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Abstract. We describe development and validation of a tan-
gent linear model for the High-Order Method Modeling En-
vironment, the default dynamical core in the Community At-
mosphere Model and the Community Earth System Model
that solves a primitive hydrostatic equation using a spec-
tral element method. A tangent linear model is primarily in-
tended to approximate the evolution of perturbations gener-
ated by a nonlinear model, provides a computationally ef-
ficient way to calculate a nonlinear model trajectory for a
short time range, and serves as an intermediate step to write
and test adjoint models, as the forward model in the incre-
mental approach to four-dimensional variational data assim-
ilation, and as a tool for stability analysis. Each module in
the tangent linear model (version 1.0) is linearized by hands-
on derivations, and is validated by the Taylor–Lagrange for-
mula. The linearity checks confirm all modules correctly de-
veloped, and the field results of the tangent linear modules
converge to the difference field of two nonlinear modules as
the magnitude of the initial perturbation is sequentially re-
duced. Also, experiments for stable integration of the tangent
linear model (version 1.0) show that the linear model is also
suitable with an extended time step size compared to the time
step of the nonlinear model without reducing spatial resolu-
tion, or increasing further computational cost. Although the
scope of the current implementation leaves room for a set
of natural extensions, the results and diagnostic tools pre-
sented here should provide guidance for further development
of the next generation of the tangent linear model, the cor-
responding adjoint model, and four-dimensional variational
data assimilation, with respect to resolution changes and im-
provements in linearized physics and dynamics.

1 Introduction

It has long been recognized that data assimilation (DA)
schemes play a key role in numerical weather prediction
(NWP) systems to correctly forecast short-range predictions.
Among various DA schemes, four-dimensional variational
DA (4DVar) methods have shown superior forecasting re-
sults. In addition, a recent advent of fast multiprocessor com-
puters leads the full potential of 4DVar to be realized in
more complicated systems. 4DVar schemes including incre-
mental 4DVar (Courtier et al., 1994), weak 4DVar (Yannick,
2007), and direct/indirect representative method (Bennett,
2002) generally all share the common components such as
a tangent linear model (TLM), its adjoint model (ADM), a
background error covariance, and minimization algorithms
as 4DVar drivers.

For operational NWP applications, the construction of a
TLM is a very important intermediate step in the develop-
ment of the 4DVar. The TLM serves as an intermediate step
to write and test the ADM, as the forward model in the incre-
mental approach to 4DVar, and as a tool for stability analysis
(Zhu and Kamachi, 2000; Ehrendorfer and Errico, 1995). It
is essential for development of the 4DVar schemes to obtain
consistency between the nonlinear model and its correspond-
ing TLM that leads to the accurate development of its ADM,
which plays a key role in finding a best initial condition by
providing the gradient of the cost functional via minimiza-
tion algorithms in the 4DVar schemes. Therefore, the TLMs
have been recognized as powerful tools for analyzing numer-
ous aspects such as model sensitivity and the dynamics of
flow fields, and the evolution of perturbations.

The main focus of this study is the development of a
TLM for a nonlinear dynamical model that solves a prim-
itive hydrostatic equation. The nonlinear model adopted
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here is the High-Order Method Modeling Environment
(HOMME, www.homme.ucar.edu). The HOMME is a high-
order method that utilizes fully unstructured quadrilateral-
based finite element meshes on the sphere, and adopts a spec-
tral element and discontinuous Galerkin method (Dennis et
al., 2012). For its scalability and efficiency, the HOMME
is considered as a promising dynamical core, and is the de-
fault dynamical core of the Community Atmosphere Model
(CAM) and the Community Earth System Model (CESM).
Here, we developed a TLM for the HOMME dynamical core
that can describe well the evolution of perturbations gener-
ated by the nonlinear model when the magnitude of pertur-
bation becomes the size of actual uncertainties (Errico and
Raeder, 1999).

