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Abstract. This work demonstrates an example of the impor- demonstrable quality. However, the assessment of how well
tance of an adequate method to sub-sample model resuls model captures reality is an ongoing challenge of marine
when comparing with in situ measurements. A test of modelecosystem model development.
skill was performed by employing a point-to-point method  As discussed in a meta-analysirijonditsis and Breft
to compare a multi-decadal hindcast against a sparse, urk004, many models have been validated with qualita-
evenly distributed historic in situ dataset. The point-to-pointtive methods exclusively. Qualitative methods are usually
method masked out all hindcast cells that did not have a corstraightforward to interpret, allowing for a simple, fast, sub-
responding in situ measurement in order to match each in sitjective judgement of whether the model appears to be repre-
measurement against its most similar cell from the modelsentative of the measurements. Unfortunately, a model may
The application of the point-to-point method showed that theseem to recreate emergent properties and well-known large-
model was successful at reproducing the inter-annual variscale features of the ecosystem, yet struggle to reproduce the
ability of the in situ datasets. Furthermore, this success wasistoric data of a hindcast, for instanDeney et al.(2009.
not immediately apparent when the measurements were ad-or these reasons, it is crucial to validate models using a va-
gregated to regional averages. Time series, data density antety of objective statistical tests.
target diagrams were employed to illustrate the impact of In marine ecosystem modelling, quantitative descriptions
switching from the regional average method to the point-to-of models are often based on pattern statistics, and other uni-
point method. The comparison based on regional averagegariate indices, for instance iStow et al.(2009. Pattern
gave significantly different and sometimes contradicting re-statistics form the axes of the popular Tayldaylor, 2001)
sults that could lead to erroneous conclusions on the modednd target diagramgdlliff et al., 2009. These univariate in-
performance. Furthermore, the point-to-point technique is adices generally require equal binning of (i.e. the same num-
more correct method to exploit sparse uneven in situ datder of) both model and measurement data, but the method-
while compensating for the variability of its sampling. We ology used to achieve equal binning can introduce sampling
therefore recommend that researchers take into account fdrias.
the limitations of the in situ datasets and process the model Typically, the equal binning condition is met by interpo-
to resemble the data as much as possible. lating the data to cover the model domain. Interpolations fill
under-sampled regions with information from well-sampled
regions — an ideal solution for cloud coverage in satellite
data (for instanc&dwards et aJ.2012. However, interpolat-
1 Introduction ing sparse, uneven, widely distributed three-dimensional in
situ measurements can amplify the effects of sampling bias
Numerical models are now used extensively in earth, C”'(Robeson 1994. This is especially true for measurements
mate and ocean sciences. Furthermore, numerical modelgith high spatial and temporal variability. Furthermore,

are frequently used to inform policy decisions. Both pol- gue to the complex nature of the water columns’ vertical
icy decision and fundamental science require models to have
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structure, it is extremely difficult to interpolate sparse ma-40° N to 65 N and 20 W to 13’ E. The domain has a reso-
rine in situ measurements at depth into a three-dimensiondution of 1/9° by 1/6°, which equates to 12 km with a baro-
grid. Typically, 3-D interpolation assumes that all axes haveclinic timestep of 15 min. In terms of depth, the s-coordinates
equal weight, but in the ocean, the vertical scale varies in dissystem is used, consisting of 40 wet depth layers of varying
tances of metres and the horizontal scales in kilometres. It ishickness.
not straightforward to choose whether a pixel should be more The atmospheric boundary conditions were taken from
influenced by a deeper nearby point or by a distant point ofthe ERA 40 reanalysidJppala et al. 2005 between 1960
similar depth. and September 2001; subsequent conditions were from the
Alternatively, the equal binning condition can be achieved ECMWF operational analysis. As describedHiolt et al.
by taking the mean of both the model and in situ data over(2012, the atmospheric air temperature, wind, pressure and
a sufficiently large region, as ibewis et al.(200§. When  relative humidity, daily precipitation and short-wave radia-
the data are three-dimensional marine in situ measurementtipn were used in surface forcing in six-hourly intervals. The
choosing an appropriate mean can be a challenge as the meapen ocean boundary conditions were taken from the global
of an arbitrary set of marine in situ measurements in three diimodel, ORCA025. The freshwater fluxes in the AMM con-
mensions is unlikely to be a good indicator of the typical statesist of 250 rivers from the Global River Discharge Database
of the system. Further sampling bias is introduced when th€Voérosmarty et al.2000 and from the Centre for Ecology
mean of measurements of a very small subset of the oceaand Hydrology.
is compared against the mean of a very large volume in the The model was run for a 45yr hindcast between 1960
model. These problems are compounded when ad hoc sanand 2004, with each state variable recorded as the daily and
pling is further biased toward coastal sites that are both acmonthly mean. However, the model spins up until 1970, so
cessible and convenient. the period between 1960-1970 is not considered in this anal-
In this paper, a point-to-point method is outlined to val- ysis. A full description of POLCOMS-ERSEM in the AMM
idate a marine ecosystem model hindcast in using historidomain is available itdolt et al.(2012.
in situ measurements in the politically significant North Sea
region. The point-to-point method does not introduce new ) )
uncertainties via interpolation and attempts to reduce the im3 Biogeochemistry model

p::_lct of sz_amplmg bias mtrodu_ced via historic ad hoc SAM"50LCOMS was coupled to the European Regional Seas
pling. While it may seem obvious to process the model ex-

actly as the in situ data were produced, it seems to have rareIECOSyStem Model, ERSEM. ERSEM is a lower-trophic level

been done in marine biogeochemical modelling, or pubIishedEglogeoChem'C""I cycling model that uses the functional-group

with a lack of transparency. Furthermore, to the best of theapproachBIackford etal, 2004 The carbon, nitrogen, oxy-

authors’ knowledge, this is the first direct comparison of the 3™ phosphorus, _and silicon cycles are explicitly resolved,
matched against unmatched methodologies. and the food web is composed of four phytoplankton, three

