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Abstract. Due to limitation of the domain size and lim-
ited observations used in regional data assimilation and fore-
casting systems, regional forecasts suffer a general defi-
ciency in effectively representing large-scale features such as
those in global analyses and forecasts. In this paper, a scale-
dependent blending scheme using a low-pass Raymond tan-
gent implicit filter was implemented in the Data Assimila-
tion system of the Weather Research and Forecasting model
(WRFDA) to reintroduce large-scale weather features from
global model analysis into the WRFDA analysis. The impact
of the blending method on regional forecasts was assessed by
conducting full cycle data assimilation and forecasting exper-
iments for a 2-week-long period in September 2012.

It is found that there are obvious large-scale forecast errors
in the regional WRFDA system running in full cycle mode
without the blending scheme. The scale-dependent blend-
ing scheme can efficiently reintroduce the large-scale infor-
mation from National Centers for Environmental Prediction
(NCEP) Global Forecast System (GFS) analyses, and keep
small-scale information from WRF analyses. The blending
scheme is shown to reduce analysis and forecasting error of
wind, temperature and humidity up to 24 h compared to the
full cycle experiments without blending. It is also shown to
increase precipitation prediction skills in the first 6 h fore-
casts.

1 Introduction

Data assimilation that provides the optimal estimation of true
atmospheric state is a multiscale problem, since the atmo-
sphere consists of multiscale systems. It is important that
the data assimilation system for a limited area model (LAM)
can capture the multiscale features of atmospheric systems,
including the systems whose length scales are longer than
the LAM domain. However, previous studies found that the
LAM analyses and forecasts suffer a general deficiency in
effective representation of large-scale features (e.g., Yang,
2005a, b; Guidard and Fischer, 2008) due to limited domain
size and missing observations outside the LAM domain. In
addition, lateral boundary condition formulation errors can
have an adverse effect on the large-scale three-dimensional
shape and propagation properties of large-scale baroclinic
waves in the atmosphere (Guidard and Fischer, 2008).

A partial cycle strategy can be employed in regional data
assimilation and forecast systems to reintroduce large-scale
weather information by restarting the data assimilation cycle
in which the background is initiated from a global analysis
(Hisao et al., 2012; Sun et al., 2012; Wang et al., 2013a).
A similar method, which relies on a restart of the forecast
when a forecast error is detected by the boundary error pro-
cedure, was proposed by Termonia et al. (2009). However,
the above two methods lost small-scale features that had been
built up in previous forecast cycles, and they need a few hours
for model spin-up.
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In recent years, efforts have been made to correct the
large-scale analysis errors in regional data assimilation sys-
tems. One possible solution is to “blend” large-scale in-
formation produced by a host model (e.g., global model)
into LAM. Blending can be directly implemented by an
interpolation method in spectral space or grid-point space
(Guidard and Fischer, 2008). In addition to the interpola-
tion method, Brozkova et al. (2001) proposed a digital fil-
ter blending method that filters both the LAM forecast fields
and the global analysis, on a low-resolution grid, and then
adds the difference between them to the LAM forecast.
Yang (2005a) proposed using a spatial filter to incremen-
tally blend ECMWF (European Centre for Medium-Range
Weather Forecasts) and HIRLAM (High Resolution Limited-
Area Model) analyses. This technique is referred as “anal-
ysis blending”. Yang (2005b) also proposed a “background
blending” scheme to blend the ECMWF forecast and the
HIRLAM forecast to provide background for the HIRLAM
analysis. This scheme can efficiently reintroduce information
from the host model (Yang, 2005a, b) and has increased oper-
ational HIRLAM forecasting accuracy (Eerola, 2013). Tudor
and Termonia (2010) proposed a spectral nudging method for
nesting a LAM in a larger-scale model. They made a feasibil-
ity study of such a method that improved the lateral bound-
ary condition (LBC) temporal resolution problem within the
buffer zone at the lateral boundary of the domain.