The second section explains the TLM development for the
HOMME model including the description of the HOMME,
time increment with management of temporal trajectories for
the nonlinear model, and linearity checks. The third section
shows the numerical results of the linearity checks for all tan-
gent linear modules, including full fields for baroclinic insta-
bilities of time-dependent zonal geostrophic flow, followed
by a summary and discussion in the fourth section.

2 Development of tangent linear model

There are a couple of different ways to develop a TLM for
a given dynamical model such as (1) a perturbation fore-
casting approach in which the TLM is discretized from the
linearization of the given nonlinear dynamical equation, and
(2) a line-by-line approach in which the TLM is linearized
directly from the numerical codes of the given dynamical
model. The advantage of the former is that the approach can
easily deal with numerical instability compared to the latter,
but the TLM can be more conveniently developed by the lat-
ter approach. Here, the line-by-line approach for the TLM
development is adopted because of its straightforwardness
of linearization for the set of the discretized nonlinear equa-
tions. The complete source codes of the described modules
are available from the authors upon request.

2.1 HOMME dynamical core

The HOMME is a high-order element-based method to build
scalable, accurate, and conservative atmospheric general cir-
culation models that numerically solves three-dimensional
primitive equations (Nair and Tufo, 2007). HOMME em-
ploys advanced time stepping, adaptive mesh refinement
and several domain decomposition strategies along with
the continuous/discontinuous Galerkin (CG/DG) and spec-
tral element (SE) methods (Thomas and Loft, 2002; Dennis
et al., 2012). Also, HOMME guarantees conservation and
maintains all the attractive computational features of SE.
Among the various horizontal discretization methods within

HOMME, the TLM development is targeted for CG method
in this study.

The numerical configuration for HOMME and its TLM
share the same numerical configuration. HOMME can be
configured to solve the shallow water or the dry/moist prim-
itive equations. The baroclinic test case (Jablonowski and
Williamson, 2006) configured in HOMME is utilized to ap-
praise the evolution of baroclinic waves in the Northern
Hemisphere using quasi-realistic initial conditions, and em-
ploys the second-order explicit Runge–Kutta time integra-
tion. The computational domain is the global sphere that is
covered by six identical regions by an equiangular central
projection of the faces of an inscribed cube. Each face of the
cubed sphere is free of singularities and is partitioned into
Ne by Ne rectangular non-overlapping elements (so the to-
tal number of elements is 6× N2

e). For each element of the
computational domain, an approximate solution is expanded
by a tensor product of Lagrange basis function of orderNp
defined at the Gauss–Lobatto–Legendre (GLL) points. For
this study, the conservative three-dimensional CG model is
configured for the global sphere withNe = 16, Np = 4, and
the horizontal resolution of 26 Lagrangian surfaces (i.e., the
number of vertical levelsNlev = 26). Then, the total num-
ber of the elements isNelem= 1536, and the grid resolution
over the equatorial nodes is about 220 km, on average. A
fourth-order hyperviscosity filter is used for spatial filtering,
and the time increment is1t = 150 s. Note that although the
HOMME uses adaptive time stepping and adaptive mesh re-
finement, its TLM does not include such functions. Message
Passing Interface (MPI) domain decomposition through the
space-filling curve approach is used for parallelism (Nair et
al., 2009).

The evolution of the baroclinic wave is very slow from
integration day 0 to day 4. Therefore, Fig. 1 only shows
the triggering baroclinic waves and corresponding surface
pressurePs and temperature fieldT at 850 hPa (Nlev = 23)
from day 6 to day 10. At days 6 and 7 the surface pressure
shows few weak high- and low-pressure systems with shad-
ings, and the temperature field exhibits the growth of very
small-amplitude waves with contours (Fig. 1a, b). At day 8
the baroclinic instability waves are well developed in surface
pressure, and the temperature waves are also clearly observed
(Fig. 1c). The baroclinic pressure waves become strong at
days 9 and 10, and the waves in the temperature field are
almost peaked and begin to wrap around the trailing fronts
(Fig. 1d, e).