The model used in this study is the European RegionaIZOOplankto.n and one bacterial fu_nctlonal type.
. The nutrients and oxygen forcing were taken from World
Seas Ecosystem Model (ERSEM) coupled with the Proud-OCean Atlas DataGarcia and Levitus2010ab). The river
man Oceanographic Laboratory Coastal-Ocean Modellin U ’

. . . gnutrient content is based on measured data, &plhet al.
System (POLCOMS) as described in Se@tands3. The in (2012 and Young and Holt(2007). The Baltic exchange at

situ data are the Conductivity, Temperature and Depth (CTD)the Belts is treated as an inflow source using a mean annual
sampler data and low-resolution bottle data in the North Sea

from the International Council of the Sea (ICES) database,cycIe of depth-averaged transport, salinity and nutrients.
described in Sec#. A full description of the methodology
of the point-to-point matching and the linear regression is in4  |n situ data
Sect.5. The agreement of the in situ and model data, and
a comparison of matched and unmatched methods are showrhe in situ data used in this study were taken from the
in Sect.6. the International Council for the Exploration of the Sea
(ICES) EcoSystemData Online Warehous€HS, 2009.
Five datasets were used: temperature, salinity, nitrates, phos-
2 Circulation model phates, and chlorophyli. This study aimed to have good
spatial and temporal coverage and consistent data quality. For
The Proudman Oceanographic Laboratory Coastal-Oceathese reasons, only bottle and low-resolution CTD data were
Modelling System (POLCOMS) hydrodynamic modeloft used.
et al, 2007) is a baroclinic three-dimensional model that in-  The region under investigation, the North Sea as defined
cludes both the deep ocean and the continental shelf. by the ICES subdivision, IVKAO, 2008, and the bound-
This study used POLCOMS-ERSEM in the Atlantic Mar- ary of the AMM domain are shown in Fid. The North Sea
gin Model (AMM) domain, which covers the area between region was chosen because of the quantity and regularity of
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5 Methods

JEES Bau ol - s This section describes the methods that were used to test the

oy compatibility of the model and the in situ data. The first sub-
section describes how the point-to-point matching was ap-
plied, the second the difference between time selection and
time granularity, and the third the linear regression fit.

5.1 Point-to-point matching

The model and in situ datasets are intrinsically dissimi-

lar. The model dataset is formed from a grid of continu-

ous, evenly distributed, time-averaged cells of approximately
12 km by 12 km. The in situ dataset is a series of sporadic, un-
evenly distributed, instantaneous measurements from a CTD
or the mean of the contents of a sampling bottle. Further-
more, the in situ measurements tended to occur at times
and places which were readily accessible, convenient or well
funded. These places and times do not match the uniform
grid used by the model. The role of point-to-point matching

data there, but also because the North Sea is sufficiently dig¥as o reduce the impact of sampling bias when comparing
tant from the edge of the AMM domain that it should not t€se two distinct kinds of data. _

suffer from open ocean boundary condition distortions. Fur- 1 ne first step of the point-to-point matching process was
thermore, data-based validation of the POLCOMS-ERSEMPerforming qsnap—to-gnd: the in situ data were collected mf[o
model in the North Sea region is an important policy-driven the same grid cells as the model. Here, the full depth, daily
task. Additionally, there was a computational upper limit on M&an, four-dimensional AMM domain grid was used. This

the size of the matching database; larger datasets coverirgfid had 40 depth layers, 198 longitude bins and 224 latitude
large spatial regions required non-trivial computational re-PINS per day. In the rare cases when multiple in situ measure-
SOUICeS. ments fell into the same three-dimensional grid cell on the

The North Sea ICES region is defined as the sea betweef2Me day, the mean of those measurements was used. Oth-
62°N and 52N, and 4 W. The eastern boundary of the EMWise, the same model pixel could appear multiple times in

North Sea domain passes north from Agger Tange, Jutliandn€ matched dataset. _ _
Denmark. to 57N. west to 8 E. then north to 5730 N. then Finally, all model pixels that did not have a corresponding
west to 7 E, then north to the coast of Norway. in situ measurement were masked out and vice versa. In this

The in situ data were provided in a comma-separated W&y, N0 unpaired model or in situ data were used in the linear

variable format, and contained a few data quality anoma-€9r€ssion. o S _ ,
Techniques similar to this point-to-point matching have

lies, such as repeated data, which were addressed during - T
processing. The repeated measurements accounted for tyBeen used elsewhere in geoscientific models, but they are

ically 10-20% of the database. Repeated data were ider@r€ In marine ecosystem modelling. For instancelickel
tified by searching for measurements with identical mea-€t &l- (2010, a dataset was created during the model run

surement time, longitude, latitude, depth and value. In somdhat matched a specific flight path with the highest model

cases, data were recorded at depths much greater than thg'€ resolution available. Similarly, ihewis et al.(2009),
model bathymetry at the same point, so measurements witfpontinuous Plankton Recorder tracks were extracted from a
a depth greater than 5m below the model bathymetry at thg OLCOMS-ERSEM run fqr 1989_1,990 in the North Sea.
same point were ignored. The chlorophyll dataset contained?nfortunately, the typical time required to produce a 45yr
a large proportion of measurements with a value of exactly” O-COMS-ERSEM hindcast is on the order of one month
0.1, even at depths below 1km. As no chlorophyll is ex- and implementing this technique could double the run time
pected at large depths, this was interpreted to be the deted8duirement. For this reason, run time methods of data

tion limit of the database and all chlorophyll measurementsrecorqin?J were beyond the scope of this wor!<. )
below 100 m were removed from the study. While it may seem obvious that model and in situ measure-

ments match better when the domains match be&lganx Pi-

cart et al.(2012 demonstrated that this is not the case and
that the current generation of POLCOMS-ERSEM does not
perform equally well on all scales. In fact, Saux-Picart et
al. (2012) found that the model performed better on larger

