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Abstract. Earth system models (ESMs) must calculate large-on the long-term state and stability of the climate are cur-
scale interactions between the land and atmosphere whileently the focus of much research. Since interactions with
accurately characterizing fine-scale spatial heterogeneity ihe terrestrial biosphere dominate spatial and inter- and intra-
water, carbon, and other nutrient dynamics. We present herannual variations in atmospheric @@oncentrations (Tans
a high-dimension model representation (HDMR) approachet al., 1990), developing reliable models of ecosystem CO
that allows detailed process representation of a coupled caexchanges is necessary to predict future climate.
bon and water tracer (tf220 value of the soil-surface GO Terrestrial carbon cycle models used at the site and re-
flux (§Fs)) in a computationally tractable mannéits de- gional scales and in Earth system models (ESMs; e.g., Bo-
pends on thé*80 value of soil water, soil moisture and tem- nan et al., 2002; Denning et al., 1996; Parton et al., 1988)
perature, and soil COproduction (all of which are depth are based on representations of varying complexity of the
dependent), and th&'80 value of above-surface GOWe biological, chemical, and physical processes governing car-
tested the HDMR approach over a growing season in-a C bon exchanges between the atmosphere, soils, and plants.
dominated pasture using two vertical soil discretizations. Theln ESMs, however, the level of process representation pos-
difference between the HDMR approach and the full modelsible is often a trade-off between the desire to mechanis-
solution in the three-month integrated isoflux was less thartically represent the process, ability to characterize surface
0.2 % (0.5 mol m2 %o), and the approach is up to 100 times and subsurface properties, and computational constraints. It
faster than the full numerical solution. This type of model is also now recognized that land models must represent some
reduction approach allows representation of complex cou-of the subgrid-scale heterogeneity known to exist at scales
pled biogeochemical processes in regional and global clisubstantially finer than those represented in current ESMs
mate models and can be extended to characterize subgrig=- 100 km resolution; King et al., 2010; Thompson et al.,
scale spatial heterogeneity. 2011), either explicitly or by integrating scaling rules based
on mechanistic process representation.

Land models are often tested and calibrated against field
eddy covariance measurements of net,Gf@osystem ex-
1 Introduction change (NEE) (Baldocchi et al., 2001). Difficulties in inter-

preting these NEE measurements arise from landscape hor-

Atmospheric CQ has substantial impacts on global cli- jzontal and vertical heterogeneity, footprint uncertainty, un-
mate, both over the long term and, as we have witnessedteady conditions, and stable nocturnal conditions (Aubinet
since the beginning of the industrial revolution, much shorteret 1., 2000: Baldocchi, 2003; Goulden et al., 1996). Further,

timescales (Watson et al., 2001). As a result, the impacts ofcosystem model development requires accurate estimates of
anthropogenic C®emissions and climate system feedbacks
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the gross C@fluxes comprising the net flux, i.e., the assim- here allows reduction of the full model to a series of look-
ilated (photosynthetic) and respired fluxes. This partitioningup tables, while still characterizing second order interactions
is necessary since the processes controlling these fluxes réetween variables important in the system. This approach
spond differently to environmental forcings and therefore re-substantially reduces simulation runtime (by up to a factor
quire separate model formulations and parameterizations. of 100), while still generating accuradé’s predictions.

Measurements of the stable isot&ﬁ@ in CO; have been The following sections describe the methods used in
proposed as a tracer to partition measured netfi@esinto  ISOLSM to predicts Fs, the HDMR approach, and the spe-
component gross fluxes (Yakir and Wang, 1996), identify re-cific application of HDMR to estimating Fs. The HDMR
gional distributions of C@ exchanges (Ciais et al., 1997a, model is then applied to a &ominated grass ecosystem
b; Cuntz et al., 2003; Francey and Tans, 1987; Peylin et al.as a test of the approach in a dynamic simulation. Finally,
1999), and investigate interactions between the C and watewe discuss potential applications of this type of approach to
cycles (Buenning et al., 2012; Wingate et al., 2009). How-representing complex biogeochemical processes and spatial
ever, using measurements 0 in CO, for these methods heterogeneity in ESMs.
requires accurate estimation of th&0 value of the soil-
surface CQ flux (§ Fs (%0)), which depends on a complex
suite of interactions between the C and water cycles (Riley? Methods
et al., 2002; Tans, 1998). Using this example, we illustrate
here a computationally efficient approach to represent these.1 Estimating § Fs using ISOLSM
dynamics in a manner appropriate for inclusion in regional
and global models. ISOLSM integrates modules that simul&%®© ecosystem ex-

