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1. Gaussian process emulator for principal components1

In this section, we outline our statistical approach for ice sheet model emulation using2

Gaussian process (GP) models and principal component (PC) analysis (often referred to as3

empirical orthogonal functions, EOFs). Our approach follows Chang et al. (2014) in that4

we summarize the ice sheet model runs as PCs and calibrate the ice sheet parameters based5

on GP emulators for PCs. Our description of methods below therefore also closely follows6

the notation and description in Chang et al. (2014). By decomposing spatial patterns into a7

small number of variables representing important characteristics of model runs, our approach8

drastically increases computational efficiency without causing significant information loss.9

We denote the number of model runs by p and the number of spatial locations spatial10

locations by n. For the SICOPOLIS model output (from Applegate et al. 2012) we use here,11

p = 99 and n = 264. Note that the original ensemble in (Applegate et al. 2012) contains 10012

model runs, but we leave one model run out to construct the synthetic truth. We let Y (θ, s)13

denote the ice thickness from the ice sheet model at a parameter setting θ = (θ1, . . . , θ5)
T

14

and a spatial location s. We let s1, . . . , sn be the spatial locations of the model grid points15

and Y(θ) = (Y (θ, s1), . . . , Y (θ, sn)) be the vector of model output at a parameter setting16

θ. Let θ1, . . . ,θp be the vectors of input parameters for our model. Y is an n × p matrix17

of the ice sheet model output where its rows correspond to spatial locations and columns to18

parameter settings, i.e.19

Y =



Y (θ1, s1), Y (θ2, s1), . . . , Y (θp, s1)

Y (θ1, s2), Y (θ2, s2), . . . , Y (θp, s2)

...,
...,

. . . ,
...

Y (θ1, sn), Y (θ2, sp), . . . , Y (θp, sn)


.

Similarly, Z(s) denotes the observed ice sheet thickness at a location s, and Z = (Z(s1), . . . , Z(sn))T20

is the n × 1 vector of the observational data. For the matrices and the statistical parame-21

ters used in the following sections, the subscript y indicates that a symbol is used for the22

emulation model, while the subscript d shows that a symbol is for the discrepancy model.23
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2. Principal component analysis for model output24

The first step is summarizing the model output by principal component analysis. Using25

principal components in emulation and calibration has the following advantages: First, the26

principal components are independent of each other under Gaussian assumption, and this27

independence allows a substantial gain in computational efficiency because it enables us28

to treat each of the principal components separately in the emulation stage. Second, the29

principal components are the “best” summary of the model runs in the sense that they show30

the clearest contrast between model runs, among all possible linear combinations of model31

runs (see below for more details).32

Following the standard procedure of principal component analysis, the column means are33

subtracted from each element in the corresponding columns such that each column is centered34

on zero. We apply singular value decomposition to this centered output matrix to find the35

scaled principal basis vectors k1 =
√
λ1e1, . . . ,kp =

√
λpep, where λ1 > λ2 > · · · > λp36

and e1, . . . , ep are ordered eigenvalues and their eigenvectors respectively. Each eigenvalue37

represents the explained variation for the corresponding principal component. We keep only38

the first J � p PCs with the largest explained variation (i.e. the largest eigenvalues) to39

minimize the information loss due to dimension reduction. The principal components for40

model output can be computed by41

YR = (KT
yKy)

−1KT
yY = (YR

1 . . .Y
R
J )T

where Ky = (k1, . . . ,kJ) is the principal basis matrix. YR
i = (Y R

i (θ1), . . . , Y
R
i (θp))

T is the42

p× 1 vector of the ith principal components, and Y R
i (θj) is the ith principal component at43

the parameter setting θj. The resulting matrix YR is the summarized output matrix with44

rows for PCs and columns for parameter settings . The procedure reduces the size of the45

data from n× p to J × p.46
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3. Gaussian process emulator47