Guidard and Fischer (2008) proposed a statistical ap-
proach that first considers the global-analysis data as an
extra source of information to be added to the cost func-
tion of a variational data assimilation system. They assimi-
lated information from the global Action de Recherche Petite
Echelle et Grand Echelle (ARPEGE) model analysis into the
regional Aire Limitée Adaption Dynamique Développement
Inter-National (ALADIN) model by adding the ARPEGE
analysis as a constraint in the data assimilation. More re-
cently, Dahlgren and Gustafsson (2012) took a slightly dif-
ferent approach by assimilating only vorticity information
from ECMWF forecasts into the data-assimilation system of
the regional HIRLAM model. Liu and Xie (2012) showed
that assimilating large-scale flows from global forecasts into
a regional model improved track and intensity forecasting of
Hurricane Felix (2007).

In this paper, we adopted the blending method (Yang,
2005a, b) to blend short-range analysis (forecast) fields from
a coarse-resolution (global) host model to improve the qual-
ity of the analysis (background) in the WRFDA system. The
blending is achieved through using a low-pass Raymond
sixth-order tangent implicit filter (Raymond, 1988; Raymond
and Garder, 1991). The primary goal of such a blending
is to improve the description of large-scale features in the
WRFDA analysis, thus to increase the WRF model regional
weather prediction skill. Both the background blending and
analysis blending schemes are tested. In the background
blending scheme, a short forecast from the National Cen-
ters for Environmental Prediction (NCEP) Global Forecast

System (GFS), instead of an analysis, is used to reduce the
possibility of error correlations between the host model field
and the observations used in the regional model data assimi-
lation. Compared to the partial cycle strategy, it always keeps
small-scale information from the previous cycle, and thus it
is expected to reduce spin-up issue.

The structure of the paper is as follows. Section 2 in-
troduces the blending method. In Sect. 3, the WRF model,
WRFDA system, and experiment design are described. The
experimental results are presented in Sect. 4. A summary and
discussion are given in Sect. 5.

2 Methodology

2.1 The blending scheme

The component of a fieldx at length scalel can be split into
a filtered part and a residual part with a low-pass filter,

x(l) = α(l)x(l) + φ(l), (1)

whereα(l) is a scale-dependent response function of the fil-
ter,α(l)x(l) is the filtered field ofx(l), andφ(l) is the resid-
ual field.

Following the above idea for a field from a host model,
xh and, for a field from a nested regional model,xr (whose
components are at scalel) can be written as

xh(l) = α(l)xh(l) + φh(l), (2)

xr(r) = α(l)xr
+ φr(l). (3)

Blending information from a host modelxh and a regional
modelxr at scalel can be expressed as (Yang, 2005a)

xbld(l) = xr(l) + [α(l)xh(l) − α(l)xr(l)]. (4)

It is seen that the large-scale adjustment to the regional
forecast is introduced byα(l)xh(l) − α(l)xr(l).

Equation (4) can be rewritten as

xbld(l) = α(l)xh(l) + [1− α(l)]xr(l). (5)

The final blending field is

xbld
=

∑
l

xbld(l), (6a)

=

∑
l

α(l)xh(l) +

∑
l

{[1− α(l)]xr(l)}. (6b)

Using Eq. (3), Eq. (6b) can be rewritten as

=

∑
l

α(l)xh(l) +

∑
l

φr(l). (6c)

For a low-pass filter, the first item in Eqs. (6b) and (6c),
i.e., α(l)xh(l), represents the relatively large-scale informa-
tion in a host model, where the second term on the right
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hand of Eqs. (6b) and (6c) is the relative small-scale infor-
mation in a regional model. It is obvious that the blending
method achieves the goal on use of large-scale information
from a host model, whereas small-scale information from
a regional model.xh can be a forecast or analysis from a host
model, andxr can be a forecast or analysis from a nested
regional forecast. The term background (analysis) blending
means that bothxh andxr are forecasts (analyses).

