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Abstract. High-resolution direct numerical simulations 1 Introduction
(DNSs) are an important tool for the detailed analysis of

turbidity current dynamics. Models that resolve the vertical Density currents, also known as gravity or buoyancy cur-
structure and turbulence of the flow are typically based uponyents, occur when two fluids with different densities meet.
the Navier—Stokes equations. Two-dimensional simulationsrne density difference creates a pressure gradient that causes
are known to produce unrealistic cohesive vortices that arghe more dense fluid to intrude beneath the less dense fluid.
not representative of the real three-dimensional physics. Therhey occur in both natural and man-made situations, within
effect of this phenomena is particularly apparent in the latera wide range of environments, and over a vast range of tem-
stages of flow propagation. The ideal solution to this prob-poral and spatial scales. When a fluid contains particles in
lem is to run the simulation in three dimensions but this iSsuspension the bulk density of that fluid changes. Density
computationally expensive. currents that are at least partly driven by a density variation
This paper presents a novel finite-element (FE) DNS tur-qye to suspended particles are termed particle-laden density

bidity current model that has been built within Fluidity, an cyrrents. Examples include pyroclastic flows, dust storms,
open source, general purpose, computational fluid dynamicgyajanches and turbidity currents.

code. The model is validated through re-creation of a lock A single submarine particle-laden density current can in-

release density current at a Grashof number ef1%F in volve 100 kn? of sediment Talling et al, 2007). That is ap-

two and three dimensions. Validation of the model consid-proximately 10 times the annual sediment flux into the ocean
ers the flow energy budget, sedimentation rate, head speegom all of the Earth’s rivers combined4lling et al, 2007).

wall normal velocity profiles and the final deposit. Conser- They can travel for hundreds of kilometres over the sea bed at
vation of energy in particular is found to be a good metric speeds of tens of metres a secordézen and Ewing.952.

for measuring model performance in capturing the range ofryrpidity currents, a dilute sub-class of submarine particle-
dynamics on a range of meshes. FE models scale well ovegden density currents where particlefluid interactions dom-
many thousands of processors and do notimpose restrictiongate dynamics, can deliver enough destructive power to
on domain shape, but they are computationally expensivepreak telecommunications cables which can have huge finan-
The use of adaptive mesh optimisation is shown to reducgg| implications Heezen and Ewingl952. Turbidity cur-

the required element count by approximately two orders ofrents can have an impact on pollutant dispersal from river
magnitude in comparison with fixed, uniform mesh simula- oytfiow (Huang et al. 2005 Bombardelli et al. 2004, in-
tions. This leads to a substantial reduction in computationalystrial dischargeHallworth and HuppertL998 Bonnecaze
cost. The computational savings and flexibility afforded by ¢t g, 1993, oil drilling (Curran et al. 2002 and water-
adaptivity along with the flexibility of FE methods make this injection dredging Karris et al, 2002). Turbidity currents
mode! well suited to simulating turbidity currents in complex gre also a key process for the movement of sediment around
domains. our planet Talling et al, 2019. They form a significant
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component of the stratigraphic record, and their depositss undoubtedly important for extending models that resolve
can form hydrocarbon reservoitérieller and Buckeg200Q the vertical structure of the flow to more realistic Grashof
Sequeiros et 812009. Having a good understanding of tur- numbers. Whether it is appropriate to use a turbulence model
bidity current behaviour can also allow us to predict and im- depends upon the diagnostics that are important in the study.
prove water quality in reservoirs by enhancing our under-DNS simulations are necessary to perform detailed analysis
standing of pollutant concentrationélévian et al, 1992 of turbulent structures, and also for the validation of turbu-
Huang et al.2005 and oxygenationBest et al, 2005. lence models for this application.

Studying turbidity currents is not easy. They occur infre- DNS models of turbidity currents in three dimensions
quently and unpredictably at any particular location, and tenchave generally been formulated using spectral element tech-
to destroy any measurement devices that are positioned toiques Necker et al. 2002 and finite differencesHspath
measure their effects. The dynamics of these currents aret al, 2014 Nasr-Azadani and Meiburg2011). These
highly complex, with strong feedback between turbulencemodels are designed to be highly efficient, having struc-
and sediment suspension making measurement of the dywred meshes and, in most cases, high-order methods such
namics difficult Kneller and Buckee200Q Serchi et al.  that these computationally challenging problems become
2012. Small-scale laboratory experiments can provide use{ractable. However, these computationally optimised meth-
ful insight into the dynamics of these currents, but are limitedods make simulations in irregularly shaped domains very dif-
by scaling issues and the available measurement techniqudigult (Mohd-Yusof 1998. Natural turbidity currents propa-
(Kneller and Buckeg2000). gate over complex bathymetries. The interaction of turbid-

High-resolution numerical models have become an im-ity currents over complex geometries is therefore of obvi-
portant tool for the detailed analysis of particle-laden den-ous interest. The model dfasr-Azadani and Meibur@011)
sity current dynamics. Models that resolve the vertical struc-can model turbidity currents in geometries with some com-
ture of the flow are typically based upon the Navier—Stokesplex features using the immersed boundary method, but this
equations. Direct numerical simulations (DNSs) of particle- method has limitations and is not suitable for all use cases
laden density currents should be carried out in three dimen{Mohd-Yusof 1998.
sions as unrealistic cohesive vortices form in two dimen- The finite-element method (FEM) benefits from the abil-
sions that have a significant impact on virtually all of the ity to easily accommodate complex geometries via the use
important outputs from these simulationSantero et aJ.  of flexible unstructured mesheBdnea and Huert&2005.
2007 Espath et a)2014). The scale of particle-laden density Hence, FEM provides an alternative approach to modelling
currents is often described using the Grashof number. Thénteractions of turbidity currents in complex geometries.
Grashof number approximates the ratio of buoyant to vis-However, FEM is significantly more expensive than spectral
cous forces. This is equivalent to the square of the Reynoldglement technique#/{ohd-Yusof 1998. This paper presents
number of a flow where the buoyancy velocity is used as thea novel particle-laden density current model that has been
characteristic velocity. DNS modelling of particle-laden den- built within Fluidity, an open source, general purpose, mul-
sity currents has been achieved in three dimensions at modiphase computational fluid dynamics FEM codmgerial
erate Grashof numbers @? (105) by Necker et al.(2002 College London AMCG2014). This paper simulates a lock
andNasr-Azadani and Meibur(011). Espath et al(2014) release density current at a Grashof number af1%F in
have simulated a particle-laden density current at a Grashafwo and three dimensions with a configuration similar to that
number of0(108). Computational power has limited mod- of Necker et al.(2002. The governing equations are well
elling of higher Grashof number flows. A Grashof humber established and have been validated extensively against ex-
of O (108) translates into modelling of low volumetric parti- perimental data across a range of simulation configurations
cle concentration 10*~10-2 % flows in water at laboratory ~ (Sequeiros et 812009 Necker et al. 2002 Espath et a).
scales. Even at these moderate Grashof numbers a fully tu2014 Huang et al.2007 Georgoulas et 312010. This paper
bulent flow is obtainedNecker et al. 2002 Espath et aJ. validates the use of novel computational methods, including
2014, and very useful insights have been obtained from sim-unstructured mesh adaptivity and discontinuous finite ele-
ulations of particle-laden currents within this range. ments, through convergence analyses and by direct compari-

