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Abstract. The characterization of fossil-fuel GQffCO>) 1 Introduction

emissions is paramount to carbon cycle studies, but the use

of atmospheric inverse modeling approaches for this pur-

pose has been limited by the highly heterogeneous and nonthe characterization of fossil-fuel GQffCO2) emissions
Gaussian spatiotemporal variability of emissions. Here welS Paramount to carbon cycle studies. ff£@missions are
explore the feasibility of capturing this variability using a the largest net carbon flux at the atmosphere-surface in-
low-dimensional parameterization that can be implementederface Eriedlingstein et a).200§ and spatially disaggre-
within the context of atmospheric GGnverse problems gated (or gridded) ffC@ emissions form a critical input
aimed at constraining regional-scale emissions. We construdfto general circulation and integrated assessment models
a multiresolution (i.e., wavelet-based) spatial parameteriza{Andres et al.2012. An understanding of fossil-fuel emis-
tion for ffCO, emissions using the Vulcan inventory, and ex- Sions is clearly necessary for characterizing the anthro-
amine whether such a parameterization can capture a realigogenic climate impact. In addition, a process-level under-
tic representation of the expected spatial variability of actualStanding of the terrestrial carbon sink requires the quantifi-
emissions. We then explore whether sub-selecting waveletgation of terrestrial biospheric fluxes at fine spatiotemporal
using two easily available proxies of human activity (im- scales, which, in turn, requires the differentiation between
ages of lights at night and maps of built-up areas) yiemsanthropogenic and biospheric fluxes at those scales.

a low-dimensional alternative. We finally implement this  Gridded inventory estimates of ff{G@missions can be de-
low-dimensional parameterization within an idealized inver- fived using socio-economic dat@da and Maksyutq\2011,

sion, where a sparse reconstruction algorithm, an extensioff@yner et al.2010, and such “bottom-up” estimates have
of stagewise orthogonal matching pursuit (StOMP), is usedPeen proposed as a means of monitoring international agree-
to identify the wavelet coefficients. We find that (i) the spa- Ments aimed at mitigating ffCOemissions Racala et a).

tial variability of fossil-fuel emission can indeed be repre- 2010. Gridded inventory estimates are derived from f{CO
sented using a low-dimensional wavelet-based parameterizudgets and produced by a few institutions; Aedres et al.

tion, (ii) that images of lights at night can be used as a proxy(2019 for a list. These budgets are compiled from national
for sub-selecting wavelets for such analysis, and (i) thatand provincial statistics on fossil-fuel production and con-
implementing this parameterization within the described in-Sumption. These large-scale estimates can then be down-
version framework makes it possible to quantify fossil-fuel Scaled to finer spatiotemporal scales using easily observed

emissions at regional scales if fossil-fuel-only £@bserva- ~ Proxies of human activity (and consequently ffE@mis-
tions are available. sions) such as images of lights at night (henceforth “night-

lights”™), population density, etcQda and Maksyutqw2011,
Rayner et al.201Q Doll et al., 2000. More sophisticated
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approaches to the fine-scale bottom-up estimation of $fCO CASA_GFED fluxes; micromoles/m?/sec; June 1-8, 2002
emissions have also begun to emerge, including, for exam-
ple, the Vulcan inventory that includes estimates for the US at
a 10 km and hourly resolution for 200&t{p://vulcan.project.
asu.eduGurney et al.2009. Such approaches rely on de-
tailed reporting and monitoring data, which are not currently
available for many regions of the world.

Although inventory estimates provide a key tool in the
understanding of anthropogenic €@missions, their accu-
racy at large scales depends on the accuracy of reported
national consumption data, e.g., the error in ffC@mis-
sions from China lies in the 15-20% rangérégg et al.
2008. When evaluated at finer spatiotemporal scales, their
accuracy also depends on the method used to disaggregate T Mongtee 0
national/provincial ffCQ emission budgets to finer spatial

scalesPregger et al(2007) showed that two 05invento- B h . ﬂ
ries for Western Europe, for 2003, differed at the grid-cell (a) IOSP Cric 1uxes

45

40

Lattitude

|
-

Latitude

level by 20 %, with a standard deviation of 40 %; at finer res-
olutions, the disagreement worsened. Sources of errors in in-
ventories are discussed in detailAndres et al(2013, Rau- Fossil fuel emissions from Vulcan; micromoles/nf/sec
pach et al(2009 andRayner et al(2010. These uncertain-
ties lead to frequent corrections of sub-national inventories of
combustion productsSgreets et al 2006 and model predic- 0s
tions of CQ concentrations that disagree with observations
locally (Brioude et al.2012. *

Given both the benefits, and the limitations, of inventory- 04
based estimates, interest has emerged in the development of
“top-down” estimates of ffCQ emissions. These estimates o3
rely on attributing the observed variability in G@nd re-
lated trace gas concentrations in the atmosphere to the under-
lying fossil-fuel emissions, through the application of statis-
tical atmospheric inversion methods. Some of the proposed )
approaches, (e.gturnbull et al, 2011) have relied on obser- - - Congrude.
vations of A1 CO, measurements or other non-g@acers.
One challenge with these approaches, however, is a combina- L.
tion of the limited number of available observations and the (b) HCOQ €missions
need to understand emission ratios for any co-emitted tracers.
Atmospheric inversions relying on atmospheric £@ea- Figure 1. Differences in the spatial distribution of biospheric (top)
surements, on the other hand, have primar“y targeted bioand fossil-fuel (bottom) C@ﬂUXGS. The biospheric fluxes are sta-
spheric CQ fluxes, often by first pre-subtracting the fossil- tignary, Wherea§ ﬁQ@emissions are ngn-.stationary and correlated
fuel influence calculated from an inventory; s@iis et al. with h_uman h_abltanon. The qu_xes/emlssmns cover 1-8 June 2002.
(2010 for a review of atmospheric inversion methods. The The b'(.)Spher'CﬂU)fes are obtained from CASA-_GFBEiﬂ[(://www. .
measurements then consist of £€oncentration obtained gIobalflredata.org/mdex.htmIThe p.ost-p.rlocessmg steps to o.btaln
from in Situ or remote-sensing ob i d estimat the fluxes as_plc_;tted are descrlbegaourdjlet aI.(201a.Th_e u_n|ts

- : g9 _0 Servations, an X esuma ¢5f fluxes/emissions are pmoTém 2 of C. The ffCQ emissions

are obtained at a variety of spatiotemporal resolutions for €i-yre calculated by spatiotemporal averaging of the Vulcan inventory.
ther global or regional domains. The statistical approachesote the different color maps; ffCOemissions can assume only
applied typically rely on Gaussian assumptions for flux resid-non-negative values.
uals from prior estimates or other spatiotemporal patterns. In-
vestigations aimed at the estimation of fig@missions are
less common because (1) measurements of §fGanhcen-  of ffCO, emissions at urban scales are beginning to emerge,
trations, (e.g., using\*C0Q,) are expensive and not com- including for Salt Lake City fIcKain et al, 2012, Indi-
prehensive and (2) the statistical assumptions used in inveranapolis Gurney et al. 2012, and SacramentoT¢rnbull
sions aimed at understanding biospheric fluxes are ill-suitecet al, 2011).
to the highly heterogeneous and non-Gaussian spatiotempo-
ral variability of ffCO, emissions. However, some estimates

Geosci. Model Dev., 7, 19011918 2014 www.geosci-model-dev.net/7/1901/2014/


http://vulcan.project.asu.edu
http://vulcan.project.asu.edu
http://www.globalfiredata.org/index.html
http://www.globalfiredata.org/index.html

J. Ray et al.: A spatial parameterization for fossil-fuel carbon dioxide emissions 1903

The goal of the work presented here is to address the sec-
ond limitation above by exploring the possibility of defin-
ing an inversion framework that is specifically targeted at
the characteristics of the spatiotemporal variability of fiCO
emissions at regional scales. We will model spatial variability
at 1I° x 1° resolution. Such a framework would require,
among other things, a low-dimensional spatial parameteriza-
tion of ffCO, emissions, given the data limitations associated
with any atmospheric inversion system. We explore this topic
through a sequence of three specific objectives:

1. Identification of a low-dimensional parameterization
for ffCO2 emissionsffCO, emissions are strongly non-
stationary (see Figl), and any parameterization must
be able to represent such variability. Wavelets, which
are an orthogonal basis set with compact support, are
widely used to model non-stationary fields, e.g., im-
ages Strang and Nguyeri 997 Chan and Sher2005.

