (p) − f̄ ), i = 1, . . .,M. (4)

However,αPOD(p), determined using Eq. (4), does not lead
to any computational savings sincef (p) is the quantity we
would like to approximate. Determination off (p) can be
avoided by using the POD projection method (Willcox and
Peraire, 2002), which discretizes the governing equations us-
ing the linear space spanned byζPOD

i and solves the resulting
algebraic equations forαPOD(p). However, the POD projec-
tion method requires extensive modification of the existing
code of the simulator, and is thus not suitable for existing
LSMs. To demonstrate the limit of accuracy of POD-related
methods presented in subsequent subsections (Sects. 2.2.2–
2.2.5), we determineαPOD(p) based on Eq. (4) by evaluating
f (p) explicitly and present the results in Sect. 3.

In subsequent sections, we describe four different methods
of developing a ROM that reconstructs the fine-resolution so-
lution based on the coarse-resolution solution. Each of the
methods is a modification of the basic POD method, but uses
a different reference basis, data matrix, or method to com-
puteα(p). The differences among the various methods for
developing a ROM are summarized in Table 1.

2.2.2 POD mean method (POD-mean)

To overcome the difficulties associated with calculating
αPOD(p), we propose a POD-mean method (POD-mean).
We first determineαPOD(q),∀q ∈ SN using Eq. (4); this step
requires negligible computational overhead since construc-
tion of ROM based on the POD method already requires the
determination off (q),∀q ∈ SN . We then construct a poly-
nomial fit betweenαPOD(q) and the mean off (q) (i.e., fine-
resolution mean soil moisture,µf (q)), which we denote as
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Table 1.Summary of differences between various methods used for constructing ROM. In the table below,f is the fine-resolution solution;
g is the coarse resolution solution;h is given by Eq. (10);̂f andĝ are given by Eq. (15);p is any given parameter set;qi is theith parameter

set inSN ; µf (p) andµg(p) are spatially averagedf (p) andg(p); andζ
g,POD-MM
i

, ζ
g,POD-MM2
i

andζ
g,POD-MM3
i

are POD bases for
POD-MM, POD-MM2 and POD-MM3 methods, respectively. (Please refer to each method’s subsection in Sect. 2 for more details on the
above variables.)

Reference ith column of the
Method basis data matrix Determination ofα(p)

POD f̄ f (qi) − f̄ Equation (4).
POD-mean f̄ f (qi) − f̄ Approximated byαfit(µg(p)), whereαfit is a polynomial fit betweenα(q) andµf (q).

POD-MM

[
f̄

ḡ

] [
f (qi) − f̄

g(qi) − ḡ

]
Equation (8) usingg(p).

POD-MM2

[
h̄

ḡ

] [
h(qi) − h̄

ḡ

]
Equation (8), by substitutingζg,POD-MM

i
by ζ

g,POD-MM2
i

.

POD-MM3

[
f̂

ĝ

] [
f (qi) − f̂

g(qi) − ĝ

]
Equation (8), by substitutingζg,POD-MM

i
by ζ

g,POD-MM3
i

andḡ by ĝ.

αfit(µf ). Then, for any givenp, we approximatef by

f POD-mean
1xg

(p) = f̄ +

N∑
i=1

αfit
i (µg(p))ζPOD

i , (5)

whereµg(p) is the mean ofg(p), a coarse-resolution solu-
tion simulated at resolution1xg > 1xf . This particular ap-
proach works well if (1) the relationships betweenαfit

i (µf )

andµf exist; and (2)µg is a good approximation ofµf . For
the Arctic tundra study sites, we will show that these condi-
tions hold true fori = 1, andf POD-mean

1xg
is a good approxi-

mation off .

