
Geosci. Model Dev., 7, 1901–1918, 2014
www.geosci-model-dev.net/7/1901/2014/
doi:10.5194/gmd-7-1901-2014
© Author(s) 2014. CC Attribution 3.0 License.

A multiresolution spatial parameterization for the estimation of
fossil-fuel carbon dioxide emissions via atmospheric inversions

J. Ray1, V. Yadav2, A. M. Michalak 2, B. van Bloemen Waanders3, and S. A. McKenna4

1Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551, USA
2Carnegie Institution for Science, Stanford, CA 94305, USA
3Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0751, USA
4IBM Research, Smarter Cities Technology Centre, Bldg 3, Damastown Industrial Estate, Mulhuddart, Dublin 15, Ireland

Correspondence to:J. Ray (jairay@sandia.gov)

Received: 28 December 2013 – Published in Geosci. Model Dev. Discuss.: 6 February 2014
Revised: 2 July 2014 – Accepted: 18 July 2014 – Published: 3 September 2014

Abstract. The characterization of fossil-fuel CO2 (ffCO2)
emissions is paramount to carbon cycle studies, but the use
of atmospheric inverse modeling approaches for this pur-
pose has been limited by the highly heterogeneous and non-
Gaussian spatiotemporal variability of emissions. Here we
explore the feasibility of capturing this variability using a
low-dimensional parameterization that can be implemented
within the context of atmospheric CO2 inverse problems
aimed at constraining regional-scale emissions. We construct
a multiresolution (i.e., wavelet-based) spatial parameteriza-
tion for ffCO2 emissions using the Vulcan inventory, and ex-
amine whether such a parameterization can capture a realis-
tic representation of the expected spatial variability of actual
emissions. We then explore whether sub-selecting wavelets
using two easily available proxies of human activity (im-
ages of lights at night and maps of built-up areas) yields
a low-dimensional alternative. We finally implement this
low-dimensional parameterization within an idealized inver-
sion, where a sparse reconstruction algorithm, an extension
of stagewise orthogonal matching pursuit (StOMP), is used
to identify the wavelet coefficients. We find that (i) the spa-
tial variability of fossil-fuel emission can indeed be repre-
sented using a low-dimensional wavelet-based parameteriza-
tion, (ii) that images of lights at night can be used as a proxy
for sub-selecting wavelets for such analysis, and (iii) that
implementing this parameterization within the described in-
version framework makes it possible to quantify fossil-fuel
emissions at regional scales if fossil-fuel-only CO2 observa-
tions are available.

1 Introduction

The characterization of fossil-fuel CO2 (ffCO2) emissions
is paramount to carbon cycle studies. ffCO2 emissions are
the largest net carbon flux at the atmosphere–surface in-
terface (Friedlingstein et al., 2006) and spatially disaggre-
gated (or gridded) ffCO2 emissions form a critical input
into general circulation and integrated assessment models
(Andres et al., 2012). An understanding of fossil-fuel emis-
sions is clearly necessary for characterizing the anthro-
pogenic climate impact. In addition, a process-level under-
standing of the terrestrial carbon sink requires the quantifi-
cation of terrestrial biospheric fluxes at fine spatiotemporal
scales, which, in turn, requires the differentiation between
anthropogenic and biospheric fluxes at those scales.

Gridded inventory estimates of ffCO2 emissions can be de-
rived using socio-economic data (Oda and Maksyutov, 2011;
Rayner et al., 2010), and such “bottom-up” estimates have
been proposed as a means of monitoring international agree-
ments aimed at mitigating ffCO2 emissions (Pacala et al.,
2010). Gridded inventory estimates are derived from ffCO2
budgets and produced by a few institutions; seeAndres et al.
(2012) for a list. These budgets are compiled from national
and provincial statistics on fossil-fuel production and con-
sumption. These large-scale estimates can then be down-
scaled to finer spatiotemporal scales using easily observed
proxies of human activity (and consequently ffCO2 emis-
sions) such as images of lights at night (henceforth “night-
lights”), population density, etc. (Oda and Maksyutov, 2011;
Rayner et al., 2010; Doll et al., 2000). More sophisticated
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approaches to the fine-scale bottom-up estimation of ffCO2
emissions have also begun to emerge, including, for exam-
ple, the Vulcan inventory that includes estimates for the US at
a 10 km and hourly resolution for 2002 (http://vulcan.project.
asu.edu; Gurney et al., 2009). Such approaches rely on de-
tailed reporting and monitoring data, which are not currently
available for many regions of the world.

Although inventory estimates provide a key tool in the
understanding of anthropogenic CO2 emissions, their accu-
racy at large scales depends on the accuracy of reported
national consumption data, e.g., the error in ffCO2 emis-
sions from China lies in the 15–20 % range (Gregg et al.,
2008). When evaluated at finer spatiotemporal scales, their
accuracy also depends on the method used to disaggregate
national/provincial ffCO2 emission budgets to finer spatial
scales.Pregger et al.(2007) showed that two 0.5◦ invento-
ries for Western Europe, for 2003, differed at the grid-cell
level by 20 %, with a standard deviation of 40 %; at finer res-
olutions, the disagreement worsened. Sources of errors in in-
ventories are discussed in detail inAndres et al.(2012), Rau-
pach et al.(2009) andRayner et al.(2010). These uncertain-
ties lead to frequent corrections of sub-national inventories of
combustion products (Streets et al., 2006) and model predic-
tions of CO2 concentrations that disagree with observations
locally (Brioude et al., 2012).

Given both the benefits, and the limitations, of inventory-
based estimates, interest has emerged in the development of
“top-down” estimates of ffCO2 emissions. These estimates
rely on attributing the observed variability in CO2 and re-
lated trace gas concentrations in the atmosphere to the under-
lying fossil-fuel emissions, through the application of statis-
tical atmospheric inversion methods. Some of the proposed
approaches, (e.g.,Turnbull et al., 2011) have relied on obser-
vations of114CO2 measurements or other non-CO2 tracers.
One challenge with these approaches, however, is a combina-
tion of the limited number of available observations and the
need to understand emission ratios for any co-emitted tracers.
Atmospheric inversions relying on atmospheric CO2 mea-
surements, on the other hand, have primarily targeted bio-
spheric CO2 fluxes, often by first pre-subtracting the fossil-
fuel influence calculated from an inventory; seeCiais et al.
(2010) for a review of atmospheric inversion methods. The
measurements then consist of CO2 concentration obtained
from in situ or remote-sensing observations, and estimates
are obtained at a variety of spatiotemporal resolutions for ei-
ther global or regional domains. The statistical approaches
applied typically rely on Gaussian assumptions for flux resid-
uals from prior estimates or other spatiotemporal patterns. In-
vestigations aimed at the estimation of ffCO2 emissions are
less common because (1) measurements of ffCO2 concen-
trations, (e.g., using114CO2) are expensive and not com-
prehensive and (2) the statistical assumptions used in inver-
sions aimed at understanding biospheric fluxes are ill-suited
to the highly heterogeneous and non-Gaussian spatiotempo-
ral variability of ffCO2 emissions. However, some estimates
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Figure 1. Differences in the spatial distribution of biospheric (top) and fossil-fuel (bottom) CO2 fluxes.
The biospheric fluxes are stationary, whereas ffCO2 emissions are non-stationary and correlated with
human habitation. The fluxes/emissions cover June 1 - June 8, 2002. The biospheric fluxes are obtained
from CASA-GFED (http://www.globalfiredata.org/index.html). The post-processing steps to obtain the
fluxes as plotted are described in Gourdji et al. (2012). The units of fluxes/emissions are µmols−1 m−2

of C. The ffCO2 emissions are calculated by spatiotemporal averaging of the Vulcan inventory. Note the
different colormaps; ffCO2 emissions can assume only non-negative values.
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Figure 1. Differences in the spatial distribution of biospheric (top)
and fossil-fuel (bottom) CO2 fluxes. The biospheric fluxes are sta-
tionary, whereas ffCO2 emissions are non-stationary and correlated
with human habitation. The fluxes/emissions cover 1–8 June 2002.
The biospheric fluxes are obtained from CASA-GFED (http://www.
globalfiredata.org/index.html). The post-processing steps to obtain
the fluxes as plotted are described inGourdji et al.(2012). The units
of fluxes/emissions are µmol s−1 m−2 of C. The ffCO2 emissions
are calculated by spatiotemporal averaging of the Vulcan inventory.
Note the different color maps; ffCO2 emissions can assume only
non-negative values.

of ffCO2 emissions at urban scales are beginning to emerge,
including for Salt Lake City (McKain et al., 2012), Indi-
anapolis (Gurney et al., 2012), and Sacramento (Turnbull
et al., 2011).

