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Abstract. High-resolution direct numerical simulations
(DNSs) are an important tool for the detailed analysis of
turbidity current dynamics. Models that resolve the vertical
structure and turbulence of the flow are typically based upon
the Navier–Stokes equations. Two-dimensional simulations
are known to produce unrealistic cohesive vortices that are
not representative of the real three-dimensional physics. The
effect of this phenomena is particularly apparent in the later
stages of flow propagation. The ideal solution to this prob-
lem is to run the simulation in three dimensions but this is
computationally expensive.

This paper presents a novel finite-element (FE) DNS tur-
bidity current model that has been built within Fluidity, an
open source, general purpose, computational fluid dynamics
code. The model is validated through re-creation of a lock
release density current at a Grashof number of 5× 106 in
two and three dimensions. Validation of the model consid-
ers the flow energy budget, sedimentation rate, head speed,
wall normal velocity profiles and the final deposit. Conser-
vation of energy in particular is found to be a good metric
for measuring model performance in capturing the range of
dynamics on a range of meshes. FE models scale well over
many thousands of processors and do not impose restrictions
on domain shape, but they are computationally expensive.
The use of adaptive mesh optimisation is shown to reduce
the required element count by approximately two orders of
magnitude in comparison with fixed, uniform mesh simula-
tions. This leads to a substantial reduction in computational
cost. The computational savings and flexibility afforded by
adaptivity along with the flexibility of FE methods make this
model well suited to simulating turbidity currents in complex
domains.

1 Introduction

Density currents, also known as gravity or buoyancy cur-
rents, occur when two fluids with different densities meet.
The density difference creates a pressure gradient that causes
the more dense fluid to intrude beneath the less dense fluid.
They occur in both natural and man-made situations, within
a wide range of environments, and over a vast range of tem-
poral and spatial scales. When a fluid contains particles in
suspension the bulk density of that fluid changes. Density
currents that are at least partly driven by a density variation
due to suspended particles are termed particle-laden density
currents. Examples include pyroclastic flows, dust storms,
avalanches and turbidity currents.

A single submarine particle-laden density current can in-
volve 100 km3 of sediment (Talling et al., 2007). That is ap-
proximately 10 times the annual sediment flux into the ocean
from all of the Earth’s rivers combined (Talling et al., 2007).
They can travel for hundreds of kilometres over the sea bed at
speeds of tens of metres a second (Heezen and Ewing, 1952).
Turbidity currents, a dilute sub-class of submarine particle-
laden density currents where particle–fluid interactions dom-
inate dynamics, can deliver enough destructive power to
break telecommunications cables which can have huge finan-
cial implications (Heezen and Ewing, 1952). Turbidity cur-
rents can have an impact on pollutant dispersal from river
outflow (Huang et al., 2005; Bombardelli et al., 2004), in-
dustrial discharge (Hallworth and Huppert, 1998; Bonnecaze
et al., 1993), oil drilling (Curran et al., 2002) and water-
injection dredging (Harris et al., 2002). Turbidity currents
are also a key process for the movement of sediment around
our planet (Talling et al., 2012). They form a significant
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component of the stratigraphic record, and their deposits
can form hydrocarbon reservoirs (Kneller and Buckee, 2000;
Sequeiros et al., 2009). Having a good understanding of tur-
bidity current behaviour can also allow us to predict and im-
prove water quality in reservoirs by enhancing our under-
standing of pollutant concentrations (Alavian et al., 1992;
Huang et al., 2005) and oxygenation (Best et al., 2005).

Studying turbidity currents is not easy. They occur infre-
quently and unpredictably at any particular location, and tend
to destroy any measurement devices that are positioned to
measure their effects. The dynamics of these currents are
highly complex, with strong feedback between turbulence
and sediment suspension making measurement of the dy-
namics difficult (Kneller and Buckee, 2000; Serchi et al.,
2012). Small-scale laboratory experiments can provide use-
ful insight into the dynamics of these currents, but are limited
by scaling issues and the available measurement techniques
(Kneller and Buckee, 2000).

High-resolution numerical models have become an im-
portant tool for the detailed analysis of particle-laden den-
sity current dynamics. Models that resolve the vertical struc-
ture of the flow are typically based upon the Navier–Stokes
equations. Direct numerical simulations (DNSs) of particle-
laden density currents should be carried out in three dimen-
sions as unrealistic cohesive vortices form in two dimen-
sions that have a significant impact on virtually all of the
important outputs from these simulations (Cantero et al.,
2007; Espath et al., 2014). The scale of particle-laden density
currents is often described using the Grashof number. The
Grashof number approximates the ratio of buoyant to vis-
cous forces. This is equivalent to the square of the Reynolds
number of a flow where the buoyancy velocity is used as the
characteristic velocity. DNS modelling of particle-laden den-
sity currents has been achieved in three dimensions at mod-
erate Grashof numbers ofO

(
106

)
by Necker et al.(2002)

andNasr-Azadani and Meiburg(2011). Espath et al.(2014)
have simulated a particle-laden density current at a Grashof
number ofO

(
108

)
. Computational power has limited mod-

elling of higher Grashof number flows. A Grashof number
of O

(
108

)
translates into modelling of low volumetric parti-

cle concentration 10−4–10−3 % flows in water at laboratory
scales. Even at these moderate Grashof numbers a fully tur-
bulent flow is obtained (Necker et al., 2002; Espath et al.,
2014), and very useful insights have been obtained from sim-
ulations of particle-laden currents within this range.

There has been some success in modelling these flows
using DNS in two dimensions which makes the problem
more computationally tractable (Blanchette et al., 2005; Ooi
et al., 2007). However,Espath et al.(2014) showed that the
only important diagnostic that can be accurately predicted
using a two-dimensional DNS model is the sedimentation
rate. Another alternative to three-dimensional DNS is to use
turbulence models to handle the small-scale turbulence and
only resolve the large-scale motions. Turbulence modelling

is undoubtedly important for extending models that resolve
the vertical structure of the flow to more realistic Grashof
numbers. Whether it is appropriate to use a turbulence model
depends upon the diagnostics that are important in the study.
DNS simulations are necessary to perform detailed analysis
of turbulent structures, and also for the validation of turbu-
lence models for this application.

DNS models of turbidity currents in three dimensions
have generally been formulated using spectral element tech-
niques (Necker et al., 2002) and finite differences (Espath
et al., 2014; Nasr-Azadani and Meiburg, 2011). These
models are designed to be highly efficient, having struc-
tured meshes and, in most cases, high-order methods such
that these computationally challenging problems become
tractable. However, these computationally optimised meth-
ods make simulations in irregularly shaped domains very dif-
ficult (Mohd-Yusof, 1998). Natural turbidity currents propa-
gate over complex bathymetries. The interaction of turbid-
ity currents over complex geometries is therefore of obvi-
ous interest. The model ofNasr-Azadani and Meiburg(2011)
can model turbidity currents in geometries with some com-
plex features using the immersed boundary method, but this
method has limitations and is not suitable for all use cases
(Mohd-Yusof, 1998).