We emulate the ice sheet model output using Gaussian processes (GP), a fast method48

for probabilistic interpolation between existing model runs (Sacks et al. 1989; Kennedy and49

O’Hagan 2001; Higdon et al. 2008; Drignei et al. 2008; Rougier 2008; Goldstein and Rougier50

2009; Bhat et al. 2012; Holden et al. 2010; Lee et al. 2011; Olson et al. 2012, 2013; Mc-51

Neall et al. 2013; Williamson et al. 2013). The GP emulator approach yields a flexible52

approximation without requiring detailed physical information on the ice sheet model, un-53

like linear regression-based emulators (cf. Piani et al. 2005). By interpolating existing model54

runs at different parameter settings, a GP emulator provides a reasonable approximation to55

the original model unless the model output abruptly changes in the input parameter space.56

Interpolation using GP emulator is essentially kriging in the input parameter space; the57

interpolator is a random process with (i) a mean term that is the optimal interpolation be-58

tween ice sheet model runs in terms of the expected mean squared error and (ii) a variance59

term that quantifies the uncertainty of the interpolation. In this section we first describe the60

basics of the GP emulator approach and explain how to construct an emulator for principal61

components.62

Before describing emulation for principal components, we illustrate the GP emulation63

approach with n = 1, where the ice model output at each parameter setting is a scalar. For64

ease of exposition we further simplify the case by assuming that the input parameter is also65

a scalar. The collection of the model output is simply a vector Y = (Y (θ1), . . . , Y (θp))
T at66

the parameter settings θ1, . . . , θp. The GP emulator for the model output is then given by67

Y ∼ N(0,Σ),

with a p × p covariance matrix Σ. While linear regression finds a trend that fits the data68

well using a mean function, the GP model interpolates the data using a covariance structure.69

Unlike the linear regression, which requires careful specification of the mean function along70

with various statistical assumptions when dealing with highly nonlinear processes such as ice71
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model outputs, the GP model can handle such processes using a relatively simple covariance72

function. Only required assumption for the GP model is that the model output is a smoothly73

varying curve in the parameter space without too many abrupt changes. A common choice74

for the covariance function for a GP emulator is the squared exponential covariance, which75

defines the (i, j)th element of Σ as76

Cov(Y (θi), Y (θj)|ζ, κ, φ) = ζ1(θi = θj) + κ exp

(
−
(
θi − θj
φ

)2
)
,

with all positive ζ, κ and φ. The range parameter φ defines how fast the model output77

is changing as the value of the parameter changes. The partial sill specifies the overall78

magnitude of the process, and the nugget parameter ζ captures the variability caused by79

various sources other than input parameters, such as the effect of initial conditions.80

We now turn our attention to emulation for the principal components. Because the prin-81

cipal components are uncorrelated with each other by construction, we can model each of82

them separately using independent GPs. Note that this procedure ignores the dependence83

between the principal components that is not captured by the covariances. However, ac-84

cording to our cross-validation experiments for various models including SICOPOLIS, the85

emulator based on this assumption usually provides an accurate approximation to the origi-86

nal model (see e.g. Chang et al. 2014, Figure 2). We model each YR
i using a GP with mean87

zero and covariance determined by the following squared exponential covariance function:88

Cov(Y R
i (θj), Y

R
i (θk); ζi, κy,i, φi) = ζi1(θj = θk) + κy,i exp

(
−

5∑
l=1

(
θjl − θkl
φil

)2
)
,

where ζi, κy,i, φi1, . . . , φi5 > 0 are covariance parameters, θjl is the lth element of θj, and 1(·) is89

the index function. The covariance parameters (ζ1, κ1,y, φ11, . . . , φ15), . . . , (ζJ , κy,J , φJ1, . . . , φJ5)90

are estimated by maximum likelihood estimation (MLE). Our emulator, denoted by J × 191

vector-valued function η(θ,YR), is the predictive distribution of PCs at an untried param-92

eter setting θ defined by the fitted GPs. Using the PC emulator, we can also emulate the93

original model transect by computing Kyη(θ,YR).94
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Note that our approach allows significant improvements in computational efficiency.95

