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Abstract. Existing land surface models (LSMs) describe scales together hierarchically, this method has the potential to
physical and biological processes that occur over a wideefficiently increase the resolution of land models for coupled
range of spatial and temporal scales. For example, biogeoclimate simulations to spatial scales consistent with mecha-
chemical and hydrological processes responsible for carbonistic physical process representation.

(CO,, CHy) exchanges with the atmosphere range from the

molecular scale (pore-scale ©@onsumption) to tens of kilo-

meters (vegetation distribution, river networks). Addition-

ally, many processes within LSMs are nonlinearly coupled1 Introduction

(e.g., methane production and soil moisture dynamics), and

therefore simple linear upscaling techniques can result ifThe terrestrial hydrological cycle strongly impacts, and
large prediction error. In this paper we applied a reduced-is impacted by, atmospheric processes. Further, a primary
order modeling (ROM) technique known as “proper orthog- control on terrestrial biogeochemical (BGC) dynamics and
onal decomposition mapping method” that reconstructs temgreenhouse gas (GHG) emissions from soils (e.gg, @Bl4,
porally resolved fine-resolution solutions based on coarseN,O) across spatial scales is exerted by the system'’s hydro-
resolution solutions. We developed four different methodslogical state (Schuur et al., 2008). Soil moisture also im-
and applied them to four study sites in a polygonal tundrapacts soil temperature, which is another important controller
landscape near Barrow, Alaska. Coupled surface—subsurfaasf GHG emissions (Torn and Chapin, 1993). Since climate
isothermal simulations were performed for summer monthschange is predicted to change the amount and temporal dis-
(June—-September) at fine (0.25m) and coarse (8 m) horizontribution of precipitation globally, there is a critical need for
tal resolutions. We used simulation results from three sum-models to not only accurately capture subgrid heterogeneity
mer seasons (1998-2000) to build ROMs of the 4-D soilof terrestrial hydrological processes, but also the impacts of
moisture field for the study sites individually (single-site) and subgrid hydrological heterogeneity on BGC fluxes.
aggregated (multi-site). The results indicate that the ROM Terrestrial hydrological states are important for climate
produced a significant computational speedup & Mith prediction across a wide range of spatial scales, from soil
very small relative approximation error (<0.1 %) for 2 vali- pores to continental. The critical spatial scale relevant to
dation years not used in training the ROM. We also demon-soil moisture state and subsurface and surface fluxes may
strate that our approach: (1) efficiently corrects for coarse-be as small as- 100 m (Wood et al., 2011), although there
resolution model bias and (2) can be used for polygonal tundis vibrant disagreement about the relative increase in pre-
dra sites not included in the training data set with relatively dictability when trying to explicitly simulate at such high
good accuracy (< 1.7 % relative error), thereby allowing for resolutions with limited observational data to constrain pa-
the possibility of applying these ROMs across a much largerrameter values (Beven and Cloke, 2012). However, the im-
landscape. By coupling the ROMs constructed at differentportance of representing fine-resolution spatial structure in
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hydrological states and fluxes has been demonstrated for suFamiglietti et al., 1999; Joshi and Mohanty, 2010; Mascaro
face evapotranspiration budgets (Vivoni et al., 2007; Wood,et al., 2010, 2011; Nykanen and Foufoula-Georgiou, 2001).
1997), runoff and streamflow (Arrigo and Salvucci, 2005; A second potential approach to account for spatial hetero-
Barrios and Francés, 2012; Vivoni et al., 2007), and atmo-geneity in soil moisture states is to relate its higher-order mo-
spheric feedbacks (Nykanen and Foufoula-Georgiou, 2001)ments to the mean, and then apply these relationships within
It remains unclear what the critical spatial scale is for bio- a model that predicts the transient coarse-resolution mean. In
geochemical dynamics, but it has been shown that “hot spotimany observationally based studies, an upward convex rela-
formation is important for wetland biogeochemistry at scalestionship between the mean and variance has been reported
~0O(10cm) (Frei et al., 2012) and for nitrogen cycle varia- (e.g., Brocca et al., 2010, 2012; Choi and Jacobs, 2011;
tions at~ O(m) (McClain et al., 2003). In contrast, the cur- Famiglietti et al., 2008; Lawrence and Hornberger, 2007; Li
rent suite of land surface models applicable at watershe@dnd Rodell, 2013; Pan and Peters-Lidard, 2008; Rosenbaum
(e.g., PAWS, Riley and Shen, 2014; Shen, 2009; regionalgt al., 2012; Tague et al., 2010; Teuling et al., 2007; Teuling
Maxwell et al., 2012; or climate, Koven et al., 2013; Tang et and Troch, 2005). Theoretical analyses have also indicated
al., 2013) scales typically represent hydrological or biogeo-that an upward convex relationship is consistent with current
chemical cycles at- O(100 m—km) scales. understanding of soil moisture dynamics (e.g., Vereecken et
The methods to represent spatial heterogeneity in hydroal., 2007). However, as discussed in Brocca et al. (2007), the
logical and biogeochemical dynamics differ between wa-relationships between soil moisture mean and statistical mo-
tershed and regional or climate-scale models. While manyments have been reported to depend on many factors, includ-
current watershed-scale models explicitly represent lateraing lateral redistribution, radiation, soil characteristics, veg-
inter-connectivity for subsurface and surface fluxes, regional-etation characteristics, elevation above the drainage channel,
and climate-scale models currently rely on a non-spatially-downslope gradient, bedrock topography, and specific ups-
explicit tiling approach. For example, CLM4.5 (Koven et al., lope area. These large number of observed controllers and
2013; Lawrence et al., 2012; Tang et al., 2013), the landthe lack of an accepted set of dominant factors argue that
model integrated in the Community Earth System Model substantial work remains before this type of information can
(Hurrell et al., 2013), represents land-surface grid cells withbe integrated with land models to represent subgrid spatial
the same horizontal extent as the atmospheric grid celldhieterogeneity.
(which can range from~ 1° x 1° for climate change sim- Modeling studies have also been performed to investigate
ulations to~ 0.25 x 0.25 for relatively short simulations; spatial scaling properties of moisture and how these prop-
Bacmeister et al., 2014; Wehner et al., 2014). These gricerties relate to ecosystem properties. For example, lvanov
cells are disaggregated into a subgrid hierarchy of non-et al. (2010) studied spatial heterogeneity in moisture on an
spatially-explicit land units (e.g., vegetated, lakes, glacier,idealized small hill slope, and found hysteretic patterns dur-
urban), columns (with variability in hydrological, snow, and ing the wetting—drying cycle and that the system response
crop management), and plant functional types (accountinglepends on precipitation magnitude. Riley and Shen (2014)
for variations in broad categories of plants and bare ground)used a distributed modeling framework to analyze relation-
Therefore, we contend that representing the much smalleships between mean and higher-order moments of soil mois-
spatial scales now recognized to control hydrological andture and ecosystem properties in a watershed in Michigan.
biogeochemical dynamics in regional and global-scale mod-They concluded that the strongest relationship between the
els will require a reformulation of the overall design of these observed declines in variance and increases in mean mois-
models. ture (past a peak in this relationship) was with the gradient
One potential approach to represent spatial heterogeneitgonvolved with mean evapotranspiration. Other studies have
in soil moisture fields at resolutions finer than representedocused on upscaling fine-resolution model parameters to ef-
in a particular modeling framework is to relate the statistical fective coarser-resolution parameters. For example, Jana and
properties of the soil moisture field with the spatial scale. HuMohanty (2012) showed that power-law scaling of hydraulic
et al. (1997) showed that the varianog?x of the soil mois-  parameters was able to capture subgrid topographic effects
ture @) field at different spatial averaging area$) (can be  for four different hill slope configurations.
related to the ratio of those areas raised to a scaling expo- Theoretical work to explicitly include spatial heterogene-
nent ¢/). They also showed that is related to the spatial ity in the hydrological governing equations has also been ap-
correlation structure of the soil moisture field and that it de- plied to this problem. Albertson and Montaldo (2003) and
creases as soils dry. Observational studies have describedMontaldo and Albertson (2003) developed a relationship for
power law decay of variance as a function of the observa-the time rate of change of soil moisture variance based on the
tion scale (Rodriguez-lturbe et al., 1995; Wood, 1998), andmean moisture and spatial covariances between soil mois-
several investigators have demonstrated that the relationshifure, infiltration, drainage, and ET. Teuling and Troch (2005)
betweem@2 and spatial scale is not “simple” (i.e., not log-log applied a similar approach to study the impacts of vegetation,
linear across all spatial scales; e.g., Das and Mohanty, 2008&o0il properties, and topography on the controls of soil mois-
ture variance. Kumar (2004) applied a Reynolds averaging
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approach, and ignoring second- and higher-order terms, dethat increase in generality in the following order: single-site
rived a relationship for the time rate of change of the meanROMs (limited to a single site), multi-site ROMs (limited
moisture field that depends on the moisture variance. Choi eto sites included in the training data) and site-independent
al. (2007) applied the model to-a25 000 knt Appalachian  ROMs (applicable even for sites not included in the train-
Mountain region for the summer months of 1 year and founding data). For each of the above scenarios, different ROMs
that subgrid variability significantly affected the prediction can be developed using methods that we propose in Sect. 2;
of mean soil moisture. the applicability of a method to a given scenario is discussed