The finite-element method (FEM) benefits from the abil-
ity to easily accommodate complex geometries via the use
of flexible unstructured meshes (Donea and Huerta, 2005).
Hence, FEM provides an alternative approach to modelling
interactions of turbidity currents in complex geometries.
However, FEM is significantly more expensive than spectral
element techniques (Mohd-Yusof, 1998). This paper presents
a novel particle-laden density current model that has been
built within Fluidity, an open source, general purpose, mul-
tiphase computational fluid dynamics FEM code (Imperial
College London AMCG, 2014). This paper simulates a lock
release density current at a Grashof number of 5× 106 in
two and three dimensions with a configuration similar to that
of Necker et al.(2002). The governing equations are well
established and have been validated extensively against ex-
perimental data across a range of simulation configurations
(Sequeiros et al., 2009; Necker et al., 2002; Espath et al.,
2014; Huang et al., 2007; Georgoulas et al., 2010). This paper
validates the use of novel computational methods, including
unstructured mesh adaptivity and discontinuous finite ele-
ments, through convergence analyses and by direct compari-
son with the results from the previous models ofNecker et al.
(2002) andEspath et al.(2014), providing a framework for
future modelling efforts of this type. It is shown that adaptiv-
ity reduces the required element count by approximately two
orders of magnitude for this application in comparison with
fixed, uniform mesh simulations. The computational savings
and flexibility afforded by adaptivity along with the flexibil-
ity of FEM make this model well suited to simulating turbid-
ity currents in complex domains.
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2 Mathematical model

2.1 Governing equations

A general discussion of particle motion in a non-uniform
flow byMaxey and Riley(1983) stated that pressure gradient,
added mass, viscous Stokes and augmented drag, and buoy-
ancy forces need to be considered. This work considers flows
where the particles are very small in relation to the length
scales of motion. It also considers situations where the parti-
cle density is significantly larger than that of the surrounding
fluid. For example, silica is≈ 2.6 times the density of water
in turbidity currents, and≈ 2600 times the density of air in
dust storms. Based upon these restrictionsMaxey and Riley
(1983) showed that the dominant forces in the equations of
motion for a single particle relative to the fluid in which it is
suspended are the viscous Stokes drag and buoyancy terms.

Particle-laden density currents consist of a collection of
particles and hence particle collisions must also be consid-
ered. The effect of these collisions can be safely ignored by
limiting the model to applications where the sediment vol-
ume fraction is less than 1 % (Necker et al., 2002). Floccula-
tion of sediment particles can be ignored if the model is fur-
ther restricted to sediment sizes of sand and larger (> 64 µm)
(Maerz et al., 2011).

Cantero et al.(2008) showed that the effects of inertia on
particle motion in density currents are insignificant for parti-
cles smaller than 250 µm in diameter and hence the model is
restricted to sediment diameters below 250 µm.

Taking all of the above into account, the acceleration of
particles will be the same as that of the containing fluid.
Particles will move with a velocity equal to the sum of the
fluid velocity, ũ, and a settling velocity,̃usk, where∼ de-
notes a dimensional value. The settling speed,ũs, is ob-
tained by balancing the Stokes drag and buoyancy forces, and
k = (0,0,1)T . This means that the evolution of the particle
volume fraction,c̃, can be described with a transport equa-
tion of the form

∂c̃

∂t̃
+ (ũi − ũski)

∂c̃

∂x̃i

= κ̃
∂2c̃

∂x̃i∂x̃i

, (1)

whereκ̃ is the particle concentration diffusivity. Particle con-
centrations will never be completely uniform. Individual par-
ticles will have a range of masses and settling velocities
which lead to slight variations in speed and trajectory. As
particles move past one another they interact and cause a self-
induced hydrodynamic diffusion (Davis and Hassen, 1988).
The magnitude of this diffusivity is generally chosen to be
0.7–1.0 times the ambient fluid viscosity (Necker et al., 2002;
Cantero et al., 2008). Higher values help convergence and
stability of the solution. It has been shown that this value has
little effect on the relevant flow quantities so long as it does
not significantly exceed the ambient fluid viscosity (Hartel
et al., 2000).

Continuity and momentum balance in this model is gov-
erned by the Navier–Stokes equations. The fluid is assumed
to be incompressible. Due to the very low volumetric concen-
trations, the displacement of fluid by the suspended particles
can be ignored (Necker et al., 2002). Therefore the velocity
field is considered to be divergence free. The Boussinesq ap-
proximation is adopted, in which density is considered con-
stant except in the buoyancy term. The isotropic kinematic
viscosity,ν̃, is assumed constant throughout the model. This
leads to the following form for the Navier–Stokes equations:

∂ũi

∂t̃
+ ũj

∂ũi

∂x̃j

= −
∂p̃

∂x̃i

− g̃′ki +
∂

∂x̃j

S̃ij , (2a)

∂ũi

∂x̃i

= 0, (2b)

where the stress tensor,S̃, for an incompressible flow is de-
fined as

S̃ij = ν̃

(
∂ũi

∂x̃j

+
∂ũj

∂x̃i

)
, (3)

and the buoyancy density,g̃′, is a function of the sediment
density,ρc, the ambient fluid density,ρa, the magnitude of
the acceleration due to gravity,g̃, and the volumetric con-
centration of sediment,̃c, with the form

g̃′
=

ρ̃c − ρ̃a

ρ̃a
g̃c̃ . (4)

The assumptioñc � 1 and(ρ̃c − ρ̃a)/ρ̃a =O(1) justify the
use of the Boussinesq approximation.

Particle-laden density currents deposit and/or erode the
surface over which they travel. This means that the
suspended mass changes with time, i.e. they are non-
conservative. They have the potential to accelerate if their
mass increases, or decelerate more rapidly due to settling out
of the suspended sediment. The dynamics of sediment ero-
sion are complex. Sediment on the bed will affect turbulence
in the boundary layer. Larger sediment grains will shield
smaller ones and grains may adhere to each other in the bed.
The bed shape will also change as sediment is eroded, gen-
erating complex topography that may promote or inhibit fur-
ther sediment erosion. Empirical algorithms have been de-
veloped for predicting erosion rates based upon particle pa-
rameters and the bed shear stress. Erodible boundaries,0d ,
are modelled here as a flux boundary condition of the form

ni κ̃
∂c̃

∂x̃i

= ũsẼ on0d , (5)

whereẼ is the non-dimensional erosion rate of sediment into
suspension,n is the boundary unit normal vector.

Garcia and Parker(1991) reviewed empirical formulae by
Fukushima et al.(1985), Akiyama and Stefan(1985), and
Parker et al.(1986) for predicting the erosion of non-cohesive
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sediment in finite size ranges. They validated these against
laboratory results, and produced an improved formula for
sediment erosion. This has been successfully used in work by
Huang et al.(2007) andSequeiros et al.(2009) when mod-
elling sediment-laden density currents and is described as

Ẽ =
AZ̃5

1+ AZ̃5/0.3
, (6a)

Z̃ =

√
τ̃b

ũs

(√(
ρ̃c − ρ̃a

ρ̃a
g̃d̃

)
d̃

ν̃

)0.6

, (6b)

whereA = 1.3×10−7 is a non-dimensional constant andd̃ is
the diameter of the suspended sediment. The bed shear stress,
τ̃b, is defined as

τ̃b =

∣∣∣niS̃ij

∣∣∣ . (7)

The total flux through an erodible boundary is calculated as

∂η̃

∂t̃
= ni ũski c̃b − ũsẼ, (8)

whereη̃ is the depth of the deposited sediment in the bed and
c̃b is the volumetric concentration of sediment at the sedi-
ment bed boundary.̃E is limited such that it never exceeds
η̃/1t , where1t is the period of a time step. As in the work
by Necker et al.(2002) andEspath et al.(2014), no adjust-
ment for porosity of the deposit is included.