Without any dimension reduction, the computational cost for a single likelihood evaluation96

scales as O(n3p3), which corresponds to a few hours of computing time. Thus, application97

of any numerical methods requiring repeated evaluation of the likelihood function is com-98

putationally prohibitive if no dimensional reduction is performed. Our approach decreases99

the computational complexity to O(Jp3), and this is a reduction from 3.18 × 1014 flops to100

1.56 × 108 flops when using 10 principal components (J = 10). Using 10 principal compo-101

nents captures more than 90% of the variation in the model output, and we have confirmed102

that using more than 10 principal components does not significantly improve the emulation103

accuracy by cross-validation.104

4. Model parameter calibration105

In this section, we formulate the probability model for calibration using the PC emula-106

tor constructed above and explain the inference procedure for the model parameters using107

Markov chain Monte Carlo (MCMC). The main goal here is to estimate the input param-108

eters using a probability model that combines the model for the emulator described above109

and a discrepancy term that detects the systematic model-observation discrepancy. The110

calibration model operates in a reduced dimensional space defined by the principal compo-111

nents computed above and the kernel convolution (Higdon et al. 2008, explained below) and112

allows us to avoid computational issues for dealing with high-dimensional data (Chang et al.113

2014). Based on this model, one can efficiently sample from the posterior density of input114

parameters by MCMC.115

We assume that the observational dataset is emulator output contaminated by model116

discrepancy and observational error;117

Z = Kyη(θ∗,YR) + Kdν + ε, (S1)

where θ∗ is the best fit input parameter setting (Bayarri et al. 2007; Rougier 2007) for the118
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observational data, and ε ∼ N(0, σ2In) is the observational error with variance σ2 > 0.119

Kdν is the model-observation discrepancy picking up systematic differences between the120

model and the observations (cf. Bayarri et al. 2007; Bhat et al. 2012), where Kd is a kernel121

basis matrix relating the spatial locations s1, . . . , sn to Jd knot locations a1, . . . , aJd , and122

ν ∼ N(0, κdIJd) is the vector of knot processes, a set of random variables assigned to each of123

the knot locations with variance κd > 0. Our choice for the kernel function is an exponential124

covariance given by125

{Kd}ij = exp

(
−|si − aj|

φd

)
,

with φd > 0. The variance parameter κd is subject to inference, and the correlation pa-126

rameter φd is pre-specified by expert judgment. In our implementation, we choose φd as127

5% of the maximum distance between the spatial locations on the model grid to yields a128

sufficiently flexible discrepancy pattern. Fixing the range parameter not only reduces the129

computational cost for likelihood computation but also improves the identifiability between130

the input parameters and the discrepancy process. Note that the kernel basis often needs131

to be substituted by its scaled principal basis (eigenvectors) to improve identifiability; see132

Chang et al. (2014) for a more detailed discussion. We used the 30 leading components133

for Kd in our implementation. We apply a similar dimension reduction described in the134

previous section to find ZR, a summary of the observed transect as follows:135

ZR = (KTK)−1KTZ, (S2)

and therefore the model for ZR can be written as136

ZR ∼ N


 µη

0

 ,

 Ση 0

0 κdIJd

+ σ2(KTK)−1

 ,

where µη and Ση are the mean and covariance, respectively, of the emulator η(θ∗,YR), and137

K = (Ky Kd).138

The parameters to be estimated in the calibration model are the ice sheet model input139

parameters θ∗, the discrepancy parameter κd, and the observational error variance σ2. We140
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also re-estimate the partial sill parameters κy = (κy,1, . . . , κy,J) for the emulator (Bayarri141

et al. 2007; Bhat et al. 2012; Chang et al. 2014). This allows the emulator process to be re-142

scaled to better match the observational data. We define the posterior density based on the143

likelihood function given by (S2) denoted by `(ZR|θ∗,κy, κd, σ
2,YR) and some standard prior144

specifications denoted by f(θ∗), f(κy), f(κd), and f(σ2) (Higdon et al. 2008; Chang et al.145