CO, is produced in soils by heterotrophic respiration and changes in RO and CQ with the land-surface model LSM1
autotrophic root respiration. The depth distribution and mag-(Bonan, 1996). LSM1 is a “big-leaf” model that calculates
nitude of the soil C@ source depends on soil moisture and internally consistent ecosystem energy, £@nd HO ex-
temperature, microbial substrate and nitrogen availabilitychanges with the atmosphere. Soil moisture, advective wa-
and quality, and root activity (e.g., Grant et al., 2001). Onceter fluxes, and temperature, all of which impdgi, are
produced, the dominant GQransport pathway to the atmo- calculated at user-defined depths in the soil.
sphere is via diffusion through open soil pores. Although not The isotopic mechanisms integrated in ISOLSM are de-
impacting the gross C£Xlux, hydration and subsequent par- scribed in detail by Riley et al. (2002); the model has been ap-
titioning back into the gas phase can substantially change thplied in a number of other studies of isotope and bulk C and
8180 value of the soil-gas C£ Upon dissolution, C@can  water dynamics (Aranibar et al., 2006; Cooley et al., 2005;
exchange'®0 atoms with the water, thereby acquiring the Henderson-Sellers et al., 2006; Lai et al., 2006; McDowell et
180 composition of the water. The impact of this exchange onal., 2008; Riley et al., 2003, 2008, 2009; Riley, 2005; Still et
thes180 value of soil waterdsw (%o)) is small, since there are  al., 2009; Torn et al., 2011). A brief description of the model
orders of magnitude moreJ® than CQ molecules in soil  follows to illustrate the nature of the interactions impacting
moisture. The competition between g@iffusion through  §Fs. ISOLSM solves forssy using an explicit method with
the open pore space and dissolution into the soil water caboundary conditions specified for td&0 values of precip-
substantially impact Fs (Miller et al., 1999; Riley, 2005). itation and above-canopy vapor. Surface evaporation is cal-

Three classes of methods to estiméfg have been re- culated in LSM1 using a laminar soil-surface boundary layer
ported. Several authors have hypothesized that a deptiresistance and the gradient between vapor concentrations at
integrateds 180 value of soil water and a constant effective the soil surface and canopy air. A similar approach is taken
kinetic fractionation factor can be used (Ciais et al., 1997a, bjn ISOLSM to compute the soil-surface,HfO flux. In this
Miller et al., 1999; Yakir and Wang, 1996). Tans (1998) de- case, though, the additional effects of an equilibrium parti-
veloped steady-state analytical solutionssfég, which Stern  tioning factor and a different laminar boundary layer resis-
et al. (2001) applied to study the impact of invasion fluxestance for the heavier isotopologue are included. Root wa-
on the net surface¥00 exchange. Finally, numerical mod- ter withdrawal from the soil profile (driven by transpiration)
eling approaches have been developed to account for traris calculated using modules from LSM1; roop¥0O with-
sient conditions and gradients in th¥0 value of the vari-  drawal occurs without isotopic fractionation. In this paper,
ous water pools impactingFs (e.g., ISOLSM from Riley et 8sy is presented relative to Vienna Standard Mean Ocean
al., 2002; and Stern et al. , 1999). Water (V-SMOW).

ISOLSM has been integrated into the general circulation 1SOLSM solves the transient mass balance relationships
model CCM3 (Buenning et al., 2012) to investigate the im- for each isotopologue using a Crank—Nicholson approach.
pact of ecosystems on 80 value of atmospheric GO  The model includes a soil moisture and temperature depen-
(82). However, the soil-gas diffusion and reaction submod-dent effective diffusivity and C®source profile and allows
els in ISOLSM are computationally expensive. The high- for variations in above-surface G@oncentration and20
dimension model representation (HDMR) method appliedvalue. The net soil-surface GGnd G200 fluxes ¢s and
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Table 1. Parameters and state variables used to generate the expax-and is expressed as an expansion of correlated functions
sion functions. Spatial discretization scenariogs @d D, corre- (fo, fi (xi), fij (xi,xj), etc.):
spond to eight 2.5 cm and four 5cm control volumes, respectively,
in the top 20 cm of soil. All HDMR simulations are performed by 1 1
dividing each parameter range into 100 equal spacesiie.100). & (¥) = fo+ Z Ji (i) + Z fij (xivxj) +...
i=1

