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Abstract. Earth system models (ESMs) must calculate large-
scale interactions between the land and atmosphere while
accurately characterizing fine-scale spatial heterogeneity in
water, carbon, and other nutrient dynamics. We present here
a high-dimension model representation (HDMR) approach
that allows detailed process representation of a coupled car-
bon and water tracer (theδ18O value of the soil-surface CO2
flux (δFs)) in a computationally tractable manner.δFs de-
pends on theδ18O value of soil water, soil moisture and tem-
perature, and soil CO2 production (all of which are depth
dependent), and theδ18O value of above-surface CO2. We
tested the HDMR approach over a growing season in a C4-
dominated pasture using two vertical soil discretizations. The
difference between the HDMR approach and the full model
solution in the three-month integrated isoflux was less than
0.2 % (0.5 mol m−2 ‰), and the approach is up to 100 times
faster than the full numerical solution. This type of model
reduction approach allows representation of complex cou-
pled biogeochemical processes in regional and global cli-
mate models and can be extended to characterize subgrid-
scale spatial heterogeneity.

1 Introduction

Atmospheric CO2 has substantial impacts on global cli-
mate, both over the long term and, as we have witnessed
since the beginning of the industrial revolution, much shorter
timescales (Watson et al., 2001). As a result, the impacts of
anthropogenic CO2 emissions and climate system feedbacks

on the long-term state and stability of the climate are cur-
rently the focus of much research. Since interactions with
the terrestrial biosphere dominate spatial and inter- and intra-
annual variations in atmospheric CO2 concentrations (Tans
et al., 1990), developing reliable models of ecosystem CO2
exchanges is necessary to predict future climate.

Terrestrial carbon cycle models used at the site and re-
gional scales and in Earth system models (ESMs; e.g., Bo-
nan et al., 2002; Denning et al., 1996; Parton et al., 1988)
are based on representations of varying complexity of the
biological, chemical, and physical processes governing car-
bon exchanges between the atmosphere, soils, and plants.
In ESMs, however, the level of process representation pos-
sible is often a trade-off between the desire to mechanis-
tically represent the process, ability to characterize surface
and subsurface properties, and computational constraints. It
is also now recognized that land models must represent some
of the subgrid-scale heterogeneity known to exist at scales
substantially finer than those represented in current ESMs
(∼ 100 km resolution; King et al., 2010; Thompson et al.,
2011), either explicitly or by integrating scaling rules based
on mechanistic process representation.

Land models are often tested and calibrated against field
eddy covariance measurements of net CO2 ecosystem ex-
change (NEE) (Baldocchi et al., 2001). Difficulties in inter-
preting these NEE measurements arise from landscape hor-
izontal and vertical heterogeneity, footprint uncertainty, un-
steady conditions, and stable nocturnal conditions (Aubinet
et al., 2000; Baldocchi, 2003; Goulden et al., 1996). Further,
ecosystem model development requires accurate estimates of
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the gross CO2 fluxes comprising the net flux, i.e., the assim-
ilated (photosynthetic) and respired fluxes. This partitioning
is necessary since the processes controlling these fluxes re-
spond differently to environmental forcings and therefore re-
quire separate model formulations and parameterizations.

Measurements of the stable isotope18O in CO2 have been
proposed as a tracer to partition measured net CO2 fluxes into
component gross fluxes (Yakir and Wang, 1996), identify re-
gional distributions of CO2 exchanges (Ciais et al., 1997a,
b; Cuntz et al., 2003; Francey and Tans, 1987; Peylin et al.,
1999), and investigate interactions between the C and water
cycles (Buenning et al., 2012; Wingate et al., 2009). How-
ever, using measurements of18O in CO2 for these methods
requires accurate estimation of theδ18O value of the soil-
surface CO2 flux (δFs (‰)), which depends on a complex
suite of interactions between the C and water cycles (Riley
et al., 2002; Tans, 1998). Using this example, we illustrate
here a computationally efficient approach to represent these
dynamics in a manner appropriate for inclusion in regional
and global models.