2.2 Implementation in WRFDA

The WRFDA system is designed to provide initial conditions
for the WRF model. WRFDA is developed and maintained
at the National Center for Atmospheric Research (NCAR)
and has been widely used both in research communities and
operational centers (Barker et al., 2012; Huang et al., 2009;
Wang et al., 2013b). A brief description of WRFDA will
be presented in the next section. In the blending scheme,
a low-pass filter is required to obtain large-scale informa-
tion from host and regional models. In this paper, a low-pass
Raymond sixth-order tangent implicit filter (Raymond and
Garder, 1991) is employed to obtain large-scale information
in xh andxr. The amplitude response function of the Ray-
mond sixth-order tangent implicit filter to length scalel is
expressed as

α(l) =

[
1+ ε tan6

(
πδx

l

)]−1

, (7)

ε = tan−6
(

πδx

lc

)
, (8)

whereε is the filter parameter, which depends on grid spac-
ing δx and cut-off length scalelc. From Eqs. (9) and (10),
it is seen that when the wavelength equals the cut-off length
scale (l = lc), the filter possesses a half power (α(l) is 0.5).
Figure 1 shows the amplitude responses for the Raymond
tangent implicit filter as a function of wavelength, with the
cut-off length scales at 1200 and 600 km. It is seen that the
filter has larger amplitude responses at longer wavelength
scales and smaller amplitude responses at shorter wavelength
scales, indicating that the filter can keep more information
at large scale (

∑
l α(l)xh(l)) from a host model (e.g., GFS),

and more information at small scale (
∑

l φ
r(l)) from a re-

gional model (e.g., WRF). It is also seen that the low-pass fil-
ter keeps the signals with a length scale larger than 3000 km
when the cut-off scale is 1200 km (Fig. 1a). The filter keeps
most of the signal whose scale is larger than 1000 km when
the cut-off scale is 600 km (Fig. 1b). This indicates that the
blending method will keep more large-scale information with
a cut-off length scale of 600 km than it will with 1200 km.
The cut-off length scale decides how much information from
the host model and regional model is kept in the blended
fields. In general, the smaller the cut-off length scale is, the
more information from the host model is used in the blending
scheme.

Figure 1. Amplitude responses for the Raymond filter as a function
of wavelength with cut-off wavelength(a)1200 km, and(b) 600 km.
The GFS and WRF are demonstrated as a host model and a nested
model, respectively.

In WRFDA, the background is usually provided by a short-
term WRF forecast from a previous cycle. In the back-
ground blending scheme, the short-term WRF forecast is
blended with a GFS short-term forecast at the same time, and
then this blended forecast is regarded as the background for
WRFDA. In the analysis blending scheme, the WRFDA anal-
ysis is blended with a GFS analysis to form a new analysis
which provides the initial condition for next WRF cycle. The
blended variables include the WRF model prognostic vari-
ables such as perturbation geopotential height, perturbation
potential temperature,u andv wind, water vapor mixing ra-
tio, perturbation pressure, and perturbation dry surface pres-
sure.

2.3 Performance of spatial filter: an illustrative example

Before discussing the impact of the blending scheme in real
data assimilation and forecasting experiments, the perfor-
mance of the Raymond spatial filter is investigated. An il-
lustrative example of geopotential height at 06:00 UTC on
8 September 2012 is shown in this section.

The GFS 6 h geopotential height forecast at 06:00 UTC
on 8 September 2012, with its filtered fields having cut-
off length scales of 1200 and 600 km, is shown in Fig. 2a–
c respectively. The WRF 6 h forecast and its differences
from filtered fields, having cut-off length scales of 1200 and
600 km, are shown in Fig. 2d–f respectively. Figure 2g and
h show the blended fields using Eq. (6c). The filtered fields
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Figure 2. 500 hPa geopotential height at 06:00 UTC on 8 September 2012.(a) GFS 6 h forecast, its filtered field with cut-off length scale
(b) 1200 km,(c) 600 km;(d) WRF 6 h forecast, differences from its filtered fields with cut-off length scale(e)1200 km,(f) 600 km; blended
fields with cut-off length scale(g) 1200 km and(h) 600 km; blended fields minus WRF 6 h forecast with cut-off length scale(i) 1200 km and
(j) 600 km.
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become smoother when the cut-off length scale becomes
larger (Fig. 2b and c). Those filtered fields represent the
large-scale information (