The approaches described above to capture fine-resolutioim Sect. 2. We then compare the accuracy of the different
spatial heterogeneity within a coarse-resolution modelingROMs and end with a discussion of limitations of the ap-
framework have some limitations. First, the soil moisture proach, possible improvements, and methods to incorporate
probability density function is often very non-normal (Ryu the proposed ROM approach within a global-scale hydrolog-
and Famiglietti, 2005), making the sole use of variance as acal and biogeochemical model.
descriptor of moisture heterogeneity insufficient. A similar
problem arises with the Reynolds averaging approach that
does not include higher-order terms. This approach also re2 Methods
quires a method to “close” the solution (i.e., relate the higher-
order terms to the mean moisture), and there is no gener2.1 Site description and hydrologic simulation setup
ally accepted method to perform this closure. Perhaps the
largest constraint of these approaches in the context of clin this study, we developed ROMs for hydrological simula-
mate change and atmospheric interactions is that they cartions performed at four sites in the Barrow Environmental
not account for the temporal memory in the system that im-Observatory (BEO) in Barrow, Alaska (71.R, 156.5 W).
pacts biogeochemical transformations. In particular, the bio-The BEO lies within the Alaskan Arctic costal plain, which
geochemical dynamics at a particular point in time depends a relatively flat region, characterized by thaw lakes and
on the state and dynamics that occurred in the past, and jusirained basins (Hinkel et al., 2003; Sellmann et al., 1975)
knowing the statistical distribution of moisture at a particular and polygonal ground features (Hinkel et al., 2001; Hubbard
time may not maintain the continuity required for accurateet al., 2013). The Department of Energy (DOE) Next-
prediction. Therefore, for applications related to regional- to Generation Ecosystem Experiments (NGEE-Arctic) project
global-scale interactions with the atmosphere, a method ihas established four intensely monitored sites (A, B, Cand D,
required that allows for (1) computationally tractable simu- shown in Fig. 1) within the BEO in 2012 to study the impact
lations (i.e., relatively coarser resolution); (2) spatially ex- of climate change in high-latitude regions. The four NGEE-
plicit prediction of the temporal evolution of soil moisture Arctic study sites have distinct micro-topographic features,
at relatively finer resolutions; and (3) integration of the rel- which include low-centered (A), high-centered (B), and tran-
atively finer resolution soil moisture predictions with repre- sitional polygons (C, and D). The mean annual air tempera-
sentations of the relevant biogeochemical dynamics. ture for our study sites is approximately13°C (Walker et

To that end, we describe a generally applicable reducedal., 2005) and the mean annual precipitation is 106 mm, with
order modeling technique to reconstruct a fine-resolutionthe majority of precipitation falling during the summer sea-
heterogeneous 4-D soil moisture solution from a coarseson (Wu et al., 2013). The study site is underlain with contin-
resolution simulation, thereby resulting in significant com- uous permafrost and the seasonally active layer depth ranges
putational savings. In this study, we built ROMs based on thebetween 30 and 90 cm (Hinkel et al., 2003).
proper orthogonal decomposition mapping method (Robin- We applied a version of the three-dimensional subsurface
son et al., 2012), which first involved training the ROMs reactive transport simulator PFLOTRAN, which was modi-
using fine- and coarse-resolution simulations over multiplefied to include surface water flows, for simulating surface—
years. Hydrologic simulations of coupled surface and subsursubsurface hydrologic processes at the four NGEE-Arctic
face processes for an Alaska polygonal tundra system werstudy sites. The subsurface flows in PFLOTRAN are solved
performed using the PFLOTRAN model (Bisht and Riley, with a finite volume and an implicit time integration scheme,
2014; Hammond et al., 2012). Simulations were performedand are sequentially coupled to a finite-volume-based sur-
for four study sites in Alaska with distinct polygonal surface face flow solution that is solved explicitly in time. Simula-
characteristics and individual ROMs were built for each site.tions at the four study sites were conducted using meshes at
The resulting ROMs were then applied over periods outsidehorizontal resolutions of 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0 m.
of the ROM training period. A constant vertical resolution of 5cm with a total depth of

In Sect. 2 we describe the polygonal tundra site used fo50 cm was used for all simulations. The simulations were car-
our simulations, the PFLOTRAN hydrological simulations ried out for four summer months (July—September) of each
configuration, and the methods used to develop and evaluatgear between 1998 and 2006. Evapotranspiration and effec-
the ROMs. In Sect. 3, these methods are used under differtive precipitation boundary conditions for the PFLOTRAN
ent scenarios to develop ROMs for the polygonal tundra sitesimulations were obtained from offline simulations of the
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Community Land Model (CLM4.5; Oleson et al., 2013). Ver- Karhunen-Loeve decomposition (Moore, 1981). We com-
tical heterogeneity in soil properties was prescribed usingputed the POD bases based on the kernel eigenvalue ap-
data from Hinzman et al. (1991). A static active layer depthproach (Everson and Sirovich, 1995).
of 50 cm, corresponding approximately to the maximum sea- The number of POD bases (denotedMy used to recon-
sonal value, was assumed for all simulations. Details of thestruct the approximate solution to a certain level of ergdy (
model setup are provided in Bisht and Riley (2014). In the can be determined by finding that satisfies
current study, the ROM was trained on 3 years of data (1998—
2000), and the ROM predictions for 2002 and 2006 were N M .
compared against fine-resolution simulations. ey =1- 2i/rr <&, 3)

i=1

2.2 Development of the reduced-order N
modeling approach whereir = " 2;. As mentioned in Wilkinson (2011), the

The multifidelity ROM approach used in this study is based dimensionall relduction afforded by the POD method depends
on the gappy proper orthogonal decomposition (POD) map-on the extent to which the components ffare correlated.
ping approach (Robinson et al., 2012). Letbe a set of  We note that Eq. (1) only states hgfvis represented in a
parameters that defines a particular solution or observationinear space spanned by the POD bases, but there are mul-
The set of parameters could include system parameters (e.giple approaches of determining p) = {«1(p), ...,y (p)}
vegetation distribution, soil types, and topography), climatefor a givenp. One optimal solution of that minimizes the
forcings, time, and other quantities that have an influencdeast squares error betwegtip) and f7°P(p), denoted by

on the system response. In this paper, the parameters that’©P(p), is given by

vary in the simulations that we have performed for each

site are time (days for summer seasons in a year) and th@l_POD(p) = ;iPOD’T(f(p) —f), i=1...,M. (4)
climate forcings (precipitation and evapotranspiration rates)

prescribed at that particular time. Then, given a sample Seﬁowever,ocPOD(p), determined using Eq. (4), does not lead
Sv =1q1,....qn}, whereq; is a set of parameteys, andN (4 any computational savings singé p) is the quantity we

is the_ number of samples, we can compute the corresponding,,id like to approximate. Determination gf(p) can be
solution{f(q1), ..., f(gn)}. In this paper.f corresponded 5\ gided by using the POD projection method (Willcox and
to a simulated fine-resolution three-dimensional soil mois-peraijre, 2002), which discretizes the governing equations us-
ture field, but in generalf can be any spatial quantity of g the linear space spanned$fPP and solves the resulting
interest (e.g., soil temperature or GHG emission). algebraic equations fmpoD(p)_’ However, the POD projec-
tion method requires extensive modification of the existing
code of the simulator, and is thus not suitable for existing
LSMs. To demonstrate the limit of accuracy of POD-related
methods presented in subsequent subsections (Sects. 2.2.2—

2.2.1 POD method

The POD approximation of, f7°P, is given by

M 2.2.5), we determineP°P(p) based on Eq. (4) by evaluating
f(p)~ fPOP(p) = fref 4 > ei(p)efoP, (1)  f(p) explicitly and present the results in Sect. 3.
i=1 In subsequent sections, we describe four different methods
) of of developing a ROM that reconstructs the fine-resolution so-
whereM < N < N, N is the degree of fr}sedom o f lution based on the coarse-resolution solution. Each of the

is the reference basis (herg'e’ = f = % S fg)), ;!?OD met_hods isa modification_ of the basic _POD method, but uses
i=1 a different reference basis, data matrix, or method to com-

are the POD bases and is the number of POD bases. putea(p). The differences among the various methods for

The POD bases are determined through a singular value deteveloping a ROM are summarized in Table 1.