2.2 Line-by-line approach

The line-by-line approach is the easiest way to construct a
TLM in that each line of the nonlinear code is rewritten to
the corresponding tangent linear code via the chain rule of
the implicit derivative. In general, we follow the steps be-
low for the model linearization (Zou et al., 1997; Giering and
Kaminski, 1998).
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Figure 1. Evolution of the baroclinic wave from time integration with different days. The 2 
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Figure 1. Evolution of the baroclinic wave from time integration with different days. The shadings and contours represent surface pressure
(hPa) and temperature (K), respectively:(a) day 6,(b) 7, (c) 8, (d) 9, and(e)10.

1. Determine input and output for variables and constants
in the nonlinear codes.

2. Distinguish the variables for the tangent linear codes
from those coefficients for nonlinear results by adding
prefix “tl_”.

3. Linearize the nonlinear codes via the chain rule of the
implicit derivative (or calculus of variation).

4. Check and clean up input and output variables in the
module name.

In Fig. 2, input and output for the variables in both nonlinear
(NL) and tangent linear (TL) codes are indicated by intent(in)
and intent(out). The variables for the NL code area, b and
tens, while the variables for the TL code are appended with
prefix “tl_”, and the variablesa andb in the NL code are
used as the coefficients in the TL code. The coefficients are
generally called time-varying basic states in the TL code.

In the NL code, the intrinsicsine function with indepen-
dent variablea can be differentiated with respect to the vari-
able a via the chain rule of the implicit derivative. Then,
the sine function is differentiated to be thecosinefunction,
and its variablea becomestl_a, the variables of the tangent
linear code. To complete changes from the NL code to the
TL, the output variabletens in the NL code also needs to
be linearized with respect to the variablesb andtmp, which
depends on the variablea such that the corresponding term
tl_tensin the TL code is composed of the variablestl_b and

tl_tmp and constantsb and tmp. Note that the input coeffi-
cientsa andb in the TL code should be previously read in
outside of the TL code while the constanttmp must be cal-
culated inside of the TL code by other NL variables from
outside of the TL code. In certain cases, it is very important
to put the tangent linear term (tl_tmp) before the basic state
term (tmp), and the basic state term is not necessary if it is
not associated with the nonlinear coefficient.

2.3 Linearization tests

The practical version of a TLM should be considered reason-
ably good enough if the TLM is to correctly describe time-
evolving perturbations of the nonlinear model as the per-
turbation magnitude increases to the actual uncertainty size.
The main goal in this study is to develop a TLM asymptoti-
cally that yields a similar solution as the difference between
nonlinear solutions when the magnitude of perturbation ap-
proaches toward zero. Therefore, the developed TLM can
be used for various tools for the evolution of perturbations,
stability analysis, and the forward model in the incremental
4DVar. We follow the method of Navon et al. (1992) below
for a linearity check for the developed tangent linear model.

Assume thatN(x) andM(x) respectively are the nonlin-
ear module and its corresponding tangent linear module, re-
spectively. Then, the correctness of the tangent linear module
can be described as follows. The Taylor–Lagrange expansion
of the nonlinear model is

N(x + ah) = N(x) + ahTM(x) + O(a2), (1)
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Figure 2. Example of the tangent linear subroutine called TL based on the nonlinear 2 
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Figure 2. Example of the tangent linear subroutine called TL based
on the nonlinear subroutine called NL. The subroutines displays in-
put and output with capital letters I and O in the argument variables.

wherex is a vector of all the input variables,h is a state vec-
tor for perturbation, and the superscriptT is matrix transpose.
The constanta is a small scalar such that the magnitude of
initial perturbations is controlled by this scaling factora. The
Taylor–Lagrange formula in Eq. (1) can then be rewritten as

t (a) =‖ N(x+ah)−N(x) ‖ / ‖ ahTM(x) ‖= 1+O(a), (2)

whereO(a) is the residual for the ratio of norms. When the
tangent linear module is correctly developed, the above re-
lationshipt (a) should hold within machine precision as the
values ofa become small. The relationship indicates that the
norm of tangent linear module in the denominator in Eq. (2)
should approach to the norm of difference field between the
two nonlinear models in the numerator in Eq. (2) as the mag-
nitude of perturbations approaches zero.

