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Abstract. Computer models of ice sheet behavior are impor-
tant tools for projecting future sea level rise. The simulated
modern ice sheets generated by these models differ markedly
as input parameters are varied. To ensure accurate ice sheet
mass loss projections, these parameters must be constrained
using observational data. Which model parameter combina-
tions make sense, given observations? Our method assigns
probabilities to parameter combinations based on how well
the model reproduces the Greenland Ice Sheet profile. We
improve on the previous state of the art by accounting for
spatial information and by carefully sampling the full range
of realistic parameter combinations, using statistically rig-
orous methods. Specifically, we estimate the joint poste-
rior probability density function of model parameters us-
ing Gaussian process-based emulation and calibration. This
method is an important step toward calibrated probabilistic
projections of ice sheet contributions to sea level rise, in that
it uses data–model fusion to learn about parameter values.
This information can, in turn, be used to make projections
while taking into account various sources of uncertainty, in-
cluding parametric uncertainty, data–model discrepancy, and
spatial correlation in the error structure. We demonstrate
the utility of our method using a perfect model experiment,
which shows that many different parameter combinations can
generate similar modern ice sheet profiles. This result sug-
gests that the large divergence of projections from differ-
ent ice sheet models is partly due to parametric uncertainty.
Moreover, our method enables insight into ice sheet pro-
cesses represented by parameter interactions in the model.

1 Introduction

Accurate projections of future sea level rise are important for
present-day adaptation decisions. Global mean sea level has
risen 0.2–0.3 m over the last 2–3 centuries (e.g., Church and
White, 2006; Jevrejeva et al., 2008), and this rise is expected
to continue in the future (Meehl et al., 2007; Alexander et
al., 2013; Edwards et al., 2014a, b). A significant fraction of
world population and built infrastructure lies near present-
day sea level, and these people and resources are at risk from
sea level rise. Projections of sea level rise with sound char-
acterization of the associated uncertainties can inform the
design of risk management strategies (e.g., Lempert et al.,
2012).

Here, we focus on the Greenland Ice Sheet component
of future sea level rise, as estimated by ice sheet models.
Enhanced mass loss from the Greenland Ice Sheet is just
one component of overall sea level rise, which also includes
contributions from the Antarctic ice sheets, small glaciers,
thermal expansion of ocean water, and the transfer of wa-
ter stored on land to the oceans. However, the Greenland Ice
Sheet is a large potential contributor to sea level rise, and
also a highly uncertain one; if this ice sheet were to melt
completely, sea level would rise by about 7 m (Bamber et
al., 2001, 2013; Lemke et al., 2007), and both the rate of
ice loss and its final magnitude are uncertain (Lenton et al.,
2008). Ice sheet models provide internally consistent repre-
sentations of the processes that are important to the growth
and decay of ice sheets. Although imperfect, such models
have been the focus of intense development efforts since the
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fourth Intergovernmental Panel on Climate Change assess-
ment report (e.g., Bindschadler et al., 2013; Shannon et al.,
2013; Edwards et al., 2014a).

To yield accurate projections, ice sheet models must be
started from an initial condition that resembles the real ice
sheet as closely as possible, both in terms of the spatial distri-
bution and flow of ice and the temperature distribution within
the ice body. Ice flow is driven primarily by thickness and
surface slope (e.g., Alley et al., 2010), and warm ice deforms
more easily than cold ice. Similarly, the melt rate of a patch
of the ice sheet’s surface is strongly sensitive to its eleva-
tion (Born and Nisancioglu, 2012). Thus, errors in the initial
condition used for ice sheet model projections will lead to in-
accuracies in simulated future ice distributions and sea level
rise contributions. In practice, all models include simplifica-
tions that also affect projection accuracy (e.g., Kirchner et
al., 2011), perhaps more than initial condition errors. How-
ever, matching the modern ice sheet is a frequently recurring
theme in the literature (e.g., Ritz et al., 1997; Greve, 1997;
Huybrechts, 2002; Stone et al., 2010; Greve et al., 2011;
Pollard and DeConto, 2012).