There has been some success in modelling these flowson with the results from the previous modeldNefcker et al.
using DNS in two dimensions which makes the problem (2009 andEspath et al(2014), providing a framework for
more computationally tractabl8lanchette et al 2005 Ooi future modelling efforts of this type. It is shown that adaptiv-
et al, 2007. However,Espath et al(2014 showed that the ity reduces the required element count by approximately two
only important diagnostic that can be accurately predictedorders of magnitude for this application in comparison with
using a two-dimensional DNS model is the sedimentationfixed, uniform mesh simulations. The computational savings
rate. Another alternative to three-dimensional DNS is to useand flexibility afforded by adaptivity along with the flexibil-
turbulence models to handle the small-scale turbulence anily of FEM make this model well suited to simulating turbid-
only resolve the large-scale motions. Turbulence modellingity currents in complex domains.
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2 Mathematical model Continuity and momentum balance in this model is gov-
erned by the Navier—Stokes equations. The fluid is assumed
2.1 Governing equations to be incompressible. Due to the very low volumetric concen-

trations, the displacement of fluid by the suspended particles
A general discussion of particle motion in a non-uniform can be ignoredNecker et al.2002. Therefore the velocity
flow by Maxey and Riley(1983 stated that pressure gradient, field is considered to be divergence free. The Boussinesq ap-
added mass, viscous Stokes and augmented drag, and bugyroximation is adopted, in which density is considered con-
ancy forces need to be considered. This work considers flowstant except in the buoyancy term. The isotropic kinematic
where the particles are very small in relation to the lengthviscosity,, is assumed constant throughout the model. This
scales of motion. It also considers situations where the partiteads to the following form for the Navier—Stokes equations:
cle density is significantly larger than that of the surrounding
fluid. For example, silica is- 2.6 times the density of water

in turbidity currents, and- 2600 times the density of air in a_uj + ﬁj@ = _8_~p —g'k; + iéij, (2a)
dust storms. Based upon these restrictibtaxey and Riley 97 9x 9x; Xy
(1983 showed that the dominant forces in the equations of d#; _ (2b)

motion for a single particle relative to the fluid in which itis §%;

suspended are the viscous Stokes drag and buoyancy terms. .
Particle-laden density currents consist of a collection ofwhere the stress tens@, for an incompressible flow is de-

particles and hence particle collisions must also be considfined as

ered. The effect of these collisions can be safely ignored by 3 <8ﬁi 8&]-)

limiting the model to applications where the sediment vol- Sij =V
ume fraction is less than 1 %lécker et al.2002. Floccula-

tion of sediment particles can be ignored if the model is fur- agnd the buoyancy density/, is a function of the sediment
ther restricted to sediment sizes of sand and larg84um)  density, oc, the ambient fluid densityy,, the magnitude of

(Maerz et al. 2011). the acceleration due to gravity, and the volumetric con-
Cantero et al(200§ showed that the effects of inertia on centration of sediment, with the form

particle motion in density currents are insignificant for parti- o
cles smaller than 250 um in diameter and hence the model i§/ _ Pc—Pa .. 4
, : , = ———&c. 4)
restricted to sediment diameters below 250 pm. Da
Taking all of the above into account, the acceleration of
particles will be the same as that of the containing fluid.

Particles will move with a velocity equal to the sum of the : : .
fluid velocity, & and a settling velocityiisk, where~ de- Particle-laden density currents deposit and/or erode the
. S surface over which they travel. This means that the

notes a dimensional value. The settling speeg,is ob- suspended mass chanaes with time ie. thev are non-
tained by balancing the Stokes drag and buoyancy forces, ang P 9 P y

k = (0,0,1)T. This means that the evolution of the particle conservative. They have the potential to accelerate if their

Do . . mass increases, or decelerate more rapidly due to settling out
volume fraction,¢, can be described with a transport equa- ; : :
tion of the form of the suspended sediment. The dynamics of sediment ero-

sion are complex. Sediment on the bed will affect turbulence

in the boundary layer. Larger sediment grains will shield
() smaller ones and grains may adhere to each other in the bed.
The bed shape will also change as sediment is eroded, gen-
- . : e . erating complex topography that may promote or inhibit fur-
‘évgnet:g’:iésnghviiﬁig'\f; Egnc%e;tﬁtt';n ilrtfi?s:\r/r:t)/l.nlfj?\;r:jcdzIcoarl]r- ther sediment erosion. Empirical algorithms have been de-
ticles will have a range of r%assgs and séttling velogitiesveIODed for predicting erosion rates baseq upon particle pa-

rameters and the bed shear stress. Erodible boundafies,

Wh'(?h lead to slight variations in sp_eed and trajectory. ASﬁre modelled here as a flux boundary condition of the form
particles move past one another they interact and cause a seli-

induced hydrodynamic diffusiorD@vis and Hasseri988. _ac
The magnitude of this diffusivity is generally chosen to be ”f"a_,;i
0.7-1.0 times the ambient fluid viscosity€cker et al.2002

Cantero et a).2009. Higher values help convergence and whereF is the non-dimensional erosion rate of sediment into
stability of the solution. It has been shown that this value hassuspensiory is the boundary unit normal vector.

little effect on the relevant flow quantities so long as it does Garcia and Parkgl991) reviewed empirical formulae by
not significantly exceed the ambient fluid viscosityaftel Fukushima et al(1985, Akiyama and Stefar{1985, and

et al, 2000. Parker et al(1986 for predicting the erosion of non-cohesive

Y ®)

0%; | 0%

The assumptiod < 1 and(pc — pa)/pa = O(1) justify the
use of the Boussinesq approximation.