2014). Each of the input parameters in θ∗ receives a flat prior on a broad range determined146

by model ensemble design and physical knowledge. The observational error variance σ2 and147

the variance for the discrepancy κd have non-informative inverse-gamma priors with small148

shape parameters. We specify somewhat informative priors for κy,1, . . . , κy,J by specifying149

a large shape parameter in order to avoid numerical instability and identifiability issues150

(Higdon et al. 2008). The posterior distribution resulting from the above model is151

π(θ∗,κy, κd, σ
2|ZR,YR) ∝ `(ZR|θ∗,κy, κd, σ

2,YR)f(θ∗)f(κy)f(κd)f(σ2),

where152

`(ZR|θ∗,κy, κd, σ
2,YR) ∝

∣∣Ση + KTKσ2
∣∣− 1

2 exp

(
−1

2
ZR

T (
Ση + KTKσ2

)−1
ZR
)

f(θ∗) ∝ 1(θ∗ ∈ Θ), Θ represents the range of θ,

f(κy) ∝
J∏
i=1

κ
−ay,i−1
y,i exp

(
− by,i
κy,i

)
, ay,1, . . . , ay,J , by,1, . . . , by,J > 0

f(κd) ∝ κ−ad−1
d exp

(
− bd
κd

)
, ad, bd > 0

f(σ2) ∝ σ−2(aσ+1) exp

(
− bσ
σ2

)
, aσ, bσ > 0.

For each i, we set ay,i = 50 and choose by,i such that the mode of the prior density by,i/(ay,i+1)153

coincides with the MLE of κy,i computed in the emulation stage. For other parameters, we154

impose vague priors by setting ad = 2, bd = 3, aσ = 2, and bσ = 3.155

The synthetic observations used in our perfect model experiment are constructed by156

superimposing a random error generated from a Gaussian process model on the assumed157

true ice sheet status. To make our experiment more realistic, the discrepancy process is158

generated from a different model to the discrepancy term that we use in the equation (S1).159
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The covariance function that we use for the Gaussian process model for simulated discrepancy160

here is a squared exponential covariance having range of 2100 km, partial sill of 2500 m, and161

a nugget of 1 m. Our choice for the simulated discrepancy process is based on the following162

two general assumptions: (i) the discrepancy is statistically identifiable from the emulator163

process, and (ii) SICOPOLIS has an enough skill to reproduce the observed ice profile. (i)164

is related to the value of the range parameter, which controls the effective distance at which165

two spatial locations are uncorrelated. To ensure that the discrepancy process is identifiable166

from the emulator process, we set the range parameter to be very large (80% of the spatial167

range of the model output) so that the discrepancy operates in a different spatial scale168

to the emulator process. (ii) is related to the value of the partial sill, which defines the169

magnitude of the discrepancy. Here we let the value of the partial sill to be reasonably small170

to simulate the situation in which the structural error is not large and therefore SICOPOLIS171

can reproduce the observed ice profile reasonably well. Note that calibration based on any172

framework, including our approach, may yield misleading results if any of the assumptions173

are violated. For example, if the discrepancy process operates over a similar spatial scale174

to the emulator process (i.e. (i) does not hold), the discrepancy causes identifiability issues175

and hence introduces a significant bias in the calibration result. If the magnitude of the176

discrepancy is too large (i.e. (ii) does not hold) compared to the variation between model177

outputs, the calibration results will become essentially non-informative (i.e., the likelihood178

then has little effect on the posterior distribution). Note that these are common issues for179

calibration methods in general. The curves in Figure S1 show that realizations from the180

discrepancy process are clearly identifiable from the difference between model runs.181