We will examine a number of wavelet families to iden-
tify the wavelet type that can represent ffe@missions
most efficiently, i.e., with minimum error if only a lim-
ited number of wavelets were to be retained. The CO
emissions will be obtained from the Vulcan inventory
(for the US only) as a realistic example of what the vari-
ability of true ffCO, emissions is likely to be. This ob-

variability of US ffCO, emissions. A new sparsity-
enforcing optimization method that preserves the non-
negative nature of fflC®emissions will be used to solve
the inverse problem. (The ternsparsityand sparsity-
enforcemenare defined in SecR.) The new sparse re-
construction method is used to ensure an unique solu-
tion and to guard against overfitting (fitting to obser-
vational noise). The optimization procedure will iden-
tify the subset of wavelets in the MSRF that can actu-
ally be estimated from the observations, while “turning
off” the rest. In doing so, it will ensure that the MsRF,
as designed, has sufficient flexibility to extract informa-
tion on ffCO, from the observations. For simplicity, the
synthetic-data inversion will focus only on ffG@mis-
sions. We recognize that an ultimate application with
real data would require a combination of methods to
capture both the biospheric and fossil-fuel signals, or
would require the pre-subtraction of the influence of
biospheric fluxes on observations. For the purposes of
the work presented here, however, the question that we
aim to answer is whether an inversion approach based
on a low-dimensional parameterization is feasible, even
under idealized conditions.

We view this investigation as a methodological first step

jective will ultimately answer the question of whether in the development of an inversion scheme for fi{Cé&nis-

a low-dimensional parameterization is possible for thesions. To that end, we focus on algorithmic and parameter-

type of spatial variability expected in real ffG@mis-  ization issues, and demonstrate our solution in an idealized

sions. setting. We use synthetic-data collected from a measurement
network sited with an eye towards biospheric £flDxes, as

2. Evaluation of the use of a low-dimensional parameter-
ization in combination with easily available proxies of
anthropogenic emissionsor most areas of the world,
fine-scale estimates of ffGOemissions are based on

a network optimized for ffC@ measurement does not ex-

ist. We also ignore emissions outside the US. Further, we
assume that the errors incurred by the transport model are
small, uniform across time and all measurement locations.

downscaling of national inventories using easily ob- 115 the method would need to be extended to be used in

served proxies of human activity, such as maps of night-
lights or of built-up areas (BUA). In this second objec-
tive, we will use the wavelet types selected in the first

a realistic setting; we identify some of these adaptations, as
well as potential starting points for such investigations. The
proposed method, by construction, addresses two issues pe-

objective, and sub-select them using these two proxiegyjiar to ffCO, emissions: (1) it is insensitive to underreport-

of human activity for the United States. We will then

ing of country-wide ffCQ emissions; and (2) it can (approx-

evaluate the degree to which the r_emaining_wavelets Cafimately) capture intense regions of ffG@missions, even
be used to represent the complexity of spatial patterns iy an the spatial parameterization is deficient.

ffCO, emissions. The Vulcan inventory will be used for

The paper is structured as follows. In S&twe review

this purpose too. This objective will answer the ques-he yse of wavelet modeling in inverse problems. In S&ct.
tion of whether an easily observable proxy can be usedy investigate families of wavelets for modeling fig@mis-
to reduce the dimensionality of a wavelet-based spatiakiong and construct two MsRF models, based on nightlights

parameterization for ffC®emission fields. The set of

and maps of BUA. In Sect, we describe the inverse prob-

wavelets selected in this manner form a random field|em and the numerical method used to solve it. In SBct.

model, which we will refer to as the multiscale random
field (MsRF) model.

we perform inversion tests with synthetic data. In Séete
discuss the idealizations adopted in this paper and how they

3. Evaluation of the parameterization in an atmospheric M2y be relaxed. Conclusions are in S&ct.

inversion, using sparse reconstructidn.the third ob-

jective, we will use the reduced basis identified in Ob-
jective 2 within an idealized synthetic-data atmospheric
inversion aimed at characterizing the spatiotemporal
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zation that we construct in Se&is an instance of the latter
type of RF model.
Wavelets are a family of orthogonal bases with compact sup- Wavelets are often used to represent fields, most com-
port (Williams and Amaratungal994 Walker, 2008. They ~ monly, to represent images, e.g., the JPEG2000 stan-
are generated using a scaling functighthat obeys the re-  dard (Taubman and Marcellir2002). Most fields/images are
cursive relationshipy’(x) = >, ci¢'(2x —i). A wavelet¢y  compressible in a judiciously chosen wavelet basis, i.e., most
is generated from the scaling function by taking differences,of the wavelet coefficients are small and can be discarded to
e.g.,¢(x) =3 ;(-1'c1-i¢'(2x —i). The choice of the fil-  form a reduced-rank approximation of the fielVlstead
ter coefficientsc; and ¢’ determine the type of the result- 1999. In Auger and Tangborn(2002, a reduced-rank
ing wavelets. The simplest type is the Haar, which are sym-wavelet model was developed for global, time-variant4CH
metric, but not differentiable. Wavelets can be shrunk andconcentration, which were updated with limited observations
translated, i.e.¢,; = 22¢(2°x —i), wheres is the dilation  ysing a Kalman filter. The selection of wavelets to form the
scale and refers to translation (location). This allows them random field (RF) model was done empirically, by decimat-
to model complex, non-stationary functions efficiently. For jng the fine-scale wavelets. The construction of the RF model
each increment in scale, the support of the wavelet ha|V9Sgan be performed more rigor0u5|y if a prior model is avail-
Wavelets are defined on dyadic (power-of-two) hierarchicalaple. InJafarpour(2011) wavelets were used in the recon-
or multiresolution grids. struction of permeability fields from limited measurements
Consider a domain of sizB, discretized by a hierarchy of  of flow through a porous medium. An ensemble of perme-
meshes with resolutionA D/D ={1,1/2,1/22,...1/2M}.  apility field realizations, drawn from the prior distribution,
Wavelets are defined on each of the levels of the hlerarChiwere used to deve|op a multivariate Gaussian prior distri-
cal mesh and can be positioned at any even-numbered gridyution for the wavelet coefficients. The RF model was cre-
cell 2,0<2i <2°—1, on any scale of the hierarchical ated by discarding wavelet coefficients with small means.
mesh. An arbitrary 1-D func'uog(x) can be represented as |n Romberg et al(2001), the authors constructed a hid-
gx)=w'¢’ (X)+Zs 1 0 - lws,,qbs,,(x), where the co- den Markov model to encode the relationship between the
efficients (or welghts)us,, and w’ are obtained, via projec- wavelet coefficients on adjacent scales of the wavelet tree.
tions of g(x), using fast wavelet transforms. In 2-D, a func- This RF model was used to reconstruct compressively sensed
tion g(x, y), defined on aD x D domain with a hierarchi- signals Duarte et al. 200§ and images He and Carin
cal 21 x 2™ mesh, can be subjected to a wavelet transform2009. Thus the use of wavelet-based RF models to parame-
by applying 1-D wavelet transforms repeatedly, e.g., first byterize and reconstruct complex fields from limited measure-

