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Abstract. We describe development and validation of a tan-1 Introduction

gent linear model for the High-Order Method Modeling En-

vironment, the default dynamical core in the Community At- It has long been recognized that data assimilation (DA)
mosphere Model and the Community Earth System Modelschemes play a key role in numerical weather prediction
that solves a primitive hydrostatic equation using a spec{NWP) systems to correctly forecast short-range predictions.
tral element method. A tangent linear model is primarily in- Among various DA schemes, four-dimensional variational
tended to approximate the evolution of perturbations generDA (4DVar) methods have shown superior forecasting re-
ated by a nonlinear model, provides a computationally ef-sults. In addition, a recent advent of fast multiprocessor com-
ficient way to calculate a nonlinear model trajectory for a puters leads the full potential of 4DVar to be realized in
short time range, and serves as an intermediate step to writé@ore complicated systems. 4DVar schemes including incre-
and test adjoint models, as the forward model in the incre-mental 4DVar (Courtier et al., 1994), weak 4DVar (Yannick,
mental approach to four-dimensional variational data assim2007), and direct/indirect representative method (Bennett,
ilation, and as a tool for stability analysis. Each module in 2002) generally all share the common components such as
the tangent linear model (version 1.0) is linearized by handsa tangent linear model (TLM), its adjoint model (ADM), a
on derivations, and is validated by the Taylor-Lagrange for-background error covariance, and minimization algorithms
mula. The linearity checks confirm all modules correctly de- as 4DVar drivers.

veloped, and the field results of the tangent linear modules For operational NWP applications, the construction of a
converge to the difference field of two nonlinear modules asTLM is a very important intermediate step in the develop-
the magnitude of the initial perturbation is sequentially re- ment of the 4DVar. The TLM serves as an intermediate step
duced. Also, experiments for stable integration of the tangento write and test the ADM, as the forward model in the incre-
linear model (version 1.0) show that the linear model is alsomental approach to 4DVar, and as a tool for stability analysis
suitable with an extended time step size compared to the timéZhu and Kamachi, 2000; Ehrendorfer and Errico, 1995). It
step of the nonlinear model without reducing spatial resolu-is essential for development of the 4DVar schemes to obtain
tion, or increasing further computational cost. Although the consistency between the nonlinear model and its correspond-
scope of the current implementation leaves room for a seing TLM that leads to the accurate development of its ADM,
of natural extensions, the results and diagnostic tools prewhich plays a key role in finding a best initial condition by
sented here should provide guidance for further developmenproviding the gradient of the cost functional via minimiza-
of the next generation of the tangent linear model, the cordion algorithms in the 4DVar schemes. Therefore, the TLMs
responding adjoint model, and four-dimensional variationalhave been recognized as powerful tools for analyzing numer-
data assimilation, with respect to resolution changes and imous aspects such as model sensitivity and the dynamics of

provements in linearized physics and dynamics. flow fields, and the evolution of perturbations.
The main focus of this study is the development of a