Based on the pseudo-observations, we infer the parameters using the MCMC sample182

from the above posterior distribution obtained by the Metropolis-Hastings algorithm (cf.183

Higdon et al. 2009). In particular, we infer the input parameters in θ∗ by investigating184

their marginal density π(θ∗|ZR,YR). In our perfect model experiment, we obtained 300,000185

draws using block updating when estimating the full joint density of all five parameters. The186
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computing time takes about eight hours on a single high-performance core. For inference on187

individual input parameter, only 300,000 draws using block updating is sufficient. In both188

cases, we confirmed that the Monte Carlo chain is well-mixed by comparing the densities of189

the first half of the chain with the entire chain. We find the probability density of the input190

parameters via kernel density estimation for the MCMC sample. The estimated density can191

be easily plotted for visual analysis as shown in Figures 3 and 4. Note that ignoring the192

spatially correlated discrepancy results in a notably biased calibration results in our perfect193

model experiment. See Figure S2 for a comparison of posterior densities with and without194

the discrepancy term.195

5. Ice volume change projection based on calibrated pa-196

rameters197

One important purpose of parameter calibration is making better projections for the198

future ice sheet mass loss. In our illustrative example, the variable that we want to project199

is the ice volume change from present to 2100 in meters of sea level equivalent. For each200

model run, we compute the ice volume change by subtracting the current ice volume from the201

future ice volume. Making future projections based on calibration results requires a function202

that relates input parameter values θ∗ to future changes in ice sheet volume. We construct203

such a function by interpolating the ice volume changes for the 100 input parameter settings204

in our ensemble. Using this function we convert the MCMC chain for the input parameters205

generated in the previous section into Monte Carlo sample for the future ice volume changes.206

Among many possible choices for the interpolator, we use the Gaussian process emulator207

similar to the model described in 3. More specifically, we fit a Gaussian process model for208

the ice volume change over the input parameter space with zero-mean and the covariance209

9



function210

Cov(∆v(θj),∆v(θk); ζ
vol, κvol, φvol) = ζvol1(θj = θk) + κvol exp

(
−

5∑
l=1

|θjl − θkl|
φvoll

)
,

for any given design points θj and θk (j, k = 1, · · · , 100), where ∆v(θ) is the volume change211

at a parameter setting θ, and ζvol.κvol, φvol1 , . . . , φvol5 > 0 are the covariance parameters212

that need to be estimated via MLE. The resulting function can predict ice volume change213

at any given value of θ as the conditional mean given by the standard kriging approach214

(Cressie 1993). Figure S3 shows the marginal surface of the projection as a function of input215

parameters. To validate the emulator constructed here, we have conducted leave-5%-out216

cross-validation. The mean error rate, computed by dividing the RMS by the overall mean,217

is around 16%; the error rate is a little higher than the heuristic upper limit for the generally218

acceptable emulation error (10%) due to the irregular behavior of the volume change surface.219

We obtain a Monte Carlo sample of ice volume projections by supplying the posterior220

sample of the calibrated parameters to the interpolation function. Each element of the221

posterior sample is converted to ice volume change. The predictive density of the ice volume222

projection can be found by applying kernel density estimation. We find the prior density of223

the projections in the same manner; we convert the design points of the existing model runs224

into the ice volume changes and compute the predictive density for it using kernel density225

estimation.226

6. Cross-validation227

To investigate (i) whether the perfect model experiment results shown in the main text228

are sensitive to the values of input parameters assumed as the synthetic truth, and (ii)229

whether the prediction intervals for ice volume projections generated from our method have230

the right coverage, we have conducted leave-one-out cross-validation across all input param-231

eter settings in the ensemble. In other words, we have repeated the same perfect model232

experiment described in the previous sections for all 100 possible different synthetic truths.233
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We summarize the cross-validation results for emulation and calibrated projections in Figure234