2 Wavelet modeling in inverse problems

rows and then by columns. Wavelets of scaleave a sup-
port Y5 x 2M=s 0 < s < M and can be positioned (in 2-D
space) at locatioft, j),0 < (i, j) < 2°. A2-D wavelet trans-
form results in 3/ x 2 wavelet coefficients. In general,

M 00
g, y) =w'e'(x, y) + Z Z Wy, i, jPs,i,j (X, ¥),

s=1 i,j

1)

where20® | |20¢)| = (45 — 4*~1), is the set ofi, j) indices
of wavelet coefficients on scale [20¢)| is the size of the
set, i.e., the number of wavelets®). A large number of
fine-scale (i.e., high) wavelets model fine spatial details.

2.1 Wavelet-based random field models

Random field (RF) model€£fessie1993 provide a system-

ments is quite common.

The RF model need not be constructed offline using
a prior; it can also be constructed during the inversion, in
a data-driven manner. This occurs in the compressive sens-
ing (CS) of signals and image€éndes and Wakjr2008.
In this approach, all the wavelets in a field’s representation
are retained and the ones that cannot be estimated from avail-
able observations are identified and removed glg an im-
age of sizelV that can be represented sparsely udingt N
wavelets. Letg, of size Nm, L < Ny < N, be its com-
pressed measurement, obtained by projedjingto a set of
random vectors;, i.e.,g = ¥g= W ew. Here the rows of
W consist of the random vectogs; and columns of® con-
sist of wavelet®;. ® isaN x N matrix whileWw is Ny, x N.
The bulk of the theory that allows reconstruction of the im-
age/field with such observations was establishe@andes

atic way of generating multi-dimensional fields based on val-and Tao(2006, Donoho (2006, and Candes et al(2006.

ues assumed by the model's parameters. The parameters dreCS, the reconstruction @ (alternativelyw) can be per-
independent and can assume random values, thus generatifiymed using a humber of methods. It is posed as an opti-
random fields. Any structure that a field may need to obey,mization problem

e.g., smoothness, is encoded into the model. RF models may

be used for dimensionality reduction, e.g., one can genera’t@"nlmlZe Iwll1, subjecttollg’ —Awllz < €2,
fields on a fine grid by varying a handful of parameters. Al-

ternatively, one can design a RF model to generate fields sys-

tematically, by independently varying parameters that control

structures at different spatial scales. The spatial parameteri-

A=¥d. (2)
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Thus we enforce sparsity iw with its £1 norm (| - ||1), . s=4 o s=6
under the constraint that thie norm (| - ||2) of the mis- ' ‘ ‘ ‘ e ‘
fit betweeng and the image reconstructed framis kept 0  —o—taar 074t oo
within a bound. Some of the methods to solve this problem *°|"  —e—paechies | —6— Daubechies
H H : H —©— Symle | —©— Symle
are basis pursuiGhen et al.1998, matching pursuitilal- oo | oo

0.5

lat and Zhang1993, orthogonal matching pursuiff{opp

and Gilberf 2007 and stagewise orthogonal matching pur-
suit (StOMP;Donoho et al.2012. We will refer to the pro- 2 o4r
cess of enforcing sparsity as “sparsification” and the result ofg
the process will be called the “sparsified” or sparse solution.” o3

Sparsity
o o
R 3

o

o

R
T

2.2 Wavelets and sparsity in inverse problems 02l

o
o
T

Sparsity is often used to solve inverse problems in physics
with the ¥ operator representing the physical procesd.iln
and Jafarpou(2010, sparsity was used to estimate a per- ‘ ‘ ‘ ‘ ‘ ‘
meability field (represented by wavelets) from fluid trans- 0 * o % 0 * order 0%
port observations. A good review of the use of sparsity in

permeability field reconstruction is available dafarpour  Figure 2. Sparsity of representation at scale- 4 (left) ands = 6
(2013. Seismic tomography, which estimates subsurface ge(right) for a cqmbination of wavelet familigs and orders. We find
ologic facies, also has exploited sparsity for reconstruction at Haar provide the sparsest representation.

This has been demonstrated with wavelet representations of

the subsurface and nonlinear forward modélgris et al,
2007 Simons et al.2011). Gholami and Siahkoohi2010

used a split Bregman iteratio@pldstein and Oshe2009  \we jnvestigate a number of wavelet families (Haar,

to solve a seismic tomography problem, imposing sparsityp, pechies, Symlet, and Coiflet) in order to determine which
via soft thresholdinglRonohq 1999. The authors also ex-  ,4\ides the sparsest representatiofyofy is first subjected

panded the imposition of sparsity from the wavelet space 9, 5 \yavelet transform using a chosen wavelet. At each scale
the finite-difference space, i.e., they usedanorm to spar- ¢ \ve remove wavelets that contribute little fp. We set

sify deviations of the solution from a “best-guess”, in the ab- «g 11 wavelet coefficients (“small” is defined as the ra-
sence of constraining observations. In this manner, both the,, |wy.i.j/Wmaxs| < 1073, Wherewmax is the wavelet co-
prior/guessed solution and sparsity are used to regularize thgssicient on scale with the largest magnitude) to zero. We

inversion. _refer to the fraction of zero wavelet coefficients at scale
To summarize, wavelet-based RF models are routinely,g jtssparsity Figure2 plots the sparsity at scale= 4, 6
used in inverse problems. Their dimensionality can be re<q,; 4 |arge combination of wavelet families and orders. We
duced a priori using prior information. Data-driven dimen- ¢.o that the Haar wavelet (also called the Daubechies, or-
sionality reduction can also be performed by enforcing sparyqy 2 wavelet) provides the sparsest representation, making
sity QUring the inversion. This has been demonstrated with; 5 candidate for developing a low-dimensional MsRF for
nonlinear problems too. ffCO» emissions. This is a consequence of the spatial distri-
bution offy — the map ofy (Fig. 1b) is largely empty west
3 Constructing a multiscale random field model of 100 W, which manifest_s i_tself as small cogfficients fqr the
wavelets whose support lie in that region. This favors simpler
We seek an approximate representation of f@@issions,  (non-smooth) and low-order wavelets.
which is low dimensional or sparse, i.e., many of thg; ; Next we investigate the variation of the magnitude of
in Eq. (1) may be set to zero. For this purpose, we use ffCO wavelet coefficients, as a function of the type of wavelets
emissions from the Vulcan inventory, coarsened taeso- ~ uUsed to modefy. We select five wavelet types, e.g., Haar,
lution and averaged over a year to yidld (see Fig.1 for Daubechies, order 4 and 8, and Symlet, order 4 and 6, and
a plot). The emissions are described on* 22 grid, perform a wavelet transform df,. At each scale, we set

M = 6. The finest wavelets, on scale= 6, have a support the “small” wavelet coefficients to zero. In Fi§.we plot
of 2° x 2°; the ones on = 5 are a factor of two bigger, i.e., the average and standard deviation of the non-zero wavelet

they have a support 0’4« 4°. The rectangular domain ex- Coefficients. The means of the wavelet coefficients at the

'o01r

o

I

©
T

3.1 Choosing a wavelet

tents are given by the corners 24N, 63.3 W and 87.5N, finer scales are small, regardless of the wavelet type. We
126.5 W. ffCO, emissions are restricted 1, the lower 48  see that while Haar provide the sparsest representation, the
states of the US. non-zero wavelet coefficients tend to have large magnitudes.