The initial condition used in ice sheet models is a function
of input parameter values, as well as the spin-up method. Be-
cause the thermal field within the ice sheet is incompletely
known, most modeling studies perform an initialization to
bring the simulated ice sheet to a state that is consistent with
the present-day climatology (e.g., Stone et al., 2010), climate
model output (e.g., Fyke et al., 2011), or climate history es-
timated from ice cores (e.g., Applegate et al., 2012). Most
studies allow the simulated ice sheet’s surface topography to
evolve during the spin-up period; thus, the estimated initial
condition usually does not exactly match the observed ice
sheet topography (Bamber et al., 2001, 2013). For example,
many studies obtain a simulated modern Greenland Ice Sheet
that is larger than expected (e.g., Heimbach and Bugnion,
2009; Stone et al., 2010; Robinson et al., 2010; Vizcaino et
al., 2010; Greve et al., 2011; cf. Bamber et al., 2001, 2013).
Ice sheet models have many uncertain parameters that affect
the softness of the ice, the speed of basal sliding, and the in-
tensity of surface melting, among other processes (Ritz et al.,
1997; Hebeler et al., 2008; Stone et al., 2010; Fitzgerald et
al., 2012; Applegate et al., 2012). Adjusting these parameters
changes the simulated modern ice sheet (Stone et al., 2010;
Applegate et al., 2012).

Despite the importance of achieving a good match be-
tween ice sheet model output and the present-day ice ge-
ometry, it remains unclear how to use data on the mod-
ern ice sheet to assess the relative plausibility of different
model runs in cases where the modeled ice sheet surface
topography can evolve freely. The root mean squared er-
ror (RMSE) is sometimes used for this purpose (e.g., Greve
and Otsu, 2007; Stone et al., 2010). However, it is unclear
how to translate the RMSE values from a set of model runs
into probabilistic projections of ice volume change, as re-
quired for sea level studies. Using a probability model that

accounts for various uncertainties, as we do here, helps over-
come this limitation. Recent work by McNeall et al. (2013)
and Gladstone et al. (2012) partly addresses the challenge
of identifying appropriate parameter combinations, given ob-
servations and a freely evolving ice sheet model. McNeall
et al. (2013) trained a statistical emulator (e.g., Sacks et
al., 1989; Kennedy and O’Hagan, 2001) to relate input pa-
rameter combinations to highly aggregated metrics describ-
ing the Greenland Ice Sheet’s geometry (volume, area, and
maximum thickness; Ritz et al., 1997; Stone et al., 2010),
using a previously published ensemble of ice sheet model
runs (Stone et al., 2010). The work of McNeall et al. (2013)
is groundbreaking in its application of a computationally
efficient statistical emulator to an ice sheet model, allow-
ing estimation of model output at many more design points
than would have been possible with just the model itself.
However, the highly aggregated metrics used by McNeall
et al. (2013) neglect information on the spatial distribution
of ice, which might further limit the parameter combinations
that agree well with the observed geometry of the modern ice
sheet. Moreover, their calibration approach is based on “his-
torical mapping” and does not provide probabilistic projec-
tions. Gladstone et al. (2012) proposed a simple, but statisti-
cally robust, probabilistic approach for calibrating a flowline
model of Pine Island Glacier in West Antarctica, but their
approach is applicable only when the ice flow model is com-
putationally cheap and the observational data include only a
small number of observations.

A second challenge involves characterizing the effects of
input parameter choice on the agreement between modeled
and observed ice sheets. In an ensemble of Greenland Ice
Sheet model runs carried out by Applegate et al. (2012;
described below), the parameter combinations that agree
well with the modern ice sheet’s volume are widely dis-
tributed over parameter space, with no easily discernable
structure. This result may arise from un-characterized inter-
actions among the model parameters. This outcome also has
strong implications for model projections of sea level rise
from the ice sheet in that the model runs that agree well with
the modern volume constraint give widely diverging sea level
rise projections (Applegate et al., 2012).

Finally, estimates of future sea level rise require projec-
tions of ice volume change with well-characterized uncer-
tainties. Perturbed-parameter ensembles (e.g., Stone et al.,
2010; Applegate et al., 2012; Edwards et al., 2014a) rep-
resent an important step toward this goal, but the relatively
small number of model runs that can be performed in a rea-
sonable time (usually 102–103; Stone et al., 2010; Applegate
et al., 2012) are insufficient to fully explore model parameter
space. As McNeall et al. (2013) demonstrate, statistical emu-
lators help overcome this dimensionality problem; however,
some method for assigning plausibility scores to the emula-
tor output is also needed. In a slightly different but relevant
context, Little et al. (2013) and Edwards et al. (2014b) use
Bayesian model averaging to assign scores to model runs in
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perturbed-parameter ensembles, but the scores in these meth-
ods are essentially based on RMSE or low-dimensional sum-
maries of model output and therefore do not fully account for
the spatial information in ice model output.