CO2 is produced in soils by heterotrophic respiration and
autotrophic root respiration. The depth distribution and mag-
nitude of the soil CO2 source depends on soil moisture and
temperature, microbial substrate and nitrogen availability
and quality, and root activity (e.g., Grant et al., 2001). Once
produced, the dominant CO2 transport pathway to the atmo-
sphere is via diffusion through open soil pores. Although not
impacting the gross CO2 flux, hydration and subsequent par-
titioning back into the gas phase can substantially change the
δ18O value of the soil-gas CO2. Upon dissolution, CO2 can
exchange18O atoms with the water, thereby acquiring the
18O composition of the water. The impact of this exchange on
theδ18O value of soil water (δsw (‰)) is small, since there are
orders of magnitude more H2O than CO2 molecules in soil
moisture. The competition between CO2 diffusion through
the open pore space and dissolution into the soil water can
substantially impactδFs (Miller et al., 1999; Riley, 2005).

Three classes of methods to estimateδFs have been re-
ported. Several authors have hypothesized that a depth-
integratedδ18O value of soil water and a constant effective
kinetic fractionation factor can be used (Ciais et al., 1997a, b;
Miller et al., 1999; Yakir and Wang, 1996). Tans (1998) de-
veloped steady-state analytical solutions forδFs, which Stern
et al. (2001) applied to study the impact of invasion fluxes
on the net surface C18OO exchange. Finally, numerical mod-
eling approaches have been developed to account for tran-
sient conditions and gradients in theδ18O value of the vari-
ous water pools impactingδFs (e.g., ISOLSM from Riley et
al., 2002; and Stern et al. , 1999).

ISOLSM has been integrated into the general circulation
model CCM3 (Buenning et al., 2012) to investigate the im-
pact of ecosystems on theδ18O value of atmospheric CO2
(δa). However, the soil-gas diffusion and reaction submod-
els in ISOLSM are computationally expensive. The high-
dimension model representation (HDMR) method applied

here allows reduction of the full model to a series of look-
up tables, while still characterizing second order interactions
between variables important in the system. This approach
substantially reduces simulation runtime (by up to a factor
of 100), while still generating accurateδFs predictions.

The following sections describe the methods used in
ISOLSM to predictδFs, the HDMR approach, and the spe-
cific application of HDMR to estimatingδFs. The HDMR
model is then applied to a C4-dominated grass ecosystem
as a test of the approach in a dynamic simulation. Finally,
we discuss potential applications of this type of approach to
representing complex biogeochemical processes and spatial
heterogeneity in ESMs.

2 Methods

2.1 EstimatingδFs using ISOLSM

ISOLSM integrates modules that simulate18O ecosystem ex-
changes in H2O and CO2 with the land-surface model LSM1
(Bonan, 1996). LSM1 is a “big-leaf” model that calculates
internally consistent ecosystem energy, CO2, and H2O ex-
changes with the atmosphere. Soil moisture, advective wa-
ter fluxes, and temperature, all of which impactδsw, are
calculated at user-defined depths in the soil.

The isotopic mechanisms integrated in ISOLSM are de-
scribed in detail by Riley et al. (2002); the model has been ap-
plied in a number of other studies of isotope and bulk C and
water dynamics (Aranibar et al., 2006; Cooley et al., 2005;
Henderson-Sellers et al., 2006; Lai et al., 2006; McDowell et
al., 2008; Riley et al., 2003, 2008, 2009; Riley, 2005; Still et
al., 2009; Torn et al., 2011). A brief description of the model
follows to illustrate the nature of the interactions impacting
δFs. ISOLSM solves forδsw using an explicit method with
boundary conditions specified for theδ18O values of precip-
itation and above-canopy vapor. Surface evaporation is cal-
culated in LSM1 using a laminar soil-surface boundary layer
resistance and the gradient between vapor concentrations at
the soil surface and canopy air. A similar approach is taken
in ISOLSM to compute the soil-surface H2

18O flux. In this
case, though, the additional effects of an equilibrium parti-
tioning factor and a different laminar boundary layer resis-
tance for the heavier isotopologue are included. Root wa-
ter withdrawal from the soil profile (driven by transpiration)
is calculated using modules from LSM1; root H2

18O with-
drawal occurs without isotopic fractionation. In this paper,
δsw is presented relative to Vienna Standard Mean Ocean
Water (V-SMOW).