In contrast, smoother wavelets with broader support, e.g.,

www.geosci-model-dev.net/7/1901/2014/ Geosci. Model Dev., 7, 19@18 2014
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Statistics of non-zero wavelet coefficients Reconstruction fidelity versus sparsity
2 . . . . T T T T T
—Haar A
. —— Daubechies 4 Sl
15 —— Daubechies 8| _ Lo
s L —— Symlet 4 2 Lo
E SN X Symlet 6 oo e e
3 1 AN L pecw-- B i 2
S AR g ks
= NN Z o6l = = - Sparsity fnag
S g5k el \3+ T § —e—Reconstruction error °
g t'; ROTURE I 9] —e— Correlation g
-g sEEs ﬂ\#;:::::::‘}‘}‘-t":-"':‘-:s_\-\.w‘ °i oar 04 §
S or £ e
& ]
g — &
= — 0.2f 0.2
_05 L
-1 L L L L 10° 10° 10" 107 10 10 10?
1 2 3 4 5 6 Threshold fraction o

Scale

) o Figure 4. Variation of sparsity, reconstruction erreg @d the
Figure 3. We plot the average value of the non-zero coeffiCients pearson correlation between the true and reconstrdstede.,
(solid lines) and their standard deviation (dashed line), at different

= 7/ .
scaless, whenfy is subjected to wavelet transforms using Haar, p(fv.fv) as afunction ok.
Daubechies 4 and 6, and Symlet 4 and 6 wavelets. We find that while
Hellar mtay grto"l')del the spa;sg_stt_reptresentatlon dighe non-zero (55 measured by these metrics) though we achieve a sparsi-
values tend fo be farge and distinct. fication of about 80%. Even at a sparsity of around 90 %,
the error is less that 10%. Thus a small collection of Haar

Daubechies, order 8, have more non-zero wavelet coeffiwavelets have the ability to reprodusewith an acceptable
cients, but with smaller wavelet coefficients. This is a con-degree of error. This low-dimensional character of a Haar
sequence of the spatial distributionfgf (Fig. 1) which has ~ representation ofy can be invaluable in an inverse prob-
sharp gradients, placing smooth wavelets at a disadvantagéem predicated on sparse observations, and henceforth, we
In Fig. 3, we also see that the means and standard deviation4ill proceed with Haar wavelets as the basis set of choice for
shrink, especially after scale= 3; further, the distributions ~ representing ffC@emissions. Figuré shows the decompo-
of wavelet coefficients arising from the different wavelet Sition offy on aM = 6 hierarchy of Haar wavelets.
types begin to resemble each other. This arises from the fact We will use wavelets selected using the (single) nightlight
that there are sharp boundaries around the areas wherg ffc@nd BUA maps to estimate weekly ffGGmissions. Our
emissions occur; when subjected to a wavelet transform, théests above show that they model annually averaged Vulcan
region in the vicinity of a sharp boundary gives rise to large €missions adequately, and we assume that while emissions
wavelet coefficients down to the finest scale. Thus the fewmay wax and wane with time, their spatial distribution does
non-zero wavelet coefficients at the finer scales assume sinflot vary sufficiently to require a new wavelet selection. We
ilar values, irrespective of the wavelet type. base this assumption on ffG@missions’ correlation with
Finally, we check the accuracy of a Haar representation ofiuman activities and static sources like powerplants which do
fv at various levels of sparsity. Again, we define a “small” not d.isplay large spatial djslocations with time. the.that the
wavelet agwy ;. j/wmaxs| < @. We perform a wavelet trans- location and strengths of intense sources of ff@missions,
form of fy using Haar wavelets and sparsify (set small such as powerplants, can be found at the CARMA (Carbon

wavelets to zero) using 16 <o <1. We then perform Monitoring for Action; websitenttp://carma.oryy Note, also,
an inverse transform to reconstruct a "sparsifieﬁ”. In that CARMA isnotpeer-reviewed and only provides data for

Fig. 4, we plot overall sparsity, reconstruction errer= a limited number of years (version 3.0 has data only for 2004

Iy’ —fvil2/lIfv ]2 and the Pearson correlation between theand 2009).
true and reconstructefg as a function ofv. We define the 3.2  cConstructing a random field model
Pearson correlation betweén andfy as
We seek a spatial parameterization for ffC@missions, of

— —  covfy,
0 (fvl’fv> — & the form
O’fio'ff/
AR LY, M
_ ! g/ L. . P (A)
wheresZ andafi, are the variances of the true and recon- =2 @ + ZlZwS,l,j¢s,!,jv {s,i,j} e WY, )
s=11i,j

\ \
structed fluxes and cd¥1, Z») is the covariance between
two random variableg1 andZ,. Here|| - |2 denotes thé» where W® is a set containing a small number of
norm. We find that forx < 102 there is practically no error Haar bases. We will investigate the usefulness of an
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Annually averaged Vulcan emissions Emissions modeled with s = 1 wavelets
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Figure 5. Annually averaged Vulcan emissiohg are modeled using Haar wavelets on scales 1, 2, 4, 5, and 6. The figure at the top (left)
plotsfy, and the rest its decomposition across wavelet scales. Note that we have displayed only the relevant part of tHé syzMigad
on which wavelets are described.

easily observed proxyX of human activity (which affected by economic factorsRaupach et al. 2009,
correlates with ffCQ emissions) to select the com- and we will explore maps of built-up area as an alterna-
ponents of W®. Radiance calibrated nightlights tive (http:/www.sage.wisc.edu/atlas/maps.php?datasetid=
(http://www.ngdc.noaa.gov/dmsp/download_radcal.html  18&includerelatedlinks=1&dataset=1B. Miteva, personal
Cinzano et al.2000 have been used for constructing communication, 2013). The map of BUA uses nightlight
ffCO, inventories Doll et al, 2000 and are an obvi- radiances in its computations, and so these rareinde-
ous choice forX. However, nightlight radiances are also pendent proxies; however, the BUA map also includes
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information from IGBP (International Geosphere—Biosphereprovide a guess fdrin an inverse problem, but, by itself, is
Programmehttp://www.igbp.neff land-cover map. The two a poor predictor, regardless of the proxysed to create it.
choices forX will be compared with respect to (1) sparsity,
(2) the correlation betweeX andfy, and (3) the ability of ) o
W to capturey. 4 Formulation of the estimation problem

In Fig. 6 (top row), we plot maps of the two proxies, coars-

ened to 1 resolution. Comparing with Figl (bottom), we In this section, we pose and solve an inverse problem to esti-

mate ffCQ emissions using the MsRF developed in S8ct.

see that they bear a strong resemblanég Ve subjeck to The method is new, and uses a sparse reconstruction method
a wavelet transform and set all wavelet coefficignts; ; . R .
antgi ;| < that is summarized in Sectd.1 and 4.2, full details are

8 to zero, wher@ is a user-defined threshold. The bases with . . : .
non-zero coefficients are selected to constitite’. We re- 1N Ray et al(2013. The inversion technique is most relevant

constitute a “sparsified” prox)®), using just the bases in in situations where accurate, finely gridded ffivento-
W, and compute the correlation betweéf) andfy. Fi- ries are unavailable, and one has to take recourse to easily
naIIy, we projectfy onto W®, obtain its “sparsified\{’.form observable proxies for information on the spatial pattern of

—) —) — — ffCO, emissions.