1<i<j<n

Parameter or state variable Units Range  *+/12..n(x1,x2,...,%,). (2

Soil moisture mm—3 0.1,05 Here, fo is a constant that represents the system respomse at
Soil temperature K 283,303 (i.e.,g(a)), wherea is the reference point (the central point
Ssw, soil waters 180 value %o (V-SMOW) —12,10  of the n-dimensional hypercube definedby f; (x;) char-
8180 value of atmospheric GO %o (V-PDB-COy) -1,1 acterizes the impact oq(x) of a change inx;, while other
Soil CO; production umol m?s~1 2,8 inputs are taken from the reference paintf;; (x;, x;) char-

z0, €xponential decay parameter  m 0.05,0.2 acterizes the impact ogi(x) of simultaneous changes in

andx;; and f12 , (x1,x2,...,x,) gives the residual impact
on g (x) of all the variables simultaneously. The cut-HDMR

Fsls, respectively (umolmZs1)) are computed from the approach ignores functions with greater than two variable in-
concentration gradients and diffusivities at the soil surfaceteractions under the hypothesis that first and second order
Finally, thes180 value of the soil-surface COlux is calcu-  interactions dominatéFs. The three expansion functions are
lated as calculated as

18 _

Tpdb fi(xi) =g (xi,a)—g(a), (4)

whererpgp is the Vienna Pee Dee Belemnite (V-PDB-§0  5pg

standard. As applied here, ISOLSM uses 2.5 cm control vol-

umes to solve fobsy and twenty unevenly spaced control f;; (x;,x;) = g (xi,xj,a) — fi (x;) — f; (x;) — fo. ®)
volumes down to 1 m depth for the soil-gas calculations.

Model testing is described in Riley et al. (2003), and an ap-The nomenclature fog indicates that it is evaluated assum-
plication of ISOLSM to analyze the impact of near-surface ing all variables are at the reference paingéxcept the spe-

3sw ON S Fs is presented in Riley (2005). cific value(s) ofx contained in the parentheses. Subtract-
ing off the lower-order expansion functions when calculating
2.2 High-dimensional model reduction fij (xi, x;) ensures a unique addition frog(x;, x;, a).

The HDMR technique described here (termed the cut-2.3 Applying HDMR to calculate § Fs
HDMR) is a special application of a group of tools de-
signed to represent high-dimensional models (Alis and RabFor this work the HDMR expansion functions were gener-
itz, 2001; Rabitz and Alis, 1999; Rabitz et al., 1999). HDMR ated using ISOLSM to evaluatds at steady state for a suite
was developed to substantially decrease simulation runtim@f input variables. In general, the soil-gas system will not be
while retaining nonlinear interactions between state variabledn steady state, but as demonstrated below, excursions from
and model parameters. Besides cut-HDMR, other versionghe steady-state solution do not appreciably impact the pre-
of the HDMR approach have been app“ed to environmen_diCtEd cumulative isoflux in this System. The impact and ap-
tal mode”ng pr0b|emsl e.g., random Samp"ng HDMR (|_| pllcablllty of the Steady'state aSSUmption in different €COoSsys-
et al., 2006; Wang et al., 2003). The method has also beefems and under different meteorological forcing will be eval-
integrated with neural network approaches for high dimen_uated in future work. Note that the HDMR method has also
sionality problems (e.g., Manzhos and Carrington, 2008).been used to propagate transient solutions of complex mod-
The HDMR method has been used, for example, to studyels (e.g., Shorter et al., 2000).
global atmospheric chemistry (Wang et al., 1999), strato- The input variables that compriseare assigned from a
spheric chemistry (Shorter et al., 1999), and atmospheric ratange divided intoN equal intervals (Table 1). While all
diation transport (Shorter et al., 2000). ISOLSM simulations here used the spatial discretizations de-
The HDMR approach maps a set @finput variables scribed in Rlley etal. (2002), the HDMR expansion functions
x = (x1,X2,...,x,) onto the desired outpug (x). In the are evaluated with two vertical discretization scenarios (D
case of estimatingFs, the full set of input variables; are ~ and D). Scenario R uses 2.5 cm soil control volumes down
soil moisture, temperature, G@roduction, ands, (all of ~ t0 20cm depth andv = 100, and scenario Duses average
which are depth dependent)' and tﬁéo value of atmo- soil moisture, temperature, aﬁg,\,in 5 cm increments down
spheric CQ (Table 1).g (x) represents Fs at a particular ~ t0 20 cm depth an&/ = 100.
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Fig. 1. Simulatedssy in four soil layers over a twenty-day period in
June 2000. Spikes By in the top 2.5 cm result from soil evapora-
tion, precipitation, and wicking from lower soil layers.