AMM domain Boundary

Fig. 1. The Atlantic Margin Model (AMM) boundary and the North
Sea as defined by ICES region IV.
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Fig. 2. Two-dimensional binned scatter plot of full granularity
matched model data against in situ measurements for the North Selg. . .
. . . .~ Fig. 3. Two-dimensional scatter plot of annual mean matched model

temperature. The solid coloured lines show the linear regression fits, o

2 . _data against in situ measurements for the North Sea temperature.
for the full annual and seasonal data, and the dashed line is the lin

of unity slope that passes through the origin. The shading of the?he solid coloured lines show the linear regression fits _for Fhe an-
. ) A = nual and seasonal annual means data, and the dashed line is the line
binned data density plot is scaled such that darker hue indicates, ~ . -
o . . of unity slope that passes through the origin. The matched seasonal
logarithmically higher data density.

means are shown as colour-coded scatter points.

spatial scales than smaller ones for chlorophyll, with rela- . _
tively poor skill when matching against satellite data on smallcOntains the data from July, August and September; the au-

spatial scales. tumn contains the data from October, November and Decem-
ber. The annual time selection effectively means that no time
5.2 Time selection and granularity selection was made and that data from all times of the year

are used; it is sometimes referred to as “no time selection”.

It is important to highlight the difference between time selec- As a shorthand, each combination of time selection and
tion and time granularity. Once the matching was performedgranularity can be described using the time granularity fol-
both model and in situ datasets were studied under two timéowed by the selection: for instance, full winter or annual
granularities: the annual mean and the daily mean. They werépring. The specific case of the annual granularity and an-
also studied under five different time selections: annual, win-nual selection is called the annual mean.
ter, spring, summer and autumn. All ten permutations of the
two granularities and the five time selections were studied. 5.3 Linear regression

The time granularity defines how that data are aggregated,
if at all. The daily or “full” granularity refers to a dataset con- The relationship between model data and in situ measure-
taining every matched pair of points in the North Sea, andments was plotted with the model on the x-axis and the in
the “annual” granularity is a series of annual means of thatsitu data on the y-axis, then fitted to a straight line using
dataset. Typically, the full dataset contains many thousand least-squares linear regression. This technique minimises
matched pairs of in situ and model data, whereas the annudahe sum of the square of the residuals; the residuals are the
mean datasets contain only 35 points: one for every year bedifference between a matched data pair and the closest point
tween 1970 and 2005. The annual time granularity allows theon the linear regression line. The five output parameters of
study of inter-annual variability in nature, in the model and the regression were the following: the y-axis interseg),(
in the sampling bias. The “full” granularity allows the com- the slope of the fit §1), the standard errok), the correla-
parison of each in situ measurement to its model counterpartjon coefficient R) and the two-tailed probabilityK). The
and is used for identifying the limitations of the model. best possible outcome of linear regression, corresponding to

The time selection specifies which part of the year is stud-a perfect model, would be a line of slope unity through the
ied. As the AMM is a Northern Hemisphere domain, the win- origin with no standard error. The two-tailed probabilify,
ter time selection masked out all measurements that did nodr p value, is the probability that these data are not derived
occur in January, February or March. Similarly, the spring by chance. The values are not a measure of goodness of fit;
contains the data from April, May and June; the summerthey are a measure of the confidence that the linear regression
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Table 1.Linear regression output parameters for temperature.

537

Name Full Full Winter Full Spring Full Summer Full Autumn

b1 0.9083 0979 0866 Q08704 08549

Bo 1131 Q04908 128 1701 183

R 0.9363 08637 0894 Q9417 08598

P <1074 <1074 <1074 <1074 <1074

€ 0.0003 00011 00008 00006 0001

N 1191530 271599 334676 308946 276309

Name  Annual  Annual Winter  Annual Spring  Annual Summer  Annual Autumn

B1 0.9565 1192 09183 09101 08524

Bo 0.6754 —0.8403 08538 1215 1813

R 0.9572 09602 0942 09814 09445

P <104 <104 <1074 <104 <104

€ 0.0469 00563 00531 00289 00481
Table 2.Linear regression output parameters for salinity.

Name Full Full Winter Full Spring Full Summer Full Autumn

B1 1.245 1292 1281 1199 1183

Bo —8.305 —9.977 —9.641 —6.854 —6.262

R 0.7681 Q7466 07843 08067 07169

P <104 <1074 <10°* <104 <10°*

€ 0.001 00022 00018 00016 00022

N 1176225 264732 333987 303397 274109

Name  Annual Annual Winter Annual Spring  Annual Summer  Annual Autumn

B1 1.268 1176 131 1096 1152

Bo —-9.221 —6.023 —10.63 —3.298 —5.178

R 0.7558 Q7742 09212 08115 08103

P <1074 <1074 <1074 <1074 <1074

€ 0.1783 01559 00897 0128 01351

output parameters are correct, under the assumption that atttandard errore), and the number of data in the samphé) (
data points have an equal influence on the fit. As such, givemhe number of data in the samplg, is the total number of
a matched dataset with some relationship between the in sitdata pairs that contributed to the linear regression. However,
and the model, the value tends to decrease with large sam- in the case of the annual means, the number of entries that
ple size, even when the relationship is weak or non-linear. were regressed is 35 or less, equivalent to one entry for each
year (1970-2005), anl is not shown.