3¢ . 9%
= =Kk
axi 8x,~8x,~

ac - -
Y + (w; —usk;)

=isE onT? (5)
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sediment in finite size ranges. They validated these againsthereGr is the Grashof numbegcis the Schmidt number,
laboratory results, and produced an improved formula forRy is the particle Reynolds number, ahd is a character-
sediment erosion. This has been successfully used in work bistic length scale (half the lock-release depth in this work,
Huang et al(2007) and Sequeiros et al2009 when mod-  as defined in SecB). The buoyancy velocityp, is used as
elling sediment-laden density currents and is described as the characteristic velocity scale and is defined in terms of the
initial buoyancy densityg,,, and the characteristic lenghia,

. AZ5
b= 1raz503 G %
+ : .
iib = 4/ §oho- (13)
_ E— ~\ 06 Equations {)—(3) and 6)—(8) can now be redefined in non-
7= “{_t_b (u g,g) ) (6b)  dimensional form as
' re ’ 3 3 1 92
C C C
_ _ , . — 4w —usk)) — = ————— , 14
whereA = 1.3x 10~/ is a non-dimensional constant ads ot (wi 2 Ix; . /s@grdx? 14)
the diameter of the suspended sediment. The bed shear stress,
T, is defined as u: u; 9 3
B 3_l+u]8—l=—8—p—le+8—S,], (15)
Tp = n,'S,'j‘. @) 4 X Xi Xj
The total flux through an erodible boundary is calculated as du; _ 0 (16)
37] 8x,~ o
7 =n;isk;cp — uskE, (8)
herei is the depth of the deposited sedimentin the bed andii =g = sE OnI™. (17)
wherer is the depth of the deposited sediment in the bed and™ /52~ ox;
¢p Is the volumetric concentration of sediment at the sedi-
ment bed boundany is limited such that it never exceeds
n/At, whereAt is the period of a time step. As in the work . A Z° (18)
by Necker et al(2002 andEspath et al(2014, no adjust- 14 A425/03°
ment for porosity of the deposit is included. V% o6
Itis also possible for sediment to be moved along the bed” = = —Rp " (19)
without being entrained into the flow. This process is known } Y (20)
as bedload transport. This has not been included in the curtt = M9l
rent work.Sequeiros et a(2009 stated that suspended sed-
iment is the key factor in the movement of sediment in tur- 9y . £ 21
bidity currents and that bedload transport can be neglectedy, — " “s*i b — st (21)
for currents that do not have a significant fraction of particles
larger than 100 pm. 1 /ou  du:
Four parameters are used to non-dimensionalise the equ&;; = — <8—' 3—’> (22)
tions outlined above: vGr\ox; - oxi
L2 2.2 Discretisation
Gr= (2l 9
r= D ’ ©) Fluidity uses the FEM to solve the Navier-Stokes equa-

tions. Using finite elements gives great flexibility in element
choices and many are available when using Fluidity. A linear
discontinuous Galerkin (DG) scheme is used for the discreti-

Vv
Se= P (10) sation of both the velocity and sediment concentration fields.
A DG discretisation does not enforce continuity across el-
i ement boundaries. Afield that is discretised on a DG function
Us= i (12) space may therefore have multiple values at element bound-

aries. It will also have more degrees of freedom than a con-
tinuous function of the same order as elements do not share
nodes. DG methods are a good choice of discretisation for
, (12) advection-dominated problems as they produce stable dis-
cretisations without the need for stabilisation strategies such
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as streamline-upwindingPgraire and Perssp@008. DG time step lengths based upon achieving a Courant num-
methods also work well on arbitrary meshes and have théer of 0.2 (an order of magnitude smaller than the rest of
desirable properties of having a block-diagonal mass matrixhe model). Diffusion/viscous dissipation is solved using the
that can be trivially inverted locally for each element. This al- simulation time stepAt¢, and a Crank—Nicolson discretisa-
lows for certain equations to be solved very efficienBag¢si  tion. Additionally, the bed shear stress is calculated at the
and Rebay1997). start of each time step and hence the erosion rate is totally
Use of the DG method requires a choice of flux schemesexplicit. A thorough description of the time discretisation
for both the advective and diffusive terms. A simple upwind outlined above is available in the Fluidity manublhperial
flux is chosen for advective terms. A centred flux is usedCollege London AMCG2014.
for the diffusive terms. The compact discontinuous Galerkin
method (CDG) is used to implement the diffusive terms 2.3 Anisotropic mesh adaptivity
(Peraire and Perssp2008. For a detailed discussion of
DG discretisations and flux terms see the review paper byrhe motivation behind using mesh adaptivity is to optimise
Cockburn and Sh(r001). the spatial resolution with time such that both the discreti-
Advection when using a DG discretisation is not bounded.sation error and computational cost of a simulation are min-
Undershoots and overshoots can occur that affect the dyimised Piggott et al. 2005. Adapting the mesh is split into
namics of a gravity current. Slope limiters are employed tothree tasks. The first step is to determine the desired edge
bound the solution although these can be dissipative. Vertexlengths, or to form a metric against which element edge
based slope limiting, as suggestedkayzmin (2010, isused  lengths can be defined, the second part involves generating
herein. a new mesh that better fits these requirements and distribut-
For the pressure field a quadratic continuous Galerkining this mesh amongst the active processors, and the third
scheme is used. We therefore have a mixed finite elemennvolves transferring data from the old mesh to the new mesh
pairing for solving the incompressible Navier—-Stokes equa-see Fig.1). A brief description of each phase of the pro-
tions. This element pairing, described Ggtter et al(2009), cess is included below. The reader is referred to the work of
has the benefit of satisfying the LadyZenskaja—BabuSka-Piggott et al(2008 for more details.
Brezzi (LBB) stability condition and hence needs no sta-
bilisation of the pressure field. Additionally, a higher-order- 2.3.1 Metric formation
accurate pressure field means that the pressure gradient term
in the momentum equation has the same order of accuracpetermining the desired edge lengths for a mesh requires
as the buoyancy forcing term. These two terms dominate irsome quantification of the error in the solution due to spa-
early stages of propagation and hence the ability for thesdial discretisation. This is difficult to do as there is usually no
terms to balance is important in determining how the flow better estimate of the exact solution than the estimate from
evolves. the current discretisation. An indirect method of measuring
A Crank—Nicolson time discretisation is used throughoutthe error is requiredCiarlet (1991 showed that the finite el-
the model which is second-order accurate in time. The couement error can be bounded by the interpolation error for el-
pled system of non-linear equations are solved using twdiptic problems. It is assumed that this also holds for other
non-linear iterations known as Picard iterations. Within eachpartial-differential equations. This is deemed a reasonable
non-linear iteration the equations are linearised using the bestay of defining an error indicatoF6rtin, 2000.
available solution for each variable that is not being solved The aim is to minimise the error in fields that are dis-
for. The momentum and conservation equations are solvedretised using first-order discretisations. For first-order el-
using a pressure correction scheme. ements, the interpolation error depends upon the Hessian,
An adaptive time step is used. This makes the simulatiorH (the matrix of second-order partial derivativeygy and
more robust when using a changing multi-scale mesh and\lauzet 2005. The second derivative of such a discretisa-
also takes advantage of the reducing current velocity ovetion is formally zero and hence some method of recovering
time which allows for much larger time steps towards the the Hessian for these fields is needed. In Fluidity a double-
end of the simulation. The time step length is based uporlumped Galerkin projection is used to compute the Hessian
obtaining a target Courant number of 2. This is a relativelyas described bfpain et al(2001). This Hessian will contain
conservative requirement for the implicit time discretisation information about both the magnitude and direction of the
used. curvature of a field and hence can be used to guide genera-
There are two exceptions to the use of Crank—Nicolsontion of anisotropic elements. This is very useful in regions,
time discretisation. Slope limiters used with DG discretisa-such as boundary layers, where the solutions vary signifi-
tions only guarantee a bounded solution in conjunction withcantly more rapidly in one direction than in others.
an explicit advection scheme. Therefore the sediment trans- The Hessian is used to form a metric tenddr, that will
port and momentum equations are solved in two stages. Adguide the mesh optimisatioM is defined such that the op-
vection is calculated using explicit subcycles with adaptivetimal mesh,M, would have edges, with unit length when
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Mesh generation and partitioning
timestep loop