Here, we address these challenges using a Bayesian frame-
work that combines data, models, and prior beliefs about
model input parameter values. Like McNeall et al. (2013),
we train an emulator on an ensemble of ice sheet model runs.
However, we build on their work by using an explicit like-
lihood function, and by incorporating information from a
north–south profile of average ice thicknesses. Specifically,
we use a Gaussian process emulator to estimate the first 10
principal components of the zonal mean ice thickness profile,
following a recent climate model calibration study (Chang et
al., 2014). Further, we perform a perfect model experiment
to investigate the interactions between input parameters. Our
approach recovers the correct parameter values and projected
ice volume changes from “assumed-true” model realizations,
and the multidimensional probability density function dis-
plays expected physical interactions (Sect. 1.2, below). These
interactions were not evident from the simple analysis em-
ployed by Applegate et al. (2012, their Fig. 1).

The above paragraphs discuss the case in which the ice
sheet model is free to evolve to the state that is most con-
sistent with the selected parameter combination, the bedrock
topography, and the climate (whether steady or varying). In
such studies, parameters such as the basal sliding coefficient
are held constant over the geographic area of the ice sheet.
However, a number of recent studies (e.g., Gillet-Chaulet et
al., 2012; Quiquet et al., 2012; Goelzer et al., 2013; Shannon
et al., 2013; Edwards et al., 2014b) have used an alternative
approach in which the spatially distributed basal sliding co-
efficients and/or surface mass balance fields are tuned so that
the ice sheet model matches the observed modern geometry.
This approach has several advantages; the simulated modern
ice sheet is guaranteed to match the observed modern one,
and the estimated basal sliding coefficients vary spatially, as
is almost certainly the case for the real ice sheet. However,
such studies are silent on interactions between the parameters
which we investigate here.

The paper proceeds as follows. In the remainder of the In-
troduction, we describe the ensemble that we use to train the
emulator. In Sect. 2, we outline our method for using a Gaus-
sian process emulator to estimate the principal components
of the zonally averaged ice thicknesses and the setup of our
perfect model experiment. Section 3 presents the results of
the perfect model experiment. In Sect. 4, we conclude by
pointing out the implications of our work, as well as its limi-
tations and potential directions for future research.

1.1 The ensemble

We train our emulator with a 100-member perturbed-
parameter ensemble described in Applegate et al. (2012).
This ensemble uses the three-dimensional ice sheet model
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Figure 1.Profiles of zonal mean ice thicknesses from evaluations of
the ice sheet model SICOPOLIS (Greve, 1997; Greve et al., 2011;
Applegate et al., 2012). The solid black curve represents model run
#67 from Applegate et al. (2012), which we take to be the synthetic
truth for our perfect model experiments. The other curves represent
examples of model runs used to construct the emulator: one run
produces a zonal mean ice thickness curve similar to the synthetic
observations (dashed red curve), another is generally too thick (dot-
ted green curve), and a third is generally too thin (dot-dashed blue
curve). As expected, our probability model assigns a greater poste-
rior probability to the model run represented by the red curve than
to the model runs represented by the blue and green curves. All the
other model runs from Applegate et al. (2012) that are not men-
tioned above are represented as grey curves.

SImulation COde for POLythermal Ice Sheets (SICOPOLIS;
Greve, 1997; Greve et al., 2011). Each model run spans the
period from 125 000 years ago (125 ka BP) to 3500 yr CE,
driven by surface temperature and sea level histories de-
rived from geologic data (Imbrie et al., 1984; Dansgaard
et al., 1993; Johnsen et al., 1997) and forced into the fu-
ture with an asymptotic warming to∼ 5◦C above present
values. SICOPOLIS is a shallow ice-approximation model,
meaning that it neglects longitudinal stresses within the ice
body (Kirchner et al., 2011). Like most ice sheet models,
it also includes many simplifications in calculating the sur-
face mass balance, notably through its use of the positive
degree-day method for relating surface temperatures to melt-
ing (Braithwaite, 1995; Calov and Greve, 2005; van der
Berg et al., 2011). These simplifications improve SICOPO-
LIS’ computational efficiency relative to higher-order or full-
Stokes models (e.g., Seddik et al., 2012), allowing it to be run
repeatedly over 105 yr time scales.
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The parameter combinations in the Applegate et al. (2012)
ensemble were chosen by Latin hypercube sampling (McKay
et al., 1979), following the earlier work of Stone et al. (2010).
Latin hypercube sampling distributes points throughout pa-
rameter space more efficiently than Monte Carlo methods
(Urban and Fricker, 2010). In their experiment, Applegate et
al. (2012) varied the ice flow enhancement factor, the ice and
snow positive degree-day factors, the geothermal heat flux,
and the basal sliding factor (Ritz et al., 1997; cf. Stone et al.,
2010; Fitzgerald et al., 2012). These parameters control the
softness of ice, the rapidity with which the ice sheet’s surface
lowers at a given temperature, the amount of heat that enters
the base of the ice sheet, and the speed of sliding at a given
stress (see Applegate et al., 2012, for an explanation of how
each parameter affects model behavior).