We designed a practical linearity test setting, where in-
dividual variables are separately linearity-checked since the
variables in the module have different magnitudes. We inte-
grated the nonlinear model with both perturbed and unper-
turbed initial conditions, and the tangent linear model with
the initial perturbation. Here, the constanta in Eqs. (1) and
(2) serves as the perturbation scaling factor of the initial per-
turbation and is sequentially reduced by the factor of 10 such
that the magnitude of the perturbation becomes smaller by
the factor.

2.4 Temporal increment

During the TLM time integration, the TLM requires the time-
varying basic states that are provided by the nonlinear dy-
namical system. If the TLM requires reading these basic
states every time step, then it may require huge overheads
to retrieve those coefficients during input/output (I/O) due to
the high dimensionality ofO(107) or higher. This might lead
the time integration of the TLM to the excess of normal NWP
model integration. Therefore, the temporal increment for the

TLM is one of the critical factors for the TLM development
along with linearity check in Sect. 2.3.

In the initial development of the TLM, the time step of
the TLM is set identical to that of the nonlinear model, and
the time-varying basic states are calculated by the nonlin-
ear model at every time step during the TLM time evolution
(Fig. 3a). In this approach, the tangent linear model resolves
the perturbation growth very well for the sufficiently high
frequency of a solution trajectory, and there is no cost related
to I/O due to the storage of the trajectory in memory. In this
approach, the period of time integration can be extended in
order ofO(10) without any instability or technical issues. It
is worth noting that when compared to the results of a fur-
ther approximated version of TLM, it can be used as a refer-
ence solution. However, this first development still may not
be practical in the operational NWP applications because of
the high computational cost is extremely burdensome. There-
fore, alternate strategies for practical implementation of a
TLM are required.

As seen in previous studies, many applications show the
impact of less frequently updating trajectory on TLM inte-
gration and suggest that the basic states do not have to be
stored at every time step for an effective TLM (Errico et al.,
1993; Yannick, 2004). One of alternate strategies is that the
infrequently saved basic states are interpolated whenever the
TLM requires the coefficients between the saved time steps.
The strategy chosen here is first to increase the time step of
the tangent linear model and second to store the nonlinear
trajectory on files at the extended time. We obtained a best
saving frequency of nonlinear solutions for the TLM in terms
of efficiency and performance as long as the computational
cost such as I/O and storage is manageable (Fig. 3b).

3 Numerical results

3.1 Module linearity checks

Many studies employed perturbation magnitudes for wind,
temperature, and surface pressure from 0.1 m s−1, 1 K and
1 hPa to 1 m s−1, 10 K and 10 hPa respectively for the strong
and the weak perturbations (Courtier and Talagrand, 1987;
Lacarra and Talagrand, 1988; Rabier and Courtier, 1992).
The magnitude of perturbations changes from the strong per-
turbations to the weak perturbations by reducing the scaling
factor a by 10. For weak perturbations, the tangent linear
modules are expected to well approximate the behavior of
perturbation for the nonlinear forward model and to keep the
relative error small, but when the scale factor becomes too
small, the residualO(a) for the ratio of norms in Eq. (2) is
expected to be worse due to the numerical truncation errors.