It is also possible for sediment to be moved along the bed
without being entrained into the flow. This process is known
as bedload transport. This has not been included in the cur-
rent work.Sequeiros et al.(2009) stated that suspended sed-
iment is the key factor in the movement of sediment in tur-
bidity currents and that bedload transport can be neglected
for currents that do not have a significant fraction of particles
larger than 100 µm.

Four parameters are used to non-dimensionalise the equa-
tions outlined above:

Gr =

(
ũbh̃0

ν̃

)2

, (9)

Sc=
ν̃

κ̃
, (10)

us =
ũs

ũb
, (11)

Rp =

√(
ρ̃c − ρ̃a

ρ̃a
g̃d̃

)
d̃

ν̃
, (12)

whereGr is the Grashof number,Scis the Schmidt number,
Rp is the particle Reynolds number, andh0 is a character-
istic length scale (half the lock-release depth in this work,
as defined in Sect.3). The buoyancy velocity,̃ub, is used as
the characteristic velocity scale and is defined in terms of the
initial buoyancy density,̃g′

0, and the characteristic lengthh0,
as

ũb =

√
g̃′

0h̃0 . (13)

Equations (1)–(3) and (5)–(8) can now be redefined in non-
dimensional form as

∂c

∂t
+ (ui − uski)

∂c

∂xi

=
1√

Sc2Gr

∂2c

∂x2
i

, (14)

∂ui

∂t
+ uj

∂ui

∂xj

= −
∂p

∂xi

− kic +
∂

∂xj

Sij , (15)

∂ui

∂xi

= 0 , (16)

ni

1√
Sc2Gr

∂c

∂xi

= usE on0d , (17)

E =
A Z5

1+ AZ5/0.3
, (18)

Z =

√
τb

us
R0.6

p , (19)

τb =
∣∣niSij

∣∣ , (20)

∂η

∂t
= ni uski cb − usE, (21)

Sij =
1

√
Gr

(
∂ui

∂xj

+
∂uj

∂xi

)
. (22)

2.2 Discretisation

Fluidity uses the FEM to solve the Navier–Stokes equa-
tions. Using finite elements gives great flexibility in element
choices and many are available when using Fluidity. A linear
discontinuous Galerkin (DG) scheme is used for the discreti-
sation of both the velocity and sediment concentration fields.

A DG discretisation does not enforce continuity across el-
ement boundaries. A field that is discretised on a DG function
space may therefore have multiple values at element bound-
aries. It will also have more degrees of freedom than a con-
tinuous function of the same order as elements do not share
nodes. DG methods are a good choice of discretisation for
advection-dominated problems as they produce stable dis-
cretisations without the need for stabilisation strategies such
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as streamline-upwinding (Peraire and Persson, 2008). DG
methods also work well on arbitrary meshes and have the
desirable properties of having a block-diagonal mass matrix
that can be trivially inverted locally for each element. This al-
lows for certain equations to be solved very efficiently (Bassi
and Rebay, 1997).

Use of the DG method requires a choice of flux schemes
for both the advective and diffusive terms. A simple upwind
flux is chosen for advective terms. A centred flux is used
for the diffusive terms. The compact discontinuous Galerkin
method (CDG) is used to implement the diffusive terms
(Peraire and Persson, 2008). For a detailed discussion of
DG discretisations and flux terms see the review paper by
Cockburn and Shu(2001).

Advection when using a DG discretisation is not bounded.
Undershoots and overshoots can occur that affect the dy-
namics of a gravity current. Slope limiters are employed to
bound the solution although these can be dissipative. Vertex-
based slope limiting, as suggested byKuzmin(2010), is used
herein.

For the pressure field a quadratic continuous Galerkin
scheme is used. We therefore have a mixed finite element
pairing for solving the incompressible Navier–Stokes equa-
tions. This element pairing, described byCotter et al.(2009),
has the benefit of satisfying the Ladyženskaja–Babuška–
Brezzi (LBB) stability condition and hence needs no sta-
bilisation of the pressure field. Additionally, a higher-order-
accurate pressure field means that the pressure gradient term
in the momentum equation has the same order of accuracy
as the buoyancy forcing term. These two terms dominate in
early stages of propagation and hence the ability for these
terms to balance is important in determining how the flow
evolves.

A Crank–Nicolson time discretisation is used throughout
the model which is second-order accurate in time. The cou-
pled system of non-linear equations are solved using two
non-linear iterations known as Picard iterations. Within each
non-linear iteration the equations are linearised using the best
available solution for each variable that is not being solved
for. The momentum and conservation equations are solved
using a pressure correction scheme.

An adaptive time step is used. This makes the simulation
more robust when using a changing multi-scale mesh and
also takes advantage of the reducing current velocity over
time which allows for much larger time steps towards the
end of the simulation. The time step length is based upon
obtaining a target Courant number of 2. This is a relatively
conservative requirement for the implicit time discretisation
used.

There are two exceptions to the use of Crank–Nicolson
time discretisation. Slope limiters used with DG discretisa-
tions only guarantee a bounded solution in conjunction with
an explicit advection scheme. Therefore the sediment trans-
port and momentum equations are solved in two stages. Ad-
vection is calculated using explicit subcycles with adaptive

time step lengths based upon achieving a Courant num-
ber of 0.2 (an order of magnitude smaller than the rest of
the model). Diffusion/viscous dissipation is solved using the
simulation time step,1t , and a Crank–Nicolson discretisa-
tion. Additionally, the bed shear stress is calculated at the
start of each time step and hence the erosion rate is totally
explicit. A thorough description of the time discretisation
outlined above is available in the Fluidity manual (Imperial
College London AMCG, 2014).

2.3 Anisotropic mesh adaptivity

The motivation behind using mesh adaptivity is to optimise
the spatial resolution with time such that both the discreti-
sation error and computational cost of a simulation are min-
imised (Piggott et al., 2005). Adapting the mesh is split into
three tasks. The first step is to determine the desired edge
lengths, or to form a metric against which element edge
lengths can be defined, the second part involves generating
a new mesh that better fits these requirements and distribut-
ing this mesh amongst the active processors, and the third
involves transferring data from the old mesh to the new mesh
(see Fig.1). A brief description of each phase of the pro-
cess is included below. The reader is referred to the work of
Piggott et al.(2008) for more details.

2.3.1 Metric formation

Determining the desired edge lengths for a mesh requires
some quantification of the error in the solution due to spa-
tial discretisation. This is difficult to do as there is usually no
better estimate of the exact solution than the estimate from
the current discretisation. An indirect method of measuring
the error is required.Ciarlet(1991) showed that the finite el-
ement error can be bounded by the interpolation error for el-
liptic problems. It is assumed that this also holds for other
partial-differential equations. This is deemed a reasonable
way of defining an error indicator (Fortin, 2000).

The aim is to minimise the error in fields that are dis-
cretised using first-order discretisations. For first-order el-
ements, the interpolation error depends upon the Hessian,
H (the matrix of second-order partial derivatives) (Frey and
Alauzet, 2005). The second derivative of such a discretisa-
tion is formally zero and hence some method of recovering
the Hessian for these fields is needed. In Fluidity a double-
lumped Galerkin projection is used to compute the Hessian
as described byPain et al.(2001). This Hessian will contain
information about both the magnitude and direction of the
curvature of a field and hence can be used to guide genera-
tion of anisotropic elements. This is very useful in regions,
such as boundary layers, where the solutions vary signifi-
cantly more rapidly in one direction than in others.