Geosci. Model Dev., 7, 1901–1918, 2014 www.geosci-model-dev.net/7/1901/2014/

http://vulcan.project.asu.edu
http://vulcan.project.asu.edu
http://www.globalfiredata.org/index.html
http://www.globalfiredata.org/index.html


J. Ray et al.: A spatial parameterization for fossil-fuel carbon dioxide emissions 1903

The goal of the work presented here is to address the sec-
ond limitation above by exploring the possibility of defin-
ing an inversion framework that is specifically targeted at
the characteristics of the spatiotemporal variability of ffCO2
emissions at regional scales. We will model spatial variability
at 1◦

× 1◦ resolution. Such a framework would require,
among other things, a low-dimensional spatial parameteriza-
tion of ffCO2 emissions, given the data limitations associated
with any atmospheric inversion system. We explore this topic
through a sequence of three specific objectives:

1. Identification of a low-dimensional parameterization
for ffCO2 emissions. ffCO2 emissions are strongly non-
stationary (see Fig.1), and any parameterization must
be able to represent such variability. Wavelets, which
are an orthogonal basis set with compact support, are
widely used to model non-stationary fields, e.g., im-
ages (Strang and Nguyen, 1997; Chan and Shen, 2005).
We will examine a number of wavelet families to iden-
tify the wavelet type that can represent ffCO2 emissions
most efficiently, i.e., with minimum error if only a lim-
ited number of wavelets were to be retained. The ffCO2
emissions will be obtained from the Vulcan inventory
(for the US only) as a realistic example of what the vari-
ability of true ffCO2 emissions is likely to be. This ob-
jective will ultimately answer the question of whether
a low-dimensional parameterization is possible for the
type of spatial variability expected in real ffCO2 emis-
sions.

2. Evaluation of the use of a low-dimensional parameter-
ization in combination with easily available proxies of
anthropogenic emissions.For most areas of the world,
fine-scale estimates of ffCO2 emissions are based on
downscaling of national inventories using easily ob-
served proxies of human activity, such as maps of night-
lights or of built-up areas (BUA). In this second objec-
tive, we will use the wavelet types selected in the first
objective, and sub-select them using these two proxies
of human activity for the United States. We will then
evaluate the degree to which the remaining wavelets can
be used to represent the complexity of spatial patterns in
ffCO2 emissions. The Vulcan inventory will be used for
this purpose too. This objective will answer the ques-
tion of whether an easily observable proxy can be used
to reduce the dimensionality of a wavelet-based spatial
parameterization for ffCO2 emission fields. The set of
wavelets selected in this manner form a random field
model, which we will refer to as the multiscale random
field (MsRF) model.

3. Evaluation of the parameterization in an atmospheric
inversion, using sparse reconstruction.In the third ob-
jective, we will use the reduced basis identified in Ob-
jective 2 within an idealized synthetic-data atmospheric
inversion aimed at characterizing the spatiotemporal

variability of US ffCO2 emissions. A new sparsity-
enforcing optimization method that preserves the non-
negative nature of ffCO2 emissions will be used to solve
the inverse problem. (The termssparsityandsparsity-
enforcementare defined in Sect.2.) The new sparse re-
construction method is used to ensure an unique solu-
tion and to guard against overfitting (fitting to obser-
vational noise). The optimization procedure will iden-
tify the subset of wavelets in the MsRF that can actu-
ally be estimated from the observations, while “turning
off” the rest. In doing so, it will ensure that the MsRF,
as designed, has sufficient flexibility to extract informa-
tion on ffCO2 from the observations. For simplicity, the
synthetic-data inversion will focus only on ffCO2 emis-
sions. We recognize that an ultimate application with
real data would require a combination of methods to
capture both the biospheric and fossil-fuel signals, or
would require the pre-subtraction of the influence of
biospheric fluxes on observations. For the purposes of
the work presented here, however, the question that we
aim to answer is whether an inversion approach based
on a low-dimensional parameterization is feasible, even
under idealized conditions.

We view this investigation as a methodological first step
in the development of an inversion scheme for ffCO2 emis-
sions. To that end, we focus on algorithmic and parameter-
ization issues, and demonstrate our solution in an idealized
setting. We use synthetic-data collected from a measurement
network sited with an eye towards biospheric CO2 fluxes, as
a network optimized for ffCO2 measurement does not ex-
ist. We also ignore emissions outside the US. Further, we
assume that the errors incurred by the transport model are
small, uniform across time and all measurement locations.
Thus the method would need to be extended to be used in
a realistic setting; we identify some of these adaptations, as
well as potential starting points for such investigations. The
proposed method, by construction, addresses two issues pe-
culiar to ffCO2 emissions: (1) it is insensitive to underreport-
ing of country-wide ffCO2 emissions; and (2) it can (approx-
imately) capture intense regions of ffCO2 emissions, even
when the spatial parameterization is deficient.

The paper is structured as follows. In Sect.2, we review
the use of wavelet modeling in inverse problems. In Sect.3,
we investigate families of wavelets for modeling ffCO2 emis-
sions and construct two MsRF models, based on nightlights
and maps of BUA. In Sect.4, we describe the inverse prob-
lem and the numerical method used to solve it. In Sect.5
we perform inversion tests with synthetic data. In Sect.6 we
discuss the idealizations adopted in this paper and how they
may be relaxed. Conclusions are in Sect.7.
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2 Wavelet modeling in inverse problems

Wavelets are a family of orthogonal bases with compact sup-
port (Williams and Amaratunga, 1994; Walker, 2008). They
are generated using a scaling functionφ′ that obeys the re-
cursive relationship:φ′(x) =

∑
i ciφ

′(2x − i). A waveletφ
is generated from the scaling function by taking differences,
e.g.,φ(x) =

∑
i(−1)ic1−iφ

′(2x − i). The choice of the fil-
ter coefficientsci and φ′ determine the type of the result-
ing wavelets. The simplest type is the Haar, which are sym-
metric, but not differentiable. Wavelets can be shrunk and
translated, i.e.,φs,i = 2

s
2 φ(2sx − i), wheres is the dilation

scale andi refers to translation (location). This allows them
to model complex, non-stationary functions efficiently. For
each increment in scale, the support of the wavelet halves.
Wavelets are defined on dyadic (power-of-two) hierarchical
or multiresolution grids.

Consider a domain of sizeD, discretized by a hierarchy of
meshes with resolutions1D/D = {1,1/2,1/22, . . .1/2M

}.
Wavelets are defined on each of the levels of the hierarchi-
cal mesh and can be positioned at any even-numbered grid-
cell 2i,0 ≤ 2i ≤ 2s

− 1, on any scales of the hierarchical
mesh. An arbitrary 1-D functiong(x) can be represented as

g(x) = w′φ′(x)+
∑M

s=1
∑2(s−1)

−1
i=0 ws,iφs,i(x), where the co-

efficients (or weights)ws,i andw′ are obtained, via projec-
tions ofg(x), using fast wavelet transforms. In 2-D, a func-
tion g(x,y), defined on aD × D domain with a hierarchi-
cal 2M

× 2M mesh, can be subjected to a wavelet transform
by applying 1-D wavelet transforms repeatedly, e.g., first by
rows and then by columns. Wavelets of scales have a sup-
port 2M−s

×2M−s,0 ≤ s ≤ M and can be positioned (in 2-D
space) at location(i,j),0 ≤ (i,j) < 2s . A 2-D wavelet trans-
form results in 2M × 2M wavelet coefficients. In general,

g(x,y) = w′φ′(x,y) +

M∑
s=1

W(s)∑
i,j

ws,i,jφs,i,j (x,y), (1)

whereW(s), |W(s)
| = (4s

− 4s−1), is the set of(i,j) indices
of wavelet coefficients on scales. |W(s)

| is the size of the
set, i.e., the number of wavelets inW(s). A large number of
fine-scale (i.e., highs) wavelets model fine spatial details.