TLM for a nonlinear dynamical model that solves a prim-
itive hydrostatic equation. The nonlinear model adopted
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here is the High-Order Method Modeling Environment HOMME, the TLM development is targeted for CG method
(HOMME, www.homme.ucar.eduThe HOMME is a high- in this study.
order method that utilizes fully unstructured quadrilateral- The numerical configuration for HOMME and its TLM
based finite element meshes on the sphere, and adopts a spsbare the same numerical configuration. HOMME can be
tral element and discontinuous Galerkin method (Dennis etonfigured to solve the shallow water or the dry/moist prim-
al., 2012). For its scalability and efficiency, the HOMME itive equations. The baroclinic test case (Jablonowski and
is considered as a promising dynamical core, and is the deWilliamson, 2006) configured in HOMME is utilized to ap-
fault dynamical core of the Community Atmosphere Model praise the evolution of baroclinic waves in the Northern
(CAM) and the Community Earth System Model (CESM). Hemisphere using quasi-realistic initial conditions, and em-
Here, we developed a TLM for the HOMME dynamical core ploys the second-order explicit Runge—Kutta time integra-
that can describe well the evolution of perturbations genertion. The computational domain is the global sphere that is
ated by the nonlinear model when the magnitude of perturcovered by six identical regions by an equiangular central
bation becomes the size of actual uncertainties (Errico angbrojection of the faces of an inscribed cube. Each face of the
Raeder, 1999). cubed sphere is free of singularities and is partitioned into
The second section explains the TLM development for theNe by Ne rectangular non-overlapping elements (so the to-
HOMME model including the description of the HOMME, tal number of elements is>6NeZ). For each element of the
time increment with management of temporal trajectories forcomputational domain, an approximate solution is expanded
the nonlinear model, and linearity checks. The third sectionby a tensor product of Lagrange basis function of ordlgr
shows the numerical results of the linearity checks for all tan-defined at the Gauss—Lobatto-Legendre (GLL) points. For
gent linear modules, including full fields for baroclinic insta- this study, the conservative three-dimensional CG model is
bilities of time-dependent zonal geostrophic flow, followed configured for the global sphere witfe = 16, Ny = 4, and
by a summary and discussion in the fourth section. the horizontal resolution of 26 Lagrangian surfaces (i.e., the
number of vertical levelsViey = 26). Then, the total num-
ber of the elements i8glem= 1536, and the grid resolution
over the equatorial nodes is about 220 km, on average. A
2 Development of tangent linear model fourth-order hyperviscosity filter is used for spatial filtering,
and the time increment i&7 = 150 s. Note that although the
There are a couple of different ways to develop a TLM for HOMME uses adaptive time stepping and adaptive mesh re-
a given dynamical model such as (1) a perturbation forefinement, its TLM does not include such functions. Message
casting approach in which the TLM is discretized from the passing Interface (MPI) domain decomposition through the
linearization of the given nonlinear dynamical equation, andspace-ﬁ”ing curve approach is used for para”e"sm (Nair et
(2) a line-by-line approach in which the TLM is linearized g|., 2009).
directly from the numerical codes of the given dynamical The evolution of the baroclinic wave is very slow from
model. The advantage of the former is that the approach Cafhtegration day O to day 4. Therefore, Fig. 1 only shows
easily deal with numerical instability compared to the latter, the triggering baroclinic waves and corresponding surface
but the TLM can be more conveniently developed by the lat-pressurePs and temperature field at 850 hPa ey = 23)
ter approach. Here, the line-by-line approach for the TLM from day 6 to day 10. At days 6 and 7 the surface pressure
development is adopted because of its straightforwardnesshows few weak high- and low-pressure systems with shad-
of linearization for the set of the discretized nonlinear equa-ings, and the temperature field exhibits the growth of very
tions. The complete source codes of the described modulesmall-amplitude waves with contours (Fig. 1a, b). At day 8

are available from the authors upon request. the baroclinic instability waves are well developed in surface
pressure, and the temperature waves are also clearly observed
2.1 HOMME dynamical core (Fig. 1c). The baroclinic pressure waves become strong at

days 9 and 10, and the waves in the temperature field are
The HOMME is a high-order element-based method to buildalmost peaked and begin to wrap around the trailing fronts
scalable, accurate, and conservative atmospheric general cifFig. 1d, e).
culation models that numerically solves three-dimensional
primitive equations (Nair and Tufo, 2007). HOMME em- 2.2 Line-by-line approach
ploys advanced time stepping, adaptive mesh refinement
and several domain decomposition strategies along withThe line-by-line approach is the easiest way to construct a
the continuous/discontinuous Galerkin (CG/DG) and spec-TLM in that each line of the nonlinear code is rewritten to
tral element (SE) methods (Thomas and Loft, 2002; Dennishe corresponding tangent linear code via the chain rule of
et al., 2012). Also, HOMME guarantees conservation andthe implicit derivative. In general, we follow the steps be-
maintains all the attractive computational features of SE.low for the model linearization (Zou et al., 1997; Giering and
Among the various horizontal discretization methods within Kaminski, 1998).
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Figure 1. Evolution of the baroclinic wave from time integration with different days. The shadings and contours represent surface pressure

(hPa) and temperature (K), respectivél} day 6,(b) 7, (c) 8, (d) 9, and(e) 10.