The Hessian is used to form a metric tensor,M , that will
guide the mesh optimisation.M is defined such that the op-
timal mesh,M, would have edges,v, with unit length when
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Compute the hessian of ~u and c (Pain et al., 2001)

Convert the hessians to metrics (Chen et al., 2007)

Create the final metric by superpo-
sition of metrics (Pain et al., 2001)

Adjust the metric for: max/min element
size, aspect ratio, number of elements and

metric advection (Hiester et al., 2011)

Adapt the mesh based upon the metric us-
ing: libmba2d in 2D, libadaptivity in 3D

Measure the mesh quality against the metric

Repartition the mesh using Zoltan
(Boman et al., 2012). Avoid placing low
quality elements on partition boundaries.

Is the mesh quality high enough

Transfer data from the old mesh to the
new mesh using: consistent interpola-
tion for pressure p, Galerkin projection

for ~u and c (Farrell and Maddison, 2011)

yes

no

timestep loop

timestep loop

Metric formation

Mesh generation and partitioning

Data transfer

Figure 1. A description of the high-level algorithm involved in adapting the mesh. This algorithm is invoked repeatedly throughout the
simulation at a fixed interval specified as a number of time steps.

measured against it:√
vi M ij vj = 1 ∀v ∈M . (23)

The choice of formulation forM is therefore fundamental to
the way in which the mesh adapts. A formulation suggested
by Chen et al.(2007) which controls theL2 norm of the in-
terpolation error is used:

M =
1

ε
det|H|

−
1

4+n |H| , (24)

wheren is the number of dimensions, andε is the interpola-
tion error bound, a value which is defined by the user. ForLp

methods,Loseille and Alauzet(2011) foundp = 2 to be the
optimal value and incorporate more influence from dynam-
ics of smaller magnitudes. Experience has shown this metric
formation to be very effective for gravity current simulations
(Hiester et al., 2011, 2014).

It is often important to adapt to more than one solution
field. When this is the case the final metric is a superposition
of the metrics calculated for each individual field (Pain et al.,
2001). At this point the metric is also modified to take into
account bounds upon the maximum and minimum element
size, maximum allowable aspect ratio, edge length gradation,
and the number of elements. Additionally, this metric can
be advected forward in time providing an estimate of future
requirements for the mesh resolution and allowing for more
time between adapt operations (Hiester et al., 2011).

2.3.2 Mesh generation and partitioning

The second stage of creating the new mesh is handled by
the open-source mesh optimisation library libmba2d in two

dimensions, or libadaptivity, another open source library de-
veloped alongside Fluidity, in three dimensions. This in-
volves a series of topological and geometrical operations,
with the aim of obtaining a mesh with unit edge lengths with
respect to the determined metric, see Eq. (23). These oper-
ations include node insertion or deletion, edge/face swap-
ping, which preserves the node locations but manipulates
edge lengths by changing the configuration of a edge/face
between elements, and node movement (Piggott et al., 2009).

The Zoltan library (Boman et al., 2012) is used to partition
the mesh in parallel after each adapt iteration. Nodes cannot
be adapted at the edge of partitions. After each adapt iteration
parameters are passed to the Zoltan library which discour-
age it from generating partitions through elements that have
not been able to adapt. For three-dimensional simulations,
a minimum of three adapt iterations are required to allow all
elements to adapt and create a mesh that satisfies the metric
constraint everywhere. Zoltan’s graph re-partitioning algo-
rithm is used to partition the mesh efficiently between adapt
iterations. Once a good quality mesh has been obtained the
hypergraph partitioning method is used to redistribute the el-
ements amongst the processes.

2.3.3 Data transfer

After creating the new mesh the data are transferred on to it
from the previous mesh. For the purposes of describing this
step these meshes will be referred to as the target and donor
meshes respectively.

Consistent interpolation is used for the transfer of the pres-
sure field from the donor to the target mesh. This field is
continuous, and conservation of pressure is not essential.
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Consistent interpolation is very cheap and hence is a good
choice for data transfer of this field.

All other prognostic fields are discontinuous. Consistent
interpolation cannot be used for discontinuous fields as test
and trial functions are not continuous across element bound-
aries. Additionally, consistent interpolation is not conserva-
tive and is dissipative. It is important to conserve sediment
mass during data transfer. It is also important that dissipa-
tion of both velocity and sediment is kept to a minimum.
Galerkin projection is used for data transfer of these fields
– this is both conservative and non-dissipative (Farrell et al.,
2009). This requires the generation of a supermesh, which is
the union of both the donor and target mesh. Within each el-
ement of the supermesh the test and trial functions for both
discretisations are consistent and thus this method is valid for
DG discretisations. The construction of a supermesh can be
a very expensive operation. Fluidity uses an algorithm devel-
oped byFarrell and Maddison(2011) where the supermesh
is created locally for each target element. For DG discreti-
sations the Galerkin projection can be carried out entirely
locally due to the fact that the mass matrix is block diagonal.
This combination greatly increases efficiency.

Where the projection occurs over a surface of the volume
mesh (e.g. deposited sediment) projection is carried out in
a (n−1)-dimensional space. For DG discretisations, all donor
mesh surface elements that intersect a target mesh element
must be in the same plane as the target mesh element. The
Galerkin projection is carried out locally for each target ele-
ment by rotating the coordinates of the target element and all
intersecting donor elements into thex–y plane.

3 Simulation configuration

The classic lock-release setup is used as a test case for the
model. This is a well-researched configuration with a range
of data against which to validate results (Gladstone et al.,
1998; Necker et al., 2002; Cantero et al., 2006; Espath et al.,
2014). As defined in Fig.2, L2 = L3 = 2.0, which means that
h0 = 1.0, L1R = L3/2.0, andL1 = 19.0 which is slightly
longer than the final run-out length of the density current
considered. The dimensionless parameters are set as

Gr = 5.0× 106 , Sc= 1.0 ,

us = 0.02 , Rp = 20.0 . (25)

As such, the experiment configuration is identical to that of
Necker et al.(2002), with the exception of the addition of
sediment erosion, and hence a requirement for the definition
of Rp, which is defined to lie in the range ofRp for which the
erosion algorithm outlined in Eq. (18) is valid, as detailed
in Garcia and Parker(1991).

Boundary conditions for velocity are free-slip for all side
walls, u1 = 0 at x = −1 andx = 18, u2 = 0 at y = 0, and
y = 2, and no-slip at the top and bottom of the domain,

L1

L2

L3

L1R

xy z

Figure 2. Lock-release simulation domain configuration. The grey
region indicates the volume of non-zero sediment concentration at
t = 0. The coordinate system defines the origin,x0, y0, z0

u = (0,0,0)T atz = 0 andz = 2. All velocity boundary con-
ditions are applied weakly. Where a velocity component is
not set with a Dirichlet condition, a zero Neumann boundary
condition is applied. Note that the side wall boundary con-
ditions vary from those ofNecker et al.(2002). A free-slip
boundary condition should give comparable results to the pe-
riodic boundary conditions used in that work.

Boundary conditions for the sediment concentration field
are as follows. The erosion boundary condition outlined in
Eq. (17) is applied at the bottom surface,z = 0. A zero
Dirichlet boundary condition is prescribed atz = 2 (the top
surface of the tank). At all other boundaries(u + kus) · n

equals zero, hence zero Neumann boundary conditions are
applied which enforce zero flux of sediment across these sur-
faces.