2.2.3 POD mapping method (POD-MM)

In the POD-mean method, we only used the mean of the
coarse-resolution solution,g(p), to reconstruct the fine-
resolution solution. The POD mapping method (POD-MM)
attempts to use all information ing(p) to efficiently and ac-
curately reconstruct the fine-resolution solution. The POD-
MM method is a modification of the gappy POD (Everson
and Sirovich, 1995). For the same sample setSN , we deter-
mine{g(q1), . . .,g(qN )}, whereqi ∈ SN . As in Robinson et
al. (2012), the multifidelity POD bases,ζPOD-MM

i , are then
determined through a SVD of the data matrixWPOD-MM :

WPOD-MM
=

[
f (q1) − f̄

g(q1) − ḡ
. . .

f (qN ) − f̄

g(qN ) − ḡ

]
, (6)

wheref̄ is as defined before and̄g =
1
N

N∑
i=1

g(qi). The POD

basesζPOD-MM
i can be decomposed into

ζPOD-MM
i =

[
ζ

f,POD-MM
i

ζ
g,POD-MM
i

]
, (7)

whereζ
f,POD-MM
i and ζ

g,POD-MM
i are components associ-

ated with the fine- and coarse-resolution models. Given a
coarse-resolution solutiong(p), we first determine

αPOD-MM (p) = argmin
γ

‖ g(p) − ḡ (8)

−

M∑
i=1

γiζ
g,POD-MM
i ‖2,

where‖ · ‖2 is theL2 norm. We note thatαPOD-MM (p) is not
simply given by Eq. (4) sinceζ g,POD-MM

i are not mutually
orthogonal. The approximate solution,f POD-MM

1xg
(p), is then

given by f POD-MM
1xg

(p) = f̄ +

M∑
i=1

αPOD-MM
i (p)ζ

f,POD-MM
i ,

where1xg is the resolution at whichg(p) is computed.

2.2.4 Second alternative formulation of the POD
mapping method (POD-MM2)

We also introduce an alternative formulation of the POD-
MM method (POD-MM2) to determine whether the number
of POD bases required could be reduced for a fixed approx-
imation error threshold. Instead of applying Eq. (6), we per-
form a SVD of the data matrixWPOD-MM2 :

WPOD-MM2
=

[
h(q1) − h̄

g(q1) − ḡ
. . .

h(qN ) − h̄

g(qN ) − ḡ

]
, (9)

where

h(p) = f (p) − g̃(p), (10)

and g̃ is the solution obtained from a piecewise constant
mapping ofg from the coarse-resolution grid ofg onto the
fine-resolution grid off . By using the deviation off from
the mapped coarse-resolution solutiong̃, we remove the bias
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resulting from the mismatch between the mean off andg.
We note that this alternative POD mapping formulation is
possible since our coarse- and fine-resolution grids are nested
(which will always be the case for the types of applications
we are developing here). For non-nested grids, a linear map-
ping is expected to work as well, although we do not analyze
that approach here. We denote the resulting POD-based vec-
tor as

ζPOD-MM2
i =

[
ζ

h,POD-MM2
i

ζ
g,POD-MM2
i

]
, (11)

whereζ
h,POD-MM2
i are the components associated withh.

Given a solutiong(p), the approximatef POD-MM2
1xg

(p) is
then given by

f POD-MM2
1xg

(p) = (12)

g̃ + h̄ +

M∑
i=1

αPOD-MM2
i (p)ζ

h,POD-MM2
i ,

where αPOD-MM2 is determined analogously toαPOD-MM

based on Eq. (8) withζ g,POD-MM
i replaced byζ g,POD-MM2

i .

2.2.5 Third alternative formulation of the POD
mapping method (POD-MM3)

When a solution is spatially highly correlated with a spatially
varying parameterw, such as the topography, we may use
this information in our reconstruction of the fine-resolution
solution. This third alternative formulation of the POD-
mapping method approximatesf by

f POD-MM3
1xg

(p) = f̂ +

M∑
i=1

αPOD-MM3
i (p)ζ

f,POD-MM3
i , (13)

whereζ
f,POD-MM3
i is the fine-resolution component of the

POD basisζPOD-MM3
i constructed from

WPOD-MM3
=

[
f (q1) − f̂

g(q1) − ĝ
. . .

f (qN ) − f̂

g(qN ) − ĝ

]
, (14)

andαPOD-MM3 is determined analogously toαPOD-MM based
on Eq. (8) with ḡ and ζ

f,POD-MM
i replaced byĝ and

ζ
f,POD-MM3
i , respectively. In the above, the correlation be-

tweenw andf (g) is used to construct̂f (ĝ) based on the
following:

f̂ = w1xf

µf

µw1xf

, ĝ = w1xg

µg

µw1xg

, (15)

whereµf (µg) is f (g) averaged over the domain and all
the snapshots used in constructing the ROM,w1xf

(w1xg )

is the model parameter evaluated at resolution1xf (1xg),
andµw1xf

(µw1xg
) is the mean ofw1xf

(w1xg ).