f and compute the errary = ||f —fvll2/lIfv]i2- In ; ; ; ;

v dlik P f=1v = viizzlvil2. The inverse problem is predicated on synthetic observa-
Fig. 6 (middle row), we plot the sparsity, correlation ang

: ) . tions,yObS, of COp concentrations measured at 35 towers (a
for various values ob. We do so for both nightlights and eyork that existed in 2008). These are plotted as markers
BUA. For nightlights, we achieve a sparsity of around 0.75, ¢ g: seeRay et al (2013 for their precise locations and

for§ < 1072, i.e., we need to retain only a quarter of the Haar names. The measurements are related to §f@@issions de-
bases to represent nightlights. The nightlights so representegd.ined on a finely gridded domain as
bear a correlation of around 0.7 wit{a, and achieve an error

e of around 0.1. Note that this measure of error reflects thg,obs _ y 4 ¢ — Hf 4 ¢, (5)
inability of the MsRF to represent fine-scale details, and not
spatially aggregated quantities, which are represented morehereH is the transport or sensitivity matrix, obtained from
accurately. In contrast, using BUA as a proxy, we see that transport modely is the CQ concentration predicted
while the sparsity achieved is similar, the correlation betweenby the atmospheric model, which differs from its measured
X©) andfy is slightly higher. The behavior af; is similar,  counterpart by an errar. The ffCO, emissiond are defined
except the error increases faster wiflas compared to night-  on a grid, and are assumed to be non-zero only wiiin
lights. However both nightlights and BUA maps show signif-  The estimation of C@fluxes, typically biospheridfassar
icant correlation witty and the sparsified set of Haar bases et al, 2011 Chatterjee et al2012 Gourdji et al, 2012, is
that they (i.e., the proxies) provide (usig= 102 in both  usually posed as the minimization of an objective function
the cases) allow us to construct a low-dimensional parame-
terization of ffCQ emissions.

Finally, we useX® to create a “prior modelfy = cX®  J = (y°**—HH RGP~ H) + (F—fm) TQ X —fm), (6)

for ffCO2 emissionsf. ¢ is computed such that
wherefy, are “prior” (or guessed) fluxes arﬁlgl is a di-

agonal matrix containing the standard deviation of Gaussian
/WdA = /fprdA = (4) noise used to model measurement error. The discrepancy
R R between the “true” and prior fluxes is modeled as a multi-

variate Gaussian field, whose covariai@és calculated of-

C/ (wEX)¢/+Zw(X),S,i,j‘pl,i,j) dA, {li,j)e W), fline. In contrast, in our ffC@ inversion,f will be modeled

iig using the MsRF rather than a multivariate Gaussian field.

R Further, the second term in Ep)(is omitted and the ef-
fect of the “guessed” or “prior” emissiorfg, is introduced
whereR denotes the lower 48 states of USA awdk) = iy 3 manner that is amenable to sparse reconstruction (see
{wex),s5,i,;} are coefficients from a wavelet transformXf 5ot 4.1). The calculation of the sensitivitids is described
This implies thatc is calculated such that bofly andfyr  in detail inGourdii et al.(2012; we have reused them in our

provide the same value for the total emissions for the &JS. \york. The elements of thid matrix are calculated using the

is the ratio of the aggregate total of ffG@missions to the  gigchastic Time-Inverted Lagrangian Transport Mod (
aggregate total of radiances (for the nightlights) or percentet 5|, 2003, with wind fields from the Weather Research
ages of built-up areas. In Fig. (bottom row), we plot the g Forecasting modelSkamarock and Klem®008, ver-
error (for —fv). (The Supplement contains a scatter plot of sjon 2.2, driven by 2008 meteorology. Details of the WRF
for vs.fy.) We see that neither nightlights nor the BUA map settings and the nested grid used for the wind fields to cal-
provide afp; that is an accurate representatiorfwfthough  culateH are in Gourdji et al.(2012. Concentration foot-
they share similar spatial patterns, i.jy, may be used to prints (or sensitivities) were calculated at 3 h intervals by
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Figure 6. Top row: maps of nightlight radiances (left) and BUA percentage (right), for the US. Middle row: the sparsity of representation, the
correlation betweeX andfy and the normalized errery between the Vulcan emissiofg and the sparsified form obtained by projecting

it on X. These values are plotted for nightlights (left) and the BUA maps (right). Bottom row: plgfgof fy) obtained from nightlights

(left) and BUA maps (right).

integrating the trajectories over a North Americaghx11° obtained from the 3 h sensitivities described above by sim-
grid as described iLin et al. (2003. The sensitivity of  ply adding the 8 24/3 = 64 sensitivities that span the 8-day
the CQ concentration at each observation location due toperiod. Thereafter, the grid cells outsi®ewere removed to
the flux at each grid cell (the “footprint”) is calculated in obtain theH matrix used in this study. The size of thema-
units of ppmv pmot! m? s (ppmv: parts per million by vol-  trix is (KsNs) x (Ngr K), whereKs is the number of tower
ume). ffCQ emissions were averaged over 8-day intervalsmeasurements per yedfs is the number of sensors/towers,
and the sensitivity of to the 8 day-averaged emissions were Ny, is the number of grid cells ifk, the part of the domain
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covered by the lower 48 states of the US @& the number The equivalent of Eq.5) is written as
of 8-day periods that constitute the duration over which the obs ~
L . Yy H®r
emissions are estimated. Y = ~ ~ w = Gw. (8)
0 Rdr
4.1 Posing and solving the inverse problem We incorporate the spatial patterns ¥ into the esti-

S o ) mation procedure by using/(x) to normalizew. Other,
bitrary 8-day period asf. The 8-day period was chosento Ray et al(2013. We rewrite Eq. 8) as

minimize aggregation error. We seek emissions over an en-

>/
tire year, i.e., we seek = {f;},k =1... K. We will model Y ~ Gdiag(wx) diag(w= )w = G'W = (H ‘I’R) /
ye : A x glw w=Gw=[_~ w', (9)
emissions on the? x 2™ M = 6 mesh with wavelets: (Weo) ( (X)> R,

wherew’ = {wy,; j/(c W(x).s,i, )} 15,1, j} € W, is the nor-

M
fe=wid' + Y > weijkdsij. Is.i.j)e WS malized set of wavelet coefficient®, = &5 diagw(x))
s=11ij and<I>;Q/ =dp diag(W(X)).
= dW. (7) The underdetermined system E8) is solved using opti-

. mization. Given the small number of towers (35) and their lo-
Note that® comprises of 0?'))/ those wavelets selected cation (the towers were sited with biospheric fluxes in mind),
using X and contained inW'’. For the entire year, it may not be possible to estimate all the elementa/ofes-
the expression for emissions becontes: {f1,f2,...fx} = pecially those that contribute to the fine-scale detailspf
{@w1, PW3, ... @wg} = ®w. Since®w; models the emis-  Fyrther, a priori, we do not know the identity of these “un-
sions over all grid cells, i.e., over the rectangular region givengstimatable” wavelet coefficients . Consequently, we
by the corners (243N, 63.5 W) and (87.3N, 126.5W),  employ a sparse reconstruction method, based;omini-
and not justR, F contains emissions over the lower 48 states, mjzation, that identifies and estimates the elementg tiat

as well as the region outside it (where we have assumegan be constrained byPS while setting the rest to zero. We
that the emissions are non-existent). We separate out the tWeast the optimization problem as

fluxes by permuting the rows d# o , ] o
minimize Iw'll1, subjectto]Y —G'W |5 < €. (10)
R

Fro :I;R we
F= (FR/) = (5R) W, This is of the same form as ER)(and is solved using
stagewise orthogonal matching pursuit (StOMBpiioho

where®z and® are(Ng K) x (LK) and(Ng K)x (LK)  etal,2012.
matrices, respectively. Herk is the number of wavelets in
W) and N is the number of grid cells ifR’, the region
outsideR put inside the rectangular domain. The modeled Estimates ofw’
concentrations at the measurement towers, causdezyy
can be written ay = HF . For arbitraryw, Fr/, the emis-
sions in the region outsidR, are not zero. Consequently, it
will be necessary to specififr = 0 as a constraint in the
inverse problem.