Figures2-11 are two-dimensional scatter plots for the
temperature, salinity, nitrates, phosphates and chlorophyll
. L . matched datasets. These figures were prepared for each
The results of the linear regression fits are shown in Tables matched dataset with the model data plotted as the x-

5. These tables hold the result_s .Of the Iinez_ar regression foE:oordinate and the in situ data as the y-coordinate. The best
the North Sea temperatur€)( salinity (Sal.), nitrates (N§), fit linear regression line for each time selection is shown as a

phosphatt;as r(]Pﬁ)a:‘mljl chi;)rﬁphyll (CTL_) datasetsl. E_acfh tablehsolid coloured line, and the parameters of these fits are held
contains both the full and the annual time granularity for €achy, rypjes1. 5 These figures also all have a dashed black line

ofthe five time SEIeCt'an’ as.descrlbed in S84, The rows that represents the line of slope unity that passes through the
of these tables contain the five output parameters of the re-

ion: the sl fthe f60). th - M ). th origin. The dashed black line divides the figure into two re-
gressmr_].t €slopeo the fif{), t ey-axis mters_e_cm),t e gions; the model underestimates the in situ measurements in
correlation coefficientR), the two-tailed probability @), the

6 Results
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Table 3.Linear regression output parameters for nitrates.

L. de Mora et al.: ERSEM and in situ data comparison

Name Full Full Winter Full Spring Full Summer Full Autumn

31 1.05 1267 Q9105 06153 08885

ﬁo —4.248 -8.121 —-1.355 —-1.016 —3.409

R 0.5928 06584 04567 03728 05548

P <1074 <1074 <1074 <1074 <1074

€ 0.0042 00082 00102 00101 00074

N 116933 31575 30243 22892 32223

Name Annual Annual Winter Annual Spring Annual Summer  Annual Autumn

ﬁl 0.6872 1336 06463 06168 07163

Bo 0.2063 —-10.05 09477 -0.8275 -0.843

R 0.8132 08191 07484 05798 Q7207

P <104 <104 <104 0.0001 <104

€ 0.0798 01518 00929 01406 01118
Table 4. Linear regression output parameters for phosphates.

Name Full Full Winter Full Spring Full Summer Full Autumn

ﬁl 0.6823 07882 04098 04736 09168

ﬁo 0.1802 00993 02373 03293 00199

R 0.4153 04926 02583 02211 04462

P <1074 <1074 <1074 <1074 <104

€ 0.0043 Q0077 00087 00134 001

N 121860 32957 31231 24153 33519

Name Annual Annual Winter Annual Spring Annual Summer  Annual Autumn

ﬁl 0.1814 0938 Q2687 00152 08202

50 0.4929 —0.0255 03015 0532 Q1253

R 0.1283 05799 02179 00082 05982

P 0.43 00001 01769 09598 00001

€ 0.2274 02167 01952 02991 01806

the top left region and overestimates the in situ data in thelO all coincide with the line of best fit and the line of slope
lower right region. In addition to the lines of best fit for the unity through the origin. However, the best fit lines appear
full granularities, Figs2, 4, 6, 8 and 10 also show the full  to diverge from the matched points in the lower data density
granularity matched data as a binned scatter plot. The shadegions.
ing of the binned scatter plots is scaled such that darker hue Temperature was especially well reproduced by
indicates logarithmically higher data density. However, the POLCOMS-ERSEM, as shown in Fig2 and 3. Even
linear regression fits were performed using a non-logarithmicwith more than one million matched pairs of model and in
scale. Figures, 5, 7, 9 and 11 show the linear regressions situ data in Fig.2, a correlation ofR > 0.9 is observed in
for each annual granularity time selection and also contairthe full annual linear regression. Furthermore, this corre-
colour-coded scatter plots of the annual means for each oépondence between model and measurement is visible for
the four seasons. all time selections. The seasonality of the model and data
The linear regression lines in Figs-11were drawnwitha  is especially visible in Fig3, where there is little overlap
horizontal and vertical range between the smallest and largedietween the four seasonal means, yet all time selections
value of either the matched model or the in situ data. Thishave equivalently good performance. In all combinations
method makes comparison between time selections relativelgf time selection and granularity in Table the correlation
straightforward, but it can sometimes be misleading. For in-between model and in situ temperature was high, while
stance, the darker high density regions of FRjgl, 6, 8and  the p value and the standard error were both very low. As
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Table 5. Linear regression output parameters for chlorophyll.

Name Full Full Winter Full Spring Full Summer Full Autumn
B1 0.7479 08829 05341 09941 3391

Bo 2.052 1165 2952 198 07616

R 0.2379 02132 0186 Q23 02609

P <1074 <1074 <104 <1074 <1074

€ 0.0171 Q05 00264 00418 02

N 32019 6552 11406 10121 3940

Name Annual Annual Winter Annual Spring  Annual Summer  Annual Autumn

B1 1.098 Q1448 162 3031 4514
ﬁo 1.139 1839 Q2675 —0.0887 Q7984
R 0.2844 00632 Q37 07083 03444
P 0.0793 Q7492 00263 <1074 0.0674
€ 0.6085 04483 06975 05515 2369
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Fig. 4. Two-dimensional binned scatter plot of full granularity
matched model data against in situ measurements for the North Sefig. 5. Two-dimensional scatter plot of annual mean matched model
salinity. The solid coloured lines show the linear regression fits fordata against in situ measurements for the North Sea salinity. The
the full annual and seasonal data, and the dashed line is the line folid coloured lines show the linear regression fits for the annual
unity slope that passes through the origin. The shading of the binne@nd seasonal annual means data, and the dashed line is the line of
data density plot is scaled such that darker hue indicates logarithmiunity slope that passes through the origin. The matched seasonal
cally higher data density. means are shown as colour-coded scatter points.

marine models tend to be more successful at simulatinglots impacts the perceived model quality. The full in situ
physics than biology, temperature is the variable where thedata range between 0 and 36 psu, whereas the annual mean
best correlation is expected. Furthermore, ocean temperatuidata has a much tighter range between 33 and 35 psu. This
has much less variability over small temporal and spatialindicates that the bulk of the in situ data are well matched,
scales than the biological observables. even though a cursory glance at Figmight give the oppo-
The salinity plots in Figs4 and5 show good agreement site impression.

between in situ and model for the regions of high density, The two-dimensional data density salinity plot in Fi.

