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Abstract. To accurately estimate past terrestrial carbon pools
is the key to understanding the global carbon cycle and its re-
lationship with the climate system. SoilGen2 is a useful tool
to obtain aspects of soil properties (including carbon content)
by simulating soil formation processes; thus it offers an op-
portunity for both past soil carbon pool reconstruction and
future carbon pool prediction. In order to apply it to vari-
ous environmental conditions, parameters related to carbon
cycle process in SoilGen2 are calibrated based on six soil pe-
dons from two typical loess deposition regions (Belgium and
China). Sensitivity analysis using the Morris method shows
that decomposition rate of humus (kHUM), fraction of incom-
ing plant material as leaf litter (frecto) and decomposition rate
of resistant plant material (kRPM) are the three most sensi-
tive parameters that would cause the greatest uncertainty in
simulated change of soil organic carbon in both regions. Ac-
cording to the principle of minimizing the difference between
simulated and measured organic carbon by comparing qual-
ity indices, the suited values ofkHUM , frecto andkRPM in the
model are deduced step by step and validated for independent
soil pedons. The difference of calibrated parameters between
Belgium and China may be attributed to their different vege-
tation types and climate conditions. This calibrated model al-
lows more accurate simulation of carbon change in the whole
pedon and has potential for future modeling of carbon cycle
over long timescales.

1 Introduction

The terrestrial ecosystem is one of the essential parts of
the global carbon cycle. Significant variations of terrestrial
carbon pool at geological timescales have played an im-
portant role in past atmospheric CO2 concentration change
(Falkowski et al., 2000; Post et al., 1990). The soil carbon
pool is much larger than the biotic pool (Lal, 2004) and ac-
counts for about two-thirds of the terrestrial carbon pool.
Thus quantitative estimation of the soil carbon pool is the
key to revealing the mechanism of past terrestrial carbon cy-
cle and narrows the uncertainties in the global carbon cycle
inventory. However, because only parts of the carbon pool
are preserved in sediments, past soil carbon pool reconstruc-
tion is difficult by direct measurement. Modeling approaches
then become the potential option for accurate estimation.

Currently, with the development of soil carbon mod-
els, quantitative simulation of soil carbon storage has been
widely done, but mostly focuses on modern processes and
aims to predict future atmospheric CO2 concentration change
(Coleman et al., 1997; Jensen et al., 1997; Kelly et al., 1997;
Li et al., 1997). Changes of past soil carbon pools over
long timescales have to account for changes in soil proper-
ties (e.g., particle size, pH) due to soil formation processes,
which are seldom included in existing soil carbon models
(Finke, 2012; Finke and Hutson, 2008; Mermut et al., 2000).
Information on past soil formation factors for different re-
gions is unavailable (Finke, 2012; Sauer et al., 2012), and
few models consider the effect of all soil formation factors
(Jenny, 1961; e.g., climate, organisms, relief, parent mate-
rial and time) in simulation of soil formation (Kirkby, 1977;
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Minasny and McBratney, 1999, 2001; Minasny et al., 2008;
Parton et al., 1987; Salvador-Blanes et al., 2007).

SoilGen2, developed by Finke (Finke, 2012; Finke and
Hutson, 2008), is a first attempt to reconstruct most aspects
of soil evolution by taking all soil formation factors into ac-
count. The advantage of the model is that it simulates the
organic and inorganic carbon cycle simultaneously and re-
veals the influences on carbon pool by other soil processes at
long time scales. The model has been validated and applied
in European soils developed over 15 000 yr from loess par-
ent materials (Finke, 2012; Finke and Hutson, 2008), and the
results show that clear sensitivity and plausible response of
this model to the “climate”, “organisms” and “relief” factors
of soil formation exist. It also has been confirmed that recon-
structions of realistic initial status of soil profiles (including
carbon and other element contents) can be evaluated through
simulating soil formation by SoilGen2 (Sauer et al., 2012).
Therefore, the model offers an opportunity to reconstruct the
past soil carbon cycle.

Because the verification and application of SoilGen2 is
still at its preliminary stage, only parts of the soil processes
included in the model have been calibrated (e.g., calcite
leaching and clay migration) (Finke, 2012; Finke and Hut-
son, 2008). No calibration on parameters related to organic
carbon (OC) cycle has been done yet. This work is necessary,
and this activity should be preceded by an analysis of such a
model to determine its most sensitive parameters (Skjemstad
et al., 2004).

In this study, soil pedons from two typical loess deposi-
tion regions (Belgium and China) with distinct climate condi-
tions are selected to calibrate OC cycle process in SoilGen2.
Loess deposits have been continuously and widely deposited
in Eurasia since 22 Myr ago (Guo et al., 2002; Kukla, 1987;
Liu, 1985). More than 400 paleosols were developed in the
loess-soil sequences in China (Guo et al., 2002), and these
provide the best record for reconstruction of past carbon cy-
cle through modeling soil formation processes in future stud-
ies.

