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Abstract. This paper investigates the development of
a model, called CranSLIK, to predict the transport and trans-
formations of a point mass oil spill via a stochastic approach.
Initially the various effects on destination are considered and
key parameters are chosen which are expected to dominate
the displacement. The variables considered are: wind veloc-
ity, surface water velocity, spill size, and spill age. For a point
mass oil spill, it is found that the centre of mass can be de-
termined by the wind and current data only, and the spill
size and age can then be used to reconstruct the surface of
the spill. These variables are sampled and simulations are
performed using an open-source Lagrangian approach-based
code, MEDSLIK II. Regression modelling is applied to cre-
ate two sets of polynomials: one for the centre of mass, and
one for the spill size. Simulations performed for a real oil
spill case show that a minimum of approximately 80 % of
the oil is captured by CranSLIK. Finally, Monte Carlo simu-
lation is implemented to allow for consideration of the most
likely destination for the oil spill, when the distributions for
the oceanographic conditions are known.

1 Introduction

Whilst the frequency of spills occurring has dropped signif-
icantly in the last few decades (Etkin, 2001), it does not di-
minish the inevitability of an oil spill occurring. Oil spills
can cause large-scale destruction of the environment, they
have significant economical effects, and can result in human
life loss. They are inevitably the cause of environmental, eco-
nomic and human disaster. The Deepwater Horizon spill, for

example, has been analysed extensively byGraham et al.
(2011), members of the US National Commission on the BP
Deepwater Horizon Oil Spill and Offshore Drilling. There
is therefore much interest in being able to accurately predict
the destination, transport and transformation of an oil spill to
minimise the resultant cost, both financial and environmen-
tal.

There are many complex phenomena affecting an oil
spill, creating an advection–diffusion–transformation pro-
cess. These consist of a large number of effects: the ad-
vection due to currents, wind and waves, the diffusion due
to the turbulence and the transformation processes, such as
evaporation, natural dispersion, spreading etc., which need
to be considered for accurate fate and transport prediction.
A schematic illustration of these effects can be seen in Fig.1
(MEDESS-4MS, 2013; ITOPF, 2013). Also, as the spill ages,
different effects become more important – a speculative mass
balance can be seen in Fig.2 (Mackay and McAuliffe, 1989).
There are numerous equations created to model these effects,
based on both analytical and empirical approaches. However,
the complexity of the underlying physics is not yet fully un-
derstood.Reed et al.(1999) provide a very good summary of
early models. Since then significant progress has been made
in acquiring a deeper understanding of the involved complex
phenomena – for example biodegradation is studied byMc-
Genity et al.(2012).

Difficulty also arises as the result of uncertainty since ex-
act quantities are not necessarily known beforehand due to
the stochastic nature of certain variables, for example the sea
surface velocity. The computational cost involved in running
multiple cases, or Monte Carlo simulation, to consider the
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Figure 1. Weathering process, fromITOPF(2013).

possible conditions is often far too great to be a viable ap-
proach. This becomes a severe impediment in cases of real
accidents where a quick, or even real-time, prediction be-
comes necessary.

1.1 MEDSLIK II

Many models have been developed and used to predict the
transport and transformation of an oil spill. These are either
commercial, such asLi et al. (2013), or open-source, such
asDe Dominicis et al.(2013a). Regardless of the software
tools employed, these models are not without their limita-
tions. Often the computational cost involved in running a full
simulation is too high. Alternatively, in order to be able to
have a prediction in near real time, the model has to be sim-
plified extensively, in terms of its physics, and therefore the
simulation results are not of high accuracy.

One such code is MEDSLIK II. This solves the advection–
diffusion processes using a Lagrangian particle formalism,
meaning that the oil slick is broken into a number of con-
stituent particles, while the transformation processes act on
the entire oil slick surface. It has been shown to provide ac-
curate results in a number of real scenarios (De Dominicis
et al., 2013a; Coppini et al., 2011). Results are produced rea-
sonably quickly which is desirable since many simulations
are necessary to apply the regression model.

There are four main inputs required: oil spill data, wind
field, sea surface temperature, and structure of sea currents.
The frequency of the oceanographic data is an important fac-
tor since these can change dramatically in a relatively short
period of time. MEDSLIK II applies a linear interpolation
in time between two subsequent current and wind fields to
calculate the current and wind at the model time step.