2.1 Wavelet-based random field models

Random field (RF) models (Cressie, 1993) provide a system-
atic way of generating multi-dimensional fields based on val-
ues assumed by the model’s parameters. The parameters are
independent and can assume random values, thus generating
random fields. Any structure that a field may need to obey,
e.g., smoothness, is encoded into the model. RF models may
be used for dimensionality reduction, e.g., one can generate
fields on a fine grid by varying a handful of parameters. Al-
ternatively, one can design a RF model to generate fields sys-
tematically, by independently varying parameters that control
structures at different spatial scales. The spatial parameteri-

zation that we construct in Sect.3 is an instance of the latter
type of RF model.

Wavelets are often used to represent fields, most com-
monly, to represent images, e.g., the JPEG2000 stan-
dard (Taubman and Marcellin, 2002). Most fields/images are
compressible in a judiciously chosen wavelet basis, i.e., most
of the wavelet coefficients are small and can be discarded to
form a reduced-rank approximation of the field (Welstead,
1999). In Auger and Tangborn(2002), a reduced-rank
wavelet model was developed for global, time-variant CH4
concentration, which were updated with limited observations
using a Kalman filter. The selection of wavelets to form the
random field (RF) model was done empirically, by decimat-
ing the fine-scale wavelets. The construction of the RF model
can be performed more rigorously if a prior model is avail-
able. InJafarpour(2011) wavelets were used in the recon-
struction of permeability fields from limited measurements
of flow through a porous medium. An ensemble of perme-
ability field realizations, drawn from the prior distribution,
were used to develop a multivariate Gaussian prior distri-
bution for the wavelet coefficients. The RF model was cre-
ated by discarding wavelet coefficients with small means.
In Romberg et al.(2001), the authors constructed a hid-
den Markov model to encode the relationship between the
wavelet coefficients on adjacent scales of the wavelet tree.
This RF model was used to reconstruct compressively sensed
signals (Duarte et al., 2008) and images (He and Carin,
2009). Thus the use of wavelet-based RF models to parame-
terize and reconstruct complex fields from limited measure-
ments is quite common.

The RF model need not be constructed offline using
a prior; it can also be constructed during the inversion, in
a data-driven manner. This occurs in the compressive sens-
ing (CS) of signals and images (Candes and Wakin, 2008).
In this approach, all the wavelets in a field’s representation
are retained and the ones that cannot be estimated from avail-
able observations are identified and removed. Letg be an im-
age of sizeN that can be represented sparsely usingL � N

wavelets. Letg′, of size Nm, L < Nm � N , be its com-
pressed measurement, obtained by projectingg onto a set of
random vectorsψ i , i.e.,g′

=9g =98w. Here the rows of
9 consist of the random vectorsψj and columns of8 con-
sist of waveletsφi .8 is aN ×N matrix while9 is Nm ×N .
The bulk of the theory that allows reconstruction of the im-
age/field with such observations was established inCandes
and Tao(2006), Donoho(2006), andCandes et al.(2006).
In CS, the reconstruction ofg (alternativelyw) can be per-
formed using a number of methods. It is posed as an opti-
mization problem

minimize
w∈RN

‖w‖1, subject to‖g′
− Aw‖2 < ε2, A =98. (2)

Geosci. Model Dev., 7, 1901–1918, 2014 www.geosci-model-dev.net/7/1901/2014/
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Thus we enforce sparsity inw with its `1 norm (|| · ||1),
under the constraint that thè2 norm (|| · ||2) of the mis-
fit betweeng′ and the image reconstructed fromw is kept
within a bound. Some of the methods to solve this problem
are basis pursuit (Chen et al., 1998), matching pursuit (Mal-
lat and Zhang, 1993), orthogonal matching pursuit (Tropp
and Gilbert, 2007) and stagewise orthogonal matching pur-
suit (StOMP;Donoho et al., 2012). We will refer to the pro-
cess of enforcing sparsity as “sparsification” and the result of
the process will be called the “sparsified” or sparse solution.

2.2 Wavelets and sparsity in inverse problems

Sparsity is often used to solve inverse problems in physics,
with the9 operator representing the physical process. InLi
and Jafarpour(2010), sparsity was used to estimate a per-
meability field (represented by wavelets) from fluid trans-
port observations. A good review of the use of sparsity in
permeability field reconstruction is available inJafarpour
(2013). Seismic tomography, which estimates subsurface ge-
ologic facies, also has exploited sparsity for reconstruction.
This has been demonstrated with wavelet representations of
the subsurface and nonlinear forward models (Loris et al.,
2007; Simons et al., 2011). Gholami and Siahkoohi(2010)
used a split Bregman iteration (Goldstein and Osher, 2009)
to solve a seismic tomography problem, imposing sparsity
via soft thresholding (Donoho, 1995). The authors also ex-
panded the imposition of sparsity from the wavelet space to
the finite-difference space, i.e., they used an`1 norm to spar-
sify deviations of the solution from a “best-guess”, in the ab-
sence of constraining observations. In this manner, both the
prior/guessed solution and sparsity are used to regularize the
inversion.

To summarize, wavelet-based RF models are routinely
used in inverse problems. Their dimensionality can be re-
duced a priori using prior information. Data-driven dimen-
sionality reduction can also be performed by enforcing spar-
sity during the inversion. This has been demonstrated with
nonlinear problems too.

3 Constructing a multiscale random field model

We seek an approximate representation of ffCO2 emissions,
which is low dimensional or sparse, i.e., many of thews,i,j

in Eq. (1) may be set to zero. For this purpose, we use ffCO2
emissions from the Vulcan inventory, coarsened to 1◦ reso-
lution and averaged over a year to yieldfV (see Fig.1 for
a plot). The emissions are described on a 2M

× 2M grid,
M = 6. The finest wavelets, on scales = 6, have a support
of 2◦

× 2◦; the ones ons = 5 are a factor of two bigger, i.e.,
they have a support of 4◦

× 4◦. The rectangular domain ex-
tents are given by the corners 24.5◦ N, 63.5◦ W and 87.5◦ N,
126.5◦ W. ffCO2 emissions are restricted toR, the lower 48
states of the US.
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Figure 2. Sparsity of representation at scales = 4 (left) ands = 6
(right) for a combination of wavelet families and orders. We find
that Haar provide the sparsest representation.

3.1 Choosing a wavelet

We investigate a number of wavelet families (Haar,
Daubechies, Symlet, and Coiflet) in order to determine which
provides the sparsest representation offV . fV is first subjected
to a wavelet transform using a chosen wavelet. At each scale
s, we remove wavelets that contribute little tofV . We set
“small” wavelet coefficients (“small” is defined as the ra-
tio |ws,i,j/wmax,s | ≤ 10−3, wherewmax,s is the wavelet co-
efficient on scales with the largest magnitude) to zero. We
refer to the fraction of zero wavelet coefficients at scales

as itssparsity. Figure2 plots the sparsity at scales = 4,6
for a large combination of wavelet families and orders. We
see that the Haar wavelet (also called the Daubechies, or-
der 2 wavelet) provides the sparsest representation, making
it a candidate for developing a low-dimensional MsRF for
ffCO2 emissions. This is a consequence of the spatial distri-
bution of fV – the map offV (Fig. 1b) is largely empty west
of 100◦ W, which manifests itself as small coefficients for the
wavelets whose support lie in that region. This favors simpler
(non-smooth) and low-order wavelets.

Next we investigate the variation of the magnitude of
wavelet coefficients, as a function of the type of wavelets
used to modelfV . We select five wavelet types, e.g., Haar,
Daubechies, order 4 and 8, and Symlet, order 4 and 6, and
perform a wavelet transform offV . At each scales, we set
the “small” wavelet coefficients to zero. In Fig.3 we plot
the average and standard deviation of the non-zero wavelet
coefficients. The means of the wavelet coefficients at the
finer scales are small, regardless of the wavelet type. We
see that while Haar provide the sparsest representation, the
non-zero wavelet coefficients tend to have large magnitudes.
In contrast, smoother wavelets with broader support, e.g.,

www.geosci-model-dev.net/7/1901/2014/ Geosci. Model Dev., 7, 1901–1918, 2014
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Figure 3. We plot the average value of the non-zero coefficients
(solid lines) and their standard deviation (dashed line), at different
scaless, when fV is subjected to wavelet transforms using Haar,
Daubechies 4 and 6, and Symlet 4 and 6 wavelets. We find that while
Haar may provide the sparsest representation (Fig.2), the non-zero
values tend to be large and distinct.