S4 and Figure S5, respectively.235

The results in Figure S4 show that our emulator can predict the model output reasonably236

well across all input parameter settings. The predicted ice volume thickness profiles are237

concentrated around the diagonal line that connects the lower left and the upper right corners238

of the plot, and hence the emulator can predict the model output reasonably well for most239

input parameter settings. Note that leave-one-out cross-validation is already rigorous enough240

in our case due to the sparsity of the design points (100 points in 5-dimensional space) for241

the input parameters in our ensemble. We have also conducted leave-10-out cross-validation242

for emulation and the results are essentially the same (not shown).243

The plots in Figure S5 show that the prediction intervals generated from our approach244

achieve the nominal coverage level only when the modern ice volume generated by the syn-245

thetic truth is close enough to the observed volume (i.e. within 10% of the observed value).246

The width of the prediction interval also varies considerably across the different assumed247

truths. Therefore, consistent with the findings in McNeall et al. (2013), selection of the248

assumed truth affects the calibration performance. Another important observation is that249

including the discrepancy term reduces the overconfidence issue that occurs when the syn-250

thetic truths are outside of the 90-110% range. The prediction intervals are overconfident251

when the synthetic truth is outside of this range because the coverage is consistently less252

than 95%. Including the discrepancy term reduces this issue in some degree since it make the253

actual coverage closer to the nominal coverage when the synthetic truth yields the modern254

ice volume that is within at most 70% of the observed volume. However, this correction255

effect is not sufficient to make the prediction intervals achieve the nominal coverage.256

The cross-validation results allow us to examine the interaction between input parameters257

across all possible choices of the synthetic truth. We have computed the rank correlations258

between the input parameters across all 100 ensemble members and summarized their distri-259

butions in Figure S6. From the shapes of the densities we can identify five pairs of parameters260
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that tend to be more negatively correlated: (i) the flow factor and the snow PDD factor, (ii)261

the flow factor and the geothermal heat flux, (iii) the basal sliding factor and the ice PDD262

factor, (iv) the geothermal heat flux and the ice PDD factor, and (v) the ice PDD factor263

and the snow PDD factor.264

7. Summary265

We describe an ice sheet model calibration approach based on PCs of the model output266

and the observational data. We build a GP emulator for the PCs of the model output as267

a fast approximation to the ice sheet model. The calibration model links the observed PCs268

with the input parameters using the GP emulator while taking the systematic discrepancy269

into account. We infer the input parameters along with other statistical parameters in270

the calibration model using MCMC. Combined with projections generated by the ice sheet271

model, the resulting posterior density of the parameters provide calibrated probabilistic272

projections of the future ice sheet volume changes. Our cross-validation results across all273

input parameter settings in the ensemble show that the probabilistic projections achieves274

the nominal coverage rate when the synthetic truth yields a modern ice volume that is close275

to the observed volume.276
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Table 1. Summary of notation
Symbol Definition

p number of model runs
n number of spatial locations for model grid
θil value of lth input parameter in θi for ith model run
θi input parameter setting for ith model run
sj jth location on computer model grid

Y (θi, sj) model output at location sj for input parameter setting θi
Y p× n matrix of all model ensemble
J number of principal components used in emulation
YR
i principal components for ith model run, (Y R

i (θ1), . . . , Y
R
i (θp))

YR p× J matrix of all principal components, (YR
1 , . . . ,Y

R
p )T

kj jth (scaled) principal component basis vector
Ky n× J principal component basis matrix (k1, . . . ,kJ)

η(θ,YR) emulator for principal components
θ∗ true or fitted value of computer model parameter for observational data
ζi nugget for ith principal component emulator
κy,i partial sill for ith principal component emulator
φil range for ith principal component and lth input parameter
Kd kernel basis matrix for discrepancy
aj jth knot location for kernel basis
ν vector of knot processes
Jd number of knot locations
κd variance of knot processes in ν
φd range parameter for discrepancy kernel basis in Kd