composition (SVD) of the data matrix given byPOoP =

(fq—f..... flgn) — f]: 2.2.2 POD mean method (POD-mean)

wPOP— upv’, (2)  To overcome the difficulties associated with calculating
«PO0(p), we propose a POD-mean method (POD-mean).
whereU € RV*V are the left eigenvectors, e R¥*N are  We first determine®°P(¢), Vg € Sy using Eq. (4); this step
the right eigenvectors, arld = diag(A1, ..., Ay) € RVN*N, requires negligible computational overhead since construc-
With A1 > A2 > ... > Ay > 0. The POD basest®P, 1 <i < tion of ROM based on the POD method already requires the
N are thus given byw"°PV, andy; are the associated eigen- determination off (¢),¥q € Sy. We then construct a poly-
values with each POD basis. The POD method is similaromial fit betweer”°P(q) and the mean of (¢) (i.e., fine-
to the principal component analysis (Jolliffe, 2002) and theresolution mean soil moisture, s (¢)), which we denote as
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Table 1. Summary of differences between various methods used for constructing ROM. In the tablebaldhe fine-resolution solution;

g is the coarse resolution solutialjs given by Eq. (10);;‘ andg are given by Eq. (15)p is any given parameter saf; is theith parameter
setinSy; uy(p) andug(p) are spatially averagedi(p) andg(p); and¢ PODMM. ¢ PODMMZ nd¢$ PODMMS 2re POD bases for
POD-MM, POD-MM2 and POD-MM3 methods, respectively. (Please refer to each method’s subsectlon in Sect. 2 for more details on the
above variables.)

Reference ith column of the

Method basis data matrix Determinationeafp)
POD f fan—f Equation (4). ‘ ‘
POD-mean f fa@)—f Approximated byxf't(ug(p)), wheregit is a polynomial fit betweea(q) andp ¢ (g).
[ f [ fan—f ] . -
POD-MM ~ < Equation (8) usin .
L & gqi)—g a ® &P
POD-MM2 g [ h(qig)_h ] Equation (8), by substitutingf’PODMM by ;f’PODMMZ.
POD-MM3 S [ fan—r ] Equation (8), by substitutings"POP™MM py ¢8-POPMM3 o045 1y 6.
| & glgi)—g ! !
a1 ;). Then, for any giverp, we approximatef by where ¢/FOPMM and ¢#POPMM are components associ-
ated with the fine- and coarse-resolution models. Given a
coarse-resolution solutiofi(p), we first determine
ST p) = f + Za“‘ (g (PP, (5)

i aPOPMM () — arg min|| g(p) - & 8

where i, (p) is the mean og(p), a coarse-resolution solu- M

tion simulated at resolutionx, > Ax . This particular ap- _ Zyi;.}g,POD-MM .

proach works well if (1) the relationships betweeﬁ(uf) »

andpu ¢ exist; and (2, is a good approximation qf . For

the Arctic tundra study sites, we will show that these condi-where| - ||z is the Lz norm. We note thatPOPMM (p) is not
tions hold true fori =1, andfi(?;}mea”is a good approxi-  simply given by Eq. (4) sincef’PODMM are not mutually
mation of f. orthogonal. The approximate solutioﬁpo'}'\’”"I (p), is then

2.2.3 POD mapping method (POD-MM) given by fROPMM (p) = f + Z oPODMM () ¢ /-PODMM

In the POD-mean method, we only used the mean of theVhereAxg is the resolution at WthB(p) is computed.
coarse-resolution solutiong(p), to reconstruct the fine-
resolution solution. The POD mapping method (POD-MM)
attempts to use all information ig(p) to efficiently and ac-
curately reconstruct the fine-resolution solution. The POD- We also introduce an alternative formulation of the POD-
MM method is a modification of the gappy POD (Everson y,\; method (POD-MM2) to determine whether the number
and Sirovich, 1995). For the same sampleSetwe deter- ot pop pases required could be reduced for a fixed approx-

mine{g(q1), ..., g(¢n)}, whereg; € Sy. ,g\gll}nMﬁoblnson €l imation error threshold. Instead of applying Eq. (6), we per-
al. (2012), the multifidelity POD bases, , are then form a SVD of the data matriyyPOD-MM2"

determined through a SVD of the data matOPMM:

2.2.4 Second alternative formulation of the POD
mapping method (POD-MM2)

_ _ \WPODMM2 _ h(q1) —h h(gn)—h )

WPODMM=[ faqo—-f  faw-rf ] ©) glq -8  gn)—g

glq —g glgn)—8 ’

where
_ N
where f is as defined before argl—= % > g(g;). The POD hip)= f(p)—2(p), (10)
i=1

basest7*>™M can be decomposed into and g is the solution obtained from a piecewise constant

£PODMM mapping ofg from the coarse-resolution grid gf onto the
;POD—MM _| & @) fine-resolution grid off. By using the deviation off from

i g&PODMM the mapped coarse-resolution solutiprwe remove the bias
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resulting from the mismatch between the mearfadndg. The POD-MM3 approach is developed to improve the per-

We note that this alternative POD mapping formulation is formance of POD-MM method when one of the parameters

possible since our coarse- and fine-resolution grids are nested heterogeneous and spatially varying. This method is only
(which will always be the case for the types of applications applicable to site-independent ROM since the surface eleva-
we are developing here). For non-nested grids, a linear maption is included as a parameter in the site-independent ROM
ping is expected to work as well, although we do not analyzebut not in the single and multi-site ROMs.

that approach here. We denote the resulting POD-based vec-

tor as 2.2.6 Error definitions
POD-MM2 ¢h-POD-MM2 We define the relative error of the POD method with respect
j = °i (11) : ) )
g ¢&PODMMZ to the true fine-resolution solution as
POD
poo_ /77— fl2
where ¢"P°PMY2 are the components associated with ¢~ = | f I, (16)

Given a solutiong(p), the approximatefi??'\’”\"z(p) is

, This error measure gives the maximum theoretical accuracy
then given by

achievable using POD-related methods. We also defiRe

FPODMMZ () 12) & the mean o#POP evaluated over a specified number of
Axg (p)= days.
_ For PODX methods, where POD¥- stands for POD-
< POD-MM2 , + 54, POD-MM2 :
g+h+ Zo‘i (P)¢; ’ mean, POD-MM, POD-MM2, or POD-MM3, the error mea-

i=t sures can be constructed for eath,, and are defined as

where «POPMM2 is determined analogously t@P°PMM

based on Eq. (8) witlg*""O"™™ replaced byt ¢FOPMM2, PODX _ | fZ?gDX —fl2 a7
_ 17
Ax
2.2.5 Third alternative formulation of the POD ) IS N2
mapping method (POD-MM3) Similarly, we deflnezpo'}x as the mean odpo'}x evaluated

over a specified number of days.
When a solution is spatially highly correlated with a spatially P 4

varying parametew, such as the topography, we may use
this information in our reconstruction of the fine-resolution 3 Results and discussion
solution. This third alternative formulation of the POD-
mapping method approximatgisby As described in the Methods section, we developed the ROM
models for the four NGEE-Arctic Barrow study sites chosen
n for detailed characterization. The four sites differ in their to-
fzggDMMg(P) - f+ZO‘tPODMM3(1’)§if PODMMS’ (13) pographic characteristics and therefore each site has a dif-
i=1 ferent dynamic soil moisture response to the same meteoro-
logical forcings. In addition, since the parameters varied in
this study are time and the magnitude of the forcing terms,
historical data (prior-year simulations) can be used to con-
struct the ROM. The resulting ROM is subsequently used
to predict future responses. For more general cases involv-
ing system parameters, statistical or adaptive sampling tech-
nigues are needed to gener&ig (Pau et al., 2013a, b). For
all study years, domain average soil moisture decreased dur-
ing the first half of the simulation time period due to losses

Where;if’PODMm is the fine-resolution component of the

POD basig POPMM3 constructed from

WPOD—MM3=|: f(‘Il)—z f(qN)_A} } (14)
glqu—8&  ggn)—8

andaPOPMM3 s determined analogously 86 °PMM pased

on Eqg. (8) withg and ;fPODMM replaced byg and
f.POD-MM3

¢ , respectively. In the above, the correlation be- 55gociated with evapotranspiration, while soil moisture in-
tweenw and f(g) is used to construcf (g) based on the creased in the latter half due to increased rainfall. Sites A
following: and B had the lowest mean soil moisture, followed by site C,
) s R g and then the wettest site, D.
f= WAxy » 8= WAx,— > (15)

Hwax, Hway, 3.1 Single-site ROMs

where s (1) is f(g) averaged over the domain and all 3.1.1 Application of POD method
the snapshots used in constructing the RQM, , (wax,)

is the model parameter evaluated at resoluttory (Ax,), We first constructed four separate ROMs, one for each site,
aﬂduwmf(uwmg) is the mean Ofvax, (Wax,)- using the POD method and the finest resolutidm { =
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Figure 1. DEM for site A, B, C, and D. The spatial extent of each
site is 104 mx 104 m.
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0.25m) soil moisture predictions from 1998 to 2000. Given
the soil moisture data for 2002 and 20¢8,°P is determined
based on Egs. (1) and (4). The mean relative error of the PO[E
method,ePCP, over 120 days in years 2002 and 2006 de-
creases with increasinyy (Fig. 2). TheM values at which

we evaluatePOP correspond to decreasing = 101, 1072, 01 _
..., 108 in Eq. (3). There is no significant difference be-
tween the error budgets as a function Mf for 2002 and
2006. The number of POD bases for a giw&?P increases

with sites in the following order: A, B, C, and D.

The above observation cannot be deduced based solely on
the probability distribution functions (PDFs) of the DEM
(digital elevation model) of the sites (Fig. 3) even though
DEM is the only quantity that is different between the models
for the four study sites. For example, site D requires the most ! A .
M although its DEM has the smallest standard deviation. The 40 45 5.0
larger number of POD bases required by site D can be at- elevation
tributed to particularly non-smooth soil moisture PDFSs un-gigyre 3. Elevation distributions of the DEM for sites A, B, C
der relatively saturated conditions. The POD method is moreynd p.
efficient when the approximated solution has more smooth-
ness in the parameter space (i.e., a solution at a particular
point varies smoothly with the parameters). Site D is rela-to 2000 and daily prediction of soil moisture at 0.25 m were
tively flat, and at the end of the summer season it tends to gatnade for 2002 and 2006 using only the ROMs and coarse-
completely saturated, thereby resulting in a discontinuity inresolution solutions. We only present our analyses for site

Figure 2. Variation of the mean POD erroa'?'?OD), with respect to
umber of basesi{), in year 2002 and 2006 for single-site ROM
onstructed using the POD method.

gow»>

o

1=

o
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5
5
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the parameter space and requiring largjer A and D for brevity but the results are consistent with those
o from the remaining sites; Fig. 2 shows that site B should yield
3.1.2  Application of POD-mean method similar results to site A and site C to site D.

The mean error for the POD mapping methé@%}'\’”‘")
VGecreases monotonically witd for all Ax, = Ax > 0.25m
up to M = Moptimah after whichézgg‘}'\’”‘" starts to increase
and fluctuate (Fig. 6). This behavior is consistent with results

from Everson and Sirovich (1995) in their development of

To determine whether we can use the POD-mean method,
first examine the relationship betweefi®®(¢) and s /(¢)
for all ¢ € Sy. For all four sites, we foun@f°P to be lin-
early correlated ta » (Fig. 4). Fori > 1, a simple correlation

POD -
betweeny, “"andy. ; cannot be found. We can thus approx ROMs for face reconstruction. Although largef improves

: POD p,, . fit _

imatee; ° by e’ (1 7) = ai (i) Jr_az,ovxtl)hereal andaz are 0 |east square fit, it leads to overfitting and increases the
determined from a least-square fitedf P (q) andus(g)- 1N yncertainty in the computas©PMM _ This increased uncer-
addition, 11  is well approximated by.,, allowing us to use  tajnty in POP"MM ntroduces significant random noise into

the POD;rgga:nréaTethod. Farx, =8m, the maximum and  {he reconstructed fine-resolution solution, leading to fluc-
mean ofe,~ are, respectively, 0.013 and 0.0016 at site tuatingéZ?D'MM. Compared tofzggD-mean, the accuracy of

A, and 0.01g6 and 0.005 at site D (Fig. 5). A mean error that .pop-mm .

is <1 % can thus be achieved using POD-mean method. Axg cah be systema_tlcal.ly improved by utilizing more
POD bases in the approximation.

3.1.3 Application of POD-MM method For a givenM < Moptimal éi?gD-MM decreases witlhxg,
which implies that increasing the number of bases leads to

As with the previous analysis, ROMs based on POD-MM a more accurate reconstructed fine-resolution solution. For

were constructed using only soil moisture data from 1998site D, Moptimal @lSO increases with decreasidgy,, since
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Figure 6. The variation of mean POD-MM erroEZX ) with

Figure 4. Relation between mean soil moistwre (¢) = ug(g) and  respect taV for differentAx, at sites Aand D in 2006. Results are
f'OP(g) for sites A, B, C, and D. The lines are linear fits to the data shown for single-site ROM constructed using POD-MM method.
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Figure 5. POD-mean errore, 0> MeaY at sites A and D in years

g
2002 and 2006 for single-site ROM constructed using the POD-Figure 7. The variation of the mean POD-MM erroa?Z?DMM)
mean method. " ¢
with respectte?, =1— Y A; /A for differentAx, at sites A and

1=
larger information content allows moe€”©>MM for more D in 2006.
POD bases to be determined accurately. For the year 2006,
Moptima| = 33 for A.Xg =05m andMopt|ma| = 28 for AXg = . .. OD-MM
8 m. For site A howevetMoptimal = 10 for all Ax,. As such, We next analyz.e the daily variation eng . for years
when the underlying dynamics that we want to capture are2002 and 2006 (Fig. 8). The errg{>>™" is typically larger
mild (as indicated by the smaWopima), the dependence of in the wetter periods although its maximum is below 0.01.
Moptimal ON Ax, is weaker. For the results show SDMM is We further examined the relative pointwise error, given by

8

less than 6:10° when f Z?gDMM is evaluated a¥optimal for
site D. In addition, the mean of@‘g}'\"'\" —f)is115%x10°°

and 672 x 1076 for sites A and D, respectively, indicating
that there is only a negligible bias in the ROM solution.
The above approach requires knowledge of the true finefor the days with the |argeSfZ?g'}MM; they corresponded
resolution solutions to determindopimar. Alternatively, we  to day 1 of 2002 for site A (Fig. 9) and day 106 of 2002
can determiné/opimal by examining the amount of variance for site D (Fig. 10). For site A, the maXimUHﬁ?gDMM is
represented by the firsf POD bases. FOM < Moptimah ~ 2.77 x 10~3 and the locations of large errors are not discern-
there is a linear relationship between (@g0°"") and  able from Fig. 9, indicating that large errors are only local-

log(e’,); the slope of the line is dependent aw, (Fig. 7). In ized to small regions of the domain, resulting in small aver-
M -6 b it age errors¢ROPMM Eor site D, the maximumfOPMM s
addition,e}, < 107° appears to be a reasonable criterion for g ¢ Axg : ' Axg
determiningMoptimar. Choosing this value leads t = 10 1.17x 1073, but a larger region of the domain has a higher
andM = 25 at sites A and D, respectively, farx, = 8.0m. sZSg'}MM compared to site A, resulting in a highéj??’\"“"
These values are very close to thgptimal Values identified  (Fig. 10). In addition, the saturated portion of the solution
based on Fig. 6. has small fluctuating errors, as evident fref?>™M of the

bottom layer (Fig. 10). Future work will exagmine how we

Axg

f

()?gD-MM — (18)

POD-MM
P f B
N

|
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Figure 8. The POD-MM erroréi?gDMM) in 2002 and 2006 at sites
A and D for single-site ROM constructed using POD-MM method.

45-50 cm layer

Figure 9. Solutions off, g, andeX9PMM for day 1 for year 2002

at site A and for three soil depths the top, middle, and bottom rows
correspond to layers 0-5, 20-25, and 45-50 cm, respectively, from
the surface.

can remove these fluctuations by simultaneously taking into
account both water content and saturation.

3.1.4 Application of POD-MM2 method

With the POD-MM2 method, the resulting errgRO>MM2, gAx,=8m  fAx=025m IO g
g O eEE T e p— 5 |1,2x10"

is smaller tharazAO'}'V'M for small M (Fig. 11). For example,

1.1x10°

IIAOXIO"

|1A0x10“

0-5 cm layer

for M =1 andAx, = 0.5m, 20”2 is an order of mag-
nitude smaller thanpo'}""'\’| However, the convergence be-

havior ofePO'}MMZ with M is less well behaved as compared

to the POD MM As a result, the minimum achievable value
of ePOgDMMZ is larger than the minimum achievable value of

eRODMM " especially for largenx,. The POD-MM method
is thus preferred since it allows the error to be reduced sys-

tematically by increasing/, especially whem\x, is large.

0.6x10+

0.2x10+

II.OX]O"

6.0x10+

IZ.OXIO"

Figure 10. Solutions of f, g, andeR9PMM for day 106 for year

To construct a multi-site ROM, we used daily snapshots fromo0o2 at site D and for three soil depths; the top, middle, and bottom
all four sites for 1998-2000 to construct a single ROM. This rows correspond to layers 0-5, 2025, and 45-50 cm, respectively,
is a first step towards developing a ROM that is applica-from the surface. Regions with homogeneous red color in the panels
ble to the entire NGEE-Arctic study region. Based on thereflect the fact that large regions of the solutions are saturated.
analysis performed using the POD method, we conclude that
the POD-related methods can theoretically perform very well
even when all four sites are considered in aggregate (Fig. 12computational cost needed to construct a single multi-site
However, the number of POD bases needed to achieve siTROM compared to multiple single-site ROMs. POD-MM?2
ilar accuracy is greater than when separate ROMs are conmethod is not used to develop a multi-site ROM for reasons
structed for each site (compare Figs. 2 and 12) given in our analysis of single-site ROMs.

With the POD-MM methodeF’OD""”\’I < 103 when only
a relatively small number of POD bases are used (Fig. 13)3.3 Site-independent ROM
For Ax, =8m, the error is minimum whe = 30. The
magnitude of the error is only slightly larger than single-site Here, we include the spatially heterogeneous surface eleva-
ROMs. Although this approach is less efficient sindeis tion, as described by the DEM, in the parameter space during
generally larger tha/ for the single-site ROM, it is still  the construction of the ROM. We trained the ROM using the
significantly faster than performing simulations at the finestsoil moisture solutions at sites B, C, and D and evaluated the
resolution. A multi-site ROM is a good alternative to multiple performance of the ROM for soil moisture prediction at site
single-site ROMs when the number of sites becomes largeA. The resulting ROM is denoted as a site-independent ROM
In addition, if the sites have some similar features, a smallersince it is applied on a site that was excluded from the train-
number of snapshots is required per site, leading to loweing data set.

20-25 cm layer

45-50 cm layer

3.2 Multi-site ROM

www.geosci-model-dev.net/7/2091/2014/ Geosci. Model Dev., 7, 2@24D5 2014
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ROD-MM2,) Figure 13.The variation of mean POD-MM erroEZ?gDMM) with
X

respect taM for different Ax, at sites A and D in 2006. Results are
2shown for multi-site ROM constructed using POD-MM method.

Figure 11. The variation of mean POD-MM2 erroe
with respect taM for different Ax, at sites A and D in 2006. Re-
sults are shown for single-site ROM constructed using POD-MM
method.

2002 2006 fine-resolution solution, we study the use of the POD-MM3
107 10" =a method. Since Bisht and Riley (2014) demonstrated that the

=B

“cC soil moisture at each soil layer is inversely correlated to ele-
D . . A A s
vation, we definef andg in Eq. (14) as

A A I/Lf’e
fo = —DEMy, ———, (19)
- 'U“DEMAXf
N4 .
— g, —-DEMA, &4 1<i<1o0,
. . 1% A
10 30 100 50 107 30 100 130 DEMa+,
M M

A

Where}gi (8¢;) is the¢; layer solution off(g), DEMAX/

Figure 12. Variation of the mean of POD erro#{°P) with respect AL ] )
to M in 2002 and 2006 for multi-site ROM constructed using POD (PEMY, ) is the DEM of site A at resolutionx s (Axy),
method. ;LDEMQ” (MDEMQX,;) is the average of the elevation over site

A, anduf,gl. (1g,¢;) is the average of alf (g) in the training
For the POD method, the erra#*OP for the site- glata. Singe the DEM is gtwo_-dimensiqnal d_ata set, A
independent ROM decreases with an increasing number df three-dimensional soil moisture fielgs(g) is constructed
bases but not as rapidly @§°P of single- or multi-site sep.aratelyfor. each vertical Iayerofthe thr_ee-d|men3|onal do-
ROMs (Fig. 14). For the POD mapping method, the errormain of our discrete models of the sites via Eq. (19).

(@ROPMM) also decreases slowly with when compared oA g =h8 m, a ;nli”ig_‘ur'ls%f 0.017 is dObta(i)ngzd5 1;or
to single- or multi-site ROMs (Fig. 15a). Fakx, =8m, €Ax, whenM =21 (Fig. ). compared to 0. or

the minimuma?oPMM is 0,025, occurring abl = 10. For ~ @aq0 . The PDF of fR07MV3 is also a closer approxi-

Axg < 8m, EZ?DLRAM has a negligible decrease fof > 10. ~ mation of the PDF off' compared to the PDF szggDMM
The PDF OffzéDMM for 0.4 < 0 < 0.6 is reasonably close (Fig. 16), and the heterogeneous structurefof approx-

to the PDF off (Fig. 16, shown for day 20 for year 1998 for imately reproduced (Fig._ 17). In Sg‘ﬂjﬁ;‘;”' for_ the fifth soil
which ezg’DMM is approximately the minimurﬁifc"}'\’”‘"). layer, the mean and variance oixg , defined analo-
g " e POD-MM i POD-MM ;

However, for 06 < @ < 0.8, the fit is poorer, with the PDF  9ously tos =, with f7,° "™ in Eq. (18) replaced by
of RS MM resembling a dual-mode Gaussian distribution f39°M2, are more uniformly smaller tharf 2>
centered on 0.69 and 0.74. These peaks also deviate slightly Fine-resolution soil moisture fields retrieved using the site-
from that of f. The three modes in the PDF in Fig. 16 cor- independent ROM are quite accurate (<1.5%) given the
respond to the three different soil material properties used tdarge topographic differences between site A and the remain-
characterize the subsurface structure of the polygonal landing three sites. In other words, this approach led to an ac-
scape. curate fine-scale soil moisture prediction for a site that was

The predicted pointwise soil moisture errors at site A haveexcluded from the training data set, but did share some topo-
a maximum relative error of 0.15 and a mean of 0.02 (Fig. 17,graphic features with sites that were part of the training data
shown for 20—25 cm layer solutions of day 20 for year 1998),set. Our hypothesis is that the level of error from the site-
and is substantially less accurate than for the site-dependemdependent ROM is well below that required for an accu-
ROM (Fig. 8). To improve the accuracy of the reconstructedrate prediction of soil moisture impacts on BGC dynamics.
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Figure 14. The mean POD errof”©P at site A based on a site-  Figure 16.The probability density function (PDF) of, fPODMM

|_ndepen_dent_ ROM congtructed using a POD method that only uti- and fPOD-MMB for day 20 for year 1998 at site A for which
lizes soil moisture solutions from sites B, C, and D.
PODMM?’ is approximately equal taP?gDMm, Axg=8m.

(b)

0.08

in the training data set, with an effective decrease in compu-
tation time of more than a factor of 1000. If the above results
hold for simulations that include more sources of heterogene-
ity in the subsurface (e.g., conductivity) and surface (vegeta-
tion) properties, integration of the relevant ROMs into a land
model such as CLM will allow for a much finer representa-
tion of processes than is currently possible, without a drastic
increase in computational cost.

The results indicate that the POD-MM is insensitive to
Figure 15. The errors(a) ePOgDMM and(b) e, 00MM3 versusM  fine- versus coarse-resolution simulation biases. This re-
for different Ax, at site A for site-independent ROM constructed sult is potentially useful in cases where we know coarse-
using POD-MM and POD-MM3 methods, respectively. The meansresolution solutions are biased. For example, Chen and
are taken over 1998, 1999, 2000, 2002, and 2006. Durlofsky (2006) showed that an adaptive upscaling tech-
nigue for subsurface permeability was needed to correct for
bias in coarse simulation of synthetic channelized reservoir.

. 3 X R
For example, at a moisture content of 0.3m12, a mean 14 gemonstrate that POD-MM corrects bias in the coarse so-
relative error of 0.017 corresponds to an error in moisturey tion letgPs— (14 8)g, wheres is a prescribed perturba-

content of 0.007 fim~3, which will have negligible impacts tion. We showed thatPOP"MM s determined by solving
on GHG emission predictions.

0.06

~POD-MM
sPOD-MM3

€Az,
€Az,
o
(=1
2

0.02

To improve the performance of the site-independent ROM,aPOPMM () = arg min| g"%(p) (20)
the topography of the subdomains must be more carefully pa-
rameterized and sampled, allowing the impact of topographic _ bias M P13 POD-MM
variations on soil moisture to be captured by the ROM. For -8 - Z 15 I

) . i=1
the above example, a larger number of sites needs to be in- !

cluded in the training data. More generally, the inclusion of
any spatially heterogeneous parameter requires proper pa-
rameterization and sampling of that parameter. Appropriate
parameterization and sampling of a heterogeneous paraméer which the solution is equivalent to solving Eq. (8). There-
ter is a research question that will be addressed in our futuréore, a constant bias will not affect the accuracy of our ap-
work. proximation. To further support the above analysis, we con-
structed and validated single-site ROMs constructed using
3.4 Application to larger-scale hydrological simulations gP3sfor 0.01, 0.05, 0.1, 0.2, and 0.3 and for alk, studied
earlier. The results agreed with our earlier analysis and the er-
The POD mapping method shows great promise in allowingrors are the same as when there was no bias (Fig. 18, shown
prediction of fine-resolution soil moisture dynamics using for Ax, = 8.0m but similar behaviors were obtained for all
coarse-resolution simulations. Here we applied a factoP of 2 otherAx,). Small differences only emerge at largedue to
difference in resolution and achieved soil moisture simula-overfitting, the same reason for which we observed fluctua-
tion errors of <0.06 % during 2 years that were not includedtions in Fig. 7. However, the above analysis does not apply to

M
= argmind+5) | g(p) — &~ )_ygf "M 2
i=1
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Figure 18.The variation of mean POD-MM erroEZ?gDMM) with

respect taV for differents and forAx, =8m;§ =0 is the refer-
; ence case where there is no bias. Results are shown for sites A and
s Io_ooz D for the year 2006.