In summary, the objectives of this study are as follows:
(1) to use sensitivity analysis to assess which parameters in
SoilGen2 potentially cause the greatest uncertainty in calcu-
lated change in soil OC in Belgium and China; and (2) to
do calibration and validation of the parameters related to OC
cycle in Belgian and Chinese soil pedons. We focus on forest
vegetation on loess soils in this study.

2 Material and methods

2.1 Modeling soil carbon change with SoilGen2

In essence, SoilGen2 is an extended solute transport model
solving the Richards equation for unsaturated water flow
and the convection–dispersion equation for solute trans-
port. Additionally, heat flow is calculated to estimate soil
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Fig. 1.Structure and process parameters of the organic C-module of

SoilGen2.� indicates a distribution factor;
5

4 is a rate factor. Pro-
cess parameters are in italics; grey boxes indicate pools of C and
associated ion species. The white square box is added for concep-
tualization, and white rounded boxes indicate processes. The dotted
line indicates the model boundary.

temperature, which allows evaluation of the effect of soil
temperature change on values of chemical constants, min-
eralization of OM (organic matter) and simulation of the ef-
fect of frozen soils on water flow. It simulates various as-
pects of pedogenesis including, e.g., OM accumulation, clay
migration and CaCO3 leaching. For detailed model descrip-
tion, refer to Finke and Hutson (2008). This article focuses
on the description of the OC cycle in SoilGen2, which in-
teracts with other soil formation processes (e.g., clay migra-
tion, (de-)calcification and bioturbation) through the change
of soil physical properties (porosity and texture), hydraulic
and thermic conductivity, and associated water and heat flow
in the soil profile. One clear feedback mechanism between
soil formation processes and the OC-cycle is that changes in
water content, clay content and temperature due to pedoge-
netic changes in soil properties affect the degradation rates
of organic matter.

Basically, the soil profile is divided into a number of com-
partments with equal thickness, and the routines of Soil-
Gen2 operate on every compartment separately. Therefore,
changes of OC in the profile are modified by different wa-
ter content, clay content and soil temperature in correspond-
ing compartments. One key soil parameter for converting OC
fractions to mass per unit area, bulk density, is calculated by
the model by division between of the simulated mass of the
solid phase and (fixed) volume per compartment.

Figure 1 shows the OC-cycle process modeled in Soil-
Gen2. Vegetation provides dead plant material (leaf and root
litter) as model input, which contains Ca2+, Mg2+, K+, Na+,
Al3+, Cl−, SO2−

4 , HCO−

3 and CO2−

3 previously taken up
from the soil solution via the transpiration stream. These
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ions follow the carbon decomposition pathway described
hereunder dependent on vegetation types. Four vegetation
types (grass/scrub, conifers, deciduous wood and agricul-
ture/barley) are identified in SoilGen2, each having a unique
root distribution pattern, associated water ion-uptake and tar-
get ion composition in living biomass (Finke, 2012: Table 2).
Decomposition rates are considered invariant with respect to
the various ion species, which is a simplification of the true
system.

Dead plant material is distributed over root and leaf lit-
ter with a vegetation-dependent fraction frecto, and the root
litter input is distributed over the soil depth such that it re-
flects the root density distribution. These litter inputs are then
split and added to the decomposable (DPM) and resistant
plant material (RPM) pools using the (vegetation-dependent)
DPM/RPM factor. These plant material pools, existing in
both the ectorganic layer and the individual mineral soil lay-
ers (endorganic layer), gradually decompose and mineralize
while being incorporated and redistributed in the soil by bio-
turbation, which is modeled as an incomplete mixing process
(Finke and Hutson, 2008). Each soil layer that is subject to
bioturbation contributes a depth-dependent input mass frac-
tion to a bioturbation pool, which is then mixed vertically.

Further decomposition of OM is modeled according to
the concepts of the RothC26.3 model (Coleman and Jenk-
inson, 2005; Jenkinson and Coleman, 1994) using degrada-
tion rates that are modified as a function of soil temperature
and moisture conditions. The mineralization process finally
produces CO2 and releases cations and anions (Finke and
Hutson, 2008: Fig. 1) into the soil solution. The decompo-
sition rates of DPM, RPM, biomass (BIO) and humified OM
(HUM) are considered similar for all vegetation types. This
is also assumed for the scaling factor (scalfac) and the frac-
tionation parameter BIO/HUM; scalfac is the constant (1.67)
used in the equation to set the CO2/(BIO+HUM) ratio as in
RothC 26.3 model, and the ratio is influenced by the clay
content of the soil. In SoilGen2, the constant is transformed
into a parameter that can be calibrated, and the ratio varies
per soil compartment with the variation of clay content in the
profile.