and that these regions coincide with the line of slope unityalso illustrates a limitation of the point-to-point method. The
through the origin. These plots are a good example of howpoint-to-point method is not ideal in situations where the
the difference between the ranges of the full and the annuaiodel pixel size is much greater than the scale of variability
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Fig. 6. Two-dimensional binned scatter plot of full granularity rjg g Two-dimensional binned scatter plot of full granularity
matched model data against in situ measurements for the North S&aiched model data against in situ measurements for the North Sea
nitrates. The solid coloured lines show the linear regression fits forphosphates. The solid coloured lines show the linear regression fits

the full annual and seasonal data, and the dashed line is the line by the full annual and seasonal data, and the dashed line is the line
unity slopt_a that passes through the origin. The s_hac_img ofthe b_mne_gf unity slope that passes through the origin. The shading of the
data density plotis scaled such that darker hue indicates logarithmipinned data density plot is scaled such that darker hue indicates

cally higher data density. logarithmically higher data density.
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Fig. 7. Two-dimensional scatter plot of annual mean matched modelrig. 9. Two-dimensional scatter plot of annual mean matched model
data against in situ measurements for the North Sea nitrates. Thgata against in situ measurements for the North Sea phosphates. The
solid coloured lines show the linear regression fits for the annualsolid coloured lines show the linear regression fits for the annual and
and seasonal annual means data, and the dashed line is the line §8asonal annual means data, and the dashed line is the line of unity

unity slope that passes through the origin. The matched seasonalope that passes through the origin. The matched seasonal means
means are shown as colour-coded scatter points. are shown as colour-coded scatter points.

of the measurements. For instance, at the confluence dfll into the same model pixel. This may be one of the
a river and the sea, the salinity may range from nearly 0 psy€asons why the model appears to overestimate the salinity
near the river mouth to 35 psu 10 km away in the sea. How-0f many freshwater in situ measurements. As such, point-to-
ever, this model has 12 km by 12 km pixel size, and all mea_p(_)int matching _is not ic_jea_l_for studying datasets and regions
surement data between the river mouth and 10 km offshordVith high sub-pixel variability.
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Model Chlorophyll [mg C m-3] Fig. 12. Annual North Sea temperature time series plot: the black

line is the matched model mean annual temperature, the dashed line
Fig. 10. Two-dimensional binned scatter plot of full granularity the annual mean in situ temperature, and and the grey line shows
matched model data against in situ measurements for the North S¢Re MLD-averaged mean temperature of the North Sea.
chlorophyll. The solid coloured lines show the linear regression fits
for the full annual and seasonal data, and the dashed line is the line
of unity slope that passes through the origin. The shading of the
binned data density plot is scaled such that darker hue indicateon-diagonal hot spots. However, the presence of any points
logarithmically higher data density. at all away from the dashed line indicates that the model did
not accurately reproduce all the in situ measurements. The
model overestimated the salinity of many freshwater in situ
; measurements and underestimated many of the in situ mea-
2 . — Annual | surements with high nitrates and phosphates. In both cases,
— Z\g;‘itnegr the model predicted a value less extreme than the outly-
— Summer |1 ing in situ measurement. Some of these discrepancies can
Autumn be explained as an effect of the high spatial variability in
1:1 salinity and nitrates in the well-sampled coastal and river-
influenced regions against the relatively low spatial resolu-
tion of the model. In addition, the in situ data are of instan-
taneous character, while the model data are a daily average,
further enhancing the in situ measurement variability. Con-
versely, Figs4, 6 and8 all contain a small number of points
where the opposite situation occurred: the model salinity was

North Sea Annual Mean Chlorophyll

funy
o
T

©
T

In Situ Chlorophyll [mg C m-3]
[=2]

o} L ~7 + 1 underestimated, and the nitrate and phosphate concentrations
. . were overestimated. These data suggest that there may be
of¥ ‘ ‘ ) ‘ ‘ . ] some events in the river forcing where the model has a larger
0 2 4 6 8 10 12 influx of fresh water and nutrients than was observed in na-
Model Chlorophyll [mg C m-3] ture.

Fig. 11. Two-dimensional scatter plot of annual mean matched The seasonal nitrate and phosphate scatter plots_ln'Flgs.

model data against in situ measurements for the North Sea chlorc@d 9 shows that the model captures the seasonality of the

phyll. The solid coloured lines show the linear regression fits for Nutrient cycle with winter peaks and a spring and summer

the annual and seasonal annual means data, and the dashed linedigpletion. However, it is important to bear in mind that these

the line of unity slope that passes through the origin. The matchedlata are not indicative of the mean state of the system. Rather,

seasonal means are shown as colour-coded scatter points. these figures indicate that the nutrient seasonality is apparent
in both model and data despite the data used being an arbi-
trary subsection of measurements of the North Sea.

By using the point-to-point matching method, it becomes Figures10 and 11 are the full and annual linear regres-
possible to identify some limitations of the model. For in- sion plots for the North Sea chlorophyll. The full granularity
stance, the off-diagonal regions of the salinity, nitrates andchlorophyll data density plot in FidLO shows that there are
phosphates full data density plots in Figs.6 and8 con- some similarities to the case of the nutrients: the model un-
tain significantly fewer data than the densely populatedderestimates the extreme in situ measurements, captures the
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Fig. 13. Annual North Sea salinity time series: the black line is Fig. 15. North Sea mean winter phosphates time series: the black
the matched model mean annual salinity, the dashed line the meajhe is the matched model mean winter phosphates, the dashed line
annual in situ salinity, and the grey area shows the MLD-averageghe mean winter in situ phosphates, and the grey area shows the
mean salinity of the North Sea. MLD-averaged mean phosphates of the North Sea.