Z vector of observational data
ZR principal components for observational data
ε vector of observational errors
σ2 variance of observational errors
K basis matrix for observational data, K = (Ky Kd)

∆v(θ) volume change projection for input parameter setting θ
ζvol nugget for volume change emulator
κvol partial sill for volume change emulator
φvoll lth range for volume change emulator
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List of Figures332

S1 Comparison between (i) residuals between the synthetic truth used in the333

main text (model run #67 in Applegate et al. 2012) and other model runs334

(black solid curves) and (ii) 30 different realizations from the model for the335

simulated discrepancy (red solid curves). The residuals are computed by sub-336

tracting the synthetic truth from each of the other model runs. For better337

display, we show only residual curves whose ranges are within (-500,500). It is338

easy to see that the black curves and red curves are generated from different339

processes, and therefore those two groups of curves can be separated by sta-340

tistical inference (hence the discrepancy is identifiable). The magnitudes of341

the simulated discrepancy processes are well within the range covered by the342

model runs (hence the posterior density of input parameters does not show343

too large variation). 21344

S2 Comparison between calibration results with and without the discrepancy345

term Kdν in the calibration model in (S1). In each panel, we tried to learn346

each of the parameters while fixing the other parameters at their assumed-347

true values. The prior densities are assumed to be uniform over a broad range348

(dashed red lines). While the posterior densities computed by including the349

discrepancy term in the model (solid black curves) pick up the true parameter350

values without notable biases, the posterior densities without the discrepancy351

term (solid blue curves) cannot recover the true values. 22352

S3 Surfaces of ice volume change projections between 2005 and 2100 projected353

onto marginal spaces of all pairs of input parameters. Many local maxima354

and minima are scattered around the parameter space, indicating that the355

surfaces behave very irregularly and exhibit highly nonlinear relationship with356

the input parameters. m sle, meters of sea level equivalent. 23357
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S4 Leave-one-out cross-validation results for the emulation performance. Each358

grey curve shows the comparison of zonal mean ice thickness transects from359

the model output and that from the emulator output for each parameter360

setting. Each boxplot shows the distribution of emulator output for each of361

the evenly spaced bins that span the range of true model output. In spite of362

the fact that our design points for parameter settings are quite sparse (100363

runs in 5-dimensional space) most of the curves are concentrated around 1:1364

line connecting the lower left and upper right corners of the plot, indicating365

that our emulator can reconstruct the original model output reasonably well366

across the input parameter settings. 24367

S5 Leave-one-out cross-validation results for ice volume change projections across368

all 100 input parameter settings as the synthetic truth. The left penal shows369

95% prediction intervals for ice volume change projections across all 100 per-370

fect model experiments conducted for cross-validation. If the interval covers371

the 1:1 line connecting the lower left and upper right corners of the plot, the372

95% prediction interval includes the ice volume projection given by the syn-373

thetic truth. The right penal shows the coverage of those prediction intervals374

as a function of allowed range for the ice volume in 2005 AD relative to the375

observed ice volume. As going from left to right, the synthetic truths used in376

computing the coverages include more “unrealistic” ones in terms of modern377

ice volume. The numbers above the solid black line show how many synthetic378

truths fall into the given ice volume range. The plot shows that (i) the credible379

intervals achieve the nominal coverage level only for the “realistic” synthetic380

truths with modern ice volume within 10% of the observed ice volume, and381

(ii) the discrepancy term reduces overconfidence for the synthetic truths that382

are not within the 10% range. 25383
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S6 Summary of interactions between input parameters computed from leave-one-384

out cross-validation. Each panel shows the distribution of the rank correlation385

between two input parameters across all synthetic truths in our leave-one-out386

cross-validation. Five pairs of input parameters, (i) the flow factor and the387

snow PDD factor, (ii) the flow factor and the geothermal heat flux, (iii) the388

basal sliding factor and the ice PDD factor, (iv) the geothermal heat flux and389