Fig. 2. Simulateds Fs over the growing season from ISOLSM and
the HDMR approach using discretization scenariog dd Dp.
Variability in § Fs is large whenssy variability in the top 2.5 or

. . ~ 5cmislarge.
To develop the HDMR expansion functions, ISOLSM is

run to steady state for each set of conditions (i.e., each . . .
5Fsis then evaluated, and the expansion functions are calcu@nd collection of meteorological forcing and flux data are de-

lated with Egs. (3)(5) and stored as look-up tables. Comlout_scribed in detail in Suyker and Verma (2001) and Colello et
ing the expansion functions for each discretization took aboutal' (1998).

seven days on a 2 GHz Atherton PC with 512 MB of RAM.

Durmg the H.DMR simulation, first and second ordgr inter- 2 pesults and discussion

polation routines are used to calculate the expansion func-

tions for a specific input set. The advantage to the HDMR ;¢ magnitude and vertical distribution & is an impor-
approach is the ability to rapidly evaluate Eq. (2) once theiant determinant of Fs (Riley, 2005). In this system, low hu-
expansion functions have been computed. midity, high air temperatures, and high soil evaporation rates
In ISOLSM the soil CQ source term is calculated as the generate strong, gradients in the top 5 cm of soil, making
sum of autotrophic and heterotrophic respiration, each withy ¢ rate prediction dfy critical for predictings Fs. For ex-
their own exponentially decaying depth profile defined by theample, Fig. 1 shows predictegy for four soil layers over a
parameters$ andzg (m), respectivelyz§ andz{ are sensi-  yyenty-day period in June 2000.
tive to soil moisture, becoming larger as the soil dries (i.e., The spikes inSsy in the first soil layer occur for a num-
the relative distribution of soil C@production moves deeper per of reasons. Rapid increasessig are typically driven
as the soil dries). To save computational time, the HDMR ex-py |arge soil evaporative fluxes, which occur when the vapor
pansion functions were generated with a single exponentia 4 gient between the soil surface and canopy air is large. The
parameterzo. Therefore, in the simulations presented here, 318 yajue of above-canopy vapak{ is impacted by sur-
the HDMR model applies a parameter weighted by the preface evaporative fluxes, resulting in a feedback betwien
dicted autotrophicFa (umol m2s™1), and heterotrophidth  and near-surfacésy. Because we lack continuous measure-
(kmol m?s ), COp sources to approximate the depth dis- ments ofs,, we estimated it using a constant offset (7 %o)
tribution of CQ; production: from the estimated stem wat&t0 value. In realitys, can
ZSFa+ZBFuh _changt_a more rapidly than this approach _allows, as shown
0= —+—"T . (6) in Helliker et al. (2002). Rapid decreasessiy, are caused
Fat Fn by precipitation inputs; wicking of more depleted soil water
2.4 HDMR testing from lower soil layers drives more gradual decreases.
The HDMR approach using both vertical discretizations
The HDMR approach was tested using meteorological datdD; and ») accurately simulated Fs over the growing
from May—July 2000 in a gzdominated tallgrass prairie pas- season (Fig. 2). Figure 3 again compares the HDMR and
ture in Oklahoma (3®6 N, 96°41 W). This dataset was ISOLSM predictions, but over a twenty-day period so that
used previously to develop and test ISOLSM (Riley et al., details ind F5 can be more easily seen. Also shown in Fig. 3
2002, 2003). The site is in a region with various land uses, in4is the gradient irSs, over the top 5 cm of soilYo_5cmdsw
cluding crops, sparse trees, and other grasslands, has not be@ cm1)).
grazed since 1996, and is burned every spring. Maximum leaf Differences between ISOLSM and HDMR predictions oc-
area index is about 3, and maximum net ecosystem exchangaur for several reasons. First, discretization scenagdsD
during the growing season is about 35 pmofre—1. The site  unable to capture the impact &Fs resulting from large
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o:g v a ® Fig. 4.Cumulative soil-surface isoflux calculated with ISOLSM and
u’ 2r O A ] the HDMR approach using discretization scenarigsabd D,. The
£ of ’“‘. "";f“‘ b ,~ error in cumulative isoflux over the season for each HDMR scenario
g y T is about 0.2 % (0.5 mol TP %o).
e 2F v | 1
L ]
g -4 u
6 the steady-state assumption are relatively small for the con-
& @ ditions simulated here. Third, using an approximationztor
08 4 (Eq. 2.4) will lead to errors in the depth distribution of GO
< 5 production, although the total production will be correct. Fi-
/:Z nally, the HDMR solution is linearly interpolated between
¢ Of the forcing values shown in Table 1; this interpolation will
> 160 165 170 175 180 lead to some error. | have attempted to minimize this type of