The test case included with the program is for an oil spill
in Algeria. This consisted of 680 tonnes of crude oil being
spilled and validation was carried out to check the accuracy

Figure 2. Speculative mass balance, fromMackay and McAuliffe
(1989).

of the prediction over a 36 h period. The accuracy was found
to be in good agreement with the observed results (De Do-
minicis et al., 2013a). This model has also been validated for
the Lebanon crisis where the predicted oil slick at sea and
coastal deposits were in agreement with observations (Cop-
pini et al., 2011).

Additional details regarding the development and valida-
tion of MEDSLIK II can be seen inDe Dominicis et al.
(2013a, b).

1.2 Aims

This paper investigates the use of stochastic methods to map
the response from different input variables to create a robust
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and efficient software tool capable of effective prediction.
This provides an estimation of the destination and spread
of an oil spill subject to uncertain oceanographic conditions.
Also the minimal computational time required for the devel-
oped model allows for Monte Carlo simulation using non-
deterministic values for current and wind velocities. This can
then be used to calculate a region such that there is a high
probability that said region will contain the oil spill. This aids
significantly in reducing the resultant financial and environ-
mental cost of oil spills, predicting their likely development.

Wind and current velocities are both continuous variables,
and as such, it is impossible to investigate all possible val-
ues. Therefore, it is necessary to sample these variables. This
involves creating a discrete set of values which is represen-
tative of the continuous variable. The sampled values then
create the set of necessary simulations called a design hyper-
cube (Myers et al., 2009).

The key steps in developing our methodology can be out-
lined as follows:

1. identify the key parameters and their relative distribu-
tions necessary for short-term oil spill prediction;

2. sample the considered parameters to create a design hy-
percube;

3. generate simulation data using the design hypercube;

4. fit regression models to map the inputs to the response;

5. use the aforementioned regression model to create a pre-
diction code;

6. test the developed code against a real scenario and anal-
yse the results.

In order to generate simulation data, we have used the MED-
SLIK II model. This choice was based on a number of rea-
sons, but predominantly due to its robustness and because it
has been validated on multiple real spills as discussed inDe
Dominicis et al.(2013a, b).

2 Uncertainties and stochastic modelling

Another complexity in modelling arises from the uncertainty
involved in prediction of oceanographic conditions and spill
parameters. Many parameters, which are known to have an
important role in the destination of an oil spill, are stochastic
in nature and therefore difficult to accurately predict.

Wind forcing, i.e. the wind velocity components at 10 m
above the sea surface, is provided by meteorological mod-
els, while currents and temperature are provided by oceano-
graphic models. The atmospheric forcing is provided by
the European Centre for Medium-Range Weather Forecasts
(ECMWF), with 0.25◦ space, and 6-hour temporal resolu-
tion. The current velocities used in this work come from
the Mediterranean Forecasting System (MFS) described in

Pinardi et al.(2003) and Pinardi and Coppini(2010). The
MFS system is composed of an Ocean General Circulation
Model (OGCM) at 6.5 km horizontal resolution and 72 ver-
tical levels (Tonani et al., 2008; Oddo et al., 2009). Every
day MFS produces forecasts of temperature, salinity, inten-
sity and direction of currents for the next 10 days. Once
a week, an assimilation scheme, as described inDobricic
and Pinardi(2008), corrects the model’s initial guess with
all the available in situ and satellite observations, produc-
ing analyses that are initial conditions for 10-day ocean cur-
rent forecasts. The modelled currents and wind fields can be
affected by uncertainties that arise from model initial con-
ditions, boundaries, forcing fields, parameterisations, etc. In
this paper the hourly mean analyses have been used to elim-
inate the additional uncertainty connected with forecasts for
both atmospheric and oceanographic input data.

Whilst many of these parameters may be measurable at
the initial time, prediction of the oil spill destination requires
reasonable estimation of the conditions over the simulation
period. There are numerous methods for circumventing this
problem; usually the stochastic parameters are extrapolated
from previous values – however, this can frequently cause
gross errors. This hinders the accuracy of real time predic-
tion.