Daubechies, order 8, have more non-zero wavelet coeffi-
cients, but with smaller wavelet coefficients. This is a con-
sequence of the spatial distribution offV (Fig. 1) which has
sharp gradients, placing smooth wavelets at a disadvantage.
In Fig. 3, we also see that the means and standard deviations
shrink, especially after scales = 3; further, the distributions
of wavelet coefficients arising from the different wavelet
types begin to resemble each other. This arises from the fact
that there are sharp boundaries around the areas where ffCO2
emissions occur; when subjected to a wavelet transform, the
region in the vicinity of a sharp boundary gives rise to large
wavelet coefficients down to the finest scale. Thus the few
non-zero wavelet coefficients at the finer scales assume sim-
ilar values, irrespective of the wavelet type.

Finally, we check the accuracy of a Haar representation of
fV at various levels of sparsity. Again, we define a “small”
wavelet as|ws,i,j/wmax,s | ≤ α. We perform a wavelet trans-
form of fV using Haar wavelets and sparsify (set small
wavelets to zero) using 10−6

≤ α ≤ 1. We then perform
an inverse transform to reconstruct a “sparsified”fV

′
. In

Fig. 4, we plot overall sparsity, reconstruction errorε =

‖fV
′
− fV‖2/‖fV‖2 and the Pearson correlation between the

true and reconstructedfV as a function ofα. We define the
Pearson correlation betweenfV

′
andfV as

ρ
(
fV

′
, fV
)

=
cov(fV, fV

′
)

σfV
σfV

′

,

whereσ 2
fV

andσ 2
fV

′ are the variances of the true and recon-

structed fluxes and cov(Z1,Z2) is the covariance between
two random variablesZ1 andZ2. Here‖ · ‖2 denotes thè2
norm. We find that forα < 10−2 there is practically no error
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Figure 4. Variation of sparsity, reconstruction error ε and the Pearson correlation between the true and
reconstructed fV i.e. ρ(fV, fV

′
) as a function of α.
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Figure 4. Variation of sparsity, reconstruction errorε, and the
Pearson correlation between the true and reconstructedfV , i.e.,
ρ(fV , fV

′
) as a function ofα.

(as measured by these metrics) though we achieve a sparsi-
fication of about 80 %. Even at a sparsity of around 90 %,
the error is less that 10 %. Thus a small collection of Haar
wavelets have the ability to reproducefV with an acceptable
degree of error. This low-dimensional character of a Haar
representation offV can be invaluable in an inverse prob-
lem predicated on sparse observations, and henceforth, we
will proceed with Haar wavelets as the basis set of choice for
representing ffCO2 emissions. Figure5 shows the decompo-
sition of fV on aM = 6 hierarchy of Haar wavelets.

We will use wavelets selected using the (single) nightlight
and BUA maps to estimate weekly ffCO2 emissions. Our
tests above show that they model annually averaged Vulcan
emissions adequately, and we assume that while emissions
may wax and wane with time, their spatial distribution does
not vary sufficiently to require a new wavelet selection. We
base this assumption on ffCO2 emissions’ correlation with
human activities and static sources like powerplants which do
not display large spatial dislocations with time. Note that the
location and strengths of intense sources of ffCO2 emissions,
such as powerplants, can be found at the CARMA (Carbon
Monitoring for Action; websitehttp://carma.org). Note, also,
that CARMA isnotpeer-reviewed and only provides data for
a limited number of years (version 3.0 has data only for 2004
and 2009).

3.2 Constructing a random field model

We seek a spatial parameterization for ffCO2 emissions, of
the form

f = w′φ′
+

M∑
s=1

∑
i,j

ws,i,jφs,i,j , {s, i,j} ∈ W (s), (3)

where W (s) is a set containing a small number of
Haar bases. We will investigate the usefulness of an

Geosci. Model Dev., 7, 1901–1918, 2014 www.geosci-model-dev.net/7/1901/2014/
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Figure 5. Annually averaged Vulcan emissionsfV are modeled using Haar wavelets on scales 1, 2, 4, 5, and 6. The figure at the top (left)
plotsfV , and the rest its decomposition across wavelet scales. Note that we have displayed only the relevant part of the dyadic 2M

×2M grid
on which wavelets are described.

easily observed proxyX of human activity (which
correlates with ffCO2 emissions) to select the com-
ponents of W (s). Radiance calibrated nightlights
(http://www.ngdc.noaa.gov/dmsp/download_radcal.html;
Cinzano et al., 2000) have been used for constructing
ffCO2 inventories (Doll et al., 2000) and are an obvi-
ous choice forX. However, nightlight radiances are also

affected by economic factors (Raupach et al., 2009),
and we will explore maps of built-up area as an alterna-
tive (http://www.sage.wisc.edu/atlas/maps.php?datasetid=
18&includerelatedlinks=1&dataset=18; B. Miteva, personal
communication, 2013). The map of BUA uses nightlight
radiances in its computations, and so these arenot inde-
pendent proxies; however, the BUA map also includes

www.geosci-model-dev.net/7/1901/2014/ Geosci. Model Dev., 7, 1901–1918, 2014
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information from IGBP (International Geosphere–Biosphere
Programme,http://www.igbp.net/) land-cover map. The two
choices forX will be compared with respect to (1) sparsity,
(2) the correlation betweenX and fV , and (3) the ability of
W (s) to capturefV .

In Fig.6 (top row), we plot maps of the two proxies, coars-
ened to 1◦ resolution. Comparing with Fig.1 (bottom), we
see that they bear a strong resemblance tofV . We subjectX to
a wavelet transform and set all wavelet coefficients|ws,i,j | <

δ to zero, whereδ is a user-defined threshold. The bases with
non-zero coefficients are selected to constituteW (s). We re-
constitute a “sparsified” proxy,X(s), using just the bases in
W (s), and compute the correlation betweenX(s) andfV . Fi-
nally, we projectfV onto W (s), obtain its “sparsified” form

fV
(s)

, and compute the errorεf = ‖fV
(s)

− fV‖2/‖fV‖2. In
Fig. 6 (middle row), we plot the sparsity, correlation andεf

for various values ofδ. We do so for both nightlights and
BUA. For nightlights, we achieve a sparsity of around 0.75
for δ < 10−2, i.e., we need to retain only a quarter of the Haar
bases to represent nightlights. The nightlights so represented
bear a correlation of around 0.7 withfV , and achieve an error
εf of around 0.1. Note that this measure of error reflects the
inability of the MsRF to represent fine-scale details, and not
spatially aggregated quantities, which are represented more
accurately. In contrast, using BUA as a proxy, we see that
while the sparsity achieved is similar, the correlation between
X(s) andfV is slightly higher. The behavior ofεf is similar,
except the error increases faster withδ, as compared to night-
lights. However both nightlights and BUA maps show signif-
icant correlation withfV and the sparsified set of Haar bases
that they (i.e., the proxies) provide (usingδ = 10−2 in both
the cases) allow us to construct a low-dimensional parame-
terization of ffCO2 emissions.

Finally, we useX(s) to create a “prior model”fpr = cX(s)

for ffCO2 emissions,f. c is computed such that

∫
R

fVdA =

∫
R

fprdA = (4)

c

∫
R

(
w′

(X)φ
′
+

∑
l,i,j

w(X),s,i,jφl,i,j

)
dA, {l, i,j} ∈ W (s),

whereR denotes the lower 48 states of USA andw(X) =

{w(X),s,i,j } are coefficients from a wavelet transform ofX.
This implies thatc is calculated such that bothfV and fpr
provide the same value for the total emissions for the US.c

is the ratio of the aggregate total of ffCO2 emissions to the
aggregate total of radiances (for the nightlights) or percent-
ages of built-up areas. In Fig.6 (bottom row), we plot the
error (fpr − fV). (The Supplement contains a scatter plot of
fpr vs. fV .) We see that neither nightlights nor the BUA map
provide afpr that is an accurate representation offV , though
they share similar spatial patterns, i.e.,fpr may be used to

provide a guess forf in an inverse problem, but, by itself, is
a poor predictor, regardless of the proxyX used to create it.

4 Formulation of the estimation problem

In this section, we pose and solve an inverse problem to esti-
mate ffCO2 emissions using the MsRF developed in Sect.3.
The method is new, and uses a sparse reconstruction method
that is summarized in Sects.4.1 and 4.2; full details are
in Ray et al.(2013). The inversion technique is most relevant
in situations where accurate, finely gridded ffCO2 invento-
ries are unavailable, and one has to take recourse to easily
observable proxies for information on the spatial pattern of
ffCO2 emissions.