Figure 1 shows there are eight parameters that describe the
carbon decomposition pathways: frecto, DPM/RPM (both for
deciduous forest),kDPM, kRPM, scalfac, BIO/HUM, kBIO and
kHUM . The relative importance of these parameters will be
tested by sensitivity analysis and then calibrated in this study.

2.2 Study regions

2.2.1 Belgian loess soil under permanent deciduous
forest

This study concerns soils at three topographic positions
in the Sonian Forest near Brussels, Belgium (50◦46′31′′ N,
4◦24′9′′ E), developed in loess deposited during the Weich-
selian glaciation. The three pedons are located at mutual

distances of less than 100 m, but extensive research revealed
a clear relation between slope exposition and decalcification
depth (Langohr and Sanders, 1985), which was confirmed by
model simulations (Finke, 2012). The loess cover is 2–4 m
thick and overlies a dissected plateau of pre-Weichselian age
in Tertiary clays that locally cause water stagnation, but not
at the three plot sites. Langohr and Saunders (1985) proved
that the landscape has hardly eroded in the last 20 000 yr.
Annals of landowners from the 14th century onwards indi-
cate that this area was never under agriculture, as it was used
for hunting by the nobility at least from this time onwards.
Older reports indicate that it was a mixed beech/oak for-
est previously (Davis et al., 2003; Verbruggen et al., 1996).
Currently, the area is under beech forest (Fagus Sylvatica)
with selective felling activity. There is little undergrowth of
blackberry (Rubus fruticosus). Detailed investigations also
showed no evidence of plowing in the soil profiles (Van
Ranst, 1981). Thus, soil development shows little human in-
fluence. The three pedons were classified as follows (IUSS
Working Group WRB, 2006):

1. plateau position (P): stagnic cutanic fragic Albeluvisol
(dystric, greyic, siltic);

2. south facing slope of 12◦ (S): cutanic fragic Albeluvisol
(dystric, siltic);

3. north facing slope of 12◦ (N): cutanic fragic Albeluvisol
(siltic).

Detailed analysis of the mineral soils of these pedons was
reported in Finke (2012; Table 3). For this study, samples
from the ectorganic litter layers were also taken and ana-
lyzed (Table 1) for later comparison with simulation results.
Volume and dry weight were measured for bulk density esti-
mation. The weight loss-on-ignition (LOI) method was used
to determine OC. Because the Belgian soil has been decalci-
fied and contains fairly low amounts of clay in the top, the
bias of LOI method, overestimation of OC by ignoring loss
of water from various clay minerals, calcite and gypsum, is
negligible.

2.2.2 Chinese loess soil under secondary and artificial
deciduous forest

This study also concerns three pedons at plateau position lo-
cated in Ziwu Mountains (35–36◦ N, 108–110◦ E), China,
which is the best conserved region for secondary natural
forests on the Loess Plateau. The pedons are developed in
the loess deposited since Last Glacial Maximum (LGM).
The soil depths are about 1–1.5 m, and it overlies the older
loess deposited in Quaternary. Because the Loess Plateau
is one of the important cultural origin and development
centers in China, the vegetation in Ziwu Mountains has
been disturbed by humans through felling and grazing ac-
tivities in the Holocene (Liu, 2007). However, since 1870s
population moved out of the region and in 1970s a forest
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Table 1. Selected analytical results of ectorganic and endorganic layers in Belgian and Chinese pedons. Results for endorganic layers of
Belgian pedons were published in Finke (2012).

Ectorganic layer

Region Pedon Bulk density (kg dm−3) OC (Mg ha−1)

Belgium
Plateau 0.090 15.372

South facing slope 0.123 24.910
North facing slope 0.146 27.142

China
LJB 0.243 15.432
ZW2 0.226 13.182
ZW3 0.139 12.095

Endorganic layer

Pedon China LJB China ZW2 China ZW3

Depth (cm) OC Clay content pH CaCO3 OC Clay content pH CaCO3 OC Clay content pH CaCO3
(%) (%) (%) (%) (%) (%) (%) (%) (%)

0–5 5.058 10.205 8.030 6.391 1.819 11.333 8.080 6.001 2.434 11.482 8.310 13.358
5–10 4.310 10.656 8.220 6.984 1.888 9.024 8.110 6.568 3.004 9.000 8.250 13.023
10–15 2.643 9.897 8.110 8.279 2.140 9.123 8.070 6.520