The initial condition for the sediment concentration field in
the three-dimensional simulation is similar to that suggested
by Hartel et al.(1997) andCantero et al.(2006). This initial
condition is based upon the solution obtained from a purely
diffusive problem.Hartel et al.(1997) argued that the prob-
lem will be dominated by diffusion for very early stages of
the simulation and hence this initial condition is justified as
being the condition of the flow a short time period after the
initial release. This initial condition includes a perturbation,
γ , in a similar way to the work byCantero et al.(2006).
A random perturbation of the initial condition is important to
help promote the generation of three-dimensional structures
in the flow.Necker et al.(2002) andEspath et al.(2014) use
an alternative perturbation of the velocity field for the same
purpose. The initial condition for the sediment concentration,
including the perturbation, is as follows:

c =
1

2
−

1

2
erf
{

4
√

GrSc2[x − γ ]

}
, (26)

with

γ = cos

(∑
i

f (i,x,y,z)

)
1x , (27)
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where1x is chosen to be 0.2 andγ is constructed of four
sets of waves originating from the four corners of a plane
aligned with the lock gate. Each set of waves contain 60
waves with random phases and random wavelengths rang-
ing between 0.02 and∞. Wavei has amplitudef (i,x,y,z)
at positionsx, y, z. The perturbation chosen covers a wide
range of frequencies so as to not preferentially generate par-
ticular wavelengths of oscillations. The mesh is adapted be-
fore the first time step to produce a good mesh for this initial
condition.

To use adaptivity several controlling parameters need to
be defined. The fundamental parameters which define the
mesh resolution in the simulation are the interpolation error
bounds. The next section describes how values for these pa-
rameters were chosen. The time between adapts also requires
definitions, and it is necessary to ensure that there is adequate
resolution in periods between adapts. Through experimenta-
tion it was found that an adapt every five time steps kept the
simulation stable towards the beginning of the simulation.
At later stages in the simulation an adapt was required every
two time steps. The high frequency of mesh adapts was re-
quired to limit instabilities in the boundary layer which grow
rapidly. Small instabilities that developed did not have any
noticeable impact on the important outputs from the simula-
tion. This is discussed further in the following sections. As
mentioned in Sect.2.3.1, metric advection is used to advect
the metric, which defines the edge lengths required to meet
the interpolation error bounds, forward in time. The metric is
conservatively advected through five adapt intervals at each
adapt.

4 Choosing appropriate interpolation error bounds

It is possible to define an interpolation error bound for any of
the functions in the simulation. In this simulation sediment
concentration, velocity and pressure are solved for. It is com-
mon practice to adapt to the velocity field for the purposes of
resolving the velocity and pressure fields. Good resolution of
the sediment concentration field is also required. Hence four
interpolation error bounds require definition for the simula-
tion – one for each velocity component, and another for the
sediment concentration.

In order to select good values for these parameters
a convergence analysis is required. Doing this with three-
dimensional models would be prohibitively expensive and
hence two-dimensional simulations are used to carry out this
convergence analysis. The two-dimensional simulations are
defined in thex–z plane. It has been well documented by
Necker et al.(2002) and Cantero et al.(2007) that output
from two-dimensional simulations of particle-laden density
currents do not compare well with three-dimensional simu-
lations. However, two-dimensional simulations are useful for
the purpose of understanding the resolution requirements of
simulations.

A measure of the quality of a mesh, in terms of the dy-
namics computed within it, is required. The simulation is of
a turbulent flow. Head speed, deposit profile, quantity of sus-
pended sediment and deposition rates are all important out-
puts from these simulations, but due to the turbulent nature of
the flow, which is very sensitive to small changes in the mesh,
it is very hard to show convergence of these quantities.

However, one important quantity does show convergence.
This is the energy lost due to discretisation, and data transfer
errors. DNS simulations resolve all length scales of motion.
Convergence analysis will show that the discretisation errors
are small enough that they have a negligible impact on the
result and that the mesh resolution is fine enough to resolve
all of the energy in the flow. The combination of upwind
flux terms and slope limiting in the discretisation dissipates
energy at scales that the mesh cannot resolve. Additionally,
adapting the mesh requires a data transfer operation which
will introduce some relatively small errors. By computing
the energy budget in the simulation and how this varies over
time a value for the energy lost due to discretisation, and
data transfer errors,εd can be obtained. This quantity gives
us some indication of how well the scales of motion in the
flow are being resolved. Importantly, this value converges as
the mesh resolution increases and so gives us a good method
of comparing the quality of different mesh configurations.
Following the method ofWinters et al.(1995), Necker et al.
(2002) and Espath et al.(2014), equations for the rates of
change of potential energy,Ep, and kinetic energy,Ek, in the
system can be derived as follows.

The kinetic energy in the system is

Ek =
1

2

∫
�

|u|
2d�. (28)

To obtain the time derivative forEk compute the dot product
of the momentum Eq. (15) with u and apply the chain rule to
obtain

1

2

∂ |u|
2

∂t
+

1

2
uj

∂ |u|
2

∂xj

= −ui

∂p

∂xi

− u3c + ui

∂τ ij

∂xj

. (29)

Integrating over the domain and integrating by parts, using
the continuity Eq. (16) and the knowledge that there are
no normal flow boundary conditions on all boundaries, i.e.
uini = 0, an equation for the rate of change ofEk is ob-
tained:

∂Ek

∂t
= −

∫
�

cu3d� −

∫
�

τ ij

∂ui

∂xj

d�. (30)

The potential energy in the system is

Ep =

∫
�

cx3d�. (31)
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To obtain the time derivative for this term first multiply the
equation for sediment concentration (Eq.14) by x3:

∂c

∂t
x3 + x3 (ui − uski)

∂c

∂xi

= x3
1√

Sc2Gr

∂2c

∂xi∂xi

. (32)

Integrating over the domain, and by parts, using the chain
rule and noting that all velocities normal to the wall are zero,
an equation for the rate of change ofEp is obtained:

∂Ep

∂t
=

∫
�

cu3d� + us

∫
�

x3
∂c

∂x3
d�

+
1√

Sc2Gr

∫
0

x3
∂c

∂xi

nidσ −

∫
�

∂c

∂x3
d�

 . (33)

An equation for the transfer of energy fromEk andEp to and
from internal energy and heat, and also lost due to the settling
of particles can be obtained by combining Eqs. (30) and (33).
This equation will not hold for an under-resolved mesh. En-
ergy dissipation that occurs at scales below the grid resolu-
tion will be dissipated through application of slope limiting.
An additional term,εd, is therefore included to balance the
equation and represent the dissipation due to numerical er-
rors which yields

∂
(
Ep + Ek

)
∂t

= −ε − εs− εd , (34)

where

ε =

∫
�

τ ij

∂ui

∂xj

d� , (35)

and

εs =
1√

Sc2Gr

∫
�

∂c

∂x3
d� −

∫
0

x3
∂c

∂xi

ni dσ


− us

∫
�

x3
∂c

∂x3
d�. (36)

In order to compare overall mesh quality,εd is integrated over
time to give the single quantity

ED =

t∫
0

|εd(τ )| dτ . (37)

ED is computed for a set of two-dimensional simulations
forming a parameter sweep of values for the interpolation
error bounds for the two components of velocity and sedi-
ment concentration with values of 4× 10−3, 4× 10−2.5 and
4× 10−2. This leads to a total of 27 simulations. The range
of values used in the parameter sweep were determined from