‘ Compute the hessian of @ and ¢ (Pain et al., 2001) ‘ Adapt the mesh based upon the metric us-
L ing: libmba2d in 2D, libadaptivity in 3D
‘ Convert the hessians to metrics (Chen et al., 2007) ¢
L ‘ Measure the mesh quality against the metric ‘
Create the final metric by superpo- i
sition of metrics (Pain et al., 2001) Repartition the mesh using Zoltan
(Boman et al., 2012). Avoid placing low
,L quality elements on partition boundaries.
Adjust the metric for: max/min element ,L
size, aspect ratio, number of elements and
metric advection (Hiester et al., 2011) Is the mesh quality high enough }— no
|

Metric formation Transfer data from the old mesh to the

new mesh using: consistent interpola-
tion for pressure p, Galerkin projection
for @ and ¢ (Farrell and Maddison, 2011)

Data transfer

timestep loop

Figure 1. A description of the high-level algorithm involved in adapting the mesh. This algorithm is invoked repeatedly throughout the
simulation at a fixed interval specified as a number of time steps.

measured against it: dimensions, or libadaptivity, another open source library de-
veloped alongside Fluidity, in three dimensions. This in-
JViMijjv; =1 YoeM. (23) volves a series of topological and geometrical operations,

with the aim of obtaining a mesh with unit edge lengths with
The choice of formulation fok is therefore fundamental to respect to the determined metric, see E§).(These oper-
the way in which the mesh adapts. A formulation suggestedhtions include node insertion or deletion, edge/face swap-
by Chen et al(2007) which controls thel.? norm of the in-  ping, which preserves the node locations but manipulates

terpolation error is used: edge lengths by changing the configuration of a edge/face
1 L between elements, and node movem@iggott et al, 2009.

M = —det|H|" %= |H| , (24) The Zoltan library Boman et al.2012) is used to partition
&

the mesh in parallel after each adapt iteration. Nodes cannot
wheren is the number of dimensions, aads the interpola-  be adapted at the edge of partitions. After each adapt iteration
tion error bound, a value which is defined by the user.lFbr  parameters are passed to the Zoltan library which discour-
methodsl oseille and Alauze2011) found p =2 to be the  age it from generating partitions through elements that have
optimal value and incorporate more influence from dynam-not been able to adapt. For three-dimensional simulations,
ics of smaller magnitudes. Experience has shown this metri@ minimum of three adapt iterations are required to allow all
formation to be very effective for gravity current simulations elements to adapt and create a mesh that satisfies the metric
(Hiester et al.2011, 2014). constraint everywhere. Zoltan’s graph re-partitioning algo-

It is often important to adapt to more than one solution rithm is used to partition the mesh efficiently between adapt
field. When this is the case the final metric is a superpositioriterations. Once a good quality mesh has been obtained the
of the metrics calculated for each individual fieRb(n et al, hypergraph partitioning method is used to redistribute the el-
2007). At this point the metric is also modified to take into ements amongst the processes.
account bounds upon the maximum and minimum element
size, maximum allowable aspect rat.iq, edge Ier)gth gra.dation2_3_3 Data transfer
and the number of elements. Additionally, this metric can
be advected forward in time providing an estimate of future
requirements for the mesh resolution and allowing for more
time between adapt operationdiéster et al.2011).

After creating the new mesh the data are transferred on to it
from the previous mesh. For the purposes of describing this
step these meshes will be referred to as the target and donor
2.3.2 Mesh generation and partitioning meshes respectively.

Consistent interpolation is used for the transfer of the pres-
The second stage of creating the new mesh is handled bgure field from the donor to the target mesh. This field is
the open-source mesh optimisation library libmba2d in twocontinuous, and conservation of pressure is not essential.
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Consistent interpolation is very cheap and hence is a good
choice for data transfer of this field.

All other prognostic fields are discontinuous. Consistent
interpolation cannot be used for discontinuous fields as test
and trial functions are not continuous across element bound-Ls
aries. Additionally, consistent interpolation is not conserva-
tive and is dissipative. It is important to conserve sediment
mass during data transfer. It is also important that dissipa-
tion of both velocity and sediment is kept to a minimum.
Galerkin projection is used for data transfer of these fields
— this is both conservative and non-dissipativartell et al,

2009. This requires the generation of a supermesh, which igrigure 2. Lock-release simulation domain configuration. The grey
the union of both the donor and target mesh. Within each elregion indicates the volume of non-zero sediment concentration at
ement of the supermesh the test and trial functions for botH{ = 0- The coordinate system defines the origis, yo, o
discretisations are consistent and thus this method is valid for

DG dlscretlsagons. The. construction of a supermesh can bs — (0.0.0) atz = 0 andz = 2. All velocity boundary con-
a very expensive operation. Fluidity uses an algorithm devel-

oped byFarrell and Maddisor§2011) where the supermesh ditions are app!lgd weakly. .V.Vhere a velocity component is
. . . not set with a Dirichlet condition, a zero Neumann boundary
is created locally for each target element. For DG discreti-

sations the Galerkin projection can be carried out entirelyCorIOIItIon is applied. Note that the side wall boundary con-

locally due to the fact that the mass matrix is block diagonal.OIItIonS vary fro_”.‘ those oNe(_:ker et al(2002. A free-slip
: L . .y boundary condition should give comparable results to the pe-
This combination greatly increases efficiency.

L2 riodic boundary conditions used in that work.
Where the projection occurs over a surface of the volume " . L
Boundary conditions for the sediment concentration field

mesh (e.g. deposited sediment) projection is carried out in : o : :
; . . S are as follows. The erosion boundary condition outlined in
a (n—1)-dimensional space. For DG discretisations, all donor . :
. Eg. (17) is applied at the bottom surface,=0. A zero
mesh surface elements that intersect a target mesh elemeft. e :
. irichlet boundary condition is prescribed at 2 (the top
must be in the same plane as the target mesh element. The .
. S . surface of the tank). At all other boundariés+ kus) - n
Galerkin projection is carried out locally for each target ele-

ment by rotating the coordinates of the target element and aﬁequa}ls Z€r0, hence zero Neumann bpundary conditions are
intersecting donor elements into they plane. applied which enforce zero flux of sediment across these sur-

faces.