the ice PDD, and (v) the ice PDD factor and the snow PDD factor are tend390

to be more negatively correlated comparing to the other pairs of parameters. 26391
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Fig. S1. Comparison between (i) residuals between the synthetic truth used in the main
text (model run #67 in Applegate et al. 2012) and other model runs (black solid curves) and
(ii) 30 different realizations from the model for the simulated discrepancy (red solid curves).
The residuals are computed by subtracting the synthetic truth from each of the other model
runs. For better display, we show only residual curves whose ranges are within (-500,500).
It is easy to see that the black curves and red curves are generated from different processes,
and therefore those two groups of curves can be separated by statistical inference (hence the
discrepancy is identifiable). The magnitudes of the simulated discrepancy processes are well
within the range covered by the model runs (hence the posterior density of input parameters
does not show too large variation).
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Fig. S2. Comparison between calibration results with and without the discrepancy term
Kdν in the calibration model in (S1). In each panel, we tried to learn each of the parameters
while fixing the other parameters at their assumed-true values. The prior densities are
assumed to be uniform over a broad range (dashed red lines). While the posterior densities
computed by including the discrepancy term in the model (solid black curves) pick up the
true parameter values without notable biases, the posterior densities without the discrepancy
term (solid blue curves) cannot recover the true values.
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Fig. S3. Surfaces of ice volume change projections between 2005 and 2100 projected onto
marginal spaces of all pairs of input parameters. Many local maxima and minima are scat-
tered around the parameter space, indicating that the surfaces behave very irregularly and
exhibit highly nonlinear relationship with the input parameters. m sle, meters of sea level
equivalent.
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Fig. S4. Leave-one-out cross-validation results for the emulation performance. Each grey
curve shows the comparison of zonal mean ice thickness transects from the model output
and that from the emulator output for each parameter setting. Each boxplot shows the
distribution of emulator output for each of the evenly spaced bins that span the range of
true model output. In spite of the fact that our design points for parameter settings are quite
sparse (100 runs in 5-dimensional space) most of the curves are concentrated around 1:1 line
connecting the lower left and upper right corners of the plot, indicating that our emulator can
reconstruct the original model output reasonably well across the input parameter settings.
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Fig. S5. Leave-one-out cross-validation results for ice volume change projections across all
100 input parameter settings as the synthetic truth. The left penal shows 95% prediction in-
tervals for ice volume change projections across all 100 perfect model experiments conducted
for cross-validation. If the interval covers the 1:1 line connecting the lower left and upper
right corners of the plot, the 95% prediction interval includes the ice volume projection given
by the synthetic truth. The right penal shows the coverage of those prediction intervals as a
function of allowed range for the ice volume in 2005 AD relative to the observed ice volume.
As going from left to right, the synthetic truths used in computing the coverages include
more “unrealistic” ones in terms of modern ice volume. The numbers above the solid black
line show how many synthetic truths fall into the given ice volume range. The plot shows
that (i) the credible intervals achieve the nominal coverage level only for the “realistic” syn-
thetic truths with modern ice volume within 10% of the observed ice volume, and (ii) the
discrepancy term reduces overconfidence for the synthetic truths that are not within the 10%
range.
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Fig. S6. Summary of interactions between input parameters computed from leave-one-out
cross-validation. Each panel shows the distribution of the rank correlation between two
input parameters across all synthetic truths in our leave-one-out cross-validation. Five pairs
of input parameters, (i) the flow factor and the snow PDD factor, (ii) the flow factor and the
geothermal heat flux, (iii) the basal sliding factor and the ice PDD factor, (iv) the geothermal
heat flux and the ice PDD, and (v) the ice PDD factor and the snow PDD factor are tend
to be more negatively correlated comparing to the other pairs of parameters.
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