McNeall et al. (2013) trained their emulator using a
perturbed-parameter ensemble of ice sheet model runs pub-
lished by Stone et al. (2010). Key differences between the
Applegate et al. (2012) ensemble and the Stone et al. (2010)
ensemble involve the parameters varied in the ensembles and
the processes included in the simulations. Stone et al. (2010)
varied the lapse rate instead of the basal sliding factor ad-
justed by Applegate et al. (2012). The model used by Stone
et al. (2010; Glimmer v. 1.0.4; see Rutt et al., 2009) neglects
basal sliding, a process included in the SICOPOLIS runs pre-
sented by Applegate et al. (2012).

The results presented by Applegate et al. (2012) suggest
that widely diverging ice sheet model parameter values yield
comparable modern ice sheets, but substantially different sea
level rise projections. Applegate et al. (2012) assessed the
plausibility of their model runs by comparing the simulated
ice volumes in 2005 to the estimated modern ice volume
(Bamber et al., 2001; Lemke et al., 2007); those runs that
yielded modern ice volumes within 10 % of the estimated
value were kept. These plausible runs yielded a range of fu-
ture sea level rise projections that was∼ 75 % of the median
estimate.

Moreover, the parameter combinations that agree well
with the modern ice volume constraint are widely dis-
tributed over parameter space. With the exception of the
ice positive degree-day factor, where only values less than
∼ 15 mm day−1 ◦C−1 satisfy the ice volume constraint, no
pattern emerges from the distribution of the successful runs
through parameter space. McNeall et al. (2013) make a sim-
ilar point using their own results. Statistically, this inability
to learn about the plausibility of various parameter combi-
nations given observations is termed an “identifiability prob-
lem”.

1.2 Expected interactions among model
input parameters

The apparently structureless distribution of successful runs
through parameter space (Applegate et al., 2012, their Fig. 1)
may stem from interactions among the parameters. The

parameters can be loosely grouped into those that control the
ice sheet’s surface mass balance (the ice and snow positive
degree-day factors) and those that control ice movement (the
ice flow enhancement factor, the basal sliding factor, and the
geothermal heat flux). Either group of parameters can cause
mass loss from the ice sheet to be high or low, given fixed
values of the parameters in the other group. For example, a
high ice positive degree-day factor might be associated with
a low snow positive degree-day factor to produce the same
amount of melt as a model run with more moderate values of
both parameters. This interaction is bounded, however, be-
cause the maximum snow positive degree-day factor is much
lower than the maximum value for ice; also, at the peak of
the ablation season, there is no snow left on the lower parts
of the ice sheet, so the ice positive degree-day factor domi-
nates over part of the year. Similarly, the same ice velocities
can be produced by either a high flow enhancement factor
and a low basal sliding factor, or the reverse. Basal sliding
can be a much faster process than ice flow, so this parameter
interaction is also bounded. However, basal sliding operates
only where the bed is thawed, and the geothermal heat flux
likely controls the fraction of the bed that is above the pres-
sure melting point.

The relatively small number of design points in the en-
semble presented by Applegate et al. (2012) hinders map-
ping of the interactions among parameters over their five-
dimensional space. Coherent mapping requires many more
design points, but performing these additional runs with the
full ice sheet model is impractical because of the model’s
high computational cost. This problem suggests a need for a
computationally efficient emulator to fill the gaps in parame-
ter space between the existing model runs.

2 Methods

As described above, our goals are (1) to present a method for
quantifying the agreement between ice sheet model output
and observations that incorporates spatial information, (2) to
characterize the interactions among input parameters, and (3)
to produce illustrative projections of sea level rise from the
Greenland Ice Sheet based on synthetic data. In this section,
we provide an outline of our methods for achieving these
goals; fuller descriptions appear in Chang et al. (2014) and
in the Supplement.

We accomplish goal no. 1 through constructing a statisti-
cal model that results in a likelihood function. This statistical
model compares ice sheet model output and observations to
evaluate the plausibility of a vector of model input parameter
valuesθ while accounting for systematic discrepancies be-
tween the model output and the observations. The likelihood
function for the ice thickness observations, denoted byZ, is
based on the additive model

Z = Y (θ) + δ + ε, (1)
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whereY (θ) is the ice thickness output from the SICOPOLIS
model at the vector of input parameter valuesθ , δ is the dis-
crepancy between model output and observations caused by
structural problems in the model, andε is independently and
identically distributed observational noise.