1. Determine input and output for variables and constantstl_tmp and constant$ andtmp. Note that the input coeffi-
in the nonlinear codes. cientsa andb in the TL code should be previously read in

outside of the TL code while the constamp must be cal-

2. Distinguish the variables for the tangent linear codesculated inside of the TL code by other NL variables from
from those coefficients for nonlinear results by adding outside of the TL code. In certain cases, it is very important
prefix “tl_". to put the tangent linear terntl (tmp) before the basic state

term ¢mp), and the basic state term is not necessary if it is

3. Linearize the nonlinear codes via the chain rule of thenot associated with the nonlinear coefficient.
implicit derivative (or calculus of variation).

2.3 Linearization tests

4. Check and clean up input and output variables in the

module name. The practical version of a TLM should be considered reason-

ably good enough if the TLM is to correctly describe time-

In Fig. 2, input and output for the variables in both nonlinear evolving perturbations of the nonlinear model as the per-
(NL) and tangent linear (TL) codes are indicated by intent(in) turbation magnitude increases to the actual uncertainty size.
and intent(out). The variables for the NL code areb and  The main goal in this study is to develop a TLM asymptoti-
tens while the variables for the TL code are appended withcally that yields a similar solution as the difference between
prefix “tl_”, and the variables: andb in the NL code are  nonlinear solutions when the magnitude of perturbation ap-
used as the coefficients in the TL code. The coefficients argroaches toward zero. Therefore, the developed TLM can
generally called time-varying basic states in the TL code. be used for various tools for the evolution of perturbations,

In the NL code, the intrinsisine function with indepen-  stability analysis, and the forward model in the incremental

dent variablez can be differentiated with respect to the vari- 4DVar. We follow the method of Navon et al. (1992) below
able a via the chain rule of the implicit derivative. Then, for a linearity check for the developed tangent linear model.
the sinefunction is differentiated to be theosinefunction, Assume thatV(x) and M (x) respectively are the nonlin-
and its variablex becomedl_a, the variables of the tangent ear module and its corresponding tangent linear module, re-
linear code. To complete changes from the NL code to thespectively. Then, the correctness of the tangent linear module
TL, the output variablgensin the NL code also needs to can be described as follows. The Taylor-Lagrange expansion
be linearized with respect to the variableandtmp, which  of the nonlinear model is

depends on the variablesuch that the corresponding term

tl_tensin the TL code is composed of the variabtes and N(x +ah) = N(x)+ah" M(x) + 0(a®), Q)
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TLM is one of the critical factors for the TLM development

Subroutine NL( a, b, tens )

real, intent(in) :: a, b along with linearity check in Sect. 2.3.

el :%“Eigt(“t) P¢ tens In the initial development of the TLM, the time step of
the TLM is set identical to that of the nonlinear model, and

tmp = 3.0d0 * sin(a) the time-varying basic states are calculated by the nonlin-

tens = tmp * b**2 . . . .

End subroutine NL ear model at every time step during the TLM time evolution

(Fig. 3a). In this approach, the tangent linear model resolves

Subroutine TL{ a, b, tl_a, tl_b, ti_tens ) the perturbation growth very well for the sufficiently high

real, intent(in) :: a, b, tl a, tl b ; . .

real, intent(out) :: tl_tens frequency of a solution trajectory, and there is no cost related
real :: tmp, tl_tmp to 1/0 due to the storage of the trajectory in memory. In this
tl tmp = 3.0d0 * cos(a) * tl a approach, the period of time integration can be extended in
tmp = 3.0d0 * sin(a) order of O (10) without any instability or technical issues. It
tl tens = tl tmp * b**2 + tmp * 2.0d0 * b * tl1 b . .

End subroutine TL is worth noting that when compared to the results of a fur-

ther approximated version of TLM, it can be used as a refer-
Figure 2. Example of the tangent linear subroutine called TL basedence solution. However, this first development still may not
on the nonlinear subroutine called NL. The subroutines displays ine practical in the operational NWP applications because of
pUt and OUtpUt with Capital letters  and O in the argument Variables.the h|gh Computational costis extreme'y burdensome. There-
fore, alternate strategies for practical implementation of a
TLM are required.