∑
l

α(l)xh(l)) that is kept in blended

fields (Fig. 2g and h) using Eq. (6c).
The differences showed in Fig. 2e and f represent the

small-scale information (
∑
l

φr(l)) that is kept in blended

fields (Fig. 2g and h). According to the response function
(Fig. 1) and residuals (Fig. 2e and f), the blended fields
with the cut-off length scale of 1200 km (Fig. 2g) will keep
more information from WRF forecast compared to that with
600 km (Fig. 2h).

We also investigated the large-scale adjustment repre-
sented by the second term in Eq. (4). It is obvious that there
is a large-scale adjustment of geopotential height with one-
wave pattern in the south–north direction for this case (Fig. 2i
and j). The adjustment of the fields becomes smoother when
the cut-off length scale becomes larger.

3 Experiments

3.1 The WRF model and WRFDA system

The WRF model with version 3.4.1 (Skamarock et al., 2008)
is used in this study. The model physics options in this pa-
per include the RRTMG longwave and shortwave radiation
schemes, MYJ planetary boundary layer scheme, Monin–
Obukhov surface layer scheme, unified Noah land-surface
model, Morrison two-moment microphysics, and Tiedtke cu-
mulus parameterization. Descriptions of the above physi-
cal process schemes can be found in the WRF technical
report by Skamarock et al. (2008). The WRFDA’s three-
dimensional variational data assimilation component (WRF
3D-Var; Barker et al., 2004, 2012) is used in this study. The
control variables with option 5 (CV5) in the WRFDA are
stream function, unbalanced part of velocity potential, un-
balanced part of temperature, unbalanced surface pressure,
and pseudo relative humidity.

3.2 Experiment design

Before performing the blending experiments, response func-
tions to various cut-off length scales are examined to aid in
selecting cut-off length scales. In addition to response func-
tions, the size of model domain, and experiences and knowl-
edge on data assimilation systems may help to select the cut-
off length scales as well. In this paper, the response functions
using cut-off length scales of 1200 and 600 km are used and
shown in Fig. 1. The two cut-off length scales of 600 and
1200 km, which can keep the large-scale components in GFS
with wavelengths above 1000 and 3000 km respectively, are
selected in this paper, since the wavelength above 3000 km
might not be well presented in the current model domain re-
gion of about 6300 km× 4800 km.

A single model domain (Fig. 2a) that covers the conti-
nental United States (CONUS), with 425× 325× 40 grids,
is used in all the data assimilation and forecast experiments.
The grid spacing is 15 km. The background error statistics
are generated from the difference between pairs of 24 h and
12 h forecasts valid at the same time in August 2012, and 24 h
forecasts initiated from GFS analyses are made twice a day
(00:00 and 12:00 UTC) to generate a forecast difference en-
semble to model background error covariance.

A set of experiments (Table 1) is conducted to assess
the impact of the blending scheme and data assimilation
on regional forecasting. For each experiment, one 2-week-
long period run from 1 to 14 September 2012 is conducted.
The control experiment is the full cycle experiment (FullCy-
cle), which assimilates operational conventional observations
from the Global Telecommunication System (GTS) data set
at NCEP.

Two background blending experiments with cut-off length
scales of 600 and 1200 km are carried out. Hereafter,
the two experiments are named as BLD_DA_600 and
BLD_DA_1200 respectively. The blending is performed be-
fore data assimilation in the two blending experiments. In or-
der to show the added values of data assimilation, another
two forecasting experiments, which are initiated from the
blended background fields of the above two blending exper-
iments BLD_DA_600 and BLD_DA_1200, are conducted.
The two forecasting experiments are named BLD_FC_600
and BLD_FC_1200 respectively.