To achieve goal no. 2, we perform a “leave-one-out” per-
fect model experiment with a Gaussian process emulator, a
computationally cheap surrogate for the full ice sheet model.
As described above, the model outputY (θ) is available only
at a relatively small number of points in parameter space, and
therefore it is necessary to build an emulator that approxi-
mates the model outputY (θ) at any givenθ .

Direct emulation of the full two-dimensional ice thickness
grid is prohibitively expensive, due to (i) the cost of perform-
ing operations on large covariance matrices (see the Supple-
ment and Chang et al., 2014, for details) and (ii) the need to
model spatial processes that contain many zeros, which poses
non-trivial computational and inferential challenges. To mit-
igate these problems, we take the mean of each row in the
ice thickness grid, thereby obtaining a 264-element vector
of zonally averaged ice thicknesses for each ice sheet model
run. We then apply principal component analysis to these
mean ice thickness vectors. The magnitudes of the first 10
principal components suffice to recover the mean ice thick-
ness vectors. Because the principal components are uncor-
related, we can construct a separate emulator for the mag-
nitude of each principal component. Our emulator consists
of all these independent Gaussian processes. Although our
emulator operates in the principal component space, we can
reconstruct the ice thickness profile that corresponds to the
emulated principal components (see the Supplement). Note
that our likelihood formulation automatically penalizes the
components with lower explained variation.

Next, we train the emulator on all but one of the model
runs. We refer to the output (specifically, the zonal mean ice
thickness profile and the ice volume change projection) from
this left-out model run as our “assumed truth”. We examined
the robustness of our methods by successively leaving out
each model run in turn and repeating our analysis (see the
Supplement).

Before using the mean ice thickness profile from our
assumed-true model run in our perfect model experiment, we
contaminate it with spatially correlated errors. These errors
reflect the discrepancies that we would expect to see between
model output and data in a “real” calibration experiment due
to missing or parameterized processes in the model. In partic-
ular, we use spatially correlated errors with a moderate mag-
nitude (standard deviation of 50 m) and a large-scale spatial
trend to represent a situation in which (i) the ice sheet model
has reasonable skill in reproducing the observed spatial pat-
tern of modern ice thickness and (ii) the discrepancy pat-
tern is notably different from patterns generated by the ice
sheet model and is therefore statistically identifiable (see the
Supplement). Note that any probabilistic calibration method,
including our approach, can be uninformative if condition

(i) is violated, or subject to serious bias if condition (ii) is
violated.

We then use Markov chain Monte Carlo (MCMC) to es-
timate the joint posterior probability distribution over the
five-dimensional input parameter space. MCMC is a well-
established (Hastings, 1970), but complex, statistical tech-
nique; Brooks et al. (2011) provide a book-length treatment.
Briefly, the Metropolis–Hastings algorithm used in MCMC
constructs a sequence of parameter combinations, each of
which is chosen randomly from the region of parameter
space surrounding the last point. Candidate parameter com-
binations are accepted if the posterior probability of the new
point is greater than at the previous one, or with a certain
probability determined by the Metropolis–Hastings accep-
tance ratio otherwise. If the candidate point is rejected, an-
other candidate point is chosen at random according to a pro-
posal distribution. Consistent with McNeall et al. (2013), we
match the emulator estimates to assumed-true model output
instead of observed ice thickness values (Bamber et al., 2001,
2013) because a perfect model experiment is more suitable
to achieve our main objectives, studying and demonstrating
the performance of our probabilistic calibration method. The
candidate points that are retained by the MCMC algorithm
approximate the posterior probability distribution of the in-
put parameter space. The candidate points from this algo-
rithm therefore reflect various characteristics of the posterior
distribution, including the marginal distributions of each of
the parameters separately and their joint distributions. Hence,
we can use MCMC to summarize what we have learned
about the parameters from the model and observations while
accounting for various uncertainties and prior information.

Finally, to achieve goal no. 3, we use a separate Gaus-
sian process emulator to interpolate between the ice volume
change projections from all the model runs in the original en-
semble (Applegate et al., 2012), except the assumed-true re-
alization. When applied to the sample of the model input pa-
rameters that we obtained from Markov chain Monte Carlo,
this emulator yields a sample of ice volume changes, and thus
sea level rise contributions, between 2005 and 2100. We then
use kernel density estimation to compute the probability den-
sity of the projected sea level rise contributions. It should be
noted that these projections are based on synthetic data (not
real observations) and do not represent “real” projections of
Greenland Ice Sheet mass loss over this century.

3 Results

Besides helping to diagnose interactions among ice sheet
model parameters, our perfect model experiment allows us
to test our overall procedure. We carry out several checks.