1.752 9.069 8.230 13.32415–20 1.594 10.641 8.600 10.018 2.015 8.433 8.270 6.182
20–25 1.360 9.078 8.460 11.447 1.831 10.844 8.300 5.479

1.193 9.589 8.460 17.64225–30 1.340 10.715 8.660 11.801
1.352 10.459 8.380 5.50130–35

0.959 10.316 8.550 12.321 0.550 10.081 8.460 17.70335–40
1.314 11.553 8.580 5.27640–45

0.766 10.222 8.810 12.199 0.801 10.128 8.560 18.57245–50

0.927 11.818 8.680 1.909
50–55

0.521 11.078 8.760 13.128 0.679 9.566 8.490 19.121
55–60
60–65
65–70

0.695 10.945 8.370 0.95570–75

0.914 8.952 8.820 14.877 0.596 9.698 8.630 15.174
75–80

0.603 9.556 8.470 1.91080–85
85–90

0.475 9.260 8.450 9.81490–95
0.785 8.824 8.770 77.099 0.480 10.094 8.490 12.78095–100

0.498 10.490 8.530 13.981
100–105
105–110
110–115

protection project was started in this region by Chinese gov-
ernment. Currently, the area is covered with secondary nat-
ural forest (e.g.,Quercus liaotungensis, Populus davidiana,
Betula platyphylla) and production forest (e.g.,Robinia). The
three pedons are characterized as follows:

1. LJB (36◦05′ N, 108◦34′ E) slope of 0◦: calcic Luvisol
(Gong et al., 2003; IUSS Working Group WRB, 2006),
secondary natural forest (Populus davidiana, 25 yr);

2. ZW2 (35◦26′ N, 108◦33′ E) slope of 0◦: calcic Kas-
tanozem (Gong et al., 2003; IUSS Working Group
WRB, 2006), production forest (Robinia, 20 yr);

3. ZW3 (35◦27′ N, 108◦38′ E) slope of 0◦: calcic Kas-
tanozem (Gong et al., 2003; IUSS Working Group
WRB, 2006), production forest (Robinia, 20 yr).

Samples from ectorganic litter layers were taken in the same
way as in the Sonian forest of Belgium, while in mineral
layers samples were taken at 5–10 cm depth intervals. Bulk

densities were measured by volume and dry weight method.
The potassium dichromate method, which is not sensitive to
the high CaCO3 content, is used for OC analysis (Table 1).

2.3 Model input data

Two types of inputs are included in SoilGen2: one is for
boundary conditions (e.g., climate, litter input and bioturba-
tion history); another is for initial conditions (e.g., soil prop-
erties, typical year weather pattern). A full simulation of soil
from incipient stages of soil formation up to today (more than
10 000 yr) is ideal, but it takes a long run time, which would
render sensitivity analysis and calibration unfeasible. As for-
mer tests showed that amounts of OC in soil pedons would
become stable after a 300-yr simulation in case of invariant
climate and vegetation conditions (Finke and Hutson, 2008),
all the tests in this study have a temporal extent of 1000 yr so
that effects of initial values of OC are eliminated and effects
of soil properties are minimized.
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2.3.1 Inputs for Belgium

Climate and weather data were taken from the nearby
weather station of Uccle (near Brussels and at 5 km from the
studied site). A typical year of daily rainfall and weekly po-
tential evapotranspiration data was used for the whole sim-
ulation period with an annual rainfall sum of 849 mm and
potential evapotranspiration of 649 mm. Over this year, the
characteristics of precipitation (e.g., total amount of the rain-
fall, the number of days with rain, frequency of rainfall in-
tensity and monthly distribution of rainfall) were similar to
multi-year average conditions. The average January temper-
ature was 3◦C and July temperature 18◦C. An annual litter
input of 4.7 Mg C ha−1 yr−1 (A. Verstraeten, personal com-
munication, Research Institute for Nature and Forest, Bel-
gium, 2012) was taken. The bioturbation was assumed to be
8.2 Mg ha−1 yr−1 affecting the upper 30 cm of soil (Gobat et
al., 2004).

Initial physical and chemical properties of the soil pedons
were only partly known from measurements (Finke, 2012:
Table 3), and to obtain a complete set of initial soil properties
we did the following:

1. Starting from the properties of the C-horizon, we simu-
lated soil formation between 15 000 yr ago (end of loess
deposition) to present. See Finke and Hutson (2008) and
Finke (2012) for details concerning the modeling ap-
proach and inputs.

2. The simulated properties at present were taken as initial
inputs for the various scenarios of following tests for
the sensitivity analysis and calibration. However, simu-
lated OC was re-initialized to 0.5 % OC throughout the
pedon.

As the Belgian climate is a strongly leaching one with
practically no dust additions, above reconstruction reflