

Supplement of

Air quality forecasts on a kilometer-scale grid over complex Spanish terrains

M. T. Pay et al.

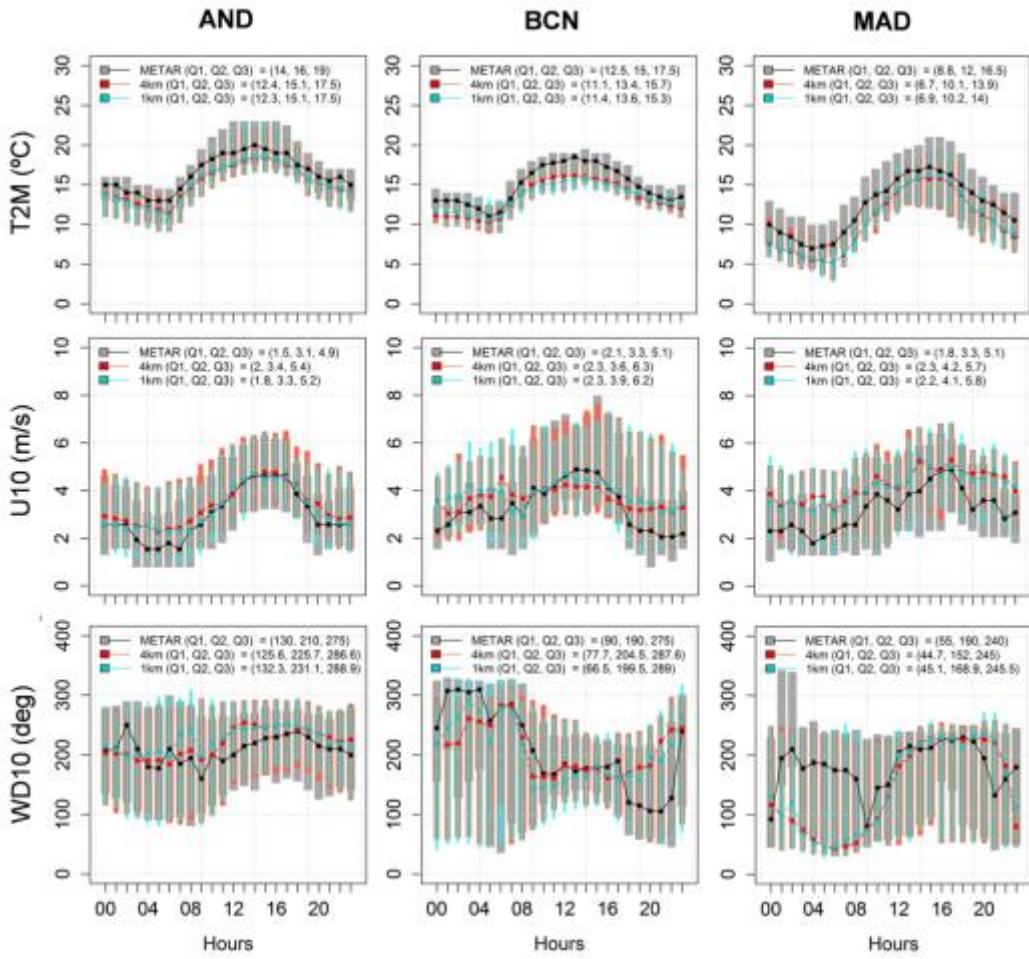
Correspondence to: M. T. Pay (maria.pay@bsc.es)

1 **Supplementary Material S1: Meteorological evaluation**

2 Comparison with METAR reveals that WRF (both 4 km and 1 km) depicts a high
3 agreement with observed temperature and wind, with r between 0.67-0.94 ([Table S1](#)).
4 However, WRF shows a tendency to underestimate mean T2M ($\sim 0.4^\circ\text{C}$ mean),
5 especially maximum and minimum (1.5°C and 1.7°C , p25 and p75, respectively); and
6 overestimate U10 during the night and early morning ($\sim 1 \text{ ms}^{-1}$). Overall, the resolution
7 increase slightly improves T2M (bias by 0.1°C), U10 (bias by 0.1 ms^{-1} and r by 0.1) and
8 WD10 (error in 52° and r by 0.1). However, it slightly decreases WD10 bias (by 2°).