1. If the trained emulator is given the parameter settings
from the left-out model realization, it should produce a
close approximation to the actual output from that real-
ization.
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Figure 2. Comparison of zonal mean ice thickness transects from
the assumed-true model run (#67 from Applegate et al., 2012) and
that generated by the trained emulator at the same parameter com-
bination as used in the assumed-true model run. In the top panel,
the assumed-true profile is shown by a solid black curve, and the
emulator output is shown by a dashed red curve with circles. In the
lower panel, each point stands for an individual latitude location.
The red circles in the top panel fall almost exactly on top of the
black curve, and the points in the lower panel fall almost exactly on
a 1 : 1 line connecting the lower left and upper right corners of the
plot. Thus, the emulator successfully recovers the ice thicknesses
from an assumed-true model realization when trained on the other
model runs from the same ensemble. See Fig. S4 in the Supplement
for results for other assumed-true model realizations.

2. The maximum of the multidimensional posterior prob-
ability function from our Markov chain Monte Carlo
analysis should lie close to the parameter settings from
the left-out model realization.

3. The mode of the probability density function of ice loss
projections should be close to the ice loss projection
from the assumed-true model realization.

As detailed below, our methods pass all three of these checks.
Aggregating the ice thicknesses to their zonal means al-

lows easy visual comparison of different emulator-estimated
ice thickness vectors to the assumed-true model realization
(black curve, Fig. 1). The emulator, as trained on 99 of
the model realizations from the Applegate et al. (2012) en-
semble, successfully recovers the ice thicknesses from the
left-out model realization (Fig. 2) when given the parame-
ter combination for that left-out model realization as input.
Differences between the assumed-true and emulated zonally
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Figure 3. Prior (dashed red curves) and posterior (solid black
curves) probability density functions of each input parameter, as-
suming that all the other parameters are held fixed at their assumed-
true values. The vertical lines indicate the assumed-true values of
the individual parameters. See Fig. S2 in the Supplement for the
effect of excluding the discrepancy term (δ in Eq. 1) on the results.

averaged ice thickness vectors are minor. Thus, our methods
pass check no. 1, above.

Similarly, the conditional posterior density functions
(Fig. 3) have maxima near the assumed-true parameter val-
ues. Parameter combinations yielding zonally averaged ice
thickness curves that lie close to the assumed-true model re-
alization (e.g., the red curve in Fig. 1) are more likely (more
probable based on the posterior distribution) than those with
curves that lie farther from the assumed-true values (blue and
green curves in Fig. 1). We do not expect that the modes of
the marginal posterior density functions (Fig. 4b) will fall ex-
actly at the assumed-true parameter values because summing
over one or more dimensions often moves the marginal mode
away from the maximum of the multidimensional probability
density function. In any case, the maximum posterior prob-
ability is close to the assumed-true parameter combination.
Thus, our methods pass check no. 2, above. Some of the two-
dimensional marginal probability density functions (Fig. 4b)
show multiple modes and bands of high probability extend-
ing across the two-dimensional fields; we discuss the signifi-
cance of these features below.

For comparison, we also produced scatterplots of param-
eter combinations as projected onto two-dimensional slices
through the five-dimensional parameter space (Fig. 4a), fol-
lowing Applegate et al. (2012, their Fig. 1). As in Apple-
gate et al. (2012), the “successful” design points show no
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clustering around the assumed-true parameter values, except
for the ice positive degree-day factor.

Our method also successfully recovers the ice volume loss
produced by the assumed-true model realization (Fig. 5; see
also Fig. S5 in the Supplement), reflected by the close corre-
spondence between the mode of the probability density func-
tion produced by our methods and the vertical black line.
Thus, our methods pass check no. 3, listed above. As pre-
viously noted, these projections are based on synthetic data;
they are not “real” projections of Greenland Ice Sheet mass
loss. For comparison, we also applied the windowing ap-
proach used by Applegate et al. (2012) to the model runs and
the synthetic observation. The 95 % probable interval pro-
duced by our methods is much smaller than that estimated
by computing the 2.5th and the 97.5th percentiles of the syn-
thetic volume change values selected by the 10 % volume
filter used in Applegate et al. (2012). This reflects the utility
of spatial information and our probabilistic calibration ap-
proach in reducing projection uncertainties compared to the
windowing approach in Applegate et al. (2012).

The prior density for the ice volume loss was constructed
by assuming that all 99 design points used to train our emula-
tor are equally likely. Interestingly, a uniform prior for the in-
put parameters results in a skewed and multimodal prior dis-
tribution for the volume loss, indicating that the function that
maps input parameters to projected ice volume changes is
highly non-linear and not smooth. These characteristics also
cause a small offset between the assumed-true projection and
the mode of the posterior density. The marginal plots for the
volume loss projection surfaces are shown in Fig. S3 in the
Supplement.