104 105 106

10−1

mean number of elements

E
D

fixed

adaptive

A0

A1

A2

A3

Figure 3. Time-integrated energy conservation error,ED, against
the mean number of elements for a range of two-dimensional simu-
lations using fixed and adaptive meshes. Adaptive simulations rep-
resent a parameter sweep of interpolation error bounds with val-
ues 4× 10−3, 4× 10−2.5 and 4× 10−2 for velocity and concentra-
tion. Fixed meshes are on uniform triangular grids with edge lengths
5×10−2, 2.5×10−2, 1.25×10−2 and 6.25×10−3. Four adaptive
simulations are highlighted. The settings for these simulations are
detailed in Table1.

sensitivity analyses performed prior to this. For the pur-
poses of comparing results against fixed mesh simulations
the above quantity was also computed for a range of regu-
lar, structured triangular mesh simulations with edge lengths
5× 10−2, 2.5× 10−2, 1.25× 10−2 and 6.25× 10−3, result-
ing in 2.88× 104, 1.15× 105, 4.6× 105 and 1.84× 106 ele-
ments respectively. The adaptive mesh simulations converge
at a higher order than the fixed mesh simulations in relation
to the mean number of elements,Ne, used in the simulation
(Fig. 3). The number of elements in adaptive mesh simula-
tions,Ne, varies with time (Table1). The difference between
the maximum and minimum number of elements increases
superlinearly as the interpolation error bounds tighten. The
number of elements in the domain is a function of the in-
terpolation error bounds, the dynamics of the flow, which
vary significantly with time, and also mesh resolution, cre-
ating a non-linearity in this relationship, and also the bound
set for the maximum element size. The largest relative dif-
ference between the maximum and minimum number of ele-
ments occurs in adaptive simulation A2 where the maximum
is ≈ 130 % of the mean, and the minimum is≈ 40 % of the
mean. The distribution of element counts throughout a sim-
ulation is skewed. An increase in the number of elements
implies that element size has decreased. This in turn implies
that the length of time steps has decreased, leading to more
time steps being required at periods during which there are
a large number of elements.

Importantly, Fig.3 shows that, at the highest resolutions,
a saving of more than one order of magnitude is obtained in
the mean number of elements required in the simulation. In
three dimensions the saving are likely to be even greater.
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Table 1.Minimum, maximum and mean number of elements,Ne, and interpolation error bounds for sediment concentration,εc, thex com-
ponent of velocity,εu1, and they component of velocity,εu2, for selected adaptive two-dimensional simulations from the interpolation error
bound parameter sweep.

id εc εu1 εu2 min(Ne) max(Ne) Ne

A0 4× 10−2 4× 10−2.0 4× 10−2.0 12 924 15 000 14 017
A1 4× 10−2.5 4× 10−2.5 4× 10−2.5 16 025 31 083 24 900
A2 4× 10−3 4× 10−3.0 4× 10−3.0 20 515 71 055 55 031
A3 4× 10−3 4× 10−2.5 4× 10−2.5 19 094 63 767 41 827

Integrating Eq. (38) over time,

Ep + Ek =

t∫
0

−ε(τ ) − εs(τ ) − εd(τ )dτ

= −E − Es− Ed . (38)

Figure4 shows how the above quantities vary over the pe-
riod of the simulation for adaptivity options A3, as detailed
in Table1. Values are compared against two-dimensional re-
sults (Espath et al., 2014). There is very good agreement for
E, but there is a notable variation between the values forEs
in this work and that ofEspath et al.(2014). This is because
of the zero Dirichlet boundary condition for sediment con-
centration at the top of the tank in this work whereasEspath
et al.(2014) have a zero flux condition. At very early stages
of the simulation the Dirichlet condition results in a flux of
sediment through the top of the domain. The overall impact
on the simulation is a loss of sediment mass of< 1 % and
a total energy loss of≈ 3 %. The zero flux condition is prefer-
able but is not implemented in Fluidity for this discretisation.
A future aim will be to implement this boundary condition.
Generally there is good agreement forEk andEp. In two-
dimensional simulations strong coherent vortices form that
contain and transport large quantities of the suspended sed-
iment. These vortices play an important role in the transfer
of energy betweenEk andEp. Because of the chaotic nature
of the creation and propagation of the vortices, there will al-
ways be variations in the values ofEk, Ep and to some extent
E between simulations.

Another important aspect of the flow is the boundary
layer at no-slip boundaries. This feature of the flow requires
very small elements in the wall normal direction to resolve
the boundary layer properly. Convergence on a solution is
quickly obtained for the boundary layer using an adaptive
mesh (Fig.5). All but the most coarse adaptive simulation
configurations have converged on to a solution. The fixed
mesh configurations show a similar level of convergence
for the two highest-resolution simulations. Anisotropic mesh
adaptivity is particularly useful for resolving features such as
boundary layers which require high resolution in one direc-
tion compared to others.

Using the evidence outlined above, the chosen interpola-
tion error bounds were those of adaptive simulation A3. This
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Figure 4. Energy budget evolution with time for simulation with
adaptivity options A3 (solid lines —) compared against 2-D results
from Espath et al.(2014) (dashed lines - - -). Values are normalised
by the initial potential energy,ET .

simulation had a well-resolved boundary layer and good con-
servation of energy. This simulation had interpolation error
bounds of 4× 10−2.5 for both velocity components. An as-
sumption is made that this error bound will also be suitable to
use for the third velocity dimension in the three-dimensional
simulation.

Figure 6 shows a qualitative comparison of results from
high (and low) resolution fixed mesh simulations, and an
adaptive mesh simulation, A3. The low resolution fixed mesh
simulation has approximately the same number of elements
as the adaptive simulation but is clearly not resolving the tur-
bulent structures as well as the adaptive mesh simulation. Re-
sults from the high resolution fixed mesh and the adaptive
mesh simulations are very similar. There are some variations
in the vortices that are generated and these variations grow
with time. Within the scope of this investigation no two sim-
ulations ever produced identical results. Very small variations
in spatial discretisation lead to small variations at early stages
in the simulation which propagate and lead on to larger vari-
ations downstream.
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Fig. 4: Energy budget evolution with time for simulation with adaptivity options A3 (solid lines —) compared against 2-D
results from Espath et al. (2014) (dashed lines - - - ). Values are normalised by the initial potential energy, ET .
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Fig. 5: Wall normal velocity profile at the location of the nose of the gravity current at t = 7.5 for the fixed mesh simulations
and selected adaptive simulations. Note that A2 is a higher resolution simulation than A3.Figure 5. Wall normal velocity profile at the location of the nose
of the gravity current att = 7.5 for the fixed mesh simulations and
selected adaptive simulations. Note that A2 is a higher-resolution
simulation than A3.

5 The benefits of using mesh adaptivity

In three dimensions, adaptivity is essential to compute this
simulation using finite elements with Fluidity. A fixed, and
regular tetrahedral grid would have required more than 1×

109 elements which would have led to an unachievable run
time and unmanageable post-processing and visualisation
demands. By using adaptivity the number of required el-
ements has been reduced to a maximum of approximately
1× 107, at least a two order of magnitude reduction, making
all aspects of the simulation manageable.

To resolve a comparable flowEspath et al.(2014) used
≈ 6× 107 degrees of freedom. A Fluidity simulation with
O(109) discontinuous elements hasO(109) degrees of free-
dom. The finite-difference method used byEspath et al.
(2014) uses fewer degrees of freedom as it employs a high-
order finite-difference discretisation which increases the ac-
curacy of the solution.