The POD-MM3 approach is developed to improve the per-
formance of POD-MM method when one of the parameters
is heterogeneous and spatially varying. This method is only
applicable to site-independent ROM since the surface eleva-
tion is included as a parameter in the site-independent ROM
but not in the single and multi-site ROMs.

2.2.6 Error definitions

We define the relative error of the POD method with respect
to the true fine-resolution solution as

ePOD
=

‖ f POD
− f ‖2

‖ f ‖2
. (16)

This error measure gives the maximum theoretical accuracy
achievable using POD-related methods. We also defineēPOD

as the mean ofePOD evaluated over a specified number of
days.

For POD-X methods, where POD-X stands for POD-
mean, POD-MM, POD-MM2, or POD-MM3, the error mea-
sures can be constructed for each1xg, and are defined as

ePOD-X
1xg

=

‖ f POD-X
1xg

− f ‖2

‖ f ‖2
. (17)

Similarly, we definēePOD-X
1xg

as the mean ofePOD-X
1xg

evaluated
over a specified number of days.

3 Results and discussion

As described in the Methods section, we developed the ROM
models for the four NGEE-Arctic Barrow study sites chosen
for detailed characterization. The four sites differ in their to-
pographic characteristics and therefore each site has a dif-
ferent dynamic soil moisture response to the same meteoro-
logical forcings. In addition, since the parameters varied in
this study are time and the magnitude of the forcing terms,
historical data (prior-year simulations) can be used to con-
struct the ROM. The resulting ROM is subsequently used
to predict future responses. For more general cases involv-
ing system parameters, statistical or adaptive sampling tech-
niques are needed to generateSN (Pau et al., 2013a, b). For
all study years, domain average soil moisture decreased dur-
ing the first half of the simulation time period due to losses
associated with evapotranspiration, while soil moisture in-
creased in the latter half due to increased rainfall. Sites A
and B had the lowest mean soil moisture, followed by site C,
and then the wettest site, D.

3.1 Single-site ROMs

3.1.1 Application of POD method

We first constructed four separate ROMs, one for each site,
using the POD method and the finest resolution (1xf =
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Figure 1. DEM for site A, B, C, and D. The spatial extent of each
site is 104 m× 104 m.

0.25 m) soil moisture predictions from 1998 to 2000. Given
the soil moisture data for 2002 and 2006,f POD is determined
based on Eqs. (1) and (4). The mean relative error of the POD
method,ēPOD, over 120 days in years 2002 and 2006 de-
creases with increasingM (Fig. 2). TheM values at which
we evaluatēePOD correspond to decreasingελ

= 10−1, 10−2,
. . . , 10−8 in Eq. (3). There is no significant difference be-
tween the error budgets as a function ofM for 2002 and
2006. The number of POD bases for a givenēPOD increases
with sites in the following order: A, B, C, and D.

The above observation cannot be deduced based solely on
the probability distribution functions (PDFs) of the DEM
(digital elevation model) of the sites (Fig. 3) even though
DEM is the only quantity that is different between the models
for the four study sites. For example, site D requires the most
M although its DEM has the smallest standard deviation. The
larger number of POD bases required by site D can be at-
tributed to particularly non-smooth soil moisture PDFs un-
der relatively saturated conditions. The POD method is more
efficient when the approximated solution has more smooth-
ness in the parameter space (i.e., a solution at a particular
point varies smoothly with the parameters). Site D is rela-
tively flat, and at the end of the summer season it tends to get
completely saturated, thereby resulting in a discontinuity in
the parameter space and requiring largerM.

3.1.2 Application of POD-mean method

To determine whether we can use the POD-mean method, we
first examine the relationship betweenαPOD

i (q) andµf (q)

for all q ∈ SN . For all four sites, we foundαPOD
1 to be lin-

early correlated toµf (Fig. 4). Fori > 1, a simple correlation
betweenαPOD

i andµf cannot be found. We can thus approx-
imateαPOD

1 by αfit
1 (µf ) = a1(µf ) + a2, wherea1 anda2 are

determined from a least-square fit ofαPOD
1 (q) andµf (q). In

addition,µf is well approximated byµg, allowing us to use
the POD-mean method. For1xg = 8 m, the maximum and
mean ofePOD-mean

1xg
are, respectively, 0.013 and 0.0016 at site

A, and 0.016 and 0.005 at site D (Fig. 5). A mean error that
is < 1 % can thus be achieved using POD-mean method.