4 Discussion

As explained above, our goals for this work were to identify
an objective function for matching ice sheet models to spa-
tially distributed data (especially ice thicknesses), map inter-
actions among model input parameters, and develop meth-
ods for projecting future ice sheet mass loss, with well-
characterized uncertainties. We demonstrated that our emu-
lator reproduces a vector of zonally averaged ice thicknesses
from a given model run when trained on other members from
the same ensemble (Fig. 2). We further showed that the emu-
lator can recover the appropriate parameter combinations for
an assumed-true model realization in a perfect model exper-
iment (Figs. 3, 4b). Finally, we produced illustrative projec-
tions of Greenland Ice Sheet mass loss based on synthetic
data (Fig. 5; see also Fig. S5 in the Supplement). As noted
above, our projections are for illustration only and do not rep-
resent “real” projections of future Greenland Ice Sheet mass
loss.

The utility of our approach becomes clear in comparing
the marginal posterior probability density functions (Fig. 4b)
and projections (red probability density function and box plot

in Fig. 5) to results from simpler methods (Fig. 4a; blue
box plot in Fig. 5; Applegate et al., 2012). In Fig. 4b, there
are distinct modes in the marginal densities, indicating re-
gions of parameter space that are more consistent with the
assumed truth. These modes are absent in the simpler graphic
(Fig. 4a). Similarly, the 95 % prediction interval of sea level
rise contributions is narrower using our methods than if a
simple windowing approach is applied (Fig. 5). Our results
also show the importance of including the discrepancy term
(δ in Eq. 1) for recovering the appropriate parameter settings
in our perfect model experiments (Fig. S2 in the Supple-
ment). If we leave this discrepancy term out, the marginal
posterior density functions for each parameter clearly miss
the true values.

The parameter interactions identified in this experiment
are generally consistent with intuition (see Sect. 1.2 for de-
scriptions of anticipated parameter interactions). Figure 4
shows inclined bands of high marginal posterior probability
in the ice positive degree-day factor vs. snow positive degree-
day factor, geothermal heat flux vs. ice flow factor, and basal
sliding factor vs. flow factor panels. As expected, there are
tradeoffs among each of these parameter pairs; for example,
a low ice positive degree-day factor must be combined with
a high snow positive degree-day factor to produce a reason-
able match to the assumed truth. Somewhat surprisingly, the
tradeoff between the geothermal heat flux and the ice flow
factor is much stronger than that between the geothermal heat
flux and the basal sliding factor. The geothermal heat flux af-
fects both ice deformation (which is temperature-sensitive)
and basal sliding (which operates only where there is liq-
uid water at the ice–bed interface). We hypothesize that the
geothermal heat flux has a stronger effect on ice flow than
basal sliding because ice deformation happens over a much
larger fraction of the ice sheet’s basal area than does sliding.

Multiple modes appear in the two-dimensional marginal
density plots (Fig. 4), implying that standard methods for
tuning of ice sheet models may converge to “non-optimal”
parameter combinations. Ice sheet models are commonly
tuned by manually adjusting one parameter at a time until
the simulated modern ice sheet resembles the real one (e.g.,
Greve et al., 2011). This procedure is an informal variant of
so-called gradient descent methods, which search for optimal
matches between models and data by moving down a contin-
uous surface defined by the model’s input parameters, the
objective function, and the data. If the surface has multiple
“peaks” (i.e., regions of parameter space that are more plau-
sible, given observations, than their surroundings), gradient
descent methods can converge to a point which produces a
better match to the data than any adjacent point, but is never-
theless far from the “best” parameter combination.

This problem may partly explain the wide variation in
projections of sea level rise from the ice sheets, as made
with state-of-the-art ice sheet models. Two recent intercom-
parison projects, Sea-level Response to Ice Sheet Evolution
(SeaRISE) and ice2sea (Bindschadler et al., 2013; Shannon
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Figure 4.Comparison between an exploratory data analysis, following Applegate et al. (2012), and the results of our probabilistic calibration.
Scatterplots of parameter settings used to train the emulator, as projected onto two-dimensional marginal spaces(a). Red dots are parameter
settings resulting in simulated modern ice volumes within 10 % of the synthetic truth (model run #67 of Applegate et al., 2012); blue crosses
are parameter settings that yield ice volumes more than 10 % larger or smaller than the synthetic truth. Two-dimensional marginal posterior
densities of all pairs of input parameters(b). Several of the marginal posterior density maps show inclined bands of higher probability,
indicating interactions among parameters; other panels show multiple modes, representing potential “traps” for tuning of ice sheet models
using simpler methods. See text for discussion.