Day of Year, 2000 _ error by using relatively small increments between succes-
TemeemisE=RE sive values at which the expansion functions were evaluated
Fig. 3. (@) Same as in Fig. 2, but for a 20-day period. Also shown (i.e., N =100).
are(b) differences between the full ISOLSM model results and the  The net impact of soil-surface GQluxes on thes80
HDMR predictions forAz = 2.5 and 5 cm andc) Vg_scmdsw, the value of atmospheric CQs described by the instantaneous
predicted gradient idsy over the top 5cm of soil. Differences be- jsoflux, 7 (umol m2s1 %o), calculated as
tween scenarios Pand D, are largest when near-surfatg, gradi-
ents are large. Discretization scenarig Iore accurately predicts | = (§ Fs — 85) Fs. @)
the impact of these gradients 8i's since this HDMR solution is
based on the identical spatial discretization as that of the ISOLSMThe cumulative isoflux/c (mol m—2 %o), is calculated as the
simulation (i.e., 2.5 cm in the top 20 cm of soil). time integral of/ over the three-month period is accu-
rately simulated by the HDMR approach for both discretiza-
tion scenarios (Fig. 4). Differences in the HDMR model
dsw gradients between 0 and 5 cm depth. We have previouslyredictions from the full model solution during periods of
shown that these gradients can substantially impag(Ri- large near-surfacé;,, gradients did not substantially impact
ley, 2005). Following precipitation (e.g., days 162, 163, 164, predictions of the cumulative isoflux over the three-month
167, 172, and 174; Fig. 3), the enhanced soil-surface evapgeeriod. The error in cumulative isoflux after three months
ration leads toVo_scmdsw Of Up to 5% cnT. We have ob-  is about 0.2 % (0.5 mol rr? %o) for both discretization sce-
served gradients of this magnitude in a sorghum field in Ok-narios. The HDMR solution was computed50 and 100
lahoma (unpublished data), as have Miller et al. (1999) intimes faster than the full ISOLSM numerical solution for dis-
their soil column experiments. The impact of these gradientsretization scenarios and Dy, respectively. This increased
on § Fs is better captured in scenario Bince this HDMR  computational efficiency makes it practical to include the
solution is based on the identical spatial discretization as thalSOLSM-based HDMR solution foBFs in regional- and
of the ISOLSM simulation (i.e., eight 2.5 cm control volumes global-scale models.
in the top 20 cm of soil). Second, even in the absence of ver- In the broader context, spatial heterogeneity in hydrology
tical spatial gradients idsy, rapid changes idsy will lead and biogeochemical cycling occurs on scales substantially
to errors in the HDMR predictions since the HDMR solution finer than can currently, and likely ever, be represented in
is based on the steady-state full model solution. HoweverESMs. The actual transformation of soil organic matter and
the errors between thejRliscretization scenario predictions CO, production, for example, occurs at the 10s of nm scale,
and the ISOLSM solution are small during these periods ofand is impacted by pore-scale heterogeneity in nutrients,
rapid change. These results imply that errors associated witlvater, organic molecules, mineral surfaces, microbes, and
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others (Kleber et al., 2011). The microbial community acting Nomenclature
at these scales is incredibly diverse (Goldfarb et al., 2011)
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as are the range of organic molecules being transformed anda
consumed (Kogel-Knabner, 2002; Sutton and Sposito, 2005). fo
At the mm to cm scale, aggregation, macropores, plant roots, fi (x;)
and other soil structural properties impact distributions of mi-  fi; (xz',xj-)
crobes and resources (Six et al., 2001). Vertical structure of
hydrology and C inputs can vary on horizontal scales as small fiz
as a few meters and vertical scales on the order of 10 cm. Ac- (x1'“xz
counting for these types of heterogeneity across 10s of km =~ 7"
in an ESM is a substantial challenge that high-dimensional Fa Fh
model reduction techniques such as that presented here may
help address. Fl8