3.1.3 Application of POD-MM method

As with the previous analysis, ROMs based on POD-MM
were constructed using only soil moisture data from 1998

M 
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Figure 2. Variation of the mean POD error (ēPOD), with respect to
number of bases (M), in year 2002 and 2006 for single-site ROM
constructed using the POD method.
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Figure 3. Elevation distributions of the DEM for sites A, B, C
and D.

to 2000 and daily prediction of soil moisture at 0.25 m were
made for 2002 and 2006 using only the ROMs and coarse-
resolution solutions. We only present our analyses for site
A and D for brevity but the results are consistent with those
from the remaining sites; Fig. 2 shows that site B should yield
similar results to site A and site C to site D.

The mean error for the POD mapping method (ēPOD-MM
1xg

)

decreases monotonically withM for all 1xg = 1x > 0.25 m
up toM = Moptimal, after whichēPOD-MM

1xg
starts to increase

and fluctuate (Fig. 6). This behavior is consistent with results
from Everson and Sirovich (1995) in their development of
ROMs for face reconstruction. Although largerM improves
the least square fit, it leads to overfitting and increases the
uncertainty in the computedαPOD-MM . This increased uncer-
tainty in αPOD-MM introduces significant random noise into
the reconstructed fine-resolution solution, leading to fluc-
tuating ēPOD-MM

1xg
. Compared tof POD-mean

1xg
, the accuracy of

f POD-MM
1xg

can be systematically improved by utilizing more
POD bases in the approximation.

For a givenM ≤ Moptimal, ēPOD-MM
1xg

decreases with1xg,
which implies that increasing the number of bases leads to
a more accurate reconstructed fine-resolution solution. For
site D, Moptimal also increases with decreasing1xg, since
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larger information content allows moreαPOD-MM for more
POD bases to be determined accurately. For the year 2006,
Moptimal = 33 for1xg = 0.5 m andMoptimal = 28 for1xg =

8 m. For site A however,Moptimal = 10 for all1xg. As such,
when the underlying dynamics that we want to capture are
mild (as indicated by the smallMoptimal), the dependence of
Moptimalon1xg is weaker. For the results shown,ēPOD-MM

1xg
is

less than 6×10−5 whenf POD-MM
1xg

is evaluated atMoptimal for

site D. In addition, the mean of (f POD-MM
1xg

−f ) is 1.15×10−5

and 6.72× 10−6 for sites A and D, respectively, indicating
that there is only a negligible bias in the ROM solution.

The above approach requires knowledge of the true fine-
resolution solutions to determineMoptimal. Alternatively, we
can determineMoptimal by examining the amount of variance
represented by the firstM POD bases. ForM < Moptimal,
there is a linear relationship between log(ēPOD-MM

1xg
) and

log(eλ
M); the slope of the line is dependent on1xg (Fig. 7). In

addition,eλ
M < 10−6 appears to be a reasonable criterion for

determiningMoptimal. Choosing this value leads toM = 10
andM = 25 at sites A and D, respectively, for1xg = 8.0 m.
These values are very close to theMoptimal values identified
based on Fig. 6.

Site A Site D 
0.5m 
1.0m 
2.0m 
4.0m 
8.0m 

M M 

0.5m 
1.0m 
2.0m 
4.0m 
8.0m 

6×10-5 

10-2 

10-3 

10-5 

10-4 

10-2 

10-3 

10-5 

10-4 

0 10 20 30 0 10 30 50 20 40 

ēP
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Figure 6. The variation of mean POD-MM error (ēPOD-MM
1xg

) with

respect toM for different1xg at sites A and D in 2006. Results are
shown for single-site ROM constructed using POD-MM method.
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)

with respect toeλ
M

= 1−

M∑
i=1

λi/λT for different1xg at sites A and

D in 2006.