Standard

devi

Figure 17. The top row shows the 20-25cm layer solutions of simulation at the finest scale is infeasible on the spatial ex-
g [ SRS and FEOPMMS for day 20 for year 1998 at  tent used to simulate the coarse-scale solution. The coarse-
site A for whicheROPMM3 s approximately equal BROPMM3;  scale solution may also have insufficient information to ac-
Axg =8m. The second and third rows show the mean and stancurately reconstruct the finest scale solution. We propose a
dard deviation of;ZSC)D'MM andgngMMS for the 20-25cm layer  hierarchical approach that involves using POD-MM methods
computed over 1998, 1999, 2000, 2002, and 2006. to develop ROMs at multiple scales; the scales at which these
ROMs are built may critically depend on scales of the differ-
POD-mean POD-Mean. . _ ent processes we are mode]ing. The. POD-MM reconstruc-
fax, » sincef 7 relies on the assumption thatthe tjon procedure is then recursively applied to reconstruct solu-
coarse- and the fine-resolution means have negligible differtions at a progressively finer scale, starting from the coarsest
ences. Thus, any bias in the coarse-resolution mean will leadcale solution. In addition, proper parameterization (such as
to a biasedf 28:,} Mean Further study is needed to study the parameterizing the topography) will allow finer-scale simu-
biases in site-independent ROMs and the effects of coarsdations to be performed on subsets of the original domain.
resolution bias due to the upscaling of heterogeneous soil As with any sampling-based technique, the POD mapping
properties across scales. method performs well only if the snapshots of the solution
The Arctic Tundra sites that we have studied have spatialised to construct the ROM form an approximation space that
extents that are smaller and landscapes that are less heterogmn reasonably represent the solution. In the cases that we
neous than domains studied in typical regional- and climate-examined here, the annual cycle of the climate forcing does
scale simulations. Although our results conceptually demon-ot change drastically from year to year and the response of
strate that the POD mapping method can accurately reconsoil moisture to climate forcing was relatively smooth. We
struct fine-resolution solutions from coarse-resolution solu-thus obtained well-predicted solutions using only data from
tions, further development is needed to generalize the techa period of 3 years to build the ROM. However, for a more
nique to problems of larger extent and diversity. The devel-diverse parameter space, relying solely on historical climate
opment of a site-independent ROM is one of the first steps irforcings is insufficient. Statistical or adaptive sampling tech-
achieving this goal. nigues should be used to sample the parameter space to en-
For larger-scale simulations, the parameter space that weure that future conditions not represented by historical data
are interested in is expected to be significantly more diversere accounted for. Accurately defining the extent of the pa-
(e.g., larger variations in topography and multiple landscapeameter space is crucial. In addition, just as with any data
types). A single ROM will typically be inefficient since a assimilation technique, the ROM must be updated when new
large number of bases would be needed to accurately approxaformation is available, or when the forcing moves outside
imate the response of a diverse parameter space. Partitioniraf the phase space under which the ROM was developed. For
of the parameter space will allow us to construct multiple example, if we are using the ROM at a parameter point far
ROMs that are tailored to each domain. Dividing the parame-outside the convex hull of the parameter space used to con-
ter space based on landscape types is one possible approasiruct the ROM, it is a clear indication that the ROM needs to
Partitioning strategies, such as treed partitioning (Gramacye updated to reflect the change in the extent of the parameter
and Lee, 2008), can also help minimize the number of ROMsspace.
that we need to build. The current method can be efficiently deployed within
Directly downscaling from a 10 km scale (climate-scale) the existing CESM framework. For the cases that we have
to 0.01 m (BGC-scale) may not be possible, especially ifexamined, the ROMs for the subsurface processes can be

Geosci. Model Dev., 7, 20912105 2014 www.geosci-model-dev.net/7/2091/2014/



G. S. H. Pau et al.: Hydrological dynamics for land-surface simulations 2103

developed without considering the full coupled system soReferences

that the fine-resolution solutions can be determined more ef-

ficiently. Once ROMs are constructed, coarse-resolution pre- . o
dictions of soil moisture can be mapped onto a fine gridAIbertson,_J.D:and MontaldofN.:TerqporaI dynamics of soil mois-
to predict biogeochemical processes at higher spatial reso- t1u2r$ 4\’32?1%"%zé'/zggez(\’/{gggllé’fg&swater Resour. Res., 39,
lution, while the Iand—qtmosphgre interactions can still beArrigo, J A. S.. and Salvucci, G. D.: Inves.tigation hydrologic scal-
modeled at a coarser grid. W_e will explore th _SUCh aROM ing: Observed effects of heterogeneity and nonlocal processes
framework can be robustly implemented within the CLM  4¢10ss hillslope, watershed, and regional scales, Water Resour.
model in future work. Res., 41, W11417, ddi0.1029/2005WR004032005.

Finally, while the computational costs of evaluating the Bacmeister, J. T., Wehner, M. F., Neale, R. B., Gettelman, A., Han-
ROM are typically low, the initial computational overhead re-  nay, C., Lauritzen, P. H., Caron, J. M., and Truesdale, J. E.:
quired to construct the ROM can be large. High-performance Exploratory high-resolution climate simulations using the Com-
computing resources are needed to simulate the potentially munity Atmosphere Model (CAM), J. Climate, 27, 3073-3099,
large number of simulations required. Storing and retriey- d0i:10.1175/JCLI-D-13-00387,2014.

ing the simulated solutions will also require a good databas@ar;ifos’t_'v" and Fr":‘”‘:és]; F‘(;_Stpzti?l ds‘;a'j elffe‘_:t cl’” th(;a l“ﬁ’_'pe(; sloil
- elrective parameters of a distrioute yadrological model, Rydrol.
management system and efficient parallel 10. Process.. 26 10221033, 2012.

Beven, K. J. and Cloke, H. L.: Comment on “Hyperresolution global
4 Conclusions land surface mpdeling: Meeting a grand challenge for monitoring
Earth’s terrestrial water” by E. F. Wood et al., Water Resour. Res.,

In this paper, we describe the construction of ROMs for 48, W01801, doit0.1029/2011WR010982012. o

land surface models based on POD-related methods. ROMESHt: G. and Riley, W. J.: Topographic controls on soil moisture

were built for soil moisture predictions from the PFLOTRAN scaling properties in polygonal ground, in preparation, 2014. -
A L . Brocca, L., Morbidelli, R., Melone, F., and Moramarco, T.: Soll

model for the four NGEE'ArC_t'C sites. An m't'al_analyS'S moisture spatial variability in experimental areas of central Italy,

based on the POD method is first used to determine whethgr J. Hydrol., 333, 356-373, 2007.

POD-related methods can be used to accurately approXigrocca, L., Melone, F., Moramarco, T., and Morbidelli, R.:

mate the soil moisture. We then use four different meth-  gpatial-temporal variability of soil moisture and its esti-

ods that utilize coarse-resolution solutions to reconstruct mation across scales, Water Resour. Res., 46, W02516,

fine-resolution solutions to construct single-site, multi-site, doi:10.1029/2009WR00801&010.

and site-independent ROMs. We evaluate their performanc@rocca, L., Tullo, T., Melone, F., Moramarco, T., and Morbidelli,

against fine-resolution simulations. Both the single-site and R Catchment scale soil moisture spatial-temporal variability, J.

multi-site ROMSs are very accurate (< 0.1 %) with a computa- _ Hydrol., 422, 63-75, 2012. _ _

tional speedup greater than®.@he site-independent ROM  Chen. Y. and Durlofsky, L.: Adaptive local-global upscaling for

has a relative error < 1.5 % when it is used to assess a site that general flow scenarios in heterogeneous formations, Transport

. . . . Porous Med., 62, 157-185, 2006.
is not included in the ROM training. However, the overall er- Choi, H. I., Kumar, P., and Liang, X. Z.: Three-dimensional volume-

ror magnitude is still quite low given the large topographi- 5 eraged soil moisture transport model with a scalable parame-
cal differences across the sites, thereby giving creditability terization of subgrid topographic variability, Water Resour. Res.,

for using ROMs in larger-scale simulations. We provide sev- 43, \W04414, doit0.1029/2006WR005132007.

eral approaches by which we can generalize our methods tGhoi, M. and Jacobs, J. M.: Spatial soil moisture scaling struc-

problems of larger extent and diversity in this paper. We thus ture during Soil Moisture Experiment 2005, Hydrol. Process., 25,

conclude that the integration of ROMs into an Earth system 926-932, 2011.