In this problem, it is necessary to apply sampling to ensure
that the considered points are representative of the domain.
This problem cannot be approached deterministically due to
the continuous nature of the parameters making the consider-
ation of every possible quantity unfeasible. There are numer-
ous methods of sampling available. Monte Carlo simulation
is the simplest. However, the associated high computational
cost is a constraint in the context of the model development.
Another alternative could be importance sampling, which
adopts a Monte Carlo style simulation, but biases the out-
put to favour areas of greater interest, for example the tails of
the distribution. This, however, is also inappropriate since the
entire distribution is of interest, and it is still relatively expen-
sive. Instead, a Latin hypercube (LHC) method will be used,
where the distribution is separated into blocks of equal prob-
ability and then a random value is chosen from each block.
This has the advantage of requiring a smaller amount of nec-
essary simulations to create a good design and hence is rela-
tively inexpensive. The main disadvantage is that it does not
necessarily guarantee a well-stratified design (Myers et al.,
2009).

A simple third-order polynomial regression model is used
to map the responses. It was found that lower-order models
are too sensitive to the fluctuating component present in the
simulation data. This is the same reason which prevents the
use of radius basis functions in place of a polynomial.

It is also possible that the input variables will possess
cross-correlation. Therefore mixed variable terms, i.e.x1x2,
have to be included in the model.
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3 Methodology

As previously stated, the underlying physics of an oil spill is
very complex. Existing solvers require resolving many of the
underlying phenomena. To perform direct simulations of all
possible conditions would be far too computationally expen-
sive. For example, MEDSLIK II requires several minutes per
run; 1000 runs using different input parameters would there-
fore require many hours. Our approach avoids this problem
by creating a polynomial which maps inputs to a response
resulting in 1000 runs being possible in approximately 1 sec-
ond. This allows for consideration of likely destinations of
the oil spill using non-deterministic inputs. Note that the phe-
nomena which can be accounted for in CranSLIK are lim-
ited to the phenomena modelled by MedSLIK II. The paper
uses a non-intrusive method, whereby the regression model
is developed using the results from the solver, and does not
require being programmed into the solver itself. There are
numerous benefits of this approach. Primarily it is performed
to simplify the problem. However, it also means that the de-
veloped methodology can easily be applied to data from any
source.

3.1 Choice of variables

Three variables have been chosen: wind velocity, current ve-
locity and spill size.

It is necessary to express each variable as a distribution.
Spill size will simply be assumed uniform and various sizes
tested. However, velocities need to be separated into two
components: speed and angle.

The angle can then be simplified by treating the current an-
gle as an axis and only looking at the wind angle with respect
to this axis. Also, symmetry can be applied, meaning that it
is only necessary to consider angles between 0 andπ , since
other angles are a reflection in the current axis. A uniform
distribution can then be assumed for this variable.

The distribution for wind speed is widely accepted to
be reasonably well represented by a Weibull distribution
with shape and scale parameters 2.26 and 9.02 respectively
(de Prada Gil et al., 2012). Morgan et al.(2011) suggest that
a log-normal distribution is better for extreme wind speeds.
We are not looking at extreme speeds though, so the Weibull
distribution is sufficient. It is somewhat more complicated to
find a distribution for the current speed as this varies over the
globe. Since the pattern is almost entirely that of wind-driven
circulation, it is likely the same underlying distribution with
varying coefficients based on location. Here, the current ve-
locity for the test case has been analysed and a Weibull distri-
bution superimposed, leading to the coefficients 1.9967 and
0.2132 for shape and scale respectively. The maximum ve-
locity is limited by the highest sampled value. Performing
the prediction for a value outside the sampled range is not
recommended due to extrapolation errors. Therefore, if one

Table 1.Sampled values for centre of mass prediction.

Wind magnitude Current magnitude Angle
(in m s−1) (in m s−1) (in radians)

0 0 0
2.0887 0.0505 π/4
5.7691 0.1497 π/2
6.1600 0.2488 3π/4
7.7913 0.3480 π

10.1252 0.4472 –
15.2786 0.5464 –

wished to consider a value outside of the sampled range, ad-
ditional simulations would have to be performed.