ISOLSM solves the transient mass balance relationships
for each isotopologue using a Crank–Nicholson approach.
The model includes a soil moisture and temperature depen-
dent effective diffusivity and CO2 source profile and allows
for variations in above-surface CO2 concentration andδ18O
value. The net soil-surface CO2 and C18OO fluxes (Fs and
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Table 1.Parameters and state variables used to generate the expan-
sion functions. Spatial discretization scenarios D1 and D2 corre-
spond to eight 2.5 cm and four 5 cm control volumes, respectively,
in the top 20 cm of soil. All HDMR simulations are performed by
dividing each parameter range into 100 equal spaces (i.e.,N = 100).

Parameter or state variable Units Range

Soil moisture m3 m−3 0.1, 0.5
Soil temperature K 283, 303
δsw, soil waterδ18O value ‰ (V-SMOW) −12, 10
δ18O value of atmospheric CO2 ‰ (V-PDB-CO2) −1, 1
Soil CO2 production µmol m−2 s−1 2, 8
z0, exponential decay parameter m 0.05, 0.2

F 18
s , respectively (µmol m−2 s−1)) are computed from the

concentration gradients and diffusivities at the soil surface.
Finally, theδ18O value of the soil-surface CO2 flux is calcu-
lated as

δF 18
s =

(
F 18

s /Fs

rpdb
− 1

)
1000, (1)

whererpdb is the Vienna Pee Dee Belemnite (V-PDB-CO2)

standard. As applied here, ISOLSM uses 2.5 cm control vol-
umes to solve forδsw and twenty unevenly spaced control
volumes down to 1 m depth for the soil-gas calculations.
Model testing is described in Riley et al. (2003), and an ap-
plication of ISOLSM to analyze the impact of near-surface
δsw on δFs is presented in Riley (2005).

2.2 High-dimensional model reduction

The HDMR technique described here (termed the cut-
HDMR) is a special application of a group of tools de-
signed to represent high-dimensional models (Alis and Rab-
itz, 2001; Rabitz and Alis, 1999; Rabitz et al., 1999). HDMR
was developed to substantially decrease simulation runtime
while retaining nonlinear interactions between state variables
and model parameters. Besides cut-HDMR, other versions
of the HDMR approach have been applied to environmen-
tal modeling problems, e.g., random sampling HDMR (Li
et al., 2006; Wang et al., 2003). The method has also been
integrated with neural network approaches for high dimen-
sionality problems (e.g., Manzhos and Carrington, 2008).
The HDMR method has been used, for example, to study
global atmospheric chemistry (Wang et al., 1999), strato-
spheric chemistry (Shorter et al., 1999), and atmospheric ra-
diation transport (Shorter et al., 2000).

The HDMR approach maps a set ofn input variables
x = (x1,x2, . . .,xn) onto the desired outputg (x). In the
case of estimatingδFs, the full set of input variablesxi are
soil moisture, temperature, CO2 production, andδsw (all of
which are depth dependent), and theδ18O value of atmo-
spheric CO2 (Table 1).g (x) representsδFs at a particular

x and is expressed as an expansion of correlated functions
(f0,fi (xi) ,fij

(
xi,xj

)
, etc.):

g (x) = f 0 +

n∑
i=1

fi (xi) +

n∑
1≤i<j≤n

fij

(
xi,xj

)
+ . . .