et al., 2013; Edwards et al., 2014a) used a variety of ice
sheet models to project future ice sheet contributions to sea
level rise. The two projects used different groups of ice sheet
models and different methods for spinning up the partici-
pating models. The results of one of these projects shows
strong divergence among the results from different models
(Bindschadler et al., 2013), whereas the other project’s pro-
jections agree more closely (Shannon et al., 2013; Edwards
et al., 2014a). The multiple modes in our posterior two-
dimensional density plots (Fig. 4) suggest that some of the di-
vergence among models, for example in the SeaRISE project
(Bindschadler et al., 2013), may be due to differences in
model tuning: even if the models had similar structures and
reproduced the modern ice sheet topography and ice thick-
nesses equally well, we would still expect their future pro-
jections to diverge because of differences in input parameter
choice.

Our leave-one-out cross-validation shows that the results
presented here are consistent across all 100 synthetic truths.
The prediction interval for the ice volume changes in Fig. 5
achieves the nominal coverage when the synthetic truth
yields a modern ice volume that is close to the observed mod-
ern ice volume (Fig. S5 in the Supplement). The parameter
interactions shown in Fig. 4 are also consistent across the
majority of the synthetic truths (Fig. S6 in the Supplement).

4.1 Caution and future directions

In this paper, we specifically avoid giving “real” projec-
tions of future Greenland Ice Sheet volume change, for

two reasons. First, we match only a two-dimensional pro-
file of zonally averaged ice thicknesses from an assumed-true
model run, rather than the two-dimensional grid of observed
ice thicknesses (Bamber et al., 2001, 2013; see also McNeall
et al., 2013). Second, the ensemble of ice sheet model runs
(Applegate et al., 2012) that we use to calibrate our emulator
has several important limitations, including the relative sim-
plicity of the model used to generate the ensemble and the
synthetic climate scenario used to drive the ensemble mem-
bers into the future. Most importantly, this ensemble’s simu-
lated modern ice sheets are generally too thick in the south-
ern part of Greenland and too thin in the northern part of
the island (Applegate et al., 2012, their Fig. 7); other studies
that allow the ice sheet surface to evolve freely have noted
similar difficulties in reproducing the modern ice sheet (e.g.,
Stone et al., 2010; Greve et al., 2011; Nowicki et al., 2013,
their Fig. 2; cf. Edwards et al., 2014a). The long-term goal
of this work is to compare ice sheet model runs to actual
data, thereby resulting in probabilistic projections of future
ice sheet mass loss. To achieve this goal, we plan to expand
our method to treat the full, two-dimensional ice thickness
grid and take advantage of other spatially distributed data sets
(e.g., surface velocities; Joughin et al., 2010) and to generate
new ice sheet model ensembles that overcome the limitations
explained above.

5 Conclusions

In this paper, we presented an approach for probabilistic
calibration of ice sheet models using spatially resolved ice
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Figure 5. Illustrative (not “real”) ice volume change projections be-
tween 2005 and 2100, based on three different methods: (i) the prior
density of the input parameters (dashed green line); (ii) parameter
settings that pass the 10 % ice volume filter used by Applegate et
al. (2012) (solid blue line); and (iii) the posterior density computed
by our calibration approach (solid red line). The vertical line shows
the ice volume change projection for the assumed-true parameter
setting. The horizontal lines and the parentheses on them represent
the range and the 95 % prediction intervals, respectively; the crosses
indicate the median projection from each method. The width of the
95 % projection interval from our methods is narrower than if sim-
pler methods are applied (blue box plot; Applegate et al., 2012).
Similar results are obtained if different model runs from the ensem-
ble are left out (see Fig. S5 in the Supplement). See text for discus-
sion. The notation m sle stands for meters of sea level equivalent.

thickness information. Specifically, we constructed a prob-
ability model for assigning posterior probabilities to indi-
vidual ice sheet model runs, and we used a Gaussian pro-
cess emulator to interpolate between existing ice sheet model
simulations. We reduced the dimensionality of the emula-
tion problem by reducing profiles of mean ice thicknesses to
their principal components. Finally, we showed how the pos-
terior probabilities from the model calibration exercise can
be used to make projections of future sea level rise from the
ice sheets. In a perfect model experiment where the “true”
parameter settings and future contributions of the ice sheet to
sea level rise are known, our methods successfully recovered
these values. The posterior probability density function that
resulted from this experiment shows tradeoffs among param-
eters and multiple modes. The tradeoffs are consistent with
physical expectations, whereas the multiple modes may in-
dicate that commonly applied methods for tuning ice sheet
models can lead to calibration errors.

The Supplement related to this article is available online
at doi:10.5194/gmd-7-1933-2014-supplement.
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