3.2 Sampling the variables

To develop the model, it is necessary to sample the chosen
variables. In statistics and quantitative research methodol-
ogy, a data sample is a set of data collected and/or selected
from a statistical population by a defined procedure. This has
been done using the LHC technique, which involves splitting
the distribution into blocks of equal probability, then a ran-
dom value is chosen from each block. A brief experiment
was conducted and it was determined that a minimum of six
samples are required to capture a reasonably complex shape,
the Weibull distribution. Note that it is not possible to predict
the shape of the resultant graph beforehand. However, it is
expected to be more simple than the test shape. A zero point
has also been considered for investigation of simulation noise
generated by MEDSLIK II. The variables have also been de-
coupled by consideration of a point mass oil spill subject to
oceanographic conditions. The result was that the destination
can be determined by the current and wind velocities. It was
also found that the size of the spill depends on the initial spill
size as well as the spill age, that is time since initial spill.

The sampled values for wind and current velocities, and
the angles, can be seen in Table1. Note that to simplify the
required number of simulations, the developed model will
displace the spill depending on the angle between the cur-
rent and wind velocities, with the current velocity treated as
an axis, and then translated to meaningful coordinates. Data
have been generated from the stated input values for a simu-
lation time of 36 h.

3.3 Response mapping

In order to map the responses, a third-order polynomial
approximation was calculated using the method of least
squares. It has been found that the zero-point fluctuations
from the random walk procedure appear to skew the results
disproportionally with lower-order models.
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Figure 3. Flowchart of the developed model.

For the spill size, a slightly different approach was taken,
where the developed equation comes fromr = g(θ), i.e. a ra-
dial function is developed, as opposed to a Cartesian. This
assists in ensuring a periodic, or near-periodic model. Note
that both a polynomial and sinusoidal functions were inves-
tigated and the polynomial appears to produce less skewed
results in the central region and hence the polynomial func-
tion was chosen. But as outer rings are of greater interest,
either choice could be acceptable.

Seven values have been sampled for the wind and current
magnitudes, however only five angles have been considered.
This is because the angle refers to the angle between the wind
and current velocities, and since the current velocity is used
as an axis, symmetry can be applied to reduce the number of
necessary values in this parameter. Therefore five values over
a semi-circle are chosen, which corresponds to eight values
over a circle.

3.4 Developed methodology

Once the polynomials have been created, it is necessary
to outline the developed methodology for prediction of an
oil spill, using the calculated coefficients. The flow chart
of the developed model can be seen in Fig.3. The actual
code has been written in the commercial software package
MATLAB ® (2011) and the statistics toolbox is used for the
Monte Carlo simulation to generate the random numbers.

An overview of the methodology is as follows:

– Interpretation of oceanographic data.The key parame-
ters in the prediction are the wind and current velocities.
MEDSLIK II produces column-structured data for these
from the raw NetCDF files. The prediction code is capa-
ble of reading these and converting them to block struc-
ture and converting from latitude and longitude to me-
tres. A modified version of this code has also been writ-
ten for the purposes of Monte Carlo simulation, where
the user inputs a desired wind and current velocity di-
rectly.

– Centre of mass.To investigate the behaviour of the
centre of mass, the wind, current and angle variables
have been considered. A polynomial has been devel-
oped which links these variables to predict displacement
in thex andy planes. The oceanic data are interpolated
to find the parameters at the spill location and these are
fed into the regression model to predict a new centre.
Since the current direction is treated as an axis, the dis-
placement with respect to this is first calculated, and
then translated into more meaningful coordinates.

– Reconstruction of surface.Now the centre of mass has
been predicted, the surface reconstruction of the oil spill
can be considered. Since this is not linked to the destina-
tion of the centre of mass, the rings are created around
the origin and then displaced by the calculated displace-
ment of the centre of mass. If desired, a contour can then
be fitted according to these concentration rings. These
are fourth-order polynomials and require the initial spill
size (tonnes) and the spill age (hours).

– Set values for next iteration.For the next time step, it is
necessary to set the new centre of mass for the oil spill.
At this stage, the centre of mass can be corrected based
on observation to produce more accurate results.