As seen in previous studies, many applications show the
The constant: is a small scalar such that the magnitude of impact of less frequently updating trajectory on TLM inte-
T ) X i : gration and suggest that the basic states do not have to be
initial perturbations is cont.rolled by this scaling famr‘_l’he stored at every time step for an effective TLM (Errico et al.,
Taylor-Lagrange formula in Eq. (1) can then be rewritten as 1 gg3. vannick, 2004). One of alternate strategies is that the

T infrequently saved basic states are interpolated whenever the
t(a) =|| N(x+ah)—N(x) || / || ah" M(x) |= 14 O(a), (2) TLMqrequifés the coefficients between tEe saved time steps.
where 0 (a) is the residual for the ratio of norms. When the The strategy_chosen here is first to increase the time st_ep of
tangent linear module is correctly developed, the above reth€ tangent linear model and second to store the nonlinear
lationshipz («) should hold within machine precision as the trajéctory on files at the extended time. We obtained a best
values ofz become small. The relationship indicates that the SaVing frequency of nonlinear solutions for the TLM in terms
norm of tangent linear module in the denominator in Eq. (2)°F efficiency and performance as long as the computational
should approach to the norm of difference field between the?0St such as I/O and storage is manageable (Fig. 3b).
two nonlinear models in the numerator in Eq. (2) as the mag-
nitude of perturbations approaches zero.

We designed a practical linearity test setting, where in-3 Numerical results
dividual variables are separately linearity-checked since the
variables in the module have different magnitudes. We inte-3-1 Module linearity checks

grated the nonlinear model with both perturbed and unper- ] ] ] ]
turbed initial conditions, and the tangent linear model with Many studies employed perturbation magnitudes for wind,

the initial perturbation. Here, the constanin Egs. (1) and ~ (emperature, ?nd surface pressure from 0.rm&K and

(2) serves as the perturbation scaling factor of the initial per-1 NPat0 1ms?, 10K and 10 hPa respectively for the strong
turbation and is sequentially reduced by the factor of 10 suctnd the weak perturbations (Courtier and Talagrand, 1987;
that the magnitude of the perturbation becomes smaller by-ac@rra and Talagrand, 1988; Rabier and Courtier, 1992).

wherex is a vector of all the input variables,is a state vec-
tor for perturbation, and the superscripis matrix transpose.

the factor. he magnitude of perturbations changes from the strong per-
turbations to the weak perturbations by reducing the scaling
2.4 Temporal increment factor a by 10. For weak perturbations, the tangent linear

modules are expected to well approximate the behavior of
During the TLM time integration, the TLM requires the time- perturbation for the nonlinear forward model and to keep the
varying basic states that are provided by the nonlinear dy+elative error small, but when the scale factor becomes too
namical system. If the TLM requires reading these basicsmall, the residuab (a) for the ratio of norms in Eq. (2) is
states every time step, then it may require huge overheadsxpected to be worse due to the numerical truncation errors.
to retrieve those coefficients during input/output (I/0) due to  For thorough linearity tests for each module, we config-
the high dimensionality o® (10”) or higher. This mightlead  ured different perturbations by choosing nonlinear model
the time integration of the TLM to the excess of normal NWP states at day 0, 1 and until day 8. These perturbations are
model integration. Therefore, the temporal increment for theinitial conditions for the TLM and are reduced by the factor
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Figure 3. Nonlinear trajectory management for the tangent linear mdeeBefore the tangent linear model (initial version of TLM) is
integrated, the nonlinear model (NLM) is calculated every time step afl@adonlinear solutions are first saved during the time integration
of the NLM, and then the TLM is integrated over time with coefficients from the NLM run.