9 Analysis of daily cycles by domain presents different meteorological performance at
10 different study domains ([Fig. S1](#), [Table S1](#)). In the AND domain, WRFv3.5 (at both
11 resolutions) shows problems to reproduce night wind speed with overestimation $\sim 1 \text{ ms}^{-1}$,
12 and T2M is systematically underestimated by $\sim 1^\circ\text{C}$ along the daily cycle. The
13 resolution increase has a positive effect in T2M and U10. T2M and U10 errors and bias
14 decrease (by 0.1°C and 0.2 ms^{-1}). T2M bias improvements are located in the daytime,
15 but no specific time for U10. Wind direction indicates dominant influence of southerly
16 winds affecting AND, which transport desert dust from the North Africa as a result of
17 the influence of the high pressure system.

18 Over the BCN domain, the WRF overestimation at night wind speed is present as well
19 ($\sim 1 \text{ ms}^{-1}$) at both resolutions. The T2M is slightly underestimated, but the main
20 deviations are found at daytime with a bias of $\sim 3^\circ\text{C}$ at both resolutions. The resolution
21 increase has a negative effect on T2M and U10. Although T2M bias decreases by 0.1° ,
22 especially at night, T2M errors increase (0.2°C) and r decreases (from 0.90 to 0.85). For
23 U10, errors and bias also increase (0.1 ms^{-1} and 0.2 ms^{-1} , respectively), especially at
24 night. The speed direction reveals control of the mesoscale phenomena, sea breeze at
25 daytime (~ 170 deg) and land breeze during the night (~ 300 deg). They show that the
26 simulated wind directions are more northerly than those measured in the land breeze
27 period; meanwhile during the sea breeze period the mean simulated wind was more
28 easterly than the measurements registered.


29 In the MAD domain, the meteorological fields underestimate observed T2M almost
30 systematically over the daily cycle by $\sim 2^\circ\text{C}$, and also underestimate U10 $\sim 2 \text{ ms}^{-1}$ at night
31 at both resolutions. Simulated wind directions are more southerly than those measured
32 at night time. Resolution increase has the lowest effect compared to other domains.

1 Error and bias for T2M and U10 do not change, only T2M bias is reduced by 7% when
2 resolution increases.

3 Table S1. Statistics for T2M, U10 and WD for April 2013 at METAR stations as a
4 function of horizontal resolution (4 km and 1 km). n indicates the number of pairs of
5 data used in the discrete evaluation on an hourly basis.

	class	n (stations)	MB (μgm^{-3})		MGE (μgm^{-3})		RMSE (μgm^{-3})		r
			4km	1km	4km	1km	4km	1km	
T2M (°C)	All	6072 (10)	-1.25	-1.18	1.7	1.7	2	2	0.94 0.94
	AND	3689 (6)	-1.21	-1.14	1.7	1.6	2	2	0.94 0.94
	BCN	1216 (2)	-1.09	-1.04	1.5	1.6	1.8	2	0.90 0.85
	MAD	1167 (2)	-1.55	-1.44	1.8	1.8	2.2	2.2	0.96 0.95
U10 (m/s)	All	5769 (10)	0.64	0.58	1.5	1.5	2.1	2.1	0.67 0.68
	AND	3420 (6)	0.67	0.53	1.5	1.4	2	2	0.70 0.71
	BCN	1195 (2)	0.63	0.8	1.8	1.8	2.4	2.5	0.63 0.64
	MAD	1154 (2)	0.58	0.54	1.5	1.5	1.9	1.9	0.65 0.66
WD10 (deg)	All	5029 (10)	6.1	8.4	53	51	89	89	0.58 0.59
	AND	2876 (6)	14.5	17.7	48	47	80	79	0.61 0.62
	BCN	1094 (2)	3.2	2.3	61	58	98	97	0.53 0.56
	MAD	1059 (2)	-13.7	-10.7	57	57	101	102	0.53 0.52

6

1

2 Figure S1. Daily cycles for T2M, U10 and WD10 for each study domain at METAR
3 stations as a function of resolution. Q1, Q2 and Q3 indicate quartiles for the daily cycle.
4 Bars show Q1 and Q3 at each hour.

5