The inverse problem is predicated on synthetic observa-
tions,yobs, of CO2 concentrations measured at 35 towers (a
network that existed in 2008). These are plotted as markers
in Fig. 8; seeRay et al.(2013) for their precise locations and
names. The measurements are related to ffCO2 emissions de-
scribed on a finely gridded domain as

yobs
= y + ε = Hf + ε, (5)

whereH is the transport or sensitivity matrix, obtained from
a transport model,y is the CO2 concentration predicted
by the atmospheric model, which differs from its measured
counterpart by an errorε. The ffCO2 emissionsf are defined
on a grid, and are assumed to be non-zero only withinR.

The estimation of CO2 fluxes, typically biospheric (Nassar
et al., 2011; Chatterjee et al., 2012; Gourdji et al., 2012), is
usually posed as the minimization of an objective functionJ ,

J = (yobs
−Hf)TR−1

e (yobs
−Hf)+(f−fm)TQ−1(f−fm), (6)

where fm are “prior” (or guessed) fluxes andR−1
e is a di-

agonal matrix containing the standard deviation of Gaussian
noise used to model measurement error. The discrepancy
between the “true” and prior fluxes is modeled as a multi-
variate Gaussian field, whose covarianceQ is calculated of-
fline. In contrast, in our ffCO2 inversion,f will be modeled
using the MsRF rather than a multivariate Gaussian field.
Further, the second term in Eq. (6) is omitted and the ef-
fect of the “guessed” or “prior” emissionsfpr is introduced
in a manner that is amenable to sparse reconstruction (see
Sect.4.1). The calculation of the sensitivitiesH is described
in detail inGourdji et al.(2012); we have reused them in our
work. The elements of theH matrix are calculated using the
Stochastic Time-Inverted Lagrangian Transport Model (Lin
et al., 2003), with wind fields from the Weather Research
& Forecasting model (Skamarock and Klemp, 2008), ver-
sion 2.2, driven by 2008 meteorology. Details of the WRF
settings and the nested grid used for the wind fields to cal-
culateH are in Gourdji et al. (2012). Concentration foot-
prints (or sensitivities) were calculated at 3 h intervals by

Geosci. Model Dev., 7, 1901–1918, 2014 www.geosci-model-dev.net/7/1901/2014/
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Figure 6. Top row: Maps of nightlight radiances (left) and BUA percentage (right), for the US. Middle
row: The sparsity of representation, the correlation between X and fV and the normalized error εf be-
tween the Vulcan emissions fV and the sparsified form obtained by projecting it on X. These values are
plotted for nightlights (left) and the BUA maps (right). Bottom row: Plots of (fpr− fV) obtained from
nightlights (left) and BUA maps (right).
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Figure 6.Top row: maps of nightlight radiances (left) and BUA percentage (right), for the US. Middle row: the sparsity of representation, the
correlation betweenX andfV and the normalized errorεf between the Vulcan emissionsfV and the sparsified form obtained by projecting

it on X. These values are plotted for nightlights (left) and the BUA maps (right). Bottom row: plots of(fpr − fV) obtained from nightlights
(left) and BUA maps (right).

integrating the trajectories over a North American 1◦
× 1◦

grid as described inLin et al. (2003). The sensitivity of
the CO2 concentration at each observation location due to
the flux at each grid cell (the “footprint”) is calculated in
units of ppmv µmol−1 m2 s (ppmv: parts per million by vol-
ume). ffCO2 emissions were averaged over 8-day intervals
and the sensitivity ofy to the 8 day-averaged emissions were

obtained from the 3 h sensitivities described above by sim-
ply adding the 8×24/3 = 64 sensitivities that span the 8-day
period. Thereafter, the grid cells outsideR were removed to
obtain theH matrix used in this study. The size of theH ma-
trix is (KsNs) × (NRK), whereKs is the number of tower
measurements per year,Ns is the number of sensors/towers,
NR is the number of grid cells inR, the part of the domain

www.geosci-model-dev.net/7/1901/2014/ Geosci. Model Dev., 7, 1901–1918, 2014
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covered by the lower 48 states of the US andK is the number
of 8-day periods that constitute the duration over which the
emissions are estimated.

4.1 Posing and solving the inverse problem

We denote the spatial distribution of emissions during an ar-
bitrary 8-day periodk asfk. The 8-day period was chosen to
minimize aggregation error. We seek emissions over an en-
tire year, i.e., we seekF = {fk},k = 1. . .K. We will model
emissions on the 2M × 2M ,M = 6 mesh with wavelets:

fk = w′

kφ
′
+

M∑
s=1

∑
i,j

ws,i,j,kφs,i,j , {s, i,j} ∈ W (s)

=8wk. (7)

Note that8 comprises of only those wavelets selected
using X and contained inW (s). For the entire year,
the expression for emissions becomesF = {f1, f2, . . . fK} =

{8w1,8w2, . . .8wK} = 8̃w. Since8wk models the emis-
sions over all grid cells, i.e., over the rectangular region given
by the corners (24.5◦ N, 63.5◦ W) and (87.5◦ N, 126.5◦ W),
and not justR, F contains emissions over the lower 48 states,
as well as the region outside it (where we have assumed
that the emissions are non-existent). We separate out the two
fluxes by permuting the rows of̃8

F =

(
FR
FR′

)
=

(
8̃R
8̃R′

)
w,

where8̃R and8̃R′ are(NRK)×(LK) and(NR′K)×(LK)

matrices, respectively. HereL is the number of wavelets in
W (s) andNR′ is the number of grid cells inR′, the region
outsideR but inside the rectangular domain. The modeled
concentrations at the measurement towers, caused byFR,
can be written asy = HFR. For arbitraryw, FR′ , the emis-
sions in the region outsideR, are not zero. Consequently, it
will be necessary to specifyFR′ = 0 as a constraint in the
inverse problem.

Specifying the constraintFR′ = 0 directly is not very ef-
ficient since it leads toNR′K constraints. In a global inver-
sion, or at resolutions higher than 1◦

×1◦, this could get very
large. Consequently, we adapt an approach from compressive
sensing to enforce this constraint approximately. Consider
aMcs× (NR′K) matrixR, whose rows are direction cosines
of random points on the surface ofNR′K-dimensional unit
sphere. This is called a uniform spherical ensemble (Tsaig
and Donoho, 2006). The projection of the emission fieldFR′

onR, i.e.,RFR′ compressively samplesFR′ . Mcs is the num-
ber of such projections or compressive samples. Setting this
projection to zero during inversion allows us to enforce zero
emissions outsideR. However, to do so, we add onlyMcs
constraint equations. The computational savings afforded by
imposing theFR′ = 0 constraint in this manner is investi-
gated inRay et al.(2013).

The equivalent of Eq. (5) is written as

Y =

(
yobs

0

)
≈

(
H 8̃R
R8̃R′

)
w = Gw. (8)

We incorporate the spatial patterns inX into the esti-
mation procedure by usingw(X) to normalizew. Other,
less effective, methods were investigated and discarded in
Ray et al.(2013). We rewrite Eq. (8) as

Y ≈ Gdiag
(
w(X)

)
diag

(
w−1

(X)

)
w = G′w′

=

(
H 8̃

′

R
R8̃

′

R′

)
w′, (9)

wherew′
= {ws,i,j/(c w(X),s,i,j )}, {s, i,j} ∈ W (s), is the nor-

malized set of wavelet coefficients,̃8
′

R = 8̃R diag(w(X))

and8̃
′

R′ = 8̃R′ diag(w(X)).
The underdetermined system Eq. (9) is solved using opti-

mization. Given the small number of towers (35) and their lo-
cation (the towers were sited with biospheric fluxes in mind),
it may not be possible to estimate all the elements ofw′, es-
pecially those that contribute to the fine-scale details ofFR.
Further, a priori, we do not know the identity of these “un-
estimatable” wavelet coefficients inw′. Consequently, we
employ a sparse reconstruction method, based on`1 mini-
mization, that identifies and estimates the elements ofw′ that
can be constrained byyobs, while setting the rest to zero. We
cast the optimization problem as

minimize
w′∈RN

‖w′
‖1, subject to‖Y − G′w′

‖
2
2 < ε2. (10)

This is of the same form as Eq. (2) and is solved using
stagewise orthogonal matching pursuit (StOMP) (Donoho
et al., 2012).