s »1&'s

n
o Xp)

4 Conclusions g (x)
Representing complex coupled hydrological and biogeo-
chemical processes in an Earth system model may, depend-nc
ing on the level of mechanistic detail desired, require some
level of model reduction to make the problem computation-
ally feasible. We described here a high-dimensional model N
reduction approach to address one example of such a prob-
lem — estimating the’'80 value of the soil-surface GO
flux. This flux is a complex function of the depth-dependent
(a) 8180 value of soil water, (b) soil moisture, (c) soil temper-
ature, and (d) soil C®production, as well as th#80 value
of above-surface CH Mechanistic models that include these Xi
interactions (e.g., ISOLSM) may be too computationally ex-
pensive to integrate in regional and global models at their
native spatial scale. The results presented here demonstrate
that the HDMR technique accurately predié#s up to 100
times faster than the full numerical solution.

Under rapidly changing soil moisture conditions, such as

pdb

a ,h
20120

HDMR reference point

System response at

Impact ong (x) of a change irx;
Impact on g (x) of simultaneous
changes in; andx;

Residual impact o (x) of all the
variables simultaneously

Autotrophic and heterotrophic GO
sources (umol m?s=1)

Net soil-surface €800 and CQ
fluxes (umol m2s™1)

Calculated HDMR result

Isoflux (umol nT2 s~1 %o )
Cumulative isoflux (mol m? %o )
Number of input variables in the
HDMR solution

Number of intervals in the HDMR
solution for each input variable

V-PDB-CQO; standard
Vector of variables for the HDMR
solution

Input variables for the HDMR
solution

Single exponential depth profile
parameter (m)

Autotrophic and heterotrophic
depth profile parameters (m)

immediately after a precipitation event, the full numerical So- 5 eek Jetters
lution of the G800 surface flux differs slightly from the 5 Fs

HDMR solution. Errors in the HDMR solution arise from

the steady-state assumption, approximation of the depth de-

pendence of soil C®production, and linear interpolation.  dsw
However, these errors have a small impact on the predicted Vo-5scmdsw
cumulative isoflux. The error in the cumulative isoflux over

8180 value of the soil-surface GO
flux (%o)

8180 value of soil water (%o)
Gradient inSsy, over the top 5 cm of
s0il (%o cmt)

the growing season calculated with HDMR (compared to that
calculated with the full model) was less than 0.2 %.

Applying measurements of tl#&80 value of atmospheric  AcknowledgementsThis research was supported by the Director,
CO, to partition measured net ecosystem fluxes into gros@fﬁce of Science, Office of Biological and Environmental Research
fluxes and, at the regional and global scale, to estimate sp£§ the US Department of Energy under Contract No. DE-AC02-
tially explicit CO, exchanges requires accurate prediction of 9°CH11231 as part of their NGEE Arctic and ARM Programs.
the 8180 value of the soil-surface GQlux. Further, forre-  _ .. by: S. Amdt
gional and global simulations such a method must be compu-
tationally efficient. The HDMR method applied here shows
great promise as a tool for addressing the need for mechanis-
tic representation of processes across a wide range of scales
and spatial heterogeneity.
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