modeling framework is practical and can provide an accurate®as, N. N. and Mohanty, B. P.: Temporal dynamics of PSR-based
approach to spatial scaling. soil moisture across spatial scales in an agricultural landscape

during SMEX02: A wavelet approach, Remote Sens. Environ.,
112, 522-534, 2008.
AcknowledgementsThis research was supported by the Direc- Everson, R. and Sirovich, L.: Karhunen—Loeve procedure for gappy
tor, Office of Science, Office of Biological and Environmental data, J. Opt. Soc. Am. A, 12, 1657-1664, 1995.
Research of the US Department of Energy under Contract #DE+amiglietti, J. S., Devereaux, J. A., Laymon, C. A., Tsegaye, T.,
AC02-05CH11231 as part of the Early Career Research Program Houser, P. R., Jackson, T. J., Graham, S. T., Rodell, M., and
(Pau) and the Terrestrial Ecosystem Science Program, including van Oevelen, P. J.: Ground-based investigation of soil moisture
the Next-Generation Ecosystem Experiments (NGEE-Arctic) variability within remote sensing footprints during the Southern
project (Bisht and Riley). This research used resources of the Great Plains 1997 (SGP97) Hydrology Experiment, Water Re-
National Energy Research Scientific Computing Center, a DOE sour. Res., 35, 1839-1851, 1999.
Office of Science User Facility supported by the Office of Science Famiglietti, J. S., Ryu, D., Berg, A. A., Rodell, M., and Jackson, T.
of the US Department of Energy under the aforementioned contract. J.: Field observations of soil moisture variability across scales,
Water Resour. Res., 44, W01423, d6i:1029/2006WR005804
Edited by: J. Neal 2008.

www.geosci-model-dev.net/7/2091/2014/ Geosci. Model Dev., 7, 2@24D5 2014


http://dx.doi.org/10.1029/2002WR001616
http://dx.doi.org/10.1029/2005WR004032
http://dx.doi.org/10.1175/JCLI-D-13-00387.1
http://dx.doi.org/10.1029/2011WR010982
http://dx.doi.org/10.1029/2009WR008016
http://dx.doi.org/10.1029/2006WR005134
http://dx.doi.org/10.1029/2006WR005804

2104 G. S. H. Pau et al.: Hydrological dynamics for land-surface simulations

Frei, S., Knorr, K. H., Peiffer, S., and Fleckenstein, J. H.: SurfaceLawrence, J. E. and Hornberger, G. M.: Soil moisture variabil-
micro-topography causes hot spots of biogeochemical activity in ity across climate zones, Geophys. Res. Lett.,, 34, L20402,
wetland systems: A virtual modeling experiment, J. Geophys. do0i:10.1029/2007GL031382007.

Res.-Biogeo., 117, GOON12, db.1029/2012JG002012012. Lawrence, P. J., Feddema, J. J., Bonan, G. B., Meehl, G. A., O'Neill,

Gramacy, R. B. and Lee, H. K. H.: Bayesian treed Gaussian process B. C., Oleson, K. W., Levis, S., Lawrence, D. M., Kluzek, E.,
models with an application to computer modeling, J. Am. Stat.  Lindsay, K., and Thornton, P. E.: Simulating the biogeochemi-
As., 103, 1119-1130, 2008. cal and biogeophysical impacts of transient land cover change

Hammond, G. E., Lichtner, P. C., Lu, C., and Mills, R. T.. PFLO-  and wood harvest in the Community Climate System Model
TRAN: Reactive flow and transport code for use on laptops (CCSM4) from 1850 to 2100, J. Climate, 25, 3071-3095, 2012.
to leadership-class supercomputers, in: Groundwater Reactivéi, B. and Rodell, M.: Spatial variability and its scale depen-
Transport Models, edited by: Zhang, F., Yeh, G. T., and Parker, dency of observed and modeled soil moisture over differ-
J. C., Bentham Science Publishers, Sharjah, UAE, 2012. ent climate regions, Hydrol. Earth Syst. Sci., 17, 1177-1188,

Hinkel, K. M., Doolittle, J. A., Bockheim, J. G., Nelson, F. E., doi:10.5194/hess-17-1177-2013)13.

Paetzold, R., Kimble, J. M., and Travis, R.: Detection of subsur- Mascaro, G., Vivoni, E. R., and Deidda, R.: Downscaling soil mois-
face permafrost features with ground-penetrating radar, Barrow, ture in the southern Great Plains through a calibrated multifrac-
Alaska, Permafrost Periglac., 12, 179-190, 2001. tal model for land surface modeling applications, Water Resour.

Hinkel, K. M., Eisner, W. R., Bockheim, J. G., Nelson, F. E., Peter-  Res., 46, W08546, ddi0.1029/2009WR008852010.
son, K. M., and Dai, X.: Spatial extent, age, and carbon stocks inMascaro, G., Vivoni, E. R., and Deidda, R.: Soil moisture downscal-
drained thaw lake basins on the Barrow Peninsula, Alaska, Arc- ing across climate regions and its emergent properties, J Geo-
tic, Antarct. Alp. Res., 35, 291-300, 2003. phys. Res.-Atmos., 116, D22114, dd:1029/2011JD016231

Hinzman, L. D., Kane, D. L., Gieck, R. E., and Everett, K. R.: Hy- 2011.
drologic and thermal-properties of the active layer in the AlaskanMaxwell, R. M., Putti, M., Meyerhoff, S., Delfs, J.-O., Ferguson,
Arctic, Cold Reg. Sci. Technol., 19, 95-110, 1991. I. M., lvanov, V., Kim, J., Kolditz, O., Kollet, S. J., Kumar, M.,

Hu, Z. L., Islam, S., and Cheng, Y. Z.: Statistical characterization of Paniconi, C., Park, Y.-J., Phanikumar, M. S., Sudicky, E., and
remotely sensed soil moisture images, Remote Sens. Environ., Sulis, M.: Surface-subsurface model intercomparison: A first set
61, 310-318, 1997. of benchmark results to diagnose integrated hydrology and feed-

Hubbard, S. S., Gangodagamage, C., Dafflon, B., Wainwright, H., backs, Vienna, Austria, 22—-27 April 2012.

Peterson, J., Gusmeroli, A., Ulrich, C., Wu, Y., Wilson, C., Row- McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm,
land, J., Tweedie, C., and Wullschleger, S. D.: Quantifying and N. B., Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C.
relating land-surface and subsurface variability in permafrosten- A., Mayorga, E., McDowell, W. H., and Pinay, G.: Biogeochem-
vironments using LIDAR and surface geophysical datasets, Hy- ical hot spots and hot moments at the interface of terrestrial and
drogeol. J., 21, 149-169, 2013. aquatic ecosystems, Ecosystems, 6, 301-312, 2003.

Hurrell, 3. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Montaldo, N. and Albertson, J. D.: Temporal dynamics of soil mois-
Kushner, P. J., Lamarque, J. F., Large, W. G., Lawrence, D., Lind-  ture variability: 2. Implications for land surface models, Water
say, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, Resour. Res., 39, 2003.

D.R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., BaderMoore, B. C.: Principal component analysis in linear systems —
D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The controllability, observability, and model-reduction, IEEE T. Au-
Community Earth System Model: A framework for collaborative tomat. Contr., 26, 17-32, 1981.

research, B. Am. Meteorol. Soc., 94, 1339-1360, 2013. Nykanen, D. K. and Foufoula-Georgiou, E.: Soil moisture variabil-

Ivanov, V. Y., Fatichi, S., Jenerette, G. D., Espeleta, J. F., Troch, P. ity and scale-dependency of nonlinear parameterizations in cou-
A., and Huxman, T. E.: Hysteresis of soil moisture spatial het- pled land-atmosphere models, Adv. Water Resour., 24, 1143—
erogeneity and the “homogenizing” effect of vegetation, Water 1157, 2001.

Resour. Res., 46, W09521, db0.1029/2009WR008612010. Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B.,

Jana, R. B. and Mohanty, B. P.: A topography-based scal- Huang, M., Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin,
ing algorithm for soil hydraulic parameters at hillslope Z. M., Swenson, S. C., Thornton, P. E., Bozbiyik, A., Fisher,
scales: Field testing, Water Resour. Res., 48, WO02519, R., Kluzek, E., Lamarque, J.-F., Lawrence, P. J., Leung, L. R.,

doi:10.1029/2011WR011202012. Lipscomb, W., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y.,
Jolliffe, I. T.: Principal component analysis, Springer, New York, Tang, J., and Yang, Z.-L.: Technical description of version 4.5 of
2002. the Community Land Model (CLM), National Center for Atmo-

Joshi, C. and Mohanty, B. P.: Physical controls of near-surface soil spheric Research, Boulder, CO, 2013.
moisture across varying spatial scales in an agricultural land-Pan, F. and Peters-Lidard, C. D.: On the relationship between mean
scape during SMEX02, Water Resour Res, 46, 2010. and variance of soil moisture fields, J. Am. Water Resour. As.,
Koven, C. D., Riley, W. J., Subin, Z. M., Tang, J. Y., Torn, M. S., 44, 235-242, 2008.
Collins, W. D., Bonan, G. B., Lawrence, D. M., and Swenson, Pau, G. S. H., Zhang, Y., and Finsterle, S.: Reduced order models
S. C.: The effect of vertically resolved soil biogeochemistry and  for many-query subsurface flow applications, Comput. Geosci.,
alternate soil C and N models on C dynamics of CLM4, Biogeo- 17, 705-721, 2013a.

sciences, 10, 7109-7131, dd:5194/bg-10-7109-2012013. Pau, G. S. H., Zhang, Y., Finsterle, S., Wainwright, H., and
Kumar, P.: Layer averaged Richard’'s equation with lateral flow, Birkholzer, J.: Reduced order modeling in iTOUGH2, Comput.
Adv. Water Resour., 27, 521-531, 2004. Geosci., 65, 118-126, d@D.1016/j.cageo.2013.08.008)13b.