4.2 Imposing non-negativity on ffCO2 fluxes

Estimates ofw′ calculated by StOMP do not necessarily
provide non-negative estimates ofFR = 8̃Rw. In practice
negative ffCO2 emissions occur in only a few grid cells
and are usually small in magnitude. We devised an iterative
method to impose non-negativity as a post-processing step.
We present a summary here; details are inRay et al.(2013).

We use the StOMP solution to generateF = 8̃w, discard
FR′ and manipulate the emissionsE = {Ei}, i = 1. . .NRK

in R directly. We start with a guessedE (= |FR|) and at the
mth iteration calculate an increment1E(m−1) to the current
iterateE(m−1)

yobs
− HE(m−1)

= 1y ≈ H1E(m−1). (11)

This is an underdetermined problem, and we seek the
sparsest set of increments1E(m−1) using StOMP. The
increment is used to calculate a correctionξ = {ξi}, i =

1. . .NRK, |ξi | ≤ 1 and updateE(m−1)

ξi = sgn

(
1E

(m−1)
i

E
(m−1)
i

)
max

(
1,

∣∣∣∣∣1E
(m−1)
i

E
(m−1)
i

∣∣∣∣∣
)

, (12)

E
(m)
i = E

(m−1)
i exp(ξi).
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The iteration is stopped when‖yobs
−HE‖2/‖yobs

‖2 ≤ ε3
for a small value ofε3.

5 Numerical tests

Numerical tests are performed for the domain between the
corners 24.5◦ N, 63.5◦ W and 87.5◦ N, 126.5◦ W. It is dis-
cretized by a 2M × 2M , M = 6 mesh, with 4096 grid cells.
Of these,NR = 816 cells lie insideR, while the rest,NR′ =

4096− 816= 3280 lie outside inR′. We estimate emissions
overk = 1. . .K,K = 45, i.e., for 45×8 = 360 days (approx-
imately a year). We generate synthetic observationsyobs us-
ing the ffCO2 emissions in Vulcan, which provides them only
in R. Hourly Vulcan fluxes are coarsened from 0.1◦ resolu-
tion to 1◦, and averaged to 8-day periods. These fluxes are
multiplied byH to obtain ffCO2 concentrations at theNs =

35 measurement towers. Observations are available every 3 h
and span a full year, i.e., we collectKs = 24/3×360= 2880
observations per tower. A measurement errorε ∼ N(0,σ 2) is
added to the concentrations to obtainyobs, as used in Eq. (8).
The sameσ is used for all towers and is set to a very low
value of 0.1 ppmv. Although such a value is unrealistically
small for real-data inversions, it is used here to isolate the
impact of the proposed parameterization and inversion ap-
proach.

We solve Eq. (10) and enforce non-negativity onFR to
obtainE. The coefficientsw(X) used in Eq. (9) are obtained
from a wavelet decomposition offpr based on nightlights
(Sect.3). The constantc in Eq. (4) is obtained by using fluxes
from the Emission Database for Global Atmospheric Re-
search (EDGAR,http://edgar.jrc.ec.europa.eu; Olivier et al.,
2005) for 2005, i.e., instead of using emissions from Vul-
can to calculatefV , we use EDGAR. EDGAR emissions ag-
gregated overR are 7.1 % higher thanfV , resulting in a
correspondingly higherc. The RMSE between the two is
0.035 µmoles m−2 s−1 of C and the Pearson correlation co-
efficient is 0.726. Also, sincec is an aggregate total overR,
it reflects the I.E.A country total. The following parameters
are used in the inversion process (Sect.4.2): ε2 = 10−5,ε3 =

5.0× 10−4,Mcs = 13 500, i.e., 300 compressive samples for
each 8-day period. The numerical values ofε2 andε3 were
set by reducing them till the solutionw′ became insensitive to
them. The setting forMcs is more involved and is described
in Ray et al.(2013). The initial guess forw′ in Eq. (10) is
zero.

In Fig. 7 we plot the cumulative distribution function
(CDF) of ffCO2 emissions before and after the enforcement
of non-negativity. We see the existence of a few grid cells
with negative fluxes, but their magnitudes are not very large.
Thus the sparse reconstruction scheme provides a good start-
ing guess for the imposition of non-negativity via the iterative
method described in Sect.4. In Fig. 8, we plot the true and
reconstructed emissions for the 33rd 8-day period (k = 33).
We also plot the estimation error(Ek − fV,k), averaged over
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Figure 7.CDF of emissions inR, before and after the imposition of
non-negativity, as described in Sect.4. We see that the CDF of the
emissions without non-negativity imposed contains a few grid cells
with negative fluxes; further, the magnitude of the negative emis-
sions is small. Thus the spatial parameterization, with sparse recon-
struction, provides a good approximation of the final, non-negative
emissions.

the 32-day period 33≤ k ≤ 36. We see that the reconstruc-
tion in the NE quadrant is qualitatively similar to the true
emissions. In contrast, the reconstruction on the west coast
contains significant inaccuracies. For example, we see that
the Los Angeles–San Diego region (southwest quadrant) is
estimated incorrectly. The estimated emissions in the center
of the country (Continental Divide and Great Plains, in the
western quadrants) show similar errors, as well as far more
structure than the true ffCO2 emissions. The region around
the Gulf of Mexico is also not well estimated. The quality
of the reconstruction in the various regions correlate with the
density of observations towers, though the wind fields also
play an important part. In the regions where the observa-
tions are not very informative, the impact of normalization
by fpr is clear as some of its structure is retained in the es-
timated emissions. These errors are almost entirely at fine
spatial scales.

In Fig. 9 (top) we plot a time-series of errors defined as
a percentage of total, country-level Vulcan emissions. Per-
cent errors in reconstructed emissions andfpr are calculated
using Eq. (13).
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Figure 8. Reconstruction of the ffCO2 emissions from the 35 towers (plotted as diamonds). The true
emissions are on top and the reconstructions in the middle. The figures represent emissions for k = 33
(end of August). At the bottom, we plot the estimation error, (Ek − fV,k), averaged over 33≤ k ≤ 36.
We see that the large scale structure of the emissions have been captured. The west coast of the US has
few towers near heavily populated regions and thus is not very well estimated. On the other hand, due to
the higher density of towers in the Northeast, the true and estimated emissions are qualitatively similar
and estimation error are low. Emissions have units of µmolm−2 s−1 of C (not CO2).
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Figure 8. Reconstruction of the ffCO2 emissions from the 35 tow-
ers (plotted as diamonds). The true emissions are on top and the
reconstructions in the middle. The figures represent emissions for
k = 33 (end of August). At the bottom, we plot the estimation error,
(Ek − fV,k), averaged over 33≤ k ≤ 36. We see that the large-scale
structure of the emissions have been captured. The west coast of the
US has few towers near heavily populated regions and thus is not
very well estimated. On the other hand, due to the higher density of
towers in the northeast, the true and estimated emissions are qual-
itatively similar and estimation error are low. Emissions have units
of µmol m−2 s−1 of C (not CO2).

Errork (%) =
100

K

K∑
k=1

Ek − EV,k

EV,k

,

whereEk =

∫
R

EkdA (13)

andEV,k =

∫
R

fV,kdA,

Errorpr,k (%) =
100

K

K∑
k=1

Epr − EV,k

EV,k

,

whereEpr =

∫
R

fprdA.

Here,fV,k are Vulcan emissions averaged over thekth 8-
day period andEk are the non-negativity enforced emission
estimates in the same time period. A positive error denotes an
overestimation by the inverse problem. We see 25 % errors
in fpr. The large error is a consequence not only of the dis-
agreement between EDGAR (from 2005) and Vulcan (from
2002), but also the manner in which they account for emis-
sions. As can be seen, assimilation ofyobs reduces the error
significantly vis-à-visfpr. The least accurate reconstructions
are during spring (k = 10–15). In order to check the accuracy
of the spatial distribution ofEk, we calculate the Pearson cor-
relationsρ(Ek, fV,k) andρ(fpr, fV,k). We see that data assim-
ilation results in a clear increase in the correlation. When the
emissions are aggregated/averaged over 32-day periods, the
correlation increases to about 0.85, whereas the “prior” cor-
relation was around 0.7. Thus the ffCO2 emissions obtained
using a nightlight proxy are substantially improved by the in-
corporation ofyobs. Only about half the wavelet coefficients
could be estimated; the rest were set to zero by the sparse
reconstruction technique (Ray et al., 2013).