We next analyze the daily variation ofePOD-MM
1xg

for years

2002 and 2006 (Fig. 8). The errorePOD-MM
1xg

is typically larger
in the wetter periods although its maximum is below 0.01.
We further examined the relative pointwise error, given by

εPOD-MM
1xg

=

∣∣∣∣∣f
POD-MM
1xg

− f

f

∣∣∣∣∣ (18)

for the days with the largestePOD-MM
1xg

; they corresponded
to day 1 of 2002 for site A (Fig. 9) and day 106 of 2002
for site D (Fig. 10). For site A, the maximumεPOD-MM

1xg
is

2.77×10−3 and the locations of large errors are not discern-
able from Fig. 9, indicating that large errors are only local-
ized to small regions of the domain, resulting in small aver-
age errors,ePOD-MM

1xg
. For site D, the maximumεPOD-MM

1xg
is

1.17× 10−3, but a larger region of the domain has a higher
εPOD-MM
1xg

compared to site A, resulting in a higherePOD-MM
1xg

(Fig. 10). In addition, the saturated portion of the solution
has small fluctuating errors, as evident fromεPOD-MM

1xg
of the

bottom layer (Fig. 10). Future work will examine how we
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Figure 8.The POD-MM error (ePOD-MM
1xg

) in 2002 and 2006 at sites

A and D for single-site ROM constructed using POD-MM method.

can remove these fluctuations by simultaneously taking into
account both water content and saturation.

3.1.4 Application of POD-MM2 method

With the POD-MM2 method, the resulting error,ēPOD-MM2
1xg

,

is smaller than̄ePOD-MM
1xg

for smallM (Fig. 11). For example,

for M = 1 and1xg = 0.5 m, ēPOD-MM2
1xg

is an order of mag-

nitude smaller than̄ePOD-MM
1xg

. However, the convergence be-

havior ofēPOD-MM2
1xg

with M is less well behaved as compared
to the POD-MM. As a result, the minimum achievable value
of ēPOD-MM2

1xg
is larger than the minimum achievable value of

ēPOD-MM
1xg

, especially for larger1xg. The POD-MM method
is thus preferred since it allows the error to be reduced sys-
tematically by increasingM, especially when1xg is large.

3.2 Multi-site ROM

To construct a multi-site ROM, we used daily snapshots from
all four sites for 1998–2000 to construct a single ROM. This
is a first step towards developing a ROM that is applica-
ble to the entire NGEE-Arctic study region. Based on the
analysis performed using the POD method, we conclude that
the POD-related methods can theoretically perform very well
even when all four sites are considered in aggregate (Fig. 12).
However, the number of POD bases needed to achieve sim-
ilar accuracy is greater than when separate ROMs are con-
structed for each site (compare Figs. 2 and 12).

With the POD-MM method,̄ePOD-MM
1xg

≤ 10−3 when only
a relatively small number of POD bases are used (Fig. 13).
For 1xg = 8 m, the error is minimum whenM = 30. The
magnitude of the error is only slightly larger than single-site
ROMs. Although this approach is less efficient sinceM is
generally larger thanM for the single-site ROM, it is still
significantly faster than performing simulations at the finest
resolution. A multi-site ROM is a good alternative to multiple
single-site ROMs when the number of sites becomes large.
In addition, if the sites have some similar features, a smaller
number of snapshots is required per site, leading to lower

Figure 9. Solutions off , g, andεPOD-MM
1xg

for day 1 for year 2002

at site A and for three soil depths; the top, middle, and bottom rows
correspond to layers 0–5, 20–25, and 45–50 cm, respectively, from
the surface.

Figure 10. Solutions off , g, andεPOD-MM
1xg

for day 106 for year

2002 at site D and for three soil depths; the top, middle, and bottom
rows correspond to layers 0–5, 20–25, and 45–50 cm, respectively,
from the surface. Regions with homogeneous red color in the panels
reflect the fact that large regions of the solutions are saturated.

computational cost needed to construct a single multi-site
ROM compared to multiple single-site ROMs. POD-MM2
method is not used to develop a multi-site ROM for reasons
given in our analysis of single-site ROMs.

3.3 Site-independent ROM

Here, we include the spatially heterogeneous surface eleva-
tion, as described by the DEM, in the parameter space during
the construction of the ROM. We trained the ROM using the
soil moisture solutions at sites B, C, and D and evaluated the
performance of the ROM for soil moisture prediction at site
A. The resulting ROM is denoted as a site-independent ROM
since it is applied on a site that was excluded from the train-
ing data set.
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For the POD method, the error̄ePOD for the site-
independent ROM decreases with an increasing number of
bases but not as rapidly as̄ePOD of single- or multi-site
ROMs (Fig. 14). For the POD mapping method, the error
(ēPOD-MM

1xg
) also decreases slowly withM when compared

to single- or multi-site ROMs (Fig. 15a). For1xg = 8 m,
the minimumēPOD-MM

1xg
is 0.025, occurring atM = 10. For

1xg < 8 m, ēPOD-MM
1xg

has a negligible decrease forM > 10.