Another two analysis blending experiments with cut-off
length scales of 600 and 1200 km respectively are also
carried out. Hereafter, the two experiments are named as
BLD_ANA_600 and BLD_ANA_1200 respectively. In the
analysis blending scheme, the WRFDA analysis is blended
with the GFS analysis to form a new analysis which provides
the initial condition for this WRF cycle. The last experiment
(named GFS) initialized the forecast from the GFS analysis
without assimilation or blending.

All the experiments were run in a full 6 h cycle mode. The
data assimilation cycle began at 06:00 UTC on 1 September
and ended at 12:00 UTC on 14 September 2012. The back-
ground in the first cycle is the WRF 6 h forecasts that were
initiated from the GFS analysis at 00:00 UTC on 1 Septem-
ber 2012. The backgrounds in following cycles are provided
by 6 h WRF forecasts from the previous cycles. For each
experiment, 36 h forecasts are made every 12 h (00:00 and
12:00 UTC). The skills of bias and root mean square error of
u, v wind, temperature, and humidity were calculated against
ECMWF reanalysis.
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Table 1.Experiment descriptions.

EXP Name Cut-off length scale Initial conditions

FullCycle No WRFDA analysis
BLD_DA_600 600 WRFDA analysis
BLD_DA_1200 1200 WRFDA analysis
BLD_FC_600 600 Blended background from BLD_DA_600
BLD_FC_1200 1200 Blended background from BLD_DA_1200
BLD_ANA_600 600 WRFDA analysis blended with GFS analysis
BLD_ANA_1200 1200 WRFDA analysis blended with GFS analysis
GFS No GFS analysis

4 Results

4.1 Forecast error in the full cycle experiment

Previous studies found that the LAM analyses and forecasts
suffer a general deficiency in effectively representing large-
scale features. The features of the 6 h forecast error in the
control experiment FullCycle are first investigated to assess
whether a WRFDA system running in full cycle mode pro-
duces large-scale forecasting errors. Then WRFDA with the
blending scheme is examined to show the benefits of the
blending scheme.

Figure 3a shows the averaged geopotential height differ-
ence between WRF 6 h forecast and the ECMWF (European
Center for Medium range Weather Forecasting) reanalysis1

(Dee et al., 2011) from 18:00 UTC on 1 September 2012
to 06:00 UTC on 14 September 2012. It is well known that
the ECMWF reanalysis has high accuracy and thus is used
as a reference. It is clearly seen that there is a systematic
larger-scale difference with wave number 1 structure in the
north–south direction. The averaged geopotential height dif-
ferences between BLD_DA_1200 and the ECMWF reanaly-
sis, and between BLD_ANA_1200 and the ECMWF reanal-
ysis, are shown in Fig. 3b and c. They show the performance
of the background and analysis blending schemes. Compared
to the FullCycle experiment (Fig. 3a), the analysis blending
scheme (Fig. 3c) is more efficient than the background blend-
ing scheme (Fig. 3b) in reducing the large-scale error.

4.2 Verifications

4.2.1 Accuracy of analyses and forecasts

A total of 27 analyses and WRF forecasts up to 36 h are
verified against the ECMWF reanalysis from 12:00 UTC on
1 September 2012 to 12:00 UTC on 14 September 2012. It
is well known that the ECMWF reanalysis has high accuracy

1European Centre for Medium-Range Weather Forecasts. 2009,
updated monthly. ERA-Interim Project. Research Data Archive
at the National Center for Atmospheric Research, Computational
and Information Systems Laboratory.http://rda.ucar.edu/datasets/
ds627.0.