We next investigate the effect of using BUA maps, in-
stead of nightlights, as the proxy. Changing the proxy results
in a different set of wavelets being chosen (nightlights re-
sulted in aW (s) of 1031 wavelets; the corresponding num-
ber for BUA was 1049); further, one wasnot a strict sub-
set of the other. It also results in a different normalization
in Eq. (9). The inversion was performed in a manner iden-
tical to that adopted for the nightlight proxy. In Fig.9 (top)
we see that the ffCO2 emissions developed using nightlights
and BUA as proxies are similar, as measured by reconstruc-
tion error (Eq.13), though the BUA reconstruction error
tends to be slightly smaller. The aggregated error between the
true and “prior” fluxes remains unchanged (nightlights vs.
BUA) since it just reflects the difference between EDGAR
(in 2005) and Vulcan (in 2002) inventories. In Fig.9 (bot-
tom) we plot the spatial correlation between the true, recon-
structed and “prior” fluxes. The correlation between true and
reconstructed emissions (from BUA) tends to be worse than
the nightlight reconstruction. The correlation offpr with true

Geosci. Model Dev., 7, 1901–1918, 2014 www.geosci-model-dev.net/7/1901/2014/
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Figure 9. Comparison of reconstruction error and correlations. Top: We plot the error between the recon-
structed and true (Vulcan) emissions in black (using nightlights as priors) and in blue (using BUA priors).
We plot the error between fpr and Vulcan emissions using dashed lines – black for nightlights and blue
for BUA. We see that assimilation of yobs leads to significantly improved accuracy vis-à-vis fpr. Bottom:
We plot the accuracy of the spatial distribution of the reconstructed emissions. The Pearson correlations
ρ(Ek, fV,k) and ρ(fpr, fV,k) show that incorporating yobs marginally improves the spatial agreement of
estimated emissions vs. the true one when using nightlights, though the results are less clear for BUA
priors. If the emissions are averaged over 32 day periods, rather than 8 day periods, the correlation with
true (Vulcan) emissions rises to around 0.85, irrespective of the prior used.
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Figure 9.Comparison of reconstruction error and correlations. Top:
we plot the error between the reconstructed and true (Vulcan) emis-
sions in black (using nightlights as priors) and in blue (using BUA
priors). We plot the error betweenfpr and Vulcan emissions using
dashed lines – black for nightlights and blue for BUA. We see that
assimilation ofyobs leads to significantly improved accuracy vis-à-
vis fpr. Bottom: we plot the accuracy of the spatial distribution of
the reconstructed emissions. The Pearson correlationsρ(Ek, fV,k)

andρ(fpr, fV,k) show that incorporatingyobs marginally improves
the spatial agreement of estimated emissions vs. the true one when
using nightlights, though the results are less clear for BUA priors.
If the emissions are averaged over 32-day periods, rather than 8-day
periods, the correlation with true (Vulcan) emissions rises to around
0.85, irrespective of the prior used.

emissions from Vulcan are different for nightlights and BUA
reflecting the distinct spatial difference between them as seen
in Fig. 6. This results in the difference between the two
dashed lines. Averaging over 32-day intervals improves the
correlation and makes them almost indistinguishable from
those obtained using nightlights.
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Figure 10. Top: Emission reconstruction error in the NE (blue) and NW (black) quadrants, when per-
formed with BUA (line) and nightlights (symbols) as proxies. We see that the NW quadrant is very
badly constrained and the BUA-based estimates have very large errors. The errors in the NE quadrant
are far smaller and very similar when generated using the competing proxies. Bottom: The comparison
of correlations between true and reconstructed emissions shows similar trends.
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Figure 10.Top: emission reconstruction error in the NE (blue) and
NW (black) quadrants, when performed with BUA (line) and night-
lights (symbols) as proxies. We see that the NW quadrant is very
badly constrained and the BUA-based estimates have very large er-
rors. The errors in the NE quadrant are far smaller and very similar
when generated using the competing proxies. Bottom: the compari-
son of correlations between true and reconstructed emissions shows
similar trends.

In Fig. 10 we investigate the differences between the
nightlight- and BUA-based reconstructions at the quadrant
level. We see in Fig.10 (top) that the difference between
nightlight- and BUA-based reconstruction errors in the NE
quadrant are smaller than those for the NW quadrant. Thus,
while the fpr from nightlights and BUA are quite different
(see the last row of Fig.6), the estimated emissions are
well informed byyobs in the NE quadrant and the impact
of the proxies is small. This is not the case for the NW
quadrant, where the reconstruction based on BUA is clearly
much worse than the nightlight-based reconstruction. This is
not surprising given the paucity of towers there (see Fig.8),
which increases the impact offpr. In Fig. 10 (bottom) we
plot the correlation of the reconstructed and true emissions
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Figure 11. Top: Comparison of emission estimates developed using fpr constructed from nightlight radi-
ances and BUA maps. We plot the difference between the two estimates. We see that differences are not
localized in any one area. Bottom: Prediction of ffCO2 concentrations at 3 measurement locations, using
the true (Vulcan; plotted with symbols) and reconstructed emissions (blue lines) over an 8 day period
(Period no. 34). Observations occur every 3 h. We see that the concentrations are accurately reproduced
by the estimated emissions.
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Figure 11.Top: comparison of emission estimates developed using
fpr constructed from nightlight radiances and BUA maps. We plot
the difference between the two estimates. We see that differences
are not localized in any one area. Bottom: prediction of ffCO2 con-
centrations at three measurement locations, using the true (Vulcan;
plotted with symbols) and reconstructed emissions (blue lines) over
an 8-day period (Period no. 31). Observations occur every 3 h. We
see that the concentrations are accurately reproduced by the esti-
mated emissions.

in the NE and NW quadrants. We see that there is little to
choose between the correlations generated using nightlight-
vs. the BUA-based emission estimates. Again, due to the
larger density of towers in the NE, the correlations are higher
there. Thus, while Fig.6 (middle row) showed that BUA had
a slightly better correlation with true (Vulcan) emissions, its
larger errors, as seen in Fig.6 (bottom row) lead to a less
accurate reconstruction. This result is also a testament to the
inadequacy ofyobs over the whole country for constraining
ffCO2 emissions; had there been sufficient data to informE,
the impact offpr would have been minimal.

Next, in Fig. 11 (top) we compare the estimated emis-
sions for the 34th 8-day period developed from the two
competing prior models. We plot the difference between the

two estimates; it shows differences spread over a large area,
though their magnitudes are not very big. Thus the “prior”
model has a measurable impact on the spatial distribution
of the emissions. In Fig.11 (bottom) we ploty predicted
by the reconstructed emissions (from nightlights as priors)
at 3 towers. The towers were chosen to represent the range
of the ffCO2 signal strengths encountered in our test cases.
We see that the ffCO2 concentrations are well reproduced
by the estimated emissions. Further, note that the measure-
ment noise (σ = 0.1 ppmv) is relatively large compared to
some of the observations. Thus, the lack of fidelity at the
smaller scales (seen in Fig.8) does not substantially impact
the measurements. This is due to the weak strengths of the er-
roneous emission sources (while a few may be intense, they
are present only over a small area) and their distance from
the towers.

6 Discussion

The numerical results in Sect.5 show that the MsRF and
sparse reconstruction techniques can solve the inverse prob-
lem as formulated in Sect.4, conditioned on limited mea-
surements of ffCO2 concentrations. The solution reproduces
large-scale spatial patterns of the true flux field, and some
of the finer ones. The rough spatial nature of the emission
field is preserved in the estimates. Furthermore, the method
is insensitive to underreporting of ffCO2 emissions by coun-
tries which are used to construct inventories such as EDGAR.
Inventories are used only to calculatec in Eq. (4) which ap-
pears as a normalization constant in Eq. (9). The accuracy of
the estimates (the constraint||Y − G′w′

||
2
2 < ε2 in Eq. (10))

is unaffected by the value ofc. The chief source of errors in
the estimates is the paucity of observations sensitive to fossil-
fuel-emitting regions. Regions with low tower density, e.g.,
the western quadrants in Fig.8, have large errors due to the
faint ffCO2 signal at existing observational sites. One limi-
tation of the deterministic estimation method presented here
is that it does not provide any measure of the uncertainty in
the estimates. The numerical parametersε2, ε3 andMcs are
not significant sources of uncertainty since they were set at
values where the solution of the inverse problem became in-
sensitive to them.