For thorough linearity tests for each module, we config-
ured different perturbations by choosing nonlinear model
states at day 0, 1 and until day 8. These perturbations are
initial conditions for the TLM and are reduced by the factor
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Figure 3. Nonlinear trajectory management for the tangent linear model. a) Before the tangent 3 

linear model (initial version of TLM) is integrated, the nonlinear model (NLM) is calculated 4 

every time step ahead. b) Nonlinear solutions are first saved during the time-integration of the 5 

NLM, and then the TLM is integrated over time with coefficients from the NLM run. 6 

Figure 3. Nonlinear trajectory management for the tangent linear model.(a) Before the tangent linear model (initial version of TLM) is
integrated, the nonlinear model (NLM) is calculated every time step ahead.(b) Nonlinear solutions are first saved during the time integration
of the NLM, and then the TLM is integrated over time with coefficients from the NLM run.

of 10 by multiplying the scaling factora. The unperturbed
nonlinear model has initial conditions at given days, and the
perturbed nonlinear model has initial conditions by summing
the initial conditions of the unperturbed nonlinear model and
the perturbations (initial conditions for the TLM).

There are two main modules to be linearized for
the TLM; compute_and_apply_rhscalculates the dynam-
ical tendency, andadvance_hypervisis spatial filter-
ing using fourth-order hyperviscosity. The modulecom-
pute_and_apply_rhsconsists of various subroutines and
functions such asdivergence_sphere, gradient_sphere,
vorticity_sphere, preq_hydrostatic, preq_omega_ps, and
preq_vertadv. The advance_hypervismodule includesbi-
harmonic_wk, laplace_sphere_wk, andvlaplace_sphere_wk.
Prior to testing the two main modules, those subroutines and
functions are directly linearized and checked individually by
the linearity tests in Eq. (2).

Figure 4 shows the results of the ratio of norms for the
two major modules. The horizontal and vertical axes are re-
spectively the values of the scaling factora and the resid-
ual O(a) for the ratio of norms in Eq. (2). The slopes with
different colors show the residualO(a) calculated at differ-
ent days. The numerical results show that, for all cases, the
slopes are decreased as the scaling factora is decreased,
even if there are small differences of the magnitude be-
tween the slopes. As expected, when the scaling factor be-
comes smaller, the perturbation reaches the machine pre-
cision and the slopes do not decrease anymore. With vari-
ously different perturbations and initial conditions, the sim-
ilar pattern described as in Fig. 4 shows the residualO(a)

for all other modules, including the main time-stepping loop
module,prim_run_subcyclethat is composed of the time-
stepping moduleprim_advance_exp, along with two major
modules shown in Fig. 4. This implies that the linearization
for all nonlinear modules is performed properly and com-
pletely. The TLM is verified to be accurate, and its solutions
are therefore expected to be truly asymptotically correct.

3.2 Field checks

Further to verify the correctness of the TLM, we plotted
the full field of V-wind components for the TLM and the
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Figure 4. Linearity test for the two major modules:(a) com-
pute_and_apply_rhs, and(b) advance_hypervis. The horizontal and
vertical axes are respectively the values of the scaling factora and
the residualO(a) for the ratio of norms in Eq. (2). The slopes with
different colors show the residualO(a) calculated at different days.

corresponding difference fields between the two nonlinear
model forecasts. In general, an increment produced by as-
similating any DA systems is believed to represent a typi-
cal analysis error and is treated as a reasonable initial per-
turbation, or the increment can be constructed by a differ-
ence field between two full states in different forecast ranging
(Ehrendorder and Errico, 1995). Because the magnitudes of
the latter method are similar to those of the nonlinear model
results at day 6 with reduced magnitude of 10 or 1 %, ini-
tial perturbations are obtained by choosing nonlinear model
results with 10 or 1 % reduced magnitude. The initial pertur-
bations are used as the initial condition for the TLM, and the
two parallel nonlinear models are also integrated over time:
one with the perturbations added to the initial condition and
the other without the initial perturbation.