The initial condition for the sediment concentration field in
the three-dimensional simulation is similar to that suggested
by Hartel et al.(1997) andCantero et al(2006. This initial

The classic lock-release setup is used as a test case for tf@ndition is based upon the solution obtained from a purely
model. This is a well-researched configuration with a rangediffusive problem Hartel et al.(1997) argued that the prob-
of data against which to validate resulGlgdstone et gl. €M will be dominated by diffusion for very early stages of
1998 Necker et al.2002 Cantero et a).2006 Espath et a). thg simulation gnd hence this initial con_dmon is justified as
2014). As defined in Fig2, L, = L3 = 2.0, which meansthat P€ing the condition of the flow a short time period after the
ho=1.0, L1g = L3/2.0, and L1 = 19.0 which is slightly initial release. This initial condition includes a perturbation,
in a similar way to the work byCantero et al(20086.

3 Simulation configuration

longer than the final run-out length of the density current?>

considered. The dimensionless parameters are set as A random perturbation of t_he initial cono_lition i_s important to
help promote the generation of three-dimensional structures

Gr=50x10°, Sc=10, in the flow.Necker et al(2002 andEspath et al(2014) use

us=002, Rp=200. (25) an alternative perturbation of the velocity field for the same

purpose. The initial condition for the sediment concentration,

As such, the experiment configuration is identical to that ofmCIUdmg the perturbation, is as follows:

Necker et al.(2002, with the exception of the addition of

sediment erosion, and hence a requirement for the definiton 1 1 “y T
of Rp, which is defined to lie in the range &, for whichthe = 2~ Eerf[ GISClx - V]] ’ (26)
erosion algorithm outlined in Eql18) is valid, as detailed with

in Garcia and Parkef1997).

Boundary conditions for velocity are free-slip for all side
walls,u1 =0 atx =—1 andx =18,u> =0 aty =0, and y = cos(Z f,x, y,z)) Ay, (27)
y =2, and no-slip at the top and bottom of the domain, i
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where A, is chosen to be 0.2 and is constructed of four A measure of the quality of a mesh, in terms of the dy-
sets of waves originating from the four corners of a planenamics computed within it, is required. The simulation is of
aligned with the lock gate. Each set of waves contain 60a turbulent flow. Head speed, deposit profile, quantity of sus-
waves with random phases and random wavelengths rangended sediment and deposition rates are all important out-
ing between 0.02 ando. Wavei has amplitudef (i, x, y, z) puts from these simulations, but due to the turbulent nature of
at positionsr, y, z. The perturbation chosen covers a wide the flow, which is very sensitive to small changes in the mesh,
range of frequencies so as to not preferentially generate pait is very hard to show convergence of these quantities.
ticular wavelengths of oscillations. The mesh is adapted be- However, one important quantity does show convergence.
fore the first time step to produce a good mesh for this initial This is the energy lost due to discretisation, and data transfer
condition. errors. DNS simulations resolve all length scales of motion.
To use adaptivity several controlling parameters need tadConvergence analysis will show that the discretisation errors
be defined. The fundamental parameters which define thare small enough that they have a negligible impact on the
mesh resolution in the simulation are the interpolation errorresult and that the mesh resolution is fine enough to resolve
bounds. The next section describes how values for these pall of the energy in the flow. The combination of upwind
rameters were chosen. The time between adapts also requirfiax terms and slope limiting in the discretisation dissipates
definitions, and it is necessary to ensure that there is adequatmergy at scales that the mesh cannot resolve. Additionally,
resolution in periods between adapts. Through experimentaadapting the mesh requires a data transfer operation which
tion it was found that an adapt every five time steps kept thewill introduce some relatively small errors. By computing
simulation stable towards the beginning of the simulation.the energy budget in the simulation and how this varies over
At later stages in the simulation an adapt was required everyime a value for the energy lost due to discretisation, and
two time steps. The high frequency of mesh adapts was redata transfer errorgg can be obtained. This quantity gives
quired to limit instabilities in the boundary layer which grow us some indication of how well the scales of motion in the
rapidly. Small instabilities that developed did not have anyflow are being resolved. Importantly, this value converges as
noticeable impact on the important outputs from the simula-the mesh resolution increases and so gives us a good method
tion. This is discussed further in the following sections. As of comparing the quality of different mesh configurations.
mentioned in Sec.3.1 metric advection is used to advect Following the method oWinters et al(1995, Necker et al.
the metric, which defines the edge lengths required to meef2002 and Espath et al(2014), equations for the rates of
the interpolation error bounds, forward in time. The metric is change of potential energi,, and kinetic energyEy, in the
conservatively advected through five adapt intervals at eaclsystem can be derived as follows.
adapt. The kinetic energy in the system is

Ek=%/|u|2d9. (28)

4 Choosing appropriate interpolation error bounds 2

Itis possible to define an interpolation error bound for any of 1o optain the time derivative fak, compute the dot product

the functions in the simulation. In this simulation sediment ¢ the momentum EqA6) with « and apply the chain rule to

concentration, velocity and pressure are solved for. It is comyt4in

mon practice to adapt to the velocity field for the purposes of

resolving the velocity and pressure fields. Good resolution of1 9 |[u|2 1 9 |u|? ap ATij

the sediment concentration field is also required. Hence fou; —5,~ ™ 3%/ ox = _"ia_xi —usc+ “im- (29)

interpolation error bounds require definition for the simula- ‘

tion — one for each velocity component, and another for theintegrating over the domain and integrating by parts, using

sediment concentration. the continuity Eq. 16) and the knowledge that there are
In order to select good values for these parametersio normal flow boundary conditions on all boundaries, i.e.

a convergence analysis is required. Doing this with three-;n; = 0, an equation for the rate of change Bf is ob-

dimensional models would be prohibitively expensive andtained:

hence two-dimensional simulations are used to carry out this

convergence analysis. The two-dimensional simulations aré £k _ —/cung _/T‘ LTI (30)

defined in thex— plane. It has been well documented by ¢ Y xj

Necker et al. (2002 and Cantero et al(2007) that output

from two-dimensional simulations of particle-laden density  The potential energy in the system is

currents do not compare well with three-dimensional simu-

lations. However, two-dimensional simulations are useful for q
the purpose of understanding the resolution requirements ofp= | cx3d. (31)
simulations. Q
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To obtain the time derivative for this term first multiply the T B
. . . X 1xed
equation for sediment concentration (Ed) by x3: . O adaptive
® A0
ac ac 1 92 as x e Al
—x3+x3 (U; —usk;) — =x3 ——— . (32 A2
ot 0x; /SCGr 0x;0x; [S 101 B %9 % N o A3 ||
Integrating over the domain, and by parts, using the chain i @% |
rule and noting that all velocities normal to the wall are zero, | ° X |
an equation for the rate of changef is obtained: | go |
aEp ac Ll | |
— = [ cuzdQ +us | x3—dQ 4 5 6
o1 / 3082 + s/ 38x3 10 10 10
Q Q mean number of elements
1 dc ac Figure 3. Time-integrated energy conservation errBry, against
+ J/SeGr / 33_xl.""d0 N / Edg ‘ (33)  the mean number of elements for a range of two-dimensional simu-

lations using fixed and adaptive meshes. Adaptive simulations rep-

. resent a parameter sweep of interpolation error bounds with val-
An equation for the transfer of energy frafig andEpto and 165 4x 1073, 4 x 1025 and 4x 102 for velocity and concentra-

from internal energy and heat, and also lost due to the settlingion. Fixed meshes are on uniform triangular grids with edge lengths
of particles can be obtained by combining E@@nd 83).  5x 1072, 25x 102, 1.25x 10~2 and 625x 103, Four adaptive
This equation will not hold for an under-resolved mesh. En-simulations are highlighted. The settings for these simulations are
ergy dissipation that occurs at scales below the grid resoludetailed in Tablel.

tion will be dissipated through application of slope limiting.