Figure 3. Averaged geopotential height differences at 500 hPa
between (a) WRF 6 h forecast and ECMWF reanalysis,
(b) BLD_DA_1200 6 h forecast and ECMWF reanalysis,
(c) BLD_ANA_1200 6 h forecast and ECMWF reanalysis.
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Figure 4. RMSD reduction compared to FullCycle at analysis time.
(a) u, (b) v, (c) T , and(d) q.

and thus is used as a reference. Root-mean-square difference
(RMSD) for u, v, temperature (T ), and specific humidity
(q) in each experiment was calculated, and then the relative
RMSD reductions in the GFS experiments and four blending
experiments were obtained by subtracting the RMSD in the
FullCycle experiment. A negative value of the RMSD reduc-
tion means the analysis/forecast is more accurate than those
in the FullCycle experiment. Vertical profiles of the RMSD
reductions in the GFS experiments and the four blending ex-
periments at analysis time and 24 h forecast time are shown
in Figs. 4 and 5 respectively.

Overall, analysis errors for all the variables in the four
blending experiments are reduced compared to the control
FullCycle experiment. The analysis errors for wind are re-
duced at almost all the levels, with the maximum error re-
ductions around 250 and 850 hPa. The temperature analysis
accuracy is improved over all the levels except for the surface
level. For humidity, the analysis accuracy is significantly im-
proved at about 850 hPa.

It is seen that the GFS analysis is more accurate than the
four blending experiments. In addition, the analysis blend-
ing produces a more accurate analysis than the background
blending. As for the 24 h forecasts (Fig. 5), the blending ex-
periments give consistent improvement compared to the Full-
Cycle experiment for all variables. The forecast errors for
wind and temperature in the analysis blending and GFS ex-
periments are smaller than the background blending experi-
ment.

The added values of data assimilation are assessed and
shown in Figs. 6 and 7. From Fig. 6, it is seen that the data as-
similation shows slightly negative impacts on wind analysis,

Figure 5. Same to Fig. 4 but for 24 h forecast RMSD reduction
compared to FullCycle.(a) u, (b) v, (c) T , and(d) q.

but significant positive impacts on temperature analysis over
700 hPa and humidity analysis. Wang et al. (2014) found that
u andv wind variances are underestimated when the default
control variable option (CV5) in WRFDA is used. This un-
derestimation reduces weights of wind observations, which
may partially explain that the wind analysis is not improved
in the data assimilation experiment. As for the 24 h forecasts
(Fig. 7), the forecast errors in the data assimilation experi-
ments (BLD-DA-1200 and BLD-DA-600) are smaller than
those in the experiment BLD-FC-1200 and BLD-FC-600.

4.2.2 Precipitation forecast skill

To evaluate the precipitation forecast skill, equitable threat
scores (ETSs) and bias scores for the 1 h accumulated pre-
cipitation forecast, in the threshold 1 mm, in the first 6 h,
are plotted in Fig. 8. The stage-IV 4 km hourly precipita-
tion analysis is used as “observations” in the verification.
The stage-IV precipitation product is the regional multisen-
sor precipitation analyses at NCEP (Lin and Mitchell, 2005).
In general, the ETSs in the four blending experiments are
higher than the FullCycle experiment. It is noted that the
analysis blending experiments yield the best results. They are
even better than the GFS experiment. It is clear that the GFS
experiment needs about 2 h to spin up. This will be discussed
in the next section. As for the bias (Fig. 8b), the precipitation
frequency in the FullCycle experiment is close to the stage-
IV precipitation observations. The biases in the four blending
experiments are lower than that in FullCycle indicating that
the higher ETS in the blending experiments is not caused by
the overprediction of precipitation, but due to improved pre-
cipitation forecast in rain region coverage.
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Figure 6. RMSD reduction compared to FullCycle at analysis time.
(a) u, (b) v, (c) T , and(d) q.

Figure 7. Same to Fig. 6 but for 24 h RMSD reduction compared to
the experiment FullCycle.(a) u, (b) v, (c) T , and(d) q.