+f12,...,n (x1,x2, . . .,xn) . (2)

Here,f0 is a constant that represents the system response ata

(i.e.,g (a)), wherea is the reference point (the central point
of the n-dimensional hypercube defined byx); fi (xi) char-
acterizes the impact ong (x) of a change inxi , while other
inputs are taken from the reference pointa; fij

(
xi,xj

)
char-

acterizes the impact ong (x) of simultaneous changes inxi

andxj ; andf12...n (x1,x2, . . .,xn) gives the residual impact
on g (x) of all the variables simultaneously. The cut-HDMR
approach ignores functions with greater than two variable in-
teractions under the hypothesis that first and second order
interactions dominateδFs. The three expansion functions are
calculated as

f0 = g (a) , (3)

fi (xi) = g (xi,a) − g (a) , (4)

and

fij

(
xi,xj

)
= g

(
xi,xj ,a

)
− fi (xi) − fj

(
xj

)
− f0. (5)

The nomenclature forg indicates that it is evaluated assum-
ing all variables are at the reference pointa except the spe-
cific value(s) ofx contained in the parentheses. Subtract-
ing off the lower-order expansion functions when calculating
fij

(
xi,xj

)
ensures a unique addition fromg

(
xi,xj ,a

)
.

2.3 Applying HDMR to calculate δFs

For this work the HDMR expansion functions were gener-
ated using ISOLSM to evaluateδFs at steady state for a suite
of input variables. In general, the soil-gas system will not be
in steady state, but as demonstrated below, excursions from
the steady-state solution do not appreciably impact the pre-
dicted cumulative isoflux in this system. The impact and ap-
plicability of the steady-state assumption in different ecosys-
tems and under different meteorological forcing will be eval-
uated in future work. Note that the HDMR method has also
been used to propagate transient solutions of complex mod-
els (e.g., Shorter et al., 2000).

The input variables that comprisex are assigned from a
range divided intoN equal intervals (Table 1). While all
ISOLSM simulations here used the spatial discretizations de-
scribed in Riley et al. (2002), the HDMR expansion functions
are evaluated with two vertical discretization scenarios (D1
and D2). Scenario D1 uses 2.5 cm soil control volumes down
to 20 cm depth andN = 100, and scenario D2 uses average
soil moisture, temperature, andδsw in 5 cm increments down
to 20 cm depth andN = 100.

www.geosci-model-dev.net/6/345/2013/ Geosci. Model Dev., 6, 345–352, 2013
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δFs    δ18O value of the soil-surface CO2 flux (‰) 1 

δsw    δ18O value of soil water (‰) 2 

∇!!!cm!!"  gradient in δsw over the top 5 cm of soil (‰ cm-1) 3 

9. Figures 4 

 5 

Figure 1. Simulated δsw in four soil layers over a twenty-day period in June 2000. Spikes 6 

in δsw in the top 2.5 cm result from soil evaporation, precipitation, and wicking from 7 

lower soil layers. 8 

 9 

Fig. 1.Simulatedδsw in four soil layers over a twenty-day period in
June 2000. Spikes inδsw in the top 2.5 cm result from soil evapora-
tion, precipitation, and wicking from lower soil layers.

To develop the HDMR expansion functions, ISOLSM is
run to steady state for each set of conditions (i.e., eachx).
δFs is then evaluated, and the expansion functions are calcu-
lated with Eqs. (3)–(5) and stored as look-up tables. Comput-
ing the expansion functions for each discretization took about
seven days on a 2 GHz Atherton PC with 512 MB of RAM.
During the HDMR simulation, first and second order inter-
polation routines are used to calculate the expansion func-
tions for a specific input setx. The advantage to the HDMR
approach is the ability to rapidly evaluate Eq. (2) once the
expansion functions have been computed.