North Sea Winter Nitrates

— odel typically has the highest measurement uncertainty. Addition-
60 A -~ InSitu ally, in order for a model to capture the phytoplankton be-
" Mean

haviour, it must first model the physics and nutrient dynamics
appropriately. The model errors and uncertainties are com-
pounded with each step away from a tractable physics ob-
servable towards the biological end of the model. As such,
chlorophyll is the dataset with the highest in situ measure-
ment uncertainty and with the highest model uncertainty.
While there is not an excellent agreement between model
and the in situ chlorophyll in Fige0and11, there is a good
enough agreement.
B T I T T T T T T T Figures12-17 are the time series plots for annual temper-
vear ature, annual salinity, annual winter nitrates, annual winter
phosphates, annual spring chlorophyll and annual summer

Fig. 14. North Sea mean winter nitrates time series: the black IineChloro hvil. These combinations of variables and time selec-
is the matched model mean winter nitrates, the dashed line the meah phyil.

winter in situ nitrates, and the grey area shows the MLD-averaged!0NS Were chosen because of their value in informing pol-
mean nitrate of the North Sea. icy and model validation. These figures each contain three

curves: the matched model data (black line), the in situ data
(dotted line), and the mixed layer depth-averaged (MLD-
the densely populated on-diagonal hot spots, but also has averaged) of the North Sea in the model (grey area). The
region where the model overestimates the in situ chlorophyll.North Sea model MLD-averaged region plots are the model
A significant difference between the full and the annual data in the North Sea region before any data were masked by
data appears in Figé0and11. The full plot (Fig.10) shows  the point-to-point matching method. This is included to esti-
that the spring, winter and annual model data tend to overesmate whether the matched and in situ variation correspond to
timate the in situ chlorophyll in the fit, while the summer fitis overall trends, or sampling biases. The MLD-averaged data
close to the 1 1 line. However, the annual mean chlorophyll are included to illustrate both an example of a previous way
plot (Fig. 11) indicates that the annual, autumn, summer andto perform this study and as a cross reference in order to test
spring chlorophyll are underestimated by the model. Oncef there is some inter-annual changes in mean state of the
again, it is important to remember that the in situ datasetNorth Sea in the model that could be hidden by the patchi-
and hence the model data, is an arbitrary subsection of thaess of the in situ dataset. The annual mean time granular-
North Sea. ity was selected for all these plots and tables such that the
The ICES chlorophyll database has been amalgamatethatched data could be compared fairly against the MLD-
from a wide selection of sources, using multiple measure-averaged data, which was not possible to produce under the
ment techniques, whose uncertainties vary from more tdull time granularity. In all cases, the inter-annual variabil-
less validated. Of the five datasets studied here, chlorophylity of the mean of the MLD-averaged is smaller than that of

w N v
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North Sea Spring Chlorophyll-a North Sea Summer Chlorophyll-a
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Fig. 16. North Sea mean spring chlorophyll time series: the black Fig. 17. North Sea mean summer chlorophyll time series: the black
line is the matched model mean spring chlorophyll, the dashed lingjne is the matched model mean summer chiorophyll, the dashed
the mean spring in situ chlorophyll, and the grey area shows thgine the mean summer in situ chlorophyll, and the grey area shows
MLD-averaged mean chlorophyll of the North Sea. the MLD-averaged mean chlorophyll of the North Sea.

the matched model data and the in situ measurements esp£qble 6. Linear regression output parameters for temperaftje (
' and salinity (Sal.). The parameters shown are the slope of the line

ci_ally in the case of nitrates, phosphates and chlorophyll in(/§1), the y-axis intersectdp), the correlation coefficientR), and

Figs.14-17. . . . the two-tailed probability £), the standard erroe}, and the num-
The results of the linear regressions of Fi§2-17 are ey of data ).

shown in Tabless and 7. These tables have two columns:

the results of the linear regression of the MLD-averaged MLD averaged Matched

model data against the in situ, and the linear regression of

the matched data against the in situ data. In all cases shown P1 0.4495 09565
here, the matching resulted in a higher correlation coefficient, Annual - fo 6.02 06754
decreaseg value, and they-intersect closer to zero. In all T R 0'64_34 095121
cases shown except summer chlorophyll, matching results in P <10 <10
a slope closer to unity than the MLD-averaged linear regres- ¢ 0.0932 00469
sion. The fit for each dataset is discussed in more detail be- B1 0.2063 1268
low. Annual  fo 27.11 —9.221
Figure12is a time-series plot of the annual mean North Sal. R 0.3401 07558
Sea temperature. The mean of the MLD-averaged data is P 0.0456 <1074
the depth-averaged temperature, but the matched data and € 0.0993 01783

in situ measurements may be from any depth. For this rea-

son, the MLD-averaged mean model temperature was consis-

tently higher than the in situ and the mean matched temper-

ature. This shift is also visible in the difference in the slope sampling, but rather physically observable inter-annual vari-
and y-intersect,8; and o, in Table6. As the model surface  ability.

temperature is forced using reanalysis based on aggregated Figure 13 is a time-series plot of the annual mean North
observational data, it is not surprising that the temperature irSea salinity. The linear regression results associated with this
Table 1 shows a strong correlation between the model andplot are shown in the “annual” column of the salinity of Ta-
the in situ data. However, the atmospheric forcing datasetble 2. All the time granularities show a strong correlation
ERA40-reanalysisyppala et al.2005, is a meteorological (R > 0.75) between the matched model and the in situ salin-
surface dataset, whereas the in situ measurements and heritg The MLD-averaged mean model salinity is consistently
the matched model data may occur at any depth. As sucHpwer than the in situ and the matched salinity, but displayed
the success of the model is due to its own merit, instead oome skill in reproducing the overall trend. The matched
the similarities between the forcing and in situ datasets. Bottmodel data here indicate that the model reproduced an ar-
the matched model and the MLD-averaged data capture thbitrary set of in situ measurements with moderate success.
1990 in situ peak and subsequent rise in Big. This sug-  This success allows some confidence that the mean state of
gests that some of the increase seen in the mean in situ tenthe model salinity is a fair representation of the mean state of
perature between 1993 and 2005 is not an artefact of unevetie system salinity.
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North Sea Annual Chlorophyll-a

Table 7. Linear regression output parameters for nitrates NO 5000 et

phosphates (P£) and chlorophyll (Chl.). The parameters shown are ==t Lo
the slope of the linedy), the y-axis intersectfp), the correlation = rreny
coefficient R), and the two-tailed probabilityR), the standard er- 4000¢
ror (¢), and the number of dataV().