Geosci. Model Dev., 7, 20912105 2014 www.geosci-model-dev.net/7/2091/2014/


http://dx.doi.org/10.1029/2012JG002012
http://dx.doi.org/10.1029/2009WR008611
http://dx.doi.org/10.1029/2011WR011205
http://dx.doi.org/10.5194/bg-10-7109-2013
http://dx.doi.org/10.1029/2007GL031382
http://dx.doi.org/10.5194/hess-17-1177-2013
http://dx.doi.org/10.1029/2009WR008855
http://dx.doi.org/10.1029/2011JD016231
http://dx.doi.org/10.1016/j.cageo.2013.08.008

G. S. H. Pau et al.: Hydrological dynamics for land-surface simulations 2105

Riley, W. J. and Shen, C.: Characterizing coarse-resolution waterTeuling, A. J., Hupet, F., Uijlenhoet, R., and Troch, P. A.: Climate
shed soil moisture heterogeneity using fine-scale simulations, variability effects on spatial soil moisture dynamics, Geophys.

Hydrol. Earth Syst. Sci., 18, 2463-2483, d@:5194/hess-18- Res. Lett., 34, L06406, ddi0.1029/2006GL02908@007.
2463-20142014. Torn, M. S. and Chapin, F. S.: Environmental and biotic controls

Robinson, T., Eldred, M., Willcox, K., and Haimes, R.: Strategies  over Methane flux from Arctic tundra, Chemosphere, 26, 357—
for multifidelity optimization with variable dimensional hierar- 368, 1993.

chical models, 47th AIAA/JASME/ASCE/AHS/ASC Structures, Vereecken, H., Kamai, T., Harter, T., Kasteel, R., Hopmans,
Structural Dynamics, and Materials Conference, Reston, Virig- J., and Vanderborght, J.: Explaining soil moisture variabil-
ina, 2012. ity as a function of mean soil moisture: A stochastic un-
Rodriguez-lturbe, I., Vogel, G. K., Rigon, R., Entekhabi, D., saturated flow perspective, Geophys. Res. Lett., 34, L22402,
Castelli, F., and Rinaldo, A.: On the spatial-organization of soil-  d0i:10.1029/2007GL031812007.
moisture fields, Geophys. Res. Lett., 22, 2757-2760, 1995. Vivoni, E. R., Entekhabi, D., Bras, R. L., and lvanoyv, V. Y.: Con-
Rosenbaum, U., Bogena, H. R., Herbst, M., Huisman, J. A., Pe- trols on runoff generation and scale-dependence in a distributed
terson, T. J., Weuthen, A., Western, A. W., and Vereecken, H.: hydrologic model, Hydrol. Earth Syst. Sci., 11, 1683-1701,
Seasonal and event dynamics of spatial soil moisture patterns doi:10.5194/hess-11-1683-20@007.
at the small catchment scale, Water Resour. Res., 48, W10544Nalker, D. A., Raynolds, M. K., Daniéls, F. J. A., Einarsson, E.,
doi:10.1029/2011WR011512012. Elvebakk, A., Gould, W. A., Katenin, A. E., Kholod, S. S.,
Ryu, D. and Famiglietti J. S.: Characterization of footprint- Markon, C. J., Melnikov, E. S., Moskalenko, N. G., Talbot, S.
scale surface soil moisture variability using Gaussian and S., Yurtsev, B. A., and The other members of the, C. T.: The cir-
beta distribution functions during the Southern Great Plains cumpolar Arctic vegetation map, J. Veg. Sci., 16, 267-282, 2005.
1997 (SGP97) hydrology experiment, Water Resour. Res., 41Wehner, M. F., Reed, K., Li, F., Prabhat, J. B., Chen, C.-T., Pa-
W12433, doi10.1029/2004WR003832005. ciorek, C., Gleckler, P., Sperber, K., Collins, W. D., Gettelman,
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., A., Jablonowski, C., and Algieri, C.: The effect of horizontal
Field, C. B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur,  resolution on simulation quality in the Community Atmospheric
P. M., Lee, H., Mazhitova, G., Nelson, F. E., Rinke, A., Ro- Model, CAM5.1, J. Adv. Model. Earth Syst., under review, 2014.
manovsky, V. E., Shiklomanov, N., Tarnocai, C., Venevsky, S., Wilkinson, R. D.: Bayesian calibration of expensive multivariate
Vogel, J. G., and Zimov, S. A.: Vulnerability of permafrost car-  computer experiments, Large-Scale Inverse Problems and Quan-
bon to climate change: Implications for the global carbon cycle, tification of Uncertainty, 707, 195-215, 2011.
BioScience, 58, 701714, 2008. Willcox, K. and Peraire, J.: Balanced model reduction via the proper
Sellmann, P. V., Brown, J., Lewellen, R. I., McKim, H., and Merry, orthogonal decomposition, AIAA J., 40, 2323-2330, 2002.
C.: The classification and geomorphic implication of thaw lakes Wood, E. F.: Effects of soil moisture aggregation on surface evapo-
on the Arctic Coastal Plain, Alaska, US Army Cold Reg. Res. rative fluxes, J. Hydrol., 190, 397-412, 1997.
Eng. Lab, Hanover, NH, 1975. Wood, E. F.: Scale analyses for land-surface hydrology, in: Scale
Shen, C.: A process-based distributed hydrologic model and its ap- Dependence and Scale Invariance in Hydrology, edited by: Spos-
plication to a Michigan watershed, Ph.D., Civil and Environmen-  ito, G., Cambridge University Press, Cambridge, UK, 1998.
tal Engineering, Michigan State University, East Lansing, MIl, Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens,
270 pp., 2009. M. F. P., Blyth, E., de Roo, A., Doll, P., Ek, M., Famiglietti,
Tague, C., Band, L., Kenworthy, S., and Tenebaum, D.: J., Gochis, D., van de Giesen, N., Houser, P., Jaffe, P. R., Kol-
Plot- and watershed-scale soil moisture variability in a hu- let, S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Siva-
mid Piedmont watershed, Water Resour. Res., 46, W12541, palan, M., Sheffield, J., Wade, A., and Whitehead, P.: Hyperres-
doi:10.1029/2009WR008072010. olution global land surface modeling: Meeting a grand challenge
Tang, J. Y., Riley, W. J., Koven, C. D., and Subin, Z. M.: CLM4- for monitoring Earth’s terrestrial water, Water Resour. Res., 47,
BeTR, a generic biogeochemical transport and reaction mod- W05301, doi10.1029/2010WR01009@011.
ule for CLM4: model development, evaluation, and application, Wu, Y., Hubbard, S. S., Ulrich, C., and Wullschleger, S. D.: Re-
Geosci. Model Dev., 6, 127-140, db®.5194/gmd-6-127-2013 mote monitoring of freeze-thaw transitions in Arctic soils us-
2013. ing the complex resistivity method, Vadose Zone J., 12, 1,
Teuling, A. J. and Troch, P. A.: Improved understanding of soil  doi:10.2136/vzj2012.0062013.
moisture variability dynamics, Geophys. Res. Lett., 32, L05404,
doi:10.1029/2004GL021932005.

www.geosci-model-dev.net/7/2091/2014/ Geosci. Model Dev., 7, 2@24D5 2014


http://dx.doi.org/10.5194/hess-18-2463-2014
http://dx.doi.org/10.5194/hess-18-2463-2014
http://dx.doi.org/10.1029/2011WR011518
http://dx.doi.org/10.1029/2004WR003835
http://dx.doi.org/10.1029/2009WR008078
http://dx.doi.org/10.5194/gmd-6-127-2013
http://dx.doi.org/10.1029/2004GL021935
http://dx.doi.org/10.1029/2006GL029080
http://dx.doi.org/10.1029/2007GL031813
http://dx.doi.org/10.5194/hess-11-1683-2007
http://dx.doi.org/10.1029/2010WR010090
http://dx.doi.org/10.2136/vzj2012.0062