of 10 by multiplying the scaling factaz. The unperturbed a FELEELELELE b LELELE L LS

nonlinear model has initial conditions at given days, and the e« —oay0 1£08 —omo

1E-01 -1  1E07 -1

perturbed nonlinear model has initial conditions by summing i 2 1eos 2

—3

the initial conditions of the unperturbed nonlinear model and = .., y e / —
the perturbations (initial conditions for the TLM). e — / o lem 7
E N\A7 7 E12 \__ &

There are two main modules to be linearized for / s 1em

1E-08 1E-14

the TLM; compute_and_apply_rhsalculates the dynam- 2 a

!cal te_ndency, andadvance_hypery|3|s spatial filter- Figure 4. Linearity test for the two major moduleg¢a) com-
ing using fourth-order hyperviscosity. The moduwem- ;i te and apply_rhand(b) advance_hypervighe horizontal and
pute_and_apply_rhonsists of various subroutines and vertical axes are respectively the values of the scaling factord
functions such asdivergence_sphere, gradient_sphere, the residuald (a) for the ratio of norms in Eq. (2). The slopes with
vorticity_sphere, preq_hydrostatic, preq_omega_psd  different colors show the residuél(a) calculated at different days.
preq_vertadv The advance_hypervisnodule includeshi-
harmonic_wk, laplace_sphere_ydndvlaplace_sphere_wk
Prior to testing the two main modules, those subroutines angorresponding difference fields between the two nonlinear
functions are directly linearized and checked individually by model forecasts. In general, an increment produced by as-
the linearity tests in Eqg. (2). similating any DA systems is believed to represent a typi-
Figure 4 shows the results of the ratio of norms for the cal analysis error and is treated as a reasonable initial per-
two major modules. The horizontal and vertical axes are returbation, or the increment can be constructed by a differ-
spectively the values of the scaling factorand the resid-  ence field between two full states in different forecast ranging
ual O(a) for the ratio of norms in Eq. (2). The slopes with (Ehrendorder and Errico, 1995). Because the magnitudes of
different colors show the residudl(a) calculated at differ-  the latter method are similar to those of the nonlinear model
ent days. The numerical results show that, for all cases, théesults at day 6 with reduced magnitude of 10 or 1%, ini-
slopes are decreased as the scaling fagtis decreased, tial perturbations are obtained by choosing nonlinear model
even if there are small differences of the magnitude be-results with 10 or 1% reduced magnitude. The initial pertur-
tween the slopes. As expected, when the scaling factor bebations are used as the initial condition for the TLM, and the
comes smaller, the perturbation reaches the machine préwo parallel nonlinear models are also integrated over time:
cision and the slopes do not decrease anymore. With varione with the perturbations added to the initial condition and
ously different perturbations and initial conditions, the sim- the other without the initial perturbation.
ilar pattern described as in Fig. 4 shows the residoét) Figure 5 shows the snapshots of V-wind fields to com-
for all other modules, including the main time-stepping loop pare the difference of the two nonlinear models and the lin-
module, prim_run_subcyclehat is composed of the time- ear model evolutions at 0, 24, and 48 h. The initial pertur-
stepping modulgrim_advance_expalong with two major  bations of 10 and 1 % magnitudes of V-wind components for
modules shown in Fig. 4. This implies that the linearization the TLM are respectively displayed in Fig. 5a and d (first col-
for all nonlinear modules is performed properly and com-umn) with contours, and their TLM forecasts are shown with
pletely. The TLM is verified to be accurate, and its solutions contours at day 1 (second column) and day 2 (third column).

are therefore expected to be truly asymptotically correct. ~ Similarly, the nonlinear evolution of the initial perturbations
are evaluated by the difference fields between the two non-

3.2 Field checks linear model forecasts and displayed with shadings. In Fig. 5,

both amplitudes and patterns from the TLM solutions and the
Further to verify the correctness of the TLM, we plotted differences of the two nonlinear forecasts are very similar.
the full field of V-wind components for the TLM and the The amplitudes of the TLM results for both day 1 and day

O(a)
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Figure 5. Evolution of different initial perturbations for the V-wind fields (m%. Upper pane(a, b, c)shows wind with 10 % perturbation
of the initial state and lower panéd, e, f) with 1% perturbation (see details in Sect. 3.2). The shadings represent the difference between

the two nonlinear models runs with perturbed and unperturbed initial conditions. The contours illustrate the evolution of wind perturbation

propagated by the tangent linear model at different times, the initial time (left column), 24 h (middle), and 48 h (right).