0.8

3000

MLD averaged Matched

Count

Fraction >34.5 psu

B1 0.0295 1336 2000 loa
Winter g 1364 —10.05
NO3 R 0.3781 08191 1000 o
P 0.0251 <104
€ 0.0126 01518
N <1970 1975 1980 1985 1990 1995 2000 0.0
B 0.0229 0938
Winter S 0.7217 —0.0255 Fig. 18.The number of North Sea in situ chlorophyll measurements,
POy R 0.1602 05799 grouped into a high salinity (Sak 34.5 psu) in dark grey and low
P 0.3654 00001 salinity (Sal.< 34.5 psu) in light grey. The dark line shows the frac-
€ 0.0249 02167 tion of high salinity. There is a gap in 1984 due to the absence of
- simultaneous measurements of chlorophyll and salinity.
B1 0.007 162
Spring  fo 1.966 02675
Chl. ﬁ gigﬁ 08323 _of a Iingar regression would b_e skewed towards large outly-
. 0.0085 06975 ing in situ measurements, which would never be reproduced
. by the model. Secondly, winter phosphate has a much larger
B1 —0.0113 3031 impact on the ecosystems annual cycle, and its successful
Summer o 0.7444 —0.0887 simulation by the model has more importance.
Chl. R —0.5414 07083 Figures14 and15 both show a large peak in 1983. In the
P 0.002 <10 winter of 1983, almost all North Sea nitrate and phosphate
€ 0.0033 05515

measurements in the ICES database were taken in coastal en-
vironments. The peaks are also present in the matched model
data, but not in the mean of the MLD-averaged nitrates and
The mean winter North Sea nitrates are shown in Ey.  phosphates. The presence of these peaks in both model and
and the mean winter North Sea phosphates are shown imeasurement suggests that the bulk of the variability of in
Fig. 15. These plots show that the model had significantsitu nitrates and phosphates is due to uneven coverage, rather
skill in reproducing the in situ nitrate and phosphate mea-than inter-annual variability. Due to the incongruities of his-
surements, but only once unpaired model cells were maskedoric in situ data such as these peaks, model validators should
The winter nitrate linear regression fit was consistent withbe extremely cautious to ensure that their validation com-
a line of unity slope, and had a correlation coefficient of pares like-datasets to each other.
R =0.8191. This correlation was not present in the un- Three time series figures are shown for the North Sea
matched mixed layer depth-averaged model nitrates in Tachlorophyll: Fig. 16 shows the mean spring chlorophyll;
ble 3 or Fig. 14, suggesting that the bulk of the inter-annual Fig. 17 shows the mean summer chlorophyll; and Fig.
variability of in situ nitrates is a result of sampling. The other show the total number of chlorophyll measurements per year
time selections and granularities of the nitrates in T&dke grouped into high salinity and low salinity categories. The
dicate that the inter-annual variability of in situ nitrates was offshore high salinity region cut-off of 34.5 psu was taken
reasonably reproduced under other time granularities and sérom OSPAR Commissioi2008. This figure was made by
lections. However, the winter nutrient behaviour is arguably matching up the chlorophyll and salinity ICES datasets, but
more important than the rest of the years as the winter nuthis process is not 100 % efficient because there are chloro-
trients determine the resources available for the spring phyphyll measurements with no corresponding salinity measure-
toplankton bloom. The winter phosphate linear regression fitment. A large increase in the mean value of the in situ chloro-
was consistent with a line of unity slope and a null inter- phyll but not in the model chlorophyll can be seen after 1993
sect, but this skill was not present in the spring and summein the first two chlorophyll figures. As shown in Fid8,
phosphates in Tablé. The annual summer phosphate col- these years correspond to years in which much of in situ data
umn of this table shows an instance of the model and the irwere taken in low salinity water. Furthermore, these estuar-
situ data match breaking down; the correlation and slope aréne and coastal regions have high variability in chlorophyll
both very close to zero, and thevalue is nearly unity. How-  and salinity that the model is unable to capture due to the rel-
ever, the nutrients are depleted in the summer, and the resultttively low spatial resolution. To summarise, the bulk of the
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Fig. 19. Target diagram showing the impact of the transition from Fig. 20. Target diagram showing the impact of the transition from
the unmatched to the matched methods on temperature. the unmatched to the matched methods on salinity.

Nitrates Target Diagram

chlorophyll data after 1993 was measured where the mode 5| squares: Unmatchea 2 wnerd |
iS IeSS effeCtive. Cirlces: Matched m  SummerN3 10
Despite these limitations, the matched model data repro o s Amns 0o
duced the variability of the in situ chlorophyll measurements | | © 0 mew | o
with a correlation ofR = 0.708 in the annual summer. The b '
matched model data did not produce a significant correla: @ AnnualN 07 g
tion with the spring in situ data. This can be explained by £ o 06 &
the greater chlorophyll variability in the spring, and the high £ 05 §
sensitivity to bloom timing. A small difference in the model = U4§
bloom timing relative to nature will result in a large resid- £
ual. Additionally, as the seasons were defined as strict three "~ | 1 030
month periods, it is possible that, for the earliest blooms, 0.2
for instance in a coastal area, the springtime bloom may 0.1
have overflowed into the wintertime bin. This bin edge over-  ~*[ ‘ ‘ ] 00
flow is a more critical issue for chlorophyll linear regression -2 -1 0 ! 2 '

due to its rapid blooms than for temperature, which is much sign(o = ores) * RMSD'[0rey

smoother. It is also possmle_that some of the '_n Situ Chloro'Fig. 21.Target diagram showing the impact of the transition from
phyll measurements were biased towards regions that Werg,e ,nmatched to the matched methods on nitrates.
biologically active.