The PDF off POD-MM
1xg

for 0.4 ≤ θ ≤ 0.6 is reasonably close
to the PDF off (Fig. 16, shown for day 20 for year 1998 for
which ePOD-MM

1xg
is approximately the minimum̄ePOD-MM

1xg
).

However, for 0.6 ≤ θ ≤ 0.8, the fit is poorer, with the PDF
of f POD-MM

1xg
resembling a dual-mode Gaussian distribution

centered on 0.69 and 0.74. These peaks also deviate slightly
from that off . The three modes in the PDF in Fig. 16 cor-
respond to the three different soil material properties used to
characterize the subsurface structure of the polygonal land-
scape.

The predicted pointwise soil moisture errors at site A have
a maximum relative error of 0.15 and a mean of 0.02 (Fig. 17,
shown for 20–25 cm layer solutions of day 20 for year 1998),
and is substantially less accurate than for the site-dependent
ROM (Fig. 8). To improve the accuracy of the reconstructed
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Figure 13.The variation of mean POD-MM error (ēPOD-MM
1xg

) with

respect toM for different1xg at sites A and D in 2006. Results are
shown for multi-site ROM constructed using POD-MM method.

fine-resolution solution, we study the use of the POD-MM3
method. Since Bisht and Riley (2014) demonstrated that the
soil moisture at each soil layer is inversely correlated to ele-
vation, we definêf andĝ in Eq. (14) as

f̂ `i
= −DEMA

1xf

µf,`i

µDEMA
1xf

, (19)

ĝ`i
= −DEMA

1xg

µg,`i

µDEMA
1xg

, 1 ≤ i ≤ 10,

where f̂ `i
(ĝ`i

) is the `i layer solution off̂ (ĝ), DEMA
1xf

(DEMA
1xg

) is the DEM of site A at resolution1xf (1xg),
µDEMA

1xf

(µDEMA
1xg

) is the average of the elevation over site

A, andµf,`i
(µg,`i

) is the average of allf (g) in the training
data. Since the DEM is a two-dimensional data set, andf (g)

is three-dimensional soil moisture fields,f̂ (ĝ) is constructed
separately for each vertical layer of the three-dimensional do-
main of our discrete models of the sites via Eq. (19).

At 1xg = 8 m, a minimum of 0.017 is obtained for
ēPOD-MM3
1xg

whenM = 21 (Fig. 15b), compared to 0.025 for

ēPOD-MM
1xg

. The PDF off POD-MM3
1xg

is also a closer approxi-

mation of the PDF off compared to the PDF off POD-MM
1xg

(Fig. 16), and the heterogeneous structure off is approx-
imately reproduced (Fig. 17). In addition, for the fifth soil
layer, the mean and variance ofεPOD-MM3

1xg
, defined analo-

gously toεPOD-MM
1xg

, with f POD-MM
1xg

in Eq. (18) replaced by

f POD-MM3
1xg

, are more uniformly smaller thanεPOD-MM
1xg

.
Fine-resolution soil moisture fields retrieved using the site-

independent ROM are quite accurate (< 1.5 %) given the
large topographic differences between site A and the remain-
ing three sites. In other words, this approach led to an ac-
curate fine-scale soil moisture prediction for a site that was
excluded from the training data set, but did share some topo-
graphic features with sites that were part of the training data
set. Our hypothesis is that the level of error from the site-
independent ROM is well below that required for an accu-
rate prediction of soil moisture impacts on BGC dynamics.
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Figure 14. The mean POD error̄ePOD at site A based on a site-
independent ROM constructed using a POD method that only uti-
lizes soil moisture solutions from sites B, C, and D.
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For example, at a moisture content of 0.4 m3 m−3, a mean
relative error of 0.017 corresponds to an error in moisture
content of 0.007 m3 m−3, which will have negligible impacts
on GHG emission predictions.