2 also show linear trends between 10 and 1% magnitudesstability after 5h. For a given 6 h assimilation window that
of initial perturbations, and the pattern correlation with 1% is usually used for 4DVar schemes in many NWP centers, the
magnitude is much higher than that with 10 % magnitude.TLM results with time step sizes less thaw = 450 vyield
These results confirm that the initial evolution is well repre- stable integration results and produce very similar results to
sented by the developed TLM (version 1.0) up to at least 48 ithose with default time stop @f = 450. Thus, the expanded
for the resolution of 220 kmNe = 16). The similar numeri-  time step size ofAr = 450 would be appropriate for a best
cal results were obtained for different model configurationstemporal increment. This can be confirmed quantitatively by
with different model resolutions, initial conditions, and per- considering the relative mean error, defined, for any quantity
turbations (figures are not shown). These results confirm thaX at the timeT' =5h, as

the TLM (version 1.0) for the HOMME dynamical core is

correctly developed and reasonably well represents the iniff XTum — XN I/ | Xneo Il 3)

tial perturbation evolution.
where Xt m is a TLM field at7 =5h, XnLp is the corre-

sponding difference fields between the two nonlinear model
forecasts at 5h, anfl || is a spatial averaged norm. Table 1
gives these values for the mean of the stat variablat

A time step size in tangent linear models plays an importantime 7 = 5h. And the total wall-clock time is decreased, as
role in numerical stability and computational cost, so it i the time step size is increased such that wher= 150's is
important to choose a suitable time step size to balance beset to pe 100 %, &+ becomes 56 %, 8¢ is 36 %, and A¢
tvveen_the numerical stability and computat_ional cost. A t0Ofqr 3304, Although the TLM (version 1.0) developed in this
short time step makes the TLM too expensive due to the I/Ogydy still needs further improvement for its performance, the
as seen in Sect. 2.4, and a too long time step makes the modg},rrent version is practical within a scope of a reasonable

numerically instable. There are a couple of ways to determing.ompromise between linearity, computational efficiency, and
a proper time step size for stable integration of a TLM. Onefgrecast performances.

is to try different time step sizes for the TLM, and the other
can check stability conditions for given numerical schemes.
Here, various time steps are applied to the TLM and empir-4  Summary and discussion

ically tested for numerical instabilities. Figure 6 shows snap-

shots of V-wind fields at time 5 h for the results of the TLM In this study, modules to calculate tangent linear trajecto-
with different time step sizes froms = 150 s toAr = 600 ries have been implemented into the HOMME dynamical
increased by 150. At the time step af = 300, the result  core. The TLM describes the evolution of perturbations about
shows the stable time integration of the TLM up to 48 h, time-varying basic states that are provided by the nonlin-
and the TLM with Ar = 450 holds the numerical stability ear dynamical system. The TLM accommodates a Jacobian
for 11h. The TLM with time step ofAr = 600 shows the of the dynamical operator that is tangential to a solution

3.3 Temporal increment

Geosci. Model Dev., 7, 1175482 2014 www.geosci-model-dev.net/7/1175/2014/
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Table 1.Relative mean errors.

Variable 1. At 2- At 3. At 4. At

0.0124556  0.0128355  0.0135081  0.163502
0.0128028  0.0120578 0.0115803 0.13647
. D— t 0.00696689 0.00650514 0.00596657 0.104771
90E  120E  150E 180  150W  120W 90E 120 150E 180  150W  120W ps 0.00697304 0.00639369 0.00547336 0.0750567

the trajectories from the file. As the time step of the TLM is

increased, the burden of I/O is decreased. Furthermore, given

a time step size the instability during the TLM time integra-

tion should be carefully studied. It is because the time step

used of the developed TLM is directly used for the time step

Figure 6. V-wind fields (m s'1) of the tangent linear model with ~ of the adjoint model, and it also influences the performance

different time increments at 5 h later. Time step sizeis (a) 150, of 4DVar schemes.