4 Case study

In order to validate CranSLIK, it is necessary to investigate
its performance when applied to oceanographic conditions.
The accuracy of CranSLIK is evaluated by the volume of oil
captured, where this is calculated as the volume of oil ex-
plained by the model, divided by the total oil volume. Note
that the model has been verified against the sampled points
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Figure 4. Proportion of oil captured using different update frequen-
cies.

and that over 99.5 % of the oil was captured for each case
after 1 h of simulation. It was also found that the prediction
becomes less accurate for extended periods. The wind and
current velocities were both found to produce near-linear dis-
placement with respect to time, when considered individu-
ally. The developed model works by hourly prediction which
causes cumulative errors in extended simulation. Hindcast
modelling, updating the centre of mass every hour, is there-
fore recommended to minimise error. The spill size predic-
tion remains very accurate, above 99 %, over a 36 h period
suggesting that hindcast modelling is not required to be ap-
plied to this part of the code.

4.1 Algeria test case

The case considered uses the oceanographic data for the Al-
geria spill on 6 August 2008 and a point mass oil spill is
released from latitude 38.240◦ and longitude 5.981◦. Current
velocities were updated every hour and wind velocities every
6 h. It is found that the proportion of oil captured becomes
poor when a full 36 h prediction is performed – the accuracy
rapidly drops after the 4 h mark as shown in Fig.4. However,
under the application of hindcast modelling, where the cen-
tre of mass is updated every hour based on model data, the
minimum accuracy is greatly improved. This is likely due to
cumulative errors during prediction. These errors could be
present in the developed model. However, since the model
has been verified, it may be an error due to the oceanographic
data. The model assumes that the oceanographic conditions
at the start of the simulation period are representative of the
conditions over the period. This however is not necessarily
true and therefore the prediction is less accurate when these
conditions change greatly over the simulation period. It is
possible in this case to apply an interpolation since the quan-
tities for the next time step are known. However, this would
not be possible in a real scenario.

Figure 5. Centre of mass prediction using different update frequen-
cies.

Figure 6.Proportion of oil captured by the spill size prediction only,
for the Algeria scenario.

Figure 5 shows the displacement error of the centre of
mass, when this value is updated at different intervals. It is
clear that the error is far smaller when the simulation is only
predicting for an hour and then updating.

With regard to the spill size only, the accuracy appears to
be very good, as seen in Fig.6. Compared to the accuracy of
the centre of mass prediction, this appears to be far more ac-
curate, suggesting that the weakest component of this model
is the centre of mass prediction; however, the overall accu-
racy appears to be reasonably good – a minimum of 80 %
when hourly prediction is used as seen in Fig.4. This also
justifies the decoupling of variables.

The supplementary animation shows the predicted oil spill
(black rings) and the MEDSLIK II result (background con-
tour) for a 36 h simulation period for this test case. The centre
of mass for the prediction is updated every hour. The lowest
proportion of oil captured is approximately 80 % with the av-
erage being about 91 %.
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Table 2. Sensitivity of variables for the first hour of the Algeria
scenario. Upper and lower ranges for 90 % accuracy are given.

Variable Lower limit Upper limit Observed

Wind magnitude −2.0423 9.3860 4.3454
Current magnitude 0.0065 0.1130 0.0653
Wind angle −2.5844 −0.2280 −1.5202
Current angle −1.7279 −0.6605 −1.4048
Spill size 163.2 NA 680

4.2 Sensitivity analysis

It is also of interest to consider the sensitivity of CranSLIK
with respect to the different input parameters. This is sum-
marised in Table2.

The most sensitive variables appear to be the current mag-
nitude and angle. This is expected since the displacement due
to current velocity is far greater than that due to the wind ve-
locity, and since the majority of the oil is contained close to
the centre, the dispersed elements do not skew the results sig-
nificantly and hence there is some leeway with the spill size.
This was expected since the current is more displacing than
the wind, and it was concluded the wind is less important
when the sensitivity of variables was investigated in MEDS-
LIK II ( De Dominicis et al., 2013a).

4.3 Monte Carlo simulation

CranSLIK assumes that the wind and current data at the start
of the hour are representative of the full hour. This, however,
is not necessarily true since oceanographic conditions may
change. Therefore, more accurate prediction may be possible
if an interpolation is applied to the data and expected fields
are created. However, this is not relevant for prediction of
real-time oil spills. In such scenarios it may be of interest to
generate an expected region for the oil spill.