Specifying the constrairfr, = 0 directly is not very ef-
fi_cient since it Iea_ds th_RfK constraints. _In a global inver- Fr’ and manipulate the emissiofs= {E;},i = 1... Ng K
sion, or at resolutions higher thah:1 1°, this could get very ;. R directly. We start with a guessé&(= [Fz ) and at the

large. Consequently, we adapt an approach from COMPressive, jreration calculate an incrementE™ 1 to the current
sensing to enforce this constraint approximately. ConSideriterateE(m—l)

aMgsx (Nr/K) matrix R, whose rows are direction cosines obs n-1) m=D)

of random points on the surface 8z K -dimensional unit Y~ —HE"™ 7 = Ay~ HAE"™ 7. (11)
sphere. This is called a uniform spherical ensembtaig This is an underdetermined problem, and we seek the
and Donohp2006. The projection of the emission fiekdz/ sparsest set of incrementsE™~Y using StOMP. The

onR, i.e.,RFr: compressively samplész. Mcsisthe num- - increment is used to calculate a correctibr= {&},i =
ber of such projections or compressive samples. Setting thig ..NRK,|&| <1 and updat&" b
) : (12)

projection to zero during inversion allows us to enforce zero
Geosci. Model Dev., 7, 19011918 2014 www.geosci-model-dev.net/7/1901/2014/

4.2 Imposing non-negativity on ffCQO, fluxes

calculated by StOMP do not necessarily
provide non-negative estimates Bf; = ®rw. In practice
negative ffCQ emissions occur in only a few grid cells
and are usually small in magnitude. We devised an iterative
method to impose non-negativity as a post-processing step.
We present a summary here; details arRay et al.(2013.

We use the StOMP solution to gener&te- ®w, discard

AEi(m—l)

E'(m—l)

1

g ; ~1
emissions outsid&k. However, to do so, we add only/cs = sgn AE,-(m ) 1
constraint equations. The computational savings afforded b)g’ N Em=1 ’
imposing theFx, = 0 constraint in this manner is investi- ) (m_’l)

gated inRay et al(2013. E;=E" " expé&).
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The iteration is stopped whely®®S— HE ||o/|ly°PS||2 < €3
for a small value ots.

5 Numerical tests

Numerical tests are performed for the domain between the

corners 24.5N, 63.5% W and 87.8N, 126.5 W. It is dis-
cretized by a ¥ x 2¥, M = 6 mesh, with 4096 grid cells.
Of these Nz = 816 cells lie insideR, while the restNg/
4096— 816= 3280 lie outside ifR’. We estimate emissions
overk=1...K,K =45, i.e., for 45«8 = 360 days (approx-
imately a year). We generate synthetic observati®A%us-
ing the ffCQ, emissions in Vulcan, which provides them only
in R. Hourly Vulcan fluxes are coarsened from Or&solu-

tion to 1°, and averaged to 8-day periods. These fluxes are

multiplied by H to obtain ffCG concentrations at th&s =

35 measurement towers. Observations are available every 3h

and span a full year, i.e., we collekt = 24/3 x 360= 2880
observations per tower. A measurement esror N (0, o) is
added to the concentrations to obtgfiS, as used in Eq8).
The same> is used for all towers and is set to a very low
value of 0.1 ppmv. Although such a value is unrealistically
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Figure 7. CDF of emissions irk, before and after the imposition of
non-negativity, as described in Se4tWe see that the CDF of the
emissions without non-negativity imposed contains a few grid cells
with negative fluxes; further, the magnitude of the negative emis-
sions is small. Thus the spatial parameterization, with sparse recon-

small for real-data inversions, it is used here to isolate thestruction, provides a good approximation of the final, non-negative

impact of the proposed parameterization and inversion ap
proach.

We solve Eg. 10) and enforce non-negativity ofip to
obtainE. The coefficientsv(xy used in Eq. 9) are obtained
from a wavelet decomposition dfr based on nightlights
(Sect.3). The constant in Eq. (@) is obtained by using fluxes
from the Emission Database for Global Atmospheric Re-
search (EDGARDttp://edgar.jrc.ec.europa.eQlivier et al,
2005 for 2005, i.e., instead of using emissions from Vul-
can to calculatéy, we use EDGAR. EDGAR emissions ag-
gregated ovefR are 7.1% higher thafy, resulting in a
correspondingly highee. The RMSE between the two is
0.035 pmoles m?s~1 of C and the Pearson correlation co-
efficient is 0.726. Also, sinceis an aggregate total ovét,
it reflects the I.E.A country total. The following parameters
are used in the inversion process (Sc): ex = 1075, e3 =
5.0 x 1074, Mcs = 13 500, i.e., 300 compressive samples for
each 8-day period. The numerical valuespfand ez were
set by reducing them till the solutiawl became insensitive to
them. The setting foM s is more involved and is described
in Ray et al.(2013. The initial guess fow’ in Eq. (L0) is
zero.

In Fig. 7 we plot the cumulative distribution function
(CDF) of ffCO, emissions before and after the enforcement
of non-negativity. We see the existence of a few grid cells
with negative fluxes, but their magnitudes are not very large
Thus the sparse reconstruction scheme provides a good sta
ing guess for the imposition of non-negativity via the iterative
method described in Seet. In Fig. 8, we plot the true and
reconstructed emissions for the 33rd 8-day periog: 33).

We also plot the estimation erroE; — fy ), averaged over

www.geosci-model-dev.net/7/1901/2014/

emissions.

the 32-day period 33 k < 36. We see that the reconstruc-
tion in the NE quadrant is qualitatively similar to the true
emissions. In contrast, the reconstruction on the west coast
contains significant inaccuracies. For example, we see that
the Los Angeles—San Diego region (southwest quadrant) is
estimated incorrectly. The estimated emissions in the center
of the country (Continental Divide and Great Plains, in the
western quadrants) show similar errors, as well as far more
structure than the true ffCOemissions. The region around
the Gulf of Mexico is also not well estimated. The quality
of the reconstruction in the various regions correlate with the
density of observations towers, though the wind fields also
play an important part. In the regions where the observa-
tions are not very informative, the impact of normalization
by fpr is clear as some of its structure is retained in the es-
timated emissions. These errors are almost entirely at fine
spatial scales.