To improve the performance of the site-independent ROM,
the topography of the subdomains must be more carefully pa-
rameterized and sampled, allowing the impact of topographic
variations on soil moisture to be captured by the ROM. For
the above example, a larger number of sites needs to be in-
cluded in the training data. More generally, the inclusion of
any spatially heterogeneous parameter requires proper pa-
rameterization and sampling of that parameter. Appropriate
parameterization and sampling of a heterogeneous parame-
ter is a research question that will be addressed in our future
work.

3.4 Application to larger-scale hydrological simulations

The POD mapping method shows great promise in allowing
prediction of fine-resolution soil moisture dynamics using
coarse-resolution simulations. Here we applied a factor of 25

difference in resolution and achieved soil moisture simula-
tion errors of < 0.06 % during 2 years that were not included
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1xg

; 1xg = 8 m.

in the training data set, with an effective decrease in compu-
tation time of more than a factor of 1000. If the above results
hold for simulations that include more sources of heterogene-
ity in the subsurface (e.g., conductivity) and surface (vegeta-
tion) properties, integration of the relevant ROMs into a land
model such as CLM will allow for a much finer representa-
tion of processes than is currently possible, without a drastic
increase in computational cost.

The results indicate that the POD-MM is insensitive to
fine- versus coarse-resolution simulation biases. This re-
sult is potentially useful in cases where we know coarse-
resolution solutions are biased. For example, Chen and
Durlofsky (2006) showed that an adaptive upscaling tech-
nique for subsurface permeability was needed to correct for
bias in coarse simulation of synthetic channelized reservoir.
To demonstrate that POD-MM corrects bias in the coarse so-
lution, letgbias

= (1+ δ)g, whereδ is a prescribed perturba-
tion. We showed thatαPOD-MM is determined by solving

αPOD-MM (p) = argmin
γ

‖ gbias(p) (20)

− ḡbias
−

M∑
i=1

γiζ
gbias,POD-MM
i ‖2

= argmin
γ

(1+ δ) ‖ g(p) − ḡ −

M∑
i=1

γiζ
g,POD-MM
i ‖2,

for which the solution is equivalent to solving Eq. (8). There-
fore, a constant bias will not affect the accuracy of our ap-
proximation. To further support the above analysis, we con-
structed and validated single-site ROMs constructed using
gbias for 0.01, 0.05, 0.1, 0.2, and 0.3 and for all1xg studied
earlier. The results agreed with our earlier analysis and the er-
rors are the same as when there was no bias (Fig. 18, shown
for 1xg = 8.0 m but similar behaviors were obtained for all
other1xg). Small differences only emerge at largeM due to
overfitting, the same reason for which we observed fluctua-
tions in Fig. 7. However, the above analysis does not apply to
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Figure 17. The top row shows the 20–25 cm layer solutions of
g, f , f POD-MM

1xg
and f POD-MM3

1xg
for day 20 for year 1998 at

site A for whichePOD-MM3
1xg

is approximately equal tōePOD-MM3
1xg

;

1xg = 8 m. The second and third rows show the mean and stan-
dard deviation ofεPOD-MM

1xg
andεPOD-MM3

1xg
for the 20–25 cm layer

computed over 1998, 1999, 2000, 2002, and 2006.

f POD-mean
1xg

, sincef POD-mean
1xg

relies on the assumption that the
coarse- and the fine-resolution means have negligible differ-
ences. Thus, any bias in the coarse-resolution mean will lead
to a biasedf POD-mean

1xg
. Further study is needed to study the

biases in site-independent ROMs and the effects of coarse-
resolution bias due to the upscaling of heterogeneous soil
properties across scales.

The Arctic Tundra sites that we have studied have spatial
extents that are smaller and landscapes that are less heteroge-
neous than domains studied in typical regional- and climate-
scale simulations. Although our results conceptually demon-
strate that the POD mapping method can accurately recon-
struct fine-resolution solutions from coarse-resolution solu-
tions, further development is needed to generalize the tech-
nique to problems of larger extent and diversity. The devel-
opment of a site-independent ROM is one of the first steps in
achieving this goal.