Due to the incredibly low computational cost required by
CranSLIK, a Monte Carlo simulation can be performed in
a very low time frame, approximately 1000 simulations per
second on an AMD Phenom II X4 3.6 GHz processor. This
can be used to generate an expected region for the oil spill
and aid in clean-up and recovery operations.

For the Algeria test case, the Monte Carlo simulation was
performed using input distributions developed from the avail-
able data. However, due to the 60 h period of data, there ex-
ists a bimodal peak in the simulation results representative
of the alternating current forcing as shown in Fig.7. This be-
comes clearer when the simulation is performed using 10 000
and 100 000 samples, as shown in Figs.8 and9 respectively.
This result is not too helpful because of the bimodal peak.
However, it does demonstrate the versatility and robustness
of CranSLIK. If the distribution for a location is known, more
meaningful results can be produced.

4.4 Discussion

Whilst CranSLIK appears to perform well for the tested sce-
narios, it is necessary to identify the assumptions made while
modelling. Firstly, the displacement of the centre of mass is
correlated to the wind and current velocities only, while the
spill area is determined by the quantity of oil spilled and the
age. Although these variables are considered dominant, in a
fully robust model further simulations considering different
variables should be performed. This would lead to an even
more accurate prediction. However, it would require more
complicated approximations to account for these variables
and their correlations. Additional variables could be included
to account for more complicated flow physics such as non-
radial oil spill expansion. Secondly, rather than the MEDS-
LIK II which was employed, other oil spill prediction codes
and softwares may be used and compared to identify their
performance in aspects of accuracy and computational ef-
fort and at the same time highlight efficiency of the proposed
non-intrusive methodology. Finally, only one particular type
of oil spill has been considered: point-mass. Since the devel-
oped model moves a centre of mass, and then reconstructs the
surface, it is possible to mark several centres of masses and
predict their destinations. The problem then becomes surface
reconstruction which would require additional simulations.
As with any stochastic problem, additional simulations could
lead to a better regression fit and hence better prediction.

5 Conclusions

This paper describes the development of CranSLIK, a model
for the prediction of the destination and spread of an oil spill
via a stochastic approach. The key parameters were identi-
fied as wind velocity, current velocity, spill size and time,
and a design square was created for the required samples.
The simulations were then performed using MEDSLIK II
and regression modelling was applied to create two equa-
tions: one to predict the centre of mass, and one to predict
the spill size. The developed code has been presented and
discussed. It was then validated against a real test case. Fi-
nally, the efficiency of the model is exploited using Monte
Carlo simulation for the purposes of generating maximum
likelihood regions. This has limited use when applied to the
Algeria test case due to insufficient current and wind velocity
data to more accurately fit a distribution. Note that CranSLIK
is limited to the same physical phenomena which are mod-
elled by MEDSLIK II.

The developed model appears to perform well when ap-
plied to the Algeria test case considered, with a minimum
of 80 % of the oil captured when using hourly prediction.
The major strength of the developed model is the efficiency
and the minimal time required to perform Monte Carlo sim-
ulation and generate maximum likelihood regions. However,
for this to provide useful results, it is necessary to have
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Figure 7. Monte Carlo simulation of the Algeria test case contoured by cell frequency, 1000 iterations, 1 h simulation.
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Figure 8. Monte Carlo simulation of the Algeria test case contoured by cell frequency, 10 000 iterations, 1 h simulation.

a distribution or a reasonable estimate of expected oceano-
graphic conditions. This paper serves as a demonstration of
an alternative method for fast prediction of the advection–
diffusion–transformation of an oil spill. The assumptions
have been discussed and areas for further work highlighted.

Whilst the key variables were considered, it has been identi-
fied that consideration of additional variables could result in
improved accuracy.
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Figure 9. Monte Carlo simulation of the Algeria test case contoured by cell frequency, 100 000 iterations, 1 h simulation.

Code availability

The oil spill model code CranSLIK v1.0 is available as an
open source code that can be downloaded together with test
case data and output example from the websitehttp://public.
cranfield.ac.uk/e102081/CranSLIK. CranSLIK is available
under the GNU General Public License (GNU-GPL Version
3, 29 June 2007). The code is written in the commercial soft-
ware packageMATLAB ® (2011). The model code can run
on any computer and operating system that supports Matlab.

The Supplement related to this article is available online
at doi:10.5194/gmd-7-1507-2014-supplement.
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