4.3 Spin-up issues

The cycling data assimilation and forecast experiments using
the blending scheme have the merits of using large-scale in-
formation from GFS, as well as small-scale features that have
been built up in previous WRF forecast cycles. It is noted that
large-scale information introduced into the WRFDA analy-
ses may need time to spin up in a regional model. However,
small-scale features carried over from previous cycles may

Figure 8. Averaged hourly accumulated precipitation forecast skill
for the threshold 1 mm(a) ETS and(b) bias.

help to partially mitigate this issue. In this paper, the mean
absolute surface pressure tendency is used to reflect the over-
all balance of the model states (Lynch and Huang, 1992).
Precipitation tendency is also investigated to show the spin-
up feature of moisture fields.

Figure 9 shows the evolution of domain- and time-
averaged total absolute surface pressure tendency, and pre-
cipitation tendency at each time step for the six experiments.
It is obvious that forecasts initiated from GFS analyses show
significant imbalance in the first few hours of the forecast,
especially in the beginning of the forecast. Both the total ab-
solute surface pressure tendency and precipitation tendency
in the GFS experiment gradually become close to those in
the FullCycle experiment after 3 h. The forecasts from the
blending experiments do introduce noise, but the total abso-
lute surface pressure tendency and precipitation tendency are
much closer to those in the FullCycle experiment.

The averaged 1 h accumulated precipitation in the first
forecast hour is shown in Fig. 10. The GFS produces the
slightest amount of precipitation among all the experiments.
This result is consistent with Fig. 9. The patterns of accu-
mulated precipitation from the blended experiments are very
similar to the FullCycle forecast. Compared to the GFS ex-
periment, the experiments using the blending scheme are less
bothered by spin-up issues.

Geosci. Model Dev., 7, 1819–1828, 2014 www.geosci-model-dev.net/7/1819/2014/
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Figure 9. The evolution of domain- and time-averaged(a) total ab-
solute surface pressure tendency, and(b) precipitation tendency.

5 Summary

Regional weather forecasts suffer a general deficiency in ef-
fectively representing of large-scale features, such as those
in global analyses and forecasts due to limitation of the do-
main size and limited observations used in regional data as-
similation and forecasting systems. In this paper, a scale-
dependent blending scheme using the low-pass Raymond
sixth-order tangent implicit spatial filter was implemented
in the WRFDA system to improve large-scale weather fea-
tures in the WRFDA analyses. The low-pass Raymond sixth-
order tangent implicit filter was used to split fields from the
host model and regional model into components at different
scales, which are then blended to form new fields that include
more large-scale information from the host model and more
small-scale information from the regional model.

Full cycle data assimilation and forecasting experiments
for one 2-week-long period in September 2012 were con-
ducted to evaluate the impact of the blending method on
regional forecasts. It is found that there are obvious large-
scale forecast errors in the regional WRFDA system running
in full cycle mode. The developed scale-dependent blending
scheme is efficient in introducing large-scale information in

Figure 10. Averaged accumulated precipitation (unit: mm) in the
first forecast hour.(a) Stage IV observation, experiment(b) GFS,
(c) FullCycle, and(d) BLD_ANA_600.

the host GFS model to the regional WRF model. Results in-
dicate that the blending method reduces the WRFDA anal-
ysis error that results in a reduction of WRF forecast errors
for wind, temperature, and humidity up to 24 h. The blend-
ing experiments yield the better precipitation forecast skills
compared to the full cycle experiment.

In the blending scheme, the accuracy of analysis at the
large scale depends on the quality of host model prod-
ucts, whereas the analysis of small-scale features of atmo-
spheric weather systems is influenced by the WRFDA sys-
tem and model dynamics implicated in cycled background.
More observations (e.g., from a local dense observing net-
work or radars) are expected to increase analysis accuracy
of the small-scale atmospheric systems, which is beneficial
to precipitation forecast. In addition, the improvements in
the large-scale atmospheric systems are crucial for tropical
cyclone forecasts. The developed blending scheme has been
in operation for typhoon forecasting at Central Weather Bu-
reau (CWB). The scheme greatly increased the operational
typhoon track forecast during the 2012 season, and a detailed
investigation will be reported in a future paper.
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