In Fig. 9 (top) we plot a time-series of errors defined as
a percentage of total, country-level Vulcan emissions. Per-
cent errors in reconstructed emissions §pdare calculated
using Eq. 13).

rt-
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True emissions in 8-day period 33 [micromoles m 2 s™}] 100 K Ek — EV k
Erron (%) = —»  ———=,
0.7 =1 Ev‘k
o whereE; = / ErdA (13)
05 R
o 40
E o andEy ; = f fy (dA,
“ 35 03 =
02 100N Epr— Ev &
Errofp i (%) = — Y  ——,
0.1 K k=1 Ev k
-120  -110 -100  -90 -80 -70 0 WheI'EEpr = /fprdA.
Longitude

Estimated emissions in 8-day period 33 [micromoles m2 s'l]

Here,fy x are Vulcan emissions averaged over #itle 8-
day period and; are the non-negativity enforced emission
06 estimates in the same time period. A positive error denotes an
overestimation by the inverse problem. We see 25% errors
in fpr. The large error is a consequence not only of the dis-
0.4 agreement between EDGAR (from 2005) and Vulcan (from
2002), but also the manner in which they account for emis-
sions. As can be seen, assimilationy8S reduces the error
02 significantly vis-a-visfpr. The least accurate reconstructions
are during spring = 10-15). In order to check the accuracy
of the spatial distribution dE, we calculate the Pearson cor-

Latitude
IS
(=}

w

5]
o
w

i 0 relationsp (E, fv x) andp (fpr, fv 1 ). We see that data assim-
Longitude ilation results in a clear increase in the correlation. When the
Estimation error: k= 33 .. 36 emissions are aggregated/averaged over 32-day periods, the
0 07 correlation increases to about 0.85, whereas the “prior” cor-
Wil 06 relation was around 0.7. Thus the ffg@®missions obtained
n / I ] r‘ . . . . . .
Ll i 05 using a nightlight proxy are substantially improved by the in-
Vil bay n-" 04 corporation ofy°PS. Only about half the wavelet coefficients
3 5 "'%w ld be estimated; the rest were set to zero by the sparse
Wl ¢« O f 03 cou e es ; y p
g ol ‘;. / hh”‘ 02 reconstruction techniqu&@y et al, 2013.
KON \mal Ty |"“| u‘ o1 We next investigate the effect of using BUA maps, in-
g i 'ﬁﬂ.‘r o §tead _of nightlights, as the proxy._Changing the.pro>_<y results
© "l' i ‘ o1 in a different set of wavelets being chosen (nightlights re-
1 ' 02 sulted in aW® of 1031 wavelets; the corresponding num-
2 ) 03 ber for BUA was 1049); further, one wamt a strict sub-
T T S S S—— set of the other. It also results in a different normalization

Longitude in Eq. 9). The inversion was performed in a manner iden-
Figure 8. Reconstruction of the ffC®emissions from the 35 tow- tical to that adopted for the nightlight proxy. In Fig(top)
ers (plotted as diamonds). The true emissions are on top and th@€ See that the ffC@emissions developed using nightlights
reconstructions in the middle. The figures represent emissions foRNd BUA as proxies are similar, as measured by reconstruc-
k =33 (end of August). At the bottom, we plot the estimation error, tion error (Eg.13), though the BUA reconstruction error
(Ex—fy 1), averaged over 38 k < 36. We see that the large-scale tends to be slightly smaller. The aggregated error between the
structure of the emissions have been captured. The west coast of theue and “prior” fluxes remains unchanged (nightlights vs.
US has few towers near heavily populated regions and thus is noBUA) since it just reflects the difference between EDGAR
very well estimated. On the other hand, due to the higher density OESm 2005) and Vulcan (in 2002) inventories. In Fig(bot-
towers in the northeast, the true and estimated emissions are qu bm) we plot the spatial correlation between the true, recon-
g?“‘:ﬁg ::gl?jlagfdce(sr:geggr; error are low. Emissions have units gy, ted and “prior” fluxes. The correlation between true and
H ' reconstructed emissions (from BUA) tends to be worse than
the nightlight reconstruction. The correlationfgf with true
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Figure 10. Top: emission reconstruction error in the NE (blue) and

Figure 9. Comparison of reconstruction error and correlations. Top: i . g
NW (black) quadrants, when performed with BUA (line) and night-

we plot the error between the reconstructed and true (Vulcan) emis- : ;
sions in black (using nightlights as priors) and in blue (using BUA lI9hts (symbols) as proxies. We see that the NW quadrant is very
priors). We plot the error betwedg: and Vulcan emissions using badly constrained and the BUA-based estimates have very large er-

dashed lines — black for nightlights and blue for BUA. We see that0rs- The errors in the NE quadrant are far smaller and very similar
assimilation ofy°Sleads to significantly improved accuracy vis-a- When generated using the competing proxies. Bottom: the compari-
vis for. Bottom: we plot the accuracy of the spatial distribution of s_on_of correlations between true and reconstructed emissions shows
the reconstructed emissions. The Pearson correlatidg, fy ;) similar trends.

and p (fpr, fy ) show that incorporatingObs marginally improves

the spatial agreement of estimated emissions vs. the true one when

using nightlights, though the results are less clear for BUA priors. In Fig. 10 we investigate the differences between the
If the emissions are averaged over 32-day periods, rather than 8-dayightlight- and BUA-based reconstructions at the quadrant
perioqls,the cqrrelation wit_h true (Vulcan) emissions rises to aroundeye|. \We see in Fig10 (top) that the difference between
0.85, irespective of the prior used. nightlight- and BUA-based reconstruction errors in the NE
quadrant are smaller than those for the NW quadrant. Thus,
while the fp; from nightlights and BUA are quite different

emissions from Vulcan are different for nightlights and BUA F}see the last row of Fig6), the estimated emissions are

reflecting the distinct spatial difference between them as seell Il informed byy®® in the NE quadrant and the impact

in Fig. 6. This results in the difference between the two of the proxies is small. This is not the case for the NW

dashed lines. Averaging over 32-day intervals improves the . :
correlation and makes them almost indistinguishable fromquadrant, where the reconstruction based on BUA is clearly

. . L much worse than the nightlight-based reconstruction. This is
those obtained using nightlights. L . : .
not surprising given the paucity of towers there (see 8)g.
which increases the impact &f. In Fig. 10 (bottom) we
plot the correlation of the reconstructed and true emissions
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Difference in estimates in period 34 [micromoles m™? s~ two estimates; it shows differences spread over a large area,
% 12 though their magnitudes are not very big. Thus the “prior”
1 model has a measurable impact on the spatial distribution
08 of the emissions. In Figll (bottom) we ploty predicted
*® [ ] } by the reconstructed emissions (from nightlights as priors)
n ' e at 3 towers. The towers were chosen to represent the range
s“hH | Y n 04 of the ffCQO, signal strengths encountered in our test cases.
£ | s Y ) 02 We see that the ffC®concentrations are well reproduced
S m i 0 by the estimated emissions. Further, note that the measure-
" . -0.2 ment noise ¢ = 0.1 ppmv) is relatively large compared to
30 SN oe 04 some of the observations. Thus, the lack of fidelity at the
06 smaller scales (seen in Fig) does not substantially impact
25 os the measurements. This is due to the weak strengths of the er-
2120 -110  -100 -9  -80  -70 roneous emission sources (while a few may be intense, they
Longitude are present only over a small area) and their distance from
the towers.