In ISOLSM the soil CO2 source term is calculated as the
sum of autotrophic and heterotrophic respiration, each with
their own exponentially decaying depth profile defined by the
parametersza

0 andzh
0 (m), respectively.za

0 andzh
0 are sensi-

tive to soil moisture, becoming larger as the soil dries (i.e.,
the relative distribution of soil CO2 production moves deeper
as the soil dries). To save computational time, the HDMR ex-
pansion functions were generated with a single exponential
parameter,z0. Therefore, in the simulations presented here,
the HDMR model applies a parameter weighted by the pre-
dicted autotrophic,Fa (µmol m−2 s−1), and heterotrophic,Fh
(µmol m−2 s−1), CO2 sources to approximate the depth dis-
tribution of CO2 production:

z0 =
za

0Fa+ zh
0Fvh

Fa+ Fh
. (6)

2.4 HDMR testing

The HDMR approach was tested using meteorological data
from May–July 2000 in a C4-dominated tallgrass prairie pas-
ture in Oklahoma (36◦56′ N, 96◦41′ W). This dataset was
used previously to develop and test ISOLSM (Riley et al.,
2002, 2003). The site is in a region with various land uses, in-
cluding crops, sparse trees, and other grasslands, has not been
grazed since 1996, and is burned every spring. Maximum leaf
area index is about 3, and maximum net ecosystem exchange
during the growing season is about 35 µmol m−2 s−1. The site

 17 

 1 

Figure 2. Simulated δFs over the growing season from ISOLSM and the HDMR approach 2 

using discretization scenarios D1 and D2. Variability in δFs is large when δsw variability in 3 

the top 2.5 or 5 cm is large. 4 

Fig. 2. SimulatedδFs over the growing season from ISOLSM and
the HDMR approach using discretization scenarios D1 and D2.
Variability in δFs is large whenδsw variability in the top 2.5 or
5 cm is large.

and collection of meteorological forcing and flux data are de-
scribed in detail in Suyker and Verma (2001) and Colello et
al. (1998).

3 Results and discussion

The magnitude and vertical distribution ofδsw is an impor-
tant determinant ofδFs (Riley, 2005). In this system, low hu-
midity, high air temperatures, and high soil evaporation rates
generate strongδsw gradients in the top 5 cm of soil, making
accurate prediction ofδsw critical for predictingδFs. For ex-
ample, Fig. 1 shows predictedδsw for four soil layers over a
twenty-day period in June 2000.

The spikes inδsw in the first soil layer occur for a num-
ber of reasons. Rapid increases inδsw are typically driven
by large soil evaporative fluxes, which occur when the vapor
gradient between the soil surface and canopy air is large. The
δ18O value of above-canopy vapor (δv) is impacted by sur-
face evaporative fluxes, resulting in a feedback betweenδv
and near-surfaceδsw. Because we lack continuous measure-
ments ofδv, we estimated it using a constant offset (7 ‰)
from the estimated stem waterδ18O value. In reality,δv can
change more rapidly than this approach allows, as shown
in Helliker et al. (2002). Rapid decreases inδsw are caused
by precipitation inputs; wicking of more depleted soil water
from lower soil layers drives more gradual decreases.

The HDMR approach using both vertical discretizations
(D1 and D2) accurately simulatedδFs over the growing
season (Fig. 2). Figure 3 again compares the HDMR and
ISOLSM predictions, but over a twenty-day period so that
details inδFs can be more easily seen. Also shown in Fig. 3
is the gradient inδsw over the top 5 cm of soil (∇0−5cmδsw
(‰ cm−1)).

Differences between ISOLSM and HDMR predictions oc-
cur for several reasons. First, discretization scenario D2 is
unable to capture the impact onδFs resulting from large

Geosci. Model Dev., 6, 345–352, 2013 www.geosci-model-dev.net/6/345/2013/
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 1 

Figure 3. (a) Same as in Figure 2, but for a 20-day period. Also shown are (b) differences 2 

between the full ISOLSM model results and the HDMR predictions for Δz = 2.5 and 5 3 

Fig. 3. (a)Same as in Fig. 2, but for a 20-day period. Also shown
are(b) differences between the full ISOLSM model results and the
HDMR predictions for1z = 2.5 and 5 cm and(c) ∇0−5cmδsw, the
predicted gradient inδsw over the top 5 cm of soil. Differences be-
tween scenarios D1 and D2 are largest when near-surfaceδsw gradi-
ents are large. Discretization scenario D1 more accurately predicts
the impact of these gradients onδFs since this HDMR solution is
based on the identical spatial discretization as that of the ISOLSM
simulation (i.e., 2.5 cm in the top 20 cm of soil).