Given our focus on the algorithmic issues in the esti-
mation of ffCO2 emissions under realistic conditions, the
inverse problem that we constructed is idealized and em-
bodies a number of simplifications. We have used a sen-
sor network (that existed in 2008) that was sited with an
eye towards estimating biospheric CO2 fluxes. This network
is therefore not optimized for constraining ffCO2 emission
sources, leading to a faint ffCO2 signal (< 2 ppmv). This
made the use of a small model–data mismatch error neces-
sary for the synthetic-data experiments presented here (σ =

0.1 ppmv), a value that would not be realistic for inversions
using real data. The experiments conducted here also assume
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the availability of observations that isolate the ffCO2 sig-
nal, which would either require observations of a ffCO2ns-
specific tracer, or the pre-subtraction of the influence of bio-
spheric fluxes from observations. Some of the other simplifi-
cations used in the setup, on the other hand, are common to
synthetic-data inversion experiments focusing on biospheric
fluxes and reported elsewhere, e.g.,Gourdji et al.(2010). For
example, we have ignored emissions outsideR; in a real-
istic ffCO2 estimation problem, emissions outsideR would
have to be modeled as boundary conditions to the examined
domain, as is done for regional biospheric inversion studies.
Furthermore, we have also assumed a constant data–model
mismatch (σ ) across all sensors, and site- and seasonally
varying model–data mismatch statistics would be required
when real data are used.

The use of proxies to construct the MsRF for ffCO2 emis-
sions can be a source of estimation errors and consequently,
in Sects.3 and5, we investigated nightlights and BUA maps
to explore the impact of using such proxies for sub-selecting
the wavelets to be used in the inversion. Errors in the prox-
ies themselves (i.e. inaccuracies in the nightlights and BUA
data themselves) are unlikely to be a large source of estima-
tion errors in the inversion, as these proxies are used only
to select wavelets, whereas the wavelet coefficients are ob-
tained in the inversion step. Rather, inversion errors can stem
from the fact that nightlights correlate with energy consump-
tion and not energy production. This can lead to two types of
errors: (1) when a fine-scale wavelet covering a region with
a strong ffCO2 source and little human habitation is omit-
ted from the MsRF and (2) when we choose a “superfluous”
fine-scale wavelet in a region with much human activity and
little emission. An example of the first type of error is large
powerplants, which are usually sited far from densely popu-
lated areas. In such a case, the point-source is modeled by the
coarse-scale wavelet that covers the area in question, leading
to a “smeared” reconstruction. Such large point-sources of
ffCO2 emissions could instead be obtained from databases
such as CARMA and incorporated directly into the inver-
sion. Alternatively, one could augment the wavelets in the
MsRF with those chosen using a second proxy, e.g., thermal
images, where large emitters of heat can be easily detected.
The second type of error, that of the “superfluous” wavelet, is
rectified when it is simply removed by the sparse reconstruc-
tion scheme in the inversion step. An exception can occur if
the superfluous wavelet contains a measurement tower in its
supportand is far from all other towers. Since measurement
towers are very sensitive to fluxes in their vicinity (Gerbig
et al., 2009), it could lead to the estimation of a spurious
emission source.

ffCO2 emissions, averaged over 8-day intervals and pred-
icated on 3-hourly measurements, were estimated as inde-
pendent variables, i.e., without imposing a temporal correla-
tion or modeling their temporal evolution in any way. The
reason is as follows. Estimation of ffCO2 emissions over
a 8-day interval requires the calculation of 1031 wavelet

coefficients (when using the nightlights-derived MsRF) from
35× 8× 8 = 2240 measurements. This is not an underdeter-
mined problem, even though a sparse reconstruction method
was required to remove fine-scale structures (wavelets) in the
emission field that did not affect the measurements. We were
able to constrain the coefficients of the remaining wavelets
without imposing a temporal correlation structure. Such cor-
relations could be used if ffCO2 fluxes were to be estimated
at finer temporal resolution.

The spatial parameterization and the sparse reconstruction
method can also be used in observation system simulation
experiments (OSSEs) to inform the design of measurement
networks targeted for ffCO2 emissions. The approach can be
used to decide locations of towers, the frequency at which
ffCO2 measurements are to be made, and the fidelity required
in measurements and the transport model. The trade-offs and
costs of various ffCO2 measurement technologies can also be
studied in such a setting. In addition, OSSEs can reveal the
importance of a more accurate MsRF, e.g., one augmented
using thermal imagery, vs. the errors introduced in the esti-
mates due to limited measurements.

7 Conclusions

We have devised a multiresolution parametrization (also
known as a multiscale random field or MsRF model) for
modeling ffCO2 emissions at 1◦ resolution. The MsRF mod-
els emissions in the lower 48 states of the US and is designed
for use in atmospheric inversions. The parameterization em-
ploys Haar wavelets which provide a sparser representation
than other smoother wavelets with wider support. This is the
first “abstract” parameterization, i.e., a RF model for spa-
tially resolved ffCO2 emissions.

The dimensionality of the MsRF was reduced by judi-
ciously selecting its component Haar wavelets using proxies
of human activity, and therefore indicative of ffCO2 emis-
sions. We developed two MsRFs based on images of lights at
night and maps of built-up areas. The former had a slightly
lower dimensionality but was not a strict subset of the latter.
The MsRF models were also used to develop two approxi-
mate emission models that differed in their fine spatial de-
tails.

The MsRF model was tested in a synthetic-data inversion.
Time-dependent ffCO2 emissions, averaged over 8-day pe-
riods, were estimated for a 360-day period from measure-
ments of ffCO2 concentrations at 35 towers. These obser-
vations were sufficient only for estimating about half the
wavelets retained in the MsRF model. We used a sparse re-
construction technique, namely Stagewise Matching Orthog-
onal Pursuit (StOMP), to identify and estimate wavelet coef-
ficients in MsRF that could be informed by the available data.
The StOMP estimates were not necessarily non-negative (as
ffCO2 emissions are required to be) and we devised an it-
erative, post-processing procedure to impose non-negativity.
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Furthermore, the MsRF actually models emissions in a rect-
angular region and constraints had to be imposed during the
inversion to ensure that emissions were restricted to the lower
48 states. To our knowledge, this is the first instance of using
a sparse reconstruction method in atmospheric CO2 inver-
sions. The algorithmic details of the inversion procedure are
in Ray et al.(2013). This is also the first use of an MsRF
model in ffCO2 emission estimation.

The inversions using the competing MsRF models
(nightlights- vs. built-up-area-based) resulted in emission es-
timates that differed in their fine-scale details. Country-level
estimates of emissions, and their correlation with the true
emissions, differed little when developed using either of the
two MsRFs. Further, emissions obtained by dividing the US
into quadrants showed large errors vis-à-vis true emissions.
This is a testament to the fact that the current observations
network was designed to focus on biospheric rather than
fossil-fuel CO2 fluxes.

The spatial parameterization and its use in reconstructing
an emission field was demonstrated in an idealized setting.
A number of adaptions are required before it can be used in
a realistic scenario to infer ffCO2 emissions. These include
aspects that are standard to any regional inversion, such as ac-
counting for fluxes outside the modeled domain via bound-
ary conditions, and accommodating errors incurred by the
transport model. Results using even our idealized setup show
that constraining fossil-fuel emissions at regional to national
scales would require a measurement network better targeted
to that goal. In addition to the prototypical application pre-
sented here, our approach can also be used in OSSEs for de-
signing such a measurement network – determining optimal
locations of towers, intervals between measurements, and the
fidelity required in the transport model and the measurements
themselves.

Our inversion formulation suffers from two drawbacks.
One is the need for observations of ffCO2 concentrations
at the measurement towers, which could be obtained either
by making use of co-emitted tracers or by pre-subtracting
the influence of biospheric fluxes from observations. Nei-
ther of these, however, is easily achievable given current
observational constraints and uncertainties associated with
biospheric fluxes. The second drawback is the determinis-
tic nature of the reconstruction, which does not provide error
bounds on the estimates of the MsRF parameters (the wavelet
coefficients).

In conjunction with this paper, we are also providing the
MATLAB ® code required to (1) reduce the dimensionality
of the MsRF using nightlights and (2) perform the inversion
using synthetic observations at our website (Ray, 2013). The
website also contains links to the (free) MATLAB toolkits
that our code depends on, along with a user’s manual.

The Supplement related to this article is available online
at doi:10.5194/gmd-7-1901-2014-supplement.
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