An additional termgg, is therefore included to balance the

equation and represent the dissipation due to numerical er- .. . . .
rors which yields sensitivity analyses performed prior to this. For the pur

poses of comparing results against fixed mesh simulations

9 ( Ep+ Ek) the above quan.tity was also cornpute_d for a range of regu-

T —€—€s—¢€d, (34) lar, structured triangular mesh simulations with edge lengths
5x 1072, 25x 1072, 1.25x 102 and 625 x 1073, result-

where ing in 288x 10%, 1.15x 10°, 4.6 x 10° and 184 x 1(f ele-

S ments respectively. The adaptive mesh simulations converge
€= / rija—’dsz , (35)  ata higher order than the fixed mesh simulations in relation
o Xj to the mean number of elemenig,, used in the simulation

(Fig. 3). The number of elements in adaptive mesh simula-

and tions, Ne, varies with time (Tabld). The difference between

the maximum and minimum number of elements increases

1 dc ac superlinearly as the interpolation error bounds tighten. The
J/sear /ﬁg _/x3 i do number of elements in the domain is a function of the in-
terpolation error bounds, the dynamics of the flow, which

/ dc vary significantly with time, and also mesh resolution, cre-

—us | x3—dQ. (36) ) . o : .

0x3 ating a non-linearity in this relationship, and also the bound

set for the maximum element size. The largest relative dif-
In order to compare overall mesh qualityjs integrated over ~ ference between the maximum and minimum number of ele-
time to give the single quantity ments occurs in adaptive simulation A2 where the maximum
is ~ 130 % of the mean, and the minimumAs40 % of the
; mean. The distribution of element counts throughout a sim-
Ep = / leq(7)| dr . (37)  ulation is skewed. An increase in the number of elements
9 implies that element size has decreased. This in turn implies
that the length of time steps has decreased, leading to more
Ep is computed for a set of two-dimensional simulations time steps being required at periods during which there are
forming a parameter sweep of values for the interpolationa large number of elements.
error bounds for the two components of velocity and sedi- Importantly, Fig.3 shows that, at the highest resolutions,
ment concentration with values 0641073, 4x 102 and  a saving of more than one order of magnitude is obtained in
4 x 10~2. This leads to a total of 27 simulations. The range the mean number of elements required in the simulation. In
of values used in the parameter sweep were determined frorthree dimensions the saving are likely to be even greater.
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Table 1. Minimum, maximum and mean number of elememis, and interpolation error bounds for sediment concentratigrthex com-
ponent of velocityg,,, and they component of velocitysy,, for selected adaptive two-dimensional simulations from the interpolation error
bound parameter sweep.

id Ec Euq Euy mln(Ne) ma)(Ne) Ne

AD  4x1072 4x1029 4x1020 12924 15000 14017
Al 4x10725 4x1025 4x1072° 16025 31083 24900
A2 4x1073 4x1039 4x10°30 20515 71055 55031
A3  4x103 4x10°25 4x102° 19094 63767 41827

Integrating Eq. 88) over time, 1 :
t — By
E+E=/— — es(1) — eq(r)d 0.8 — Ep
o+ Ex e(r) —€s(r) —ed(7) dr L
S
0 E
— _E—Es—Eq. (38) 0.6 ]
Figure 4 shows how the above quantities vary over the pe- 0.4 =
riod of the simulation for adaptivity options A3, as detailed
in Tablel. Values are compared against two-dimensional re- 0.2
sults Espath et a).2014). There is very good agreement for ‘
E, but there is a notable variation between the valuegfor

in this work and that oEspath et al(2014. This is because 0
of the zero Dirichlet boundary condition for sediment con-

centration at the top of the tank in this work wher&spath

et al.(2014 have a zero flux condition. At very early stages Figure 4. Energy budget evolution with time for simulation with
of the simulation the Dirichlet condition results in a flux of adaptivity options A3 (solid lines —) compared against 2-D results
sediment through the top of the domain. The overall impactfrom Espath et al(2014 (dashed lines - - -). Values are normalised
on the simulation is a loss of sediment mass<of % and by the initial potential energyr.

atotal energy loss @£ 3 %. The zero flux condition is prefer-

able but is not implemented in Fluidity for this discretisation. )
A future aim will be to implement this boundary condition. Simulation had a well-resolved boundary layer and good con-

Generally there is good agreement #x and Ej. In two- servation of energy. This simulation had interpolation error
' 25 ;
dimensional simulations strong coherent vortices form thatoounds of 4< 107> for both velocity components. An as-

contain and transport large quantities of the suspended seguUmption is made that this error bound will also be suitable to
iment. These vortices play an important role in the transferdSe for the third velocity dimension in the three-dimensional

of energy betweey and E,. Because of the chaotic nature simulation. o .
of the creation and propagation of the vortices, there will al- _Figure 6 shows a qualitative comparison of results from

ways be variations in the values Bf, E, and to some extent high (and low) resolution fixed mesh simulations, and an
E between simulations. adaptive mesh simulation, A3. The low resolution fixed mesh

Another important aspect of the flow is the boundary simulation hgs approximately Fhe same number Qf elements
layer at no-slip boundaries. This feature of the flow requiresS the adaptive simulation but is clearly not resolving the tur-
very small elements in the wall normal direction to resolve bulentstructures as well as the adaptive mesh simulation. Re-
the boundary layer properly. Convergence on a solution isSults from the high resolution fixed mesh and the adaptive
quickly obtained for the boundary layer using an adaptive_meSh S|mL_1Iat|ons are very similar. There are some variations
mesh (Fig.5). All but the most coarse adaptive simulation N the vortices that are generated and these variations grow
configurations have converged on to a solution. The fixedith time. Within the scope of this investigation no two sim-
mesh configurations show a similar level of convergence_“'at'on,s ever prqduqed identical results._VgrysmaIIvarlat|ons
for the two highest-resolution simulations. Anisotropic meshin Spatial discretisation lead to small variations at early stages
adaptivity is particularly useful for resolving features such as" the simulation which propagate and lead on to larger vari-
boundary layers which require high resolution in one direc-tions downstream.
tion compared to others.