Observed and predicted 002 concentrations
1.2

T T
O AMT; observed
AMT; predicted

1 O FRD; observed 1 6 Discussion

FRD; predicted

©  NGB; observed
—— NGB; predicted

The numerical results in Sec. show that the MsRF and
sparse reconstruction techniques can solve the inverse prob-
lem as formulated in Sect, conditioned on limited mea-
surements of ffCQ concentrations. The solution reproduces
large-scale spatial patterns of the true flux field, and some
of the finer ones. The rough spatial nature of the emission
field is preserved in the estimates. Furthermore, the method
is insensitive to underreporting of ffG@missions by coun-
‘ ‘ ‘ ‘ ‘ ‘ tries which are used to construct inventories such as EDGAR.
10 20 30 40 50 60 70 Inventories are used only to calculatén Eq. @) which ap-
Observation number ) K )
pears as a normalization constant in E9). The accuracy of
Figure 11. Top: comparison of emission estimates developed usingthe estimates (the constraif¥ — G'w/| |% < €2 in Eq. (L0)
for constructed from nightlight radiances and BUA maps. We plot is unaffected by the value ef The chief source of errors in
the difference between the two estimates. We see that differencege estimates is the paucity of observations sensitive to fossil-
are not localized in any one area. Bottom: prediction of M0N-  fyel-emitting regions. Regions with low tower density, e.g.,
centratlons at three measurement Iocatlons., using the trqe (Vulcaqhe western quadrants in Fig, have large errors due to the
plotted with s_ymbols)_and reconstructed emissions (blue lines) OVeE it ffCOj signal at existing observational sites. One limi-
an 8-day period (Period no. 31). Observations occur every 3h. We . o . 5
see that the concentrations are accurately reproduced by the es ation O.f the determlms.tlc estimation method preseme.d he_re
mated emissions. is that |_t does not provide any measure of the uncertainty in
the estimates. The numerical parameterss and M¢s are
not significant sources of uncertainty since they were set at
in the NE and NW quadrants. We see that there is little tovalues where the solution of the inverse problem became in-
choose between the correlations generated using nightlightsensitive to them.
vs. the BUA-based emission estimates. Again, due to the Given our focus on the algorithmic issues in the esti-
larger density of towers in the NE, the correlations are highemation of ffCQ emissions under realistic conditions, the
there. Thus, while Figs (middle row) showed that BUA had inverse problem that we constructed is idealized and em-
a slightly better correlation with true (Vulcan) emissions, its bodies a number of simplifications. We have used a sen-
larger errors, as seen in Fi§.(bottom row) lead to a less sor network (that existed in 2008) that was sited with an
accurate reconstruction. This result is also a testament to theye towards estimating biospheric €fluxes. This network
inadequacy of/°S over the whole country for constraining is therefore not optimized for constraining ffG@mission
ffCO, emissions; had there been sufficient data to infesm  sources, leading to a faint ffGGsignal (< 2 ppmv). This
the impact offp would have been minimal. made the use of a small model-data mismatch error neces-
Next, in Fig. 11 (top) we compare the estimated emis- sary for the synthetic-data experiments presented laete (
sions for the 34th 8-day period developed from the two0.1ppmv), a value that would not be realistic for inversions
competing prior models. We plot the difference between theusing real data. The experiments conducted here also assume

Concentration, ppmv of C

-0.2
0
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the availability of observations that isolate the ffe@®ig- coefficients (when using the nightlights-derived MsRF) from
nal, which would either require observations of a fifi®  35x 8 x 8 = 2240 measurements. This is not an underdeter-
specific tracer, or the pre-subtraction of the influence of bio-mined problem, even though a sparse reconstruction method
spheric fluxes from observations. Some of the other simplifi-was required to remove fine-scale structures (wavelets) in the
cations used in the setup, on the other hand, are common temission field that did not affect the measurements. We were
synthetic-data inversion experiments focusing on biospheri@ble to constrain the coefficients of the remaining wavelets
fluxes and reported elsewhere, e@ourdji et al.(2010. For  without imposing a temporal correlation structure. Such cor-
example, we have ignored emissions outsilein a real-  relations could be used if ffC£fluxes were to be estimated
istic ffCO, estimation problem, emissions outsi®ewould at finer temporal resolution.
have to be modeled as boundary conditions to the examined The spatial parameterization and the sparse reconstruction
domain, as is done for regional biospheric inversion studiesmethod can also be used in observation system simulation
Furthermore, we have also assumed a constant data—modekperiments (OSSESs) to inform the design of measurement
mismatch §) across all sensors, and site- and seasonallynetworks targeted for ffC®emissions. The approach can be
varying model-data mismatch statistics would be requiredused to decide locations of towers, the frequency at which
when real data are used. ffCO2 measurements are to be made, and the fidelity required
The use of proxies to construct the MsRF for ffe@mis- in measurements and the transport model. The trade-offs and
sions can be a source of estimation errors and consequentlgpsts of various ffC@measurement technologies can also be
in Sects3 and5, we investigated nightlights and BUA maps studied in such a setting. In addition, OSSEs can reveal the
to explore the impact of using such proxies for sub-selectingmportance of a more accurate MsRF, e.g., one augmented
the wavelets to be used in the inversion. Errors in the prox-using thermal imagery, vs. the errors introduced in the esti-
ies themselves (i.e. inaccuracies in the nightlights and BUAmates due to limited measurements.
data themselves) are unlikely to be a large source of estima-
tion errors in the inversion, as these proxies are used only
to select wavelets, whereas the wavelet coefficients are ob? Conclusions
tained in the inversion step. Rather, inversion errors can stem
from the fact that nightlights correlate with energy consump-We have devised a multiresolution parametrization (also
tion and not energy production. This can lead to two types ofknown as a multiscale random field or MsRF model) for
errors: (1) when a fine-scale wavelet covering a region withmodeling ffCQ emissions at lresolution. The MsRF mod-
a strong ffCQ source and little human habitation is omit- els emissions in the lower 48 states of the US and is designed
ted from the MsRF and (2) when we choose a “superfluousfor use in atmospheric inversions. The parameterization em-
fine-scale wavelet in a region with much human activity andploys Haar wavelets which provide a sparser representation
little emission. An example of the first type of error is large than other smoother wavelets with wider support. This is the
powerplants, which are usually sited far from densely popu-first “abstract” parameterization, i.e., a RF model for spa-
lated areas. In such a case, the point-source is modeled by thilly resolved ffCQ emissions.
coarse-scale wavelet that covers the area in question, leading The dimensionality of the MSRF was reduced by judi-
to a “smeared” reconstruction. Such large point-sources otiously selecting its component Haar wavelets using proxies
ffCO, emissions could instead be obtained from databasesf human activity, and therefore indicative of ffG@mis-
such as CARMA and incorporated directly into the inver- sions. We developed two MsRFs based on images of lights at
sion. Alternatively, one could augment the wavelets in thenight and maps of built-up areas. The former had a slightly
MsRF with those chosen using a second proxy, e.g., thermadbwer dimensionality but was not a strict subset of the latter.
images, where large emitters of heat can be easily detectedhe MsRF models were also used to develop two approxi-
The second type of error, that of the “superfluous” wavelet, ismate emission models that differed in their fine spatial de-
rectified when it is simply removed by the sparse reconstruc4ails.
tion scheme in the inversion step. An exception can occur if The MsRF model was tested in a synthetic-data inversion.
the superfluous wavelet contains a measurement tower in it¥ime-dependent ffC®emissions, averaged over 8-day pe-
supportandis far from all other towers. Since measurement riods, were estimated for a 360-day period from measure-
towers are very sensitive to fluxes in their vicinit@e€rbig ments of ffCQ concentrations at 35 towers. These obser-
et al, 2009, it could lead to the estimation of a spurious vations were sufficient only for estimating about half the
emission source. wavelets retained in the MsRF model. We used a sparse re
ffCO2 emissions, averaged over 8-day intervals and pred-<onstruction technique, namely Stagewise Matching Orthog-
icated on 3-hourly measurements, were estimated as indesnal Pursuit (StOMP), to identify and estimate wavelet coef-
pendent variables, i.e., without imposing a temporal correladficients in MsSRF that could be informed by the available data.
tion or modeling their temporal evolution in any way. The The StOMP estimates were not necessarily non-negative (as
reason is as follows. Estimation of ffGQemissions over ffCO> emissions are required to be) and we devised an it-
a 8-day interval requires the calculation of 1031 waveleterative, post-processing procedure to impose non-negativity.
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