Figure7 shows how the number of elements in the simu-
lations varied over time. Throughout the simulation the num-
ber of processor cores that were used was varied between 36
and 512 to keep the number of elements per core in the re-
gion of 20 000. The initial drop in number of elements at the
start of the simulation is due to the fact that conservative in-
terpolation bounds were used to generate the mesh from the
initial conditions. Following this initial drop, during early pe-
riods of the simulation the flow is transitioning from a lam-
inar to a turbulent flow. Throughout this periodu becomes
more and more complex and hence the number of elements
required to resolve the flow increase rapidly. The highest
amount of elements required is at at ≈ 10 at which point
the flow has developed into a fully three-dimensional, highly
turbulent flow. Beyond this point the number of elements re-
quired for the simulation steadily decreases as energy is dis-
sipated from the flow. Additionally,c gradually diffuses such
that the curvature of the field decreases and fewer elements
are required to resolve the field. Note the drop in elements
at t ≈ 25 of approximately 12.5 %. This coincides with the
reduction in the number of time steps between adapts from

Fixed mesh

Ne = 2.9× 104

Fixed mesh

Ne = 1.8× 106

Adaptive mesh (A3)

N̄e = 4.1× 104

t = 4 t = 12

0 0.25 0.5 0.75 1

y

x

Figure 6. Heat map of sediment concentration att = 4 andt = 12
for the highest-resolution fixed mesh simulation, the adaptive sim-
ulation with configuration A3, and a fixed mesh simulation with
a similar number of elements to the adaptive simulation.

5 to 2 as mentioned in Sect.3. A reduction in adapt interval
means that the metric is not advected so far, and hence fewer
elements are required. Also note the noise in the number of
elements in the simulation. This is reduced by adapting more
regularly and is due to the adapt routine responding to small
instabilities in the boundary layer. Future work will look into
removing these instabilities. This may require mesh adapts
after every time step.

Figure8 shows the adapted mesh over a subdomain in the
region of the current head at two times,t = 3.5 andt = 4.
The images are generated from the three-dimensional sim-
ulation, and are taken from a plane aty = 0. The cut plane
is chosen to be at the edge of the domain as a good two-
dimensional representation of the mesh can be obtained at
boundaries where all element surfaces are parallel to one an-
other. These images demonstrate how the mesh adapts to
the concentration fieldc, and velocity field,u. The images
also show how the mesh changes over a short period of the
simulation. The change betweent = 3.5 and t = 4 is dra-
matic. Very few, if any elements, within this view are consis-
tent. The images clearly display how anisotropic elements are
generated along the density interface and the boundary layer
where the curvature of the solution is highly anisotropic.

Figure 9 shows the distribution of element sizes across
a plane of the domain aty = 1 at timest = 8 and t = 20.
Three images for each time show the dimensions of the ele-
ments in thex, y andz directions. High resolution in thez,
or wall normal direction, can be seen on no-slip boundaries
in proximity to the wall. Much larger relative resolutions are
found in the same regions for thex andy directions. This
is enabled by the use of anisotropic mesh adaptivity which
keeps the number of elements to a minimum, whilst still re-
solving this important feature of the flow. These images also
highlight the cost of resolving the wall boundary layer with
a high density of small elements, and hence a large propor-
tion of the elements found in the near-wall region. The high
wall resolution in thez direction is present on all no-slip
surfaces and extends beyond the front of the gravity current
head. In thex direction the highest resolution is generally
found at the front of the gravity current head. This is caused
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Figure 7. Number of elements in the three-dimensional simulation
as a function of time.

by a sharp interface inc at the front of the head. There is
also high resolution around vortices and at the left-hand wall
where there is a strong recirculation of the overlying fluid.
The increase in resolution at the left-hand wall is present at
both t = 8 and att = 20. The same increase in resolution is
not present at the right-hand wall at eithert = 8 or t = 20
(not shown in Fig.9). This is because the fluid has more
space to recirculate in front of the current than behind it in
both cases such that the curvature of the velocity field, and
thus the mesh resolution, is less. In they direction the largest
region of high resolution is in the gravity current body just
behind the head of the current due to recirculating flow in
this region and hence high curvature inc andu2. The dis-
tribution of element sizes in this region varies rapidly due to
the three-dimensional turbulent structure of the flow. There is
a large difference in the resolution betweent = 8 andt = 20.
Within the current the resolution has generally decreased by
t = 20 but a significantly larger proportion of the domain is
below the maximum element size. Generally, the elements
appear to be smaller in thez direction. This implies that the
interpolation error bound may be proportionally tighter onu

in this direction, and could be reduced a little to bring the
resolution in line with the other directions.

In Sect.4 it was shown that an adaptive simulation with the
interpolation error bounds used here compared well with the
finest fixed mesh simulation (6.25× 10−3). It is no surprise
that, in the most computationally demanding regions of the
flow, Fig. 9 shows that the smallest element edge lengths in
the adaptive simulation match well with the fixed mesh edge
length.

Adaptivity does of course come at a cost. The mean time
required for a parallel adapt operation throughout this simu-
lation, including mesh adaptation, data transfer, mesh parti-
tioning and data migration, was 110 s. This can be compared
to a mean time required to compute a time step in paral-
lel of 67 s. Therefore, when adapting every five time steps,
approximately 1/4 of the simulation time is spent adapting
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Fig. 8: Images showing concentration c, velocity magnitude |u|, and the adapted mesh at t = 3.5 (a) and t = 4 (b) over the
subdomain, 3.5 < x < 3.75, z < 1.25 on a y-normal plane at y = 0.
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Fig. 9: Heat map indicating the size of the elements in x, y and z across a plane at y = 1 for a subset of the domain (−1 < x <
12) and times t = 8 (left) and t = 20 (right). Note that the domain extends to x = 18. The region 12 < x < 18 had no significant
regions with element sizes smaller than 0.1.

Figure 8. Images showing concentrationc, velocity magnitude|u|,
and the adapted mesh att = 3.5 (a) and t = 4 (b) over the subdo-
main, 3.5 < x < 3.75,z < 1.25 on ay normal plane aty = 0.
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Fig. 8: Images showing concentration c, velocity magnitude |u|, and the adapted mesh at t = 3.5 (a) and t = 4 (b) over the
subdomain, 3.5 < x < 3.75, z < 1.25 on a y-normal plane at y = 0.

∆x

∆y

0 2 4 6 8 10 12
0

2

∆z

(a) t = 8

∆x

∆y

0 2 4 6 8 10 12
0

2

∆z

(b) t = 20

0 2.5 · 10−2 5 · 10−2 7.5 · 10−2 0.1

z

x

Fig. 9: Heat map indicating the size of the elements in x, y and z across a plane at y = 1 for a subset of the domain (−1 < x <
12) and times t = 8 (left) and t = 20 (right). Note that the domain extends to x = 18. The region 12 < x < 18 had no significant
regions with element sizes smaller than 0.1.