Although much of the in situ variability of the larger
datasets (temperature, salinity, nitrates, and phosphates) camcur through improvements to the phytoplankton parametri-
be accounted for by the model, POLCOMS-ERSEM does notsation.
reproduce many of the historic trends of the in situ chloro- The number of data is also shown in the row labeliéd
phyll measurements on a point-to-point basis. While a moreof Tables1-5. Of the five datasets used in this study, chloro-
diverse distribution of North Sea chlorophyll measurementsphyll is the smallest by approximately a factor of four. It is
would help to validate the model or produce new biogeo-important to note that the number of in situ data is completely
chemical parametrisations, it is not possible to travel back inindependent of the quality of the model. While additional in
time to obtain such a dataset. The failure to reproduce the hissitu measurements could be used to improve the parametri-
toric data time series may be due to the effects of sub-pixekation of the model for a future model run, more in situ mea-
variability, in which case higher resolution models could al- surements would not directly result in a higher correlation or
low a point-to-point study of chlorophyll to converge on the a better match using the point-to-point matching. Conversely,
in situ measurements. It is also possible that a better matcthis means that the point-to-point matching method does not
between the in situ measurements and the model may ydiave any data quantity or distribution requirements.
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. . . show substantial shifts; the markers move across the diagram
Figures19-23 are target diagramsJelliff et al., 2009 while maintaining an approximately constant RMSD.

il:}owmg .thehpattetrrr: StatIStI(i.S fc:irbfaacraof :he five datasets. In Fig. 22, the autumn and winter phosphate time se-
€ x-axis Shows the normaliSeablasedoot mean Square . jnns hoth moved inside the RMSB1.0 circle and in-

difference (RMSD), and the y-axis shows the normalised creased in correlation. The other phosphate time selections

bias, Normalisatiop i.S perforrr_]ed_ by dividing by the_ “’tfer' maintained similar unbiased RMSrhile decreasing their
ence standard deviatiosies, which is the standard deviation dnormalised bias

of the in situ data. The diagram’s two large circles correspon In terms of the chlorophylk, Fig. 23 shows that match-

to Itmef] of cg&zgzt{%otmzatzsq;arﬁ dcljff.erence.(R;MﬁD): th%ng does not produce the dramatic shifts seen in the other
outer has -0, and the dasned Inner circle nas an o ¢ rements. However, it is clear from the legend that the
RMSD=0.71. In these plots, the square markers describe

h . fthe MLD d data to th fih match increased the chlorophyll correlation, except for in the
€ comparnson of the -averaged data to the mean ot i, ;1o The normalised bias decreased in all time selections,

n s!tu-data (unmatched). The round mar_kers are the Palterll, j the unbiased RMSBecreased in all time selections but
statistics of the matched model data against the mean of thﬁ/int er

in situ data (matched). The grey arrows indicate the change These figures illustrate the importance of the matching

due to moving the unmatched to the matched methods. In aIJnethod in at least two ways. Firstly, a model may seemingly

the target diagrams, the annual mean time granularity Watiil to reproduce the mean state of the system, when it is

used because of the absence of the MLD-averaged data wi e in situ data that are not representative of the mean state

IE” t'mr? glgrznzlarlt);.ﬁﬁhitcilowitshcsqle (:ftt?e Taiﬁerli Shtow‘:'of a system. For instance, in Fig0, the unmatched com-
€ correfation coetiicient. As ostiargets, the best ou “parison barely reaches a correlation Bt= 0.4, while the

comes occur closer to the centre of the target. matched comparison has high correlation and RMSQ71.

i Ii;]guresllg a?d 20 ?rteh conC|tseh_pI0ts S?F?V\(Ijlntg ihange dtue Secondly, the mean state of the model may appear to under-
0 the application ol the matching method 1o temperatur€, ;410 or overestimate an in situ dataset, even when the op-
and salinity data. Reflecting the conclusions of Filgdand

13 the matching sianificantly imoroved th rrelation. and posite is true. For instance, in Figl, all unmatched points
» (e matching significantly iImproved the correlation, and o 5 negative normalised bias, and the unmatched model
the normalised bias and RM$Dnoving all temperature and

L s ._appears to underestimate the in situ nitrates. However, the
sahmt_y marl_<ers CIO_Ser to the cen'Fre. The salinity target d'a_'matched comparisons all have a normalised bias greater than
gram is particularly impressive as it shows a large decrease Daro and the model appears to overestimate the in situ ni-
the bias, and a large increase in correlation due to going fror@rate'

an unmatched comparison to a point-to-point comparison.
Although winter nitrates in Fig1 show the best improve-
ment in bias and RMSD of that figure, all time selections
show unambiguous increases in correlation, shifting from
cold colours to hot colours. The other time selections also
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7 Conclusions Finally, it is important to remember that historic datasets
were not recorded for the purpose of model validation; they
A point-to-point method was presented as a tool to validatehave limits. As such, it is crucial to account for these restric-
a marine biogeochemical model hindcast of the POLCOMS-tions when validating hindcasts. When performing a model
ERSEM model with sparse historic CTD and low-resolution validation using a direct comparison, it is necessary to pro-
bottle in situ measurements. To demonstrate the method, isess the model data to resemble the in situ dataset as much
situ temperature, salinity, nitrates, phosphates, and chloroas possible. If a direct comparison validation is performed
phyll a from the North Sea were compared against bothwithout some kind of matching, the predictive power of the
the point-to-point model data and the annual and seasonahodel could be seriously misjudged.
means.

Firstly, the point-to-point method was used to show that
POLCOMS-ERSEM displayed skill at reproducing all five acknowledgementsThis work is supported by the NERC National
of the variables. POLCOMS-ERSEM is most successful atCapability in Modelling programme at Plymouth Marine Labora-
reproducing the physical variables (temperature and salinityjory and Theme 6 of the EC seventh framework program through
and is least successful at reproducing the biological variabléhe Marine Ecosystem Evolution in a Changing Environment
chlorophyll on a pixel by pixel basis. The model had mod- (MEECE No. 212085) Collaborative Project.
erate skill at reproducing the nutrients phosphate and nitrate,
especially in the winter. This is to be expected, as the physicaFdited by: A. Stenke
variables are relatively deterministic, tractable and straight-
forward to calculate. While the chlorophyll in situ dataset
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