δsw gradients between 0 and 5 cm depth. We have previously
shown that these gradients can substantially impactδFs (Ri-
ley, 2005). Following precipitation (e.g., days 162, 163, 164,
167, 172, and 174; Fig. 3), the enhanced soil-surface evapo-
ration leads to∇0−5cmδsw of up to 5 ‰ cm−1. We have ob-
served gradients of this magnitude in a sorghum field in Ok-
lahoma (unpublished data), as have Miller et al. (1999) in
their soil column experiments. The impact of these gradients
on δFs is better captured in scenario D1 since this HDMR
solution is based on the identical spatial discretization as that
of the ISOLSM simulation (i.e., eight 2.5 cm control volumes
in the top 20 cm of soil). Second, even in the absence of ver-
tical spatial gradients inδsw, rapid changes inδsw will lead
to errors in the HDMR predictions since the HDMR solution
is based on the steady-state full model solution. However,
the errors between the D1 discretization scenario predictions
and the ISOLSM solution are small during these periods of
rapid change. These results imply that errors associated with

 19 

cm and (c) ∇!!!cm!!", the predicted gradient in δsw over the top 5 cm of soil. Differences 1 

between scenarios D1 and D2 are largest when near-surface δsw gradients are large. 2 

Discretization scenario D1 more accurately predicts the impact of these gradients on δFs 3 

since this HDMR solution is based on the identical spatial discretization as that of the 4 

ISOLSM simulation (i.e., 2.5 cm in the top 20 cm of soil). 5 

 6 

Figure 4. Cumulative soil-surface isoflux calculated with ISOLSM and the HDMR 7 

approach using discretization scenarios D1 and D2. The error in cumulative isoflux over 8 

the season for each HDMR scenario is about 0.2% (0.5 mol m-2 ‰). 9 
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Fig. 4.Cumulative soil-surface isoflux calculated with ISOLSM and
the HDMR approach using discretization scenarios D1 and D2. The
error in cumulative isoflux over the season for each HDMR scenario
is about 0.2 % (0.5 mol m−2 ‰).

the steady-state assumption are relatively small for the con-
ditions simulated here. Third, using an approximation forz0
(Eq. 2.4) will lead to errors in the depth distribution of CO2
production, although the total production will be correct. Fi-
nally, the HDMR solution is linearly interpolated between
the forcing values shown in Table 1; this interpolation will
lead to some error. I have attempted to minimize this type of
error by using relatively small increments between succes-
sive values at which the expansion functions were evaluated
(i.e.,N = 100).

The net impact of soil-surface CO2 fluxes on theδ18O
value of atmospheric CO2 is described by the instantaneous
isoflux,I (µmol m−2 s−1 ‰), calculated as

I = (δFs− δa)Fs. (7)

The cumulative isoflux,Ic (mol m−2 ‰), is calculated as the
time integral ofI over the three-month period.Ic is accu-
rately simulated by the HDMR approach for both discretiza-
tion scenarios (Fig. 4). Differences in the HDMR model
predictions from the full model solution during periods of
large near-surfaceδsw gradients did not substantially impact
predictions of the cumulative isoflux over the three-month
period. The error in cumulative isoflux after three months
is about 0.2 % (0.5 mol m−2 ‰) for both discretization sce-
narios. The HDMR solution was computed∼ 50 and 100
times faster than the full ISOLSM numerical solution for dis-
cretization scenarios D1 and D2, respectively. This increased
computational efficiency makes it practical to include the
ISOLSM-based HDMR solution forδFs in regional- and
global-scale models.