(b) 300,(c) 450, andd) 600s. The critical element in any operational prediction schemes
such as 4DVar and four-dimensional ensemble-based varia-
tional method (4DEnVar) will, of course, be the initializa-

trajectory of the nonlinear system, and also provides a comtion procedure. The issue that has not been addressed by the

putationally efficient way to calculate the model trajectory. present development is the analysis increments in the ini-

Since the TLM is primarily intended to approximate the evo- tialization procedure that generally develop gravity waves.

lution of perturbations in a corresponding nonlinear model, To filter out high-frequency waves, an incremental analysis-

the accuracy of the TLM is considered to be a measure otipdating scheme (Polavarapu et al., 2004) is developed for
the model performance. In that regard, the developed codethe forecast model, and for 4DEnVar and 4DVar. The TLM
for the TLM are checked by the Taylor—-Lagrange formula (version 1.0) developed here can be another option for an in-
and by comparison of time-evolved perturbation fields for ternal digital filtering initialization scheme such that the high
the TLM with the difference fields between two controlled frequency in the analysis increments are filtered out by prop-
nonlinear model runs. Overall verification of the numerical agating the TLM forwards and backwards (with a negative
results indicates that the tangent linear model is correctly detime step), and then by forming a weighted average of the
veloped. states in the combined trajectory. Korea Institute of Atmo-
Generally, there are some major inaccuracy issues in despheric Prediction Systems (KIAPS) is a government-funded
veloping TLMs (Errico et al., 1993) due to the finite mag- nonprofit research and development institute currently devel-
nitude of the perturbations in initial/boundary conditions, oping a four-dimensional ensemble-based variational method
model parameters, the strong nonlinearities, discontinuitie$4DEnVar). KIAPS will test the TLM (version 1.0) for the

in nonlinear models, and numerical instabilities, which makeinitialization procedure.

difficult the development of efficient and well-behaving tan-

gent linear codes. During the development of the tangent lin- o

ear codes for the HOMME dynamical core, however, we haveC0de availability

not experienced any significant difficulty such as a tendency

to suddenly grow small perturbations due to some unintende . ) :
yg b e request. Any potential user interested in those modules

discontinuities or ill-conditioning in the HOMME model. We hould tact B.-J. J q teedback on them i |
believe that it is because the dynamics has good computas- ould contact 5.-J. Jung, and any feedback on them IS wel-

tional properties such as no singularity on both poles (Denniscome' Note that one may need help using the TLM model

etal., 2012). optimally, but we do not have the resources to support the

Since the TLM requires nonlinear solutions as coefficients,mOdde::)In ag op?rr]l way. S”:Ce A.DM |fsTc|iJ|\r/Tenltlly bdelng ?i\g\lﬂ
the I/O strategy is important for the practical implication of oped based on the current version o ,alfcodeso

the TLM. Two TLMs are developed with different I/O such are also presumably available upon the request.

as recalculating the basic state and storing the trajectories

n m?' The T!‘M with recalculating the basic state at ev- AcknowledgementsThis work has been carried out through the
ery time step is extremely burdensome, but the results of th??&D project on the development of global numerical weather
TLM well represent the evolution of perturbations, and thosep egiction systems of Korea Institute of Atmospheric Prediction
results can be used as reference fields in comparison Witgystems (KIAPS) funded by Korea Meteorological Administration
those of the approximated TLM. The extra burden leads to(KMA). Authors would like to thank Adam Clayton at Met Office
the alternate strategy for the TLM that is to store and readfor his proofreading and precious comments on this manuscript.

Ef | E .
q 90E 120 150E 180 150W 120w Q 90E 120E 150E 180 150W 120w

Il codes in the current version of TLM are available upon

www.geosci-model-dev.net/7/1175/2014/ Geosci. Model Dev., 7, 11282 2014
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that helped to clarify aspects of the manuscript. Nair, R. D. and Tufo, H. M.: Petascale atmospheric general
circulation models, J. Phys., 78, 012078, d@6i1088/1742-
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