Using the evidence outlined above, the chosen interpola-
tion error bounds were those of adaptive simulation A3. This
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Figure 6. Heat map of sediment concentratiorvat 4 andr = 12
. . _ ' for the highest-resolution fixed mesh simulation, the adaptive sim-
Figure 5. Wall normal velocity profile at the location of the nose ylation with configuration A3, and a fixed mesh simulation with

of the gravity current at = 7.5 for the fixed mesh simulations and g similar number of elements to the adaptive simulation.
selected adaptive simulations. Note that A2 is a higher-resolution

simulation than A3.

(a) Selected adaptive mesh simulations. (b) Fixed mesh simulations. Legend indicates element edge lengths.

5 to 2 as mentioned in Se@&. A reduction in adapt interval
means that the metric is not advected so far, and hence fewer
elements are required. Also note the noise in the number of
In three dimensions, adaptivity is essential to compute thiselements in the simulation. This is reduced by adapting more
simulation using finite elements with Fluidity. A fixed, and regularly and is due to the adapt routine responding to small
regular tetrahedral grid would have required more than 1 instabilities in the boundary layer. Future work will look into
10° elements which would have led to an unachievable runremoving these instabilities. This may require mesh adapts
time and unmanageable post-processing and visualisatioafter every time step.
demands. By using adaptivity the number of required el- Figure8 shows the adapted mesh over a subdomain in the
ements has been reduced to a maximum of approximatelyegion of the current head at two times= 3.5 ands = 4.
1x 107, at least a two order of magnitude reduction, making The images are generated from the three-dimensional sim-
all aspects of the simulation manageable. ulation, and are taken from a planeyat 0. The cut plane

To resolve a comparable floespath et al(2014) used is chosen to be at the edge of the domain as a good two-
~ 6 x 10’ degrees of freedom. A Fluidity simulation with dimensional representation of the mesh can be obtained at
O(10°) discontinuous elements hé&x10°%) degrees of free-  boundaries where all element surfaces are parallel to one an-
dom. The finite-difference method used Bgpath et al. other. These images demonstrate how the mesh adapts to
(20149 uses fewer degrees of freedom as it employs a highthe concentration field, and velocity fieldu. The images
order finite-difference discretisation which increases the ac-also show how the mesh changes over a short period of the
curacy of the solution. simulation. The change between= 3.5 andt =4 is dra-

Figure7 shows how the number of elements in the simu- matic. Very few, if any elements, within this view are consis-
lations varied over time. Throughout the simulation the num-tent. The images clearly display how anisotropic elements are
ber of processor cores that were used was varied between 3fenerated along the density interface and the boundary layer
and 512 to keep the number of elements per core in the rewhere the curvature of the solution is highly anisotropic.
gion of 20000. The initial drop in number of elements at the Figure 9 shows the distribution of element sizes across
start of the simulation is due to the fact that conservative in-a plane of the domain at=1 at timest =8 and¢ = 20.
terpolation bounds were used to generate the mesh from th€hree images for each time show the dimensions of the ele-
initial conditions. Following this initial drop, during early pe- ments in thex, y andz directions. High resolution in the,
riods of the simulation the flow is transitioning from a lam- or wall normal direction, can be seen on no-slip boundaries
inar to a turbulent flow. Throughout this periadbecomes in proximity to the wall. Much larger relative resolutions are
more and more complex and hence the number of elementiund in the same regions for theand y directions. This
required to resolve the flow increase rapidly. The highestis enabled by the use of anisotropic mesh adaptivity which
amount of elements required is at a 10 at which point  keeps the number of elements to a minimum, whilst still re-
the flow has developed into a fully three-dimensional, highly solving this important feature of the flow. These images also
turbulent flow. Beyond this point the number of elements re-highlight the cost of resolving the wall boundary layer with
quired for the simulation steadily decreases as energy is disa high density of small elements, and hence a large propor-
sipated from the flow. Additionally; gradually diffuses such tion of the elements found in the near-wall region. The high
that the curvature of the field decreases and fewer elementsall resolution in thez direction is present on all no-slip
are required to resolve the field. Note the drop in elementssurfaces and extends beyond the front of the gravity current
atr ~ 25 of approximately 12.5%. This coincides with the head. In thex direction the highest resolution is generally
reduction in the number of time steps between adapts fronfound at the front of the gravity current head. This is caused

5 The benefits of using mesh adaptivity
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(@)t=35 (byt=4

Figure 8. Images showing concentratienvelocity magnitudeu|,
and the adapted meshrat 3.5 (a) and+ = 4 (b) over the subdo-
main, 35 < x < 3.75,z < 1.25 on ay normal plane ay = 0.
Figure 7. Number of elements in the three-dimensional simulation
as a function of time.

by a sharp interface ia at the front of the head. There is
also high resolution around vortices and at the left-hand wall 2 p—smass
where there is a strong recirculation of the overlying fluid. , B
The increase in resolution at the left-hand wall is presentat  ° *
bothz = 8 and atr = 20. The same increase in resolution is — ——
not present at the right-hand wall at eithet 8 or r = 20 0 250 50t 1sa0d 01 Lo
(not shown in Fig.9). This is because the fluid has more
space to recirculate in front of the current than _beh_ind it in across a plane at= 1 for a subset of the domair-d < x < 12)
both cases such that the curvature of the velocity field, a”‘imd times = 8 (left) ands = 20 (right). Note that the domain ex-
thus the mesh resolution, is less. In theirection the largest e tay — 18. The region 12 x < 18 had no significant regions
region of high resolution is in the gravity current body just \ith element sizes smaller tharilo
behind the head of the current due to recirculating flow in
this region and hence high curvaturedranduz. The dis-
tribution of element sizes in this region varies rapidly due tothe mesh, or the run time is increased by 33 % compared to
the three-dimensional turbulent structure of the flow. There isa fixed mesh simulation using the same number of elements.
a large difference in the resolution between 8 andr = 20. When adapting every two time steps approximatel? of
Within the current the resolution has generally decreased byhe simulation is spent in the adapt stage. The mesh optimi-
t = 20 but a significantly larger proportion of the domain is sation algorithm used provides the most flexibility for mesh
below the maximum element size. Generally, the elementsefinement, and hence will produce a highly optimised mesh,
appear to be smaller in thedirection. This implies that the but it is potentially more expensive than other adaptivity al-
interpolation error bound may be proportionally tighteruon  gorithms. A high percentage of the total simulation time is
in this direction, and could be reduced a little to bring the spent in the adapt phase and hence it may be worth consid-
resolution in line with the other directions. ering cheaper alternatives based upon hierarchical refinement
In Sect4 it was shown that an adaptive simulation with the for future models. Regardless of this, the benefits of reducing
interpolation error bounds used here compared well with thehe number of elements by two orders of magnitude far out-
finest fixed mesh simulation ( x 10-2). It is no surprise  weigh the cost of adaptivity. The simulation required approx-
that, in the most computationally demanding regions of theimately 100 000 processor hours. Over 500 cores this equates
flow, Fig. 9 shows that the smallest element edge lengths into just under a week of run time. Assuming a linear increase
the adaptive simulation match well with the fixed mesh edgein run time with number of elements, a fixed mesh simulation
length. would have taken at least an order of magnitude longer and
Adaptivity does of course come at a cost. The mean timewould have been nearly impossible to post-process.
required for a parallel adapt operation throughout this simu- The run time of a simulation is dependent upon many pa-
lation, including mesh adaptation, data transfer, mesh partirameters. This run time includes the time required for many
tioning and data migration, was 110s. This can be compare@nline diagnostics and the writing of data to disk. When us-
to a mean time required to compute a time step in paraling adaptivity the frequency of adapts is an additional key
lel of 67 s. Therefore, when adapting every five time steps,parameter that governs a trade-off between total processing
approximately 14 of the simulation time is spent adapting hours and time to completion. Increasing the time between

(@t=8 (b)t=20

Figure 9. Heat map indicating the size of the elements jry and
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Figure 10. Propagation of density interface over time. This figure ;

shows a contour at a concentratia@®at times 0, 2, 8 and 14.