Figure 5 shows the snapshots of V-wind fields to com-
pare the difference of the two nonlinear models and the lin-
ear model evolutions at 0, 24, and 48 h. The initial pertur-
bations of 10 and 1 % magnitudes of V-wind components for
the TLM are respectively displayed in Fig. 5a and d (first col-
umn) with contours, and their TLM forecasts are shown with
contours at day 1 (second column) and day 2 (third column).
Similarly, the nonlinear evolution of the initial perturbations
are evaluated by the difference fields between the two non-
linear model forecasts and displayed with shadings. In Fig. 5,
both amplitudes and patterns from the TLM solutions and the
differences of the two nonlinear forecasts are very similar.
The amplitudes of the TLM results for both day 1 and day
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Figure 5. Evolution of different initial perturbations for the V-wind fields (m s-1). Upper panel 2 
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Figure 5. Evolution of different initial perturbations for the V-wind fields (m s−1). Upper panel(a, b, c)shows wind with 10 % perturbation
of the initial state and lower panel(d, e, f) with 1 % perturbation (see details in Sect. 3.2). The shadings represent the difference between
the two nonlinear models runs with perturbed and unperturbed initial conditions. The contours illustrate the evolution of wind perturbation
propagated by the tangent linear model at different times, the initial time (left column), 24 h (middle), and 48 h (right).

2 also show linear trends between 10 and 1 % magnitudes
of initial perturbations, and the pattern correlation with 1 %
magnitude is much higher than that with 10 % magnitude.
These results confirm that the initial evolution is well repre-
sented by the developed TLM (version 1.0) up to at least 48 h
for the resolution of 220 km (Ne = 16). The similar numeri-
cal results were obtained for different model configurations
with different model resolutions, initial conditions, and per-
turbations (figures are not shown). These results confirm that
the TLM (version 1.0) for the HOMME dynamical core is
correctly developed and reasonably well represents the ini-
tial perturbation evolution.

3.3 Temporal increment

A time step size in tangent linear models plays an important
role in numerical stability and computational cost, so it is
important to choose a suitable time step size to balance be-
tween the numerical stability and computational cost. A too
short time step makes the TLM too expensive due to the I/O
as seen in Sect. 2.4, and a too long time step makes the model
numerically instable. There are a couple of ways to determine
a proper time step size for stable integration of a TLM. One
is to try different time step sizes for the TLM, and the other
can check stability conditions for given numerical schemes.

Here, various time steps are applied to the TLM and empir-
ically tested for numerical instabilities. Figure 6 shows snap-
shots of V-wind fields at time 5 h for the results of the TLM
with different time step sizes from1t = 150 s to1t = 600
increased by 150. At the time step of1t = 300, the result
shows the stable time integration of the TLM up to 48 h,
and the TLM with1t = 450 holds the numerical stability
for 11 h. The TLM with time step of1t = 600 shows the

instability after 5 h. For a given 6 h assimilation window that
is usually used for 4DVar schemes in many NWP centers, the
TLM results with time step sizes less than1t = 450 yield
stable integration results and produce very similar results to
those with default time stop of1t = 450. Thus, the expanded
time step size of1t = 450 would be appropriate for a best
temporal increment. This can be confirmed quantitatively by
considering the relative mean error, defined, for any quantity
X at the timeT = 5 h, as

‖ XTLM − XNLD ‖ / ‖ XNLD ‖, (3)

whereXTLM is a TLM field atT = 5 h, XNLD is the corre-
sponding difference fields between the two nonlinear model
forecasts at 5 h, and‖ ‖ is a spatial averaged norm. Table 1
gives these values for the mean of the stat variableX at
time T = 5 h. And the total wall-clock time is decreased, as
the time step size is increased such that when1t = 150 s is
set to be 100 %, 21t becomes 56 %, 31t is 36 %, and 41t

for 33 %. Although the TLM (version 1.0) developed in this
study still needs further improvement for its performance, the
current version is practical within a scope of a reasonable
compromise between linearity, computational efficiency, and
forecast performances.