In the broader context, spatial heterogeneity in hydrology
and biogeochemical cycling occurs on scales substantially
finer than can currently, and likely ever, be represented in
ESMs. The actual transformation of soil organic matter and
CO2 production, for example, occurs at the 10s of nm scale,
and is impacted by pore-scale heterogeneity in nutrients,
water, organic molecules, mineral surfaces, microbes, and

www.geosci-model-dev.net/6/345/2013/ Geosci. Model Dev., 6, 345–352, 2013
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others (Kleber et al., 2011). The microbial community acting
at these scales is incredibly diverse (Goldfarb et al., 2011)
as are the range of organic molecules being transformed and
consumed (Kogel-Knabner, 2002; Sutton and Sposito, 2005).
At the mm to cm scale, aggregation, macropores, plant roots,
and other soil structural properties impact distributions of mi-
crobes and resources (Six et al., 2001). Vertical structure of
hydrology and C inputs can vary on horizontal scales as small
as a few meters and vertical scales on the order of 10 cm. Ac-
counting for these types of heterogeneity across 10s of km
in an ESM is a substantial challenge that high-dimensional
model reduction techniques such as that presented here may
help address.

4 Conclusions

Representing complex coupled hydrological and biogeo-
chemical processes in an Earth system model may, depend-
ing on the level of mechanistic detail desired, require some
level of model reduction to make the problem computation-
ally feasible. We described here a high-dimensional model
reduction approach to address one example of such a prob-
lem – estimating theδ18O value of the soil-surface CO2
flux. This flux is a complex function of the depth-dependent
(a)δ18O value of soil water, (b) soil moisture, (c) soil temper-
ature, and (d) soil CO2 production, as well as theδ18O value
of above-surface CO2. Mechanistic models that include these
interactions (e.g., ISOLSM) may be too computationally ex-
pensive to integrate in regional and global models at their
native spatial scale. The results presented here demonstrate
that the HDMR technique accurately predictsδFs up to 100
times faster than the full numerical solution.

Under rapidly changing soil moisture conditions, such as
immediately after a precipitation event, the full numerical so-
lution of the C18OO surface flux differs slightly from the
HDMR solution. Errors in the HDMR solution arise from
the steady-state assumption, approximation of the depth de-
pendence of soil CO2 production, and linear interpolation.
However, these errors have a small impact on the predicted
cumulative isoflux. The error in the cumulative isoflux over
the growing season calculated with HDMR (compared to that
calculated with the full model) was less than 0.2 %.

Applying measurements of theδ18O value of atmospheric
CO2 to partition measured net ecosystem fluxes into gross
fluxes and, at the regional and global scale, to estimate spa-
tially explicit CO2 exchanges requires accurate prediction of
the δ18O value of the soil-surface CO2 flux. Further, for re-
gional and global simulations such a method must be compu-
tationally efficient. The HDMR method applied here shows
great promise as a tool for addressing the need for mechanis-
tic representation of processes across a wide range of scales
and spatial heterogeneity.

Nomenclature

a HDMR reference point
f0 System response ata

fi (xi) Impact ong (x) of a change inxi

fij

(
xi,xj

)
Impact on g (x) of simultaneous
changes inxi andxj

f12...n
(x1,x2, . . .,xn)

Residual impact ong (x) of all the
variables simultaneously

Fa, Fh Autotrophic and heterotrophic CO2
sources (µmol m−2 s−1)

F 18
s ,Fs Net soil-surface C18OO and CO2

fluxes (µmol m−2 s−1)

g (x) Calculated HDMR result
I Isoflux (µmol m−2 s−1 ‰ )
Ic Cumulative isoflux (mol m−2 ‰ )
n Number of input variables in the

HDMR solution

N Number of intervals in the HDMR
solution for each input variable

rpdb V-PDB-CO2 standard
x Vector of variables for the HDMR

solution

xi Input variables for the HDMR
solution

z0 Single exponential depth profile
parameter (m)

za
0,z

h
0 Autotrophic and heterotrophic

depth profile parameters (m)

Greek letters
δFs δ18O value of the soil-surface CO2

flux (‰)

δsw δ18O value of soil water (‰)
∇0−5cmδsw Gradient inδsw over the top 5 cm of

soil (‰ cm1)
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