Figure 11. Position of density current head against simula-
] tion time for the Fluidity simulation and the simulations of
adapts requires a larger amount of elements to ensure thg{ecker et al(2002) andEspath et al(2014).

there is adequate resolution throughout the period between
adapts. This will increase the number of processing hours re-
quired to solve the problem. However, with more elements,
the problem can be split amongst more cores whilst keep- Figure 12 shows the spatially integrated deposition rates
ing the minimum number of elements per core constant. Thedver the course of the simulation. Again the deposition rate
time to completion is then likely to reduce as fewer adaptshows good agreement with other published values. As noted
operations are required. This parameter can be varied depef®y Necker et al(2002, the deposition rate increases at a rate
dent upon what is important to the scientist. Size of output,proportional tor%® until approximatelys = 14, at which
time to completion, the cost of processor time, and the size opoint there is a sharp change and the deposition rate begins to
available computers must all be taken in to account. Anothegrop rapidly at a rate proportional to>°. A key difference
adaptive simulation with similar properties, but slightly var- between the results from this work and those of the other
ied parameters, could require significantly more, or less totamodels is the presence of erosion in this simulation. The de-
processing hours. position rates from this simulation are higher than those of

Necker et al.(2002 and Espath et al(2014. Noting that

the vertical fluid velocities are small near the bed due to the
6 Results no-slip boundary condition, and that eroded sediment will be

settling, the majority of eroded sediment will almost imme-
Figure 10 shows how the density current propagates alongdiately be deposited, and will never be fully entrained back
the tank in three dimensions. The perturbation in the ini-into the flow. This will lead to an increased deposition rate
tial condition for the concentration field is shown in the im- compared to a simulation without erosion. By making the as-
age relating to = 0. This initial condition creates the initial sumption that all eroded sediment is immediately deposited,
three-dimensional instabilities required to generate a realisa modified deposit rate can be calculated for the Fluidity
tic density current. By = 8 this flow is fully turbulent and  simulation with the effect of erosion removed. As shown
three-dimensional. This is in agreement with other modelsin Fig. 10, this modified deposition rate shows much better
(Necker et al.2002 Espath et a).2014. The well-known  agreement with the results of boecker et al(2002 and
structures of lobes and clefts are present at the front of thé&spath et al(2014), leading to the conclusion that it is the
density current from this point onward. inclusion of erosion in the simulation that led to the higher

Figure 11 shows how the head position varies with time deposition rate.

throughout the simulation. This is computed as the maximum An important diagnostic for applications is the final de-
x value, averaged across the width of the domain, obtainegbosit profile from a particle-laden density current. Fig-
from a sediment concentration contoueat 0.01. Lines are  ure 13 shows the span-wise averaged deposit profile from
plotted showing the agreement with other models. The rethe three-dimensional Fluidity simulation compared against
sults compare well witlEspath et al(2014), whose model those of previous modellers and also from the experiments
predicted a head position slightly in front of the model by of De Rooij and Dalzie(2001). A good match is observed in
Necker et al.(2002. Espath et al(2014 noted the impor-  the peak deposit height gf~ 0.12 atx; ~ 4 between all of
tance of the initial condition to the development of the flow. the models and the experimental results.
The initial conditions used in this work are slightly different ~ There is a notable variation in deposit depths near the lock
to those ofEspath et al(2014 andNecker et al(2002 and gate. All models show a smaller deposit depth in this region
hence complete agreement is not expected. when compared to the experimental results. The reason for
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T comparison taR, ~ 20 in the Fluidity simulation. This will
result in significantly more erosion in the simulation than is
likely to have occurred in the experiment.

107 —— Fraidity (F1) B 7 Conclusions
|- - - Fluidity (F2) \
|~ BEspath e This paper presents validation of a novel three-dimensional
~ -~ Necker finite-element model for simulating particle-laden density
1073100 - ‘1‘(‘)1 currents. The model is validated by assessing the con-

vergence of key variables in two-dimensional simulations
and by comparison with results from previous DNS three-
Figure 12. Deposition rates for the three-dimensional simulation. dimensional simulations biecker et al(2002 andEspath
Deposition rates from Fluidity (F1), Fluidity with a modified de- et al.(2014. It has been shown that by using adaptive mesh-
position rate where the erosion rate has been removed&8@ath  ing the number of required elements in these simulations can
et al.(2014, andNecker et al(2002. be reduced by between one and two orders of magnitude.
This makes DNS modelling of particle-laden density currents
‘ Fluidity at moderate Grashof numbers an achievable goal using finite
PN _ _ _ Espath elements.
il ) - Necker In addition, simulations within complex domains can be
achieved fairly trivially using the flexibility afforded by un-
structured finite elements. Future work will study flow of tur-
bidity currents along circular channels and across breaks in
7 slope, and will help answer outstanding questions about the
dynamics of flows in these situations. Using mesh adaptiv-
ity also makes modelling in very large domains achievable.
T Large regions of the domain where very little is happening
0.00 0 2 4 6 8 10 12 14 16 come at very little cost. This will enable modelling turbidity
z currents in deep water where the dynamics are not dominated
by the bore created by the overlying fluid. It may also allow
Figure 13. Span-wise averaged deposit profile from the three-gor simylations of turbidity current along sinuous channels
dimensional simulation at=60. Comparisons are made against \ it gver-spilling as well as numerous other similar scenar-
numerlcal_results oNecker et aI.(?Ooa and Espath et al(2014 i0s
and experimental results 8fe Rooij and Dalzie(2001). ’ . . . . .
The cost of these simulations is still very high. It may be
possible to further reduce the cost of these simulations, whilst

this is unclear and explanations can only be speculative. On&taining important three-dimensional dynamics, using large

potential cause may be that the sediment in the experimen€ddy simulation (LES). Future work will focus onimplemen-

tal setup had already begun to settle before the lock gate wa€tion and testing of LES for this simulation with the aim of

released. This may also help to explain the slightly shortef€ducing the simulation cost.

run-out distance resulting from a reduced initial potential en-
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