For larger-scale simulations, the parameter space that we
are interested in is expected to be significantly more diverse
(e.g., larger variations in topography and multiple landscape
types). A single ROM will typically be inefficient since a
large number of bases would be needed to accurately approx-
imate the response of a diverse parameter space. Partitioning
of the parameter space will allow us to construct multiple
ROMs that are tailored to each domain. Dividing the parame-
ter space based on landscape types is one possible approach.
Partitioning strategies, such as treed partitioning (Gramacy
and Lee, 2008), can also help minimize the number of ROMs
that we need to build.

Directly downscaling from a 10 km scale (climate-scale)
to 0.01 m (BGC-scale) may not be possible, especially if
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respect toM for differentδ and for1xg = 8 m; δ = 0 is the refer-
ence case where there is no bias. Results are shown for sites A and
D for the year 2006.

simulation at the finest scale is infeasible on the spatial ex-
tent used to simulate the coarse-scale solution. The coarse-
scale solution may also have insufficient information to ac-
curately reconstruct the finest scale solution. We propose a
hierarchical approach that involves using POD-MM methods
to develop ROMs at multiple scales; the scales at which these
ROMs are built may critically depend on scales of the differ-
ent processes we are modeling. The POD-MM reconstruc-
tion procedure is then recursively applied to reconstruct solu-
tions at a progressively finer scale, starting from the coarsest
scale solution. In addition, proper parameterization (such as
parameterizing the topography) will allow finer-scale simu-
lations to be performed on subsets of the original domain.

As with any sampling-based technique, the POD mapping
method performs well only if the snapshots of the solution
used to construct the ROM form an approximation space that
can reasonably represent the solution. In the cases that we
examined here, the annual cycle of the climate forcing does
not change drastically from year to year and the response of
soil moisture to climate forcing was relatively smooth. We
thus obtained well-predicted solutions using only data from
a period of 3 years to build the ROM. However, for a more
diverse parameter space, relying solely on historical climate
forcings is insufficient. Statistical or adaptive sampling tech-
niques should be used to sample the parameter space to en-
sure that future conditions not represented by historical data
are accounted for. Accurately defining the extent of the pa-
rameter space is crucial. In addition, just as with any data
assimilation technique, the ROM must be updated when new
information is available, or when the forcing moves outside
of the phase space under which the ROM was developed. For
example, if we are using the ROM at a parameter point far
outside the convex hull of the parameter space used to con-
struct the ROM, it is a clear indication that the ROM needs to
be updated to reflect the change in the extent of the parameter
space.

The current method can be efficiently deployed within
the existing CESM framework. For the cases that we have
examined, the ROMs for the subsurface processes can be
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developed without considering the full coupled system so
that the fine-resolution solutions can be determined more ef-
ficiently. Once ROMs are constructed, coarse-resolution pre-
dictions of soil moisture can be mapped onto a fine grid
to predict biogeochemical processes at higher spatial reso-
lution, while the land–atmosphere interactions can still be
modeled at a coarser grid. We will explore how such a ROM
framework can be robustly implemented within the CLM
model in future work.

Finally, while the computational costs of evaluating the
ROM are typically low, the initial computational overhead re-
quired to construct the ROM can be large. High-performance
computing resources are needed to simulate the potentially
large number of simulations required. Storing and retriev-
ing the simulated solutions will also require a good database
management system and efficient parallel IO.

4 Conclusions

In this paper, we describe the construction of ROMs for
land surface models based on POD-related methods. ROMs
were built for soil moisture predictions from the PFLOTRAN
model for the four NGEE-Arctic sites. An initial analysis
based on the POD method is first used to determine whether
POD-related methods can be used to accurately approxi-
mate the soil moisture. We then use four different meth-
ods that utilize coarse-resolution solutions to reconstruct
fine-resolution solutions to construct single-site, multi-site,
and site-independent ROMs. We evaluate their performance
against fine-resolution simulations. Both the single-site and
multi-site ROMs are very accurate (< 0.1 %) with a computa-
tional speedup greater than 103. The site-independent ROM
has a relative error < 1.5 % when it is used to assess a site that
is not included in the ROM training. However, the overall er-
ror magnitude is still quite low given the large topographi-
cal differences across the sites, thereby giving creditability
for using ROMs in larger-scale simulations. We provide sev-
eral approaches by which we can generalize our methods to
problems of larger extent and diversity in this paper. We thus
conclude that the integration of ROMs into an Earth system
modeling framework is practical and can provide an accurate
approach to spatial scaling.
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