Figure 9. Heat map indicating the size of the elements inx, y and
z across a plane aty = 1 for a subset of the domain (−1 < x < 12)
and timest = 8 (left) andt = 20 (right). Note that the domain ex-
tends tox = 18. The region 12< x < 18 had no significant regions
with element sizes smaller than 0.1.

the mesh, or the run time is increased by 33 % compared to
a fixed mesh simulation using the same number of elements.
When adapting every two time steps approximately 1/2 of
the simulation is spent in the adapt stage. The mesh optimi-
sation algorithm used provides the most flexibility for mesh
refinement, and hence will produce a highly optimised mesh,
but it is potentially more expensive than other adaptivity al-
gorithms. A high percentage of the total simulation time is
spent in the adapt phase and hence it may be worth consid-
ering cheaper alternatives based upon hierarchical refinement
for future models. Regardless of this, the benefits of reducing
the number of elements by two orders of magnitude far out-
weigh the cost of adaptivity. The simulation required approx-
imately 100 000 processor hours. Over 500 cores this equates
to just under a week of run time. Assuming a linear increase
in run time with number of elements, a fixed mesh simulation
would have taken at least an order of magnitude longer and
would have been nearly impossible to post-process.

The run time of a simulation is dependent upon many pa-
rameters. This run time includes the time required for many
online diagnostics and the writing of data to disk. When us-
ing adaptivity the frequency of adapts is an additional key
parameter that governs a trade-off between total processing
hours and time to completion. Increasing the time between
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Figure 10. Propagation of density interface over time. This figure
shows a contour at a concentration 0.25 at times 0, 2, 8 and 14.

adapts requires a larger amount of elements to ensure that
there is adequate resolution throughout the period between
adapts. This will increase the number of processing hours re-
quired to solve the problem. However, with more elements,
the problem can be split amongst more cores whilst keep-
ing the minimum number of elements per core constant. The
time to completion is then likely to reduce as fewer adapt
operations are required. This parameter can be varied depen-
dent upon what is important to the scientist. Size of output,
time to completion, the cost of processor time, and the size of
available computers must all be taken in to account. Another
adaptive simulation with similar properties, but slightly var-
ied parameters, could require significantly more, or less total
processing hours.

6 Results

Figure 10 shows how the density current propagates along
the tank in three dimensions. The perturbation in the ini-
tial condition for the concentration field is shown in the im-
age relating tot = 0. This initial condition creates the initial
three-dimensional instabilities required to generate a realis-
tic density current. Byt = 8 this flow is fully turbulent and
three-dimensional. This is in agreement with other models
(Necker et al., 2002; Espath et al., 2014). The well-known
structures of lobes and clefts are present at the front of the
density current from this point onward.

Figure11 shows how the head position varies with time
throughout the simulation. This is computed as the maximum
x value, averaged across the width of the domain, obtained
from a sediment concentration contour atc = 0.01. Lines are
plotted showing the agreement with other models. The re-
sults compare well withEspath et al.(2014), whose model
predicted a head position slightly in front of the model by
Necker et al.(2002). Espath et al.(2014) noted the impor-
tance of the initial condition to the development of the flow.
The initial conditions used in this work are slightly different
to those ofEspath et al.(2014) andNecker et al.(2002) and
hence complete agreement is not expected.
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Figure 11. Position of density current head against simula-
tion time for the Fluidity simulation and the simulations of
Necker et al.(2002) andEspath et al.(2014).

Figure12 shows the spatially integrated deposition rates
over the course of the simulation. Again the deposition rate
shows good agreement with other published values. As noted
by Necker et al.(2002), the deposition rate increases at a rate
proportional to t0.5 until approximatelyt = 14, at which
point there is a sharp change and the deposition rate begins to
drop rapidly at a rate proportional tot−2.5. A key difference
between the results from this work and those of the other
models is the presence of erosion in this simulation. The de-
position rates from this simulation are higher than those of
Necker et al.(2002) and Espath et al.(2014). Noting that
the vertical fluid velocities are small near the bed due to the
no-slip boundary condition, and that eroded sediment will be
settling, the majority of eroded sediment will almost imme-
diately be deposited, and will never be fully entrained back
into the flow. This will lead to an increased deposition rate
compared to a simulation without erosion. By making the as-
sumption that all eroded sediment is immediately deposited,
a modified deposit rate can be calculated for the Fluidity
simulation with the effect of erosion removed. As shown
in Fig. 10, this modified deposition rate shows much better
agreement with the results of bothNecker et al.(2002) and
Espath et al.(2014), leading to the conclusion that it is the
inclusion of erosion in the simulation that led to the higher
deposition rate.

An important diagnostic for applications is the final de-
posit profile from a particle-laden density current. Fig-
ure 13 shows the span-wise averaged deposit profile from
the three-dimensional Fluidity simulation compared against
those of previous modellers and also from the experiments
of De Rooij and Dalziel(2001). A good match is observed in
the peak deposit height ofη ≈ 0.12 atx1 ≈ 4 between all of
the models and the experimental results.

There is a notable variation in deposit depths near the lock
gate. All models show a smaller deposit depth in this region
when compared to the experimental results. The reason for
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Figure 12. Deposition rates for the three-dimensional simulation.
Deposition rates from Fluidity (F1), Fluidity with a modified de-
position rate where the erosion rate has been removed (F2),Espath
et al.(2014), andNecker et al.(2002).
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Figure 13. Span-wise averaged deposit profile from the three-
dimensional simulation att = 60. Comparisons are made against
numerical results ofNecker et al.(2002) andEspath et al.(2014)
and experimental results ofDe Rooij and Dalziel(2001).

this is unclear and explanations can only be speculative. One
potential cause may be that the sediment in the experimen-
tal setup had already begun to settle before the lock gate was
released. This may also help to explain the slightly shorter
run-out distance resulting from a reduced initial potential en-
ergy. Alternatively, there may be processes occurring in the
laboratory that are not accurately captured by the computa-
tional models.

The results from Fluidity are further from the measured
results than the other models in this region. The inclusion
of an erosion algorithm is the likely cause of this. The ex-
perimental measurements show larger deposits than all of
the models upstream, and smaller deposits downstream. Ero-
sional processes will predominately decrease upstream de-
posits and increase downstream deposits, and hence would
increase this discrepancy if applied to any of the models. In
addition to this, the erosion algorithm is not configured cor-
rectly to match theDe Rooij and Dalziel(2001) experiment:
Rp ≈ 1 for theDe Rooij and Dalziel(2001) experiment, in

comparison toRp ≈ 20 in the Fluidity simulation. This will
result in significantly more erosion in the simulation than is
likely to have occurred in the experiment.

7 Conclusions

This paper presents validation of a novel three-dimensional
finite-element model for simulating particle-laden density
currents. The model is validated by assessing the con-
vergence of key variables in two-dimensional simulations
and by comparison with results from previous DNS three-
dimensional simulations byNecker et al.(2002) andEspath
et al.(2014). It has been shown that by using adaptive mesh-
ing the number of required elements in these simulations can
be reduced by between one and two orders of magnitude.
This makes DNS modelling of particle-laden density currents
at moderate Grashof numbers an achievable goal using finite
elements.

In addition, simulations within complex domains can be
achieved fairly trivially using the flexibility afforded by un-
structured finite elements. Future work will study flow of tur-
bidity currents along circular channels and across breaks in
slope, and will help answer outstanding questions about the
dynamics of flows in these situations. Using mesh adaptiv-
ity also makes modelling in very large domains achievable.
Large regions of the domain where very little is happening
come at very little cost. This will enable modelling turbidity
currents in deep water where the dynamics are not dominated
by the bore created by the overlying fluid. It may also allow
for simulations of turbidity current along sinuous channels
with over-spilling as well as numerous other similar scenar-
ios.

The cost of these simulations is still very high. It may be
possible to further reduce the cost of these simulations, whilst
retaining important three-dimensional dynamics, using large
eddy simulation (LES). Future work will focus on implemen-
tation and testing of LES for this simulation with the aim of
reducing the simulation cost.
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