4 Summary and discussion

In this study, modules to calculate tangent linear trajecto-
ries have been implemented into the HOMME dynamical
core. The TLM describes the evolution of perturbations about
time-varying basic states that are provided by the nonlin-
ear dynamical system. The TLM accommodates a Jacobian
of the dynamical operator that is tangential to a solution
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Figure 6. V-wind fields (m s−1) of the tangent linear model with
different time increments at 5 h later. Time step size1t is (a) 150,
(b) 300,(c) 450, and(d) 600 s.

trajectory of the nonlinear system, and also provides a com-
putationally efficient way to calculate the model trajectory.
Since the TLM is primarily intended to approximate the evo-
lution of perturbations in a corresponding nonlinear model,
the accuracy of the TLM is considered to be a measure of
the model performance. In that regard, the developed codes
for the TLM are checked by the Taylor–Lagrange formula
and by comparison of time-evolved perturbation fields for
the TLM with the difference fields between two controlled
nonlinear model runs. Overall verification of the numerical
results indicates that the tangent linear model is correctly de-
veloped.

Generally, there are some major inaccuracy issues in de-
veloping TLMs (Errico et al., 1993) due to the finite mag-
nitude of the perturbations in initial/boundary conditions,
model parameters, the strong nonlinearities, discontinuities
in nonlinear models, and numerical instabilities, which make
difficult the development of efficient and well-behaving tan-
gent linear codes. During the development of the tangent lin-
ear codes for the HOMME dynamical core, however, we have
not experienced any significant difficulty such as a tendency
to suddenly grow small perturbations due to some unintended
discontinuities or ill-conditioning in the HOMME model. We
believe that it is because the dynamics has good computa-
tional properties such as no singularity on both poles (Dennis
et al., 2012).

Since the TLM requires nonlinear solutions as coefficients,
the I/O strategy is important for the practical implication of
the TLM. Two TLMs are developed with different I/O such
as recalculating the basic state and storing the trajectories
in file. The TLM with recalculating the basic state at ev-
ery time step is extremely burdensome, but the results of the
TLM well represent the evolution of perturbations, and those
results can be used as reference fields in comparison with
those of the approximated TLM. The extra burden leads to
the alternate strategy for the TLM that is to store and read

Table 1.Relative mean errors.

Variable 1· 1t 2 · 1t 3 · 1t 4 · 1t

u 0.0124556 0.0128355 0.0135081 0.163502
v 0.0128028 0.0120578 0.0115803 0.13647
t 0.00696689 0.00650514 0.00596657 0.104771
ps 0.00697304 0.00639369 0.00547336 0.0750567

the trajectories from the file. As the time step of the TLM is
increased, the burden of I/O is decreased. Furthermore, given
a time step size the instability during the TLM time integra-
tion should be carefully studied. It is because the time step
used of the developed TLM is directly used for the time step
of the adjoint model, and it also influences the performance
of 4DVar schemes.

The critical element in any operational prediction schemes
such as 4DVar and four-dimensional ensemble-based varia-
tional method (4DEnVar) will, of course, be the initializa-
tion procedure. The issue that has not been addressed by the
present development is the analysis increments in the ini-
tialization procedure that generally develop gravity waves.
To filter out high-frequency waves, an incremental analysis-
updating scheme (Polavarapu et al., 2004) is developed for
the forecast model, and for 4DEnVar and 4DVar. The TLM
(version 1.0) developed here can be another option for an in-
ternal digital filtering initialization scheme such that the high
frequency in the analysis increments are filtered out by prop-
agating the TLM forwards and backwards (with a negative
time step), and then by forming a weighted average of the
states in the combined trajectory. Korea Institute of Atmo-
spheric Prediction Systems (KIAPS) is a government-funded
nonprofit research and development institute currently devel-
oping a four-dimensional ensemble-based variational method
(4DEnVar). KIAPS will test the TLM (version 1.0) for the
initialization procedure.

Code availability

All codes in the current version of TLM are available upon
the request. Any potential user interested in those modules
should contact B.-J. Jung, and any feedback on them is wel-
come. Note that one may need help using the TLM model
optimally, but we do not have the resources to support the
model in an open way. Since ADM is currently being devel-
oped based on the current version of TLM, all codes of ADM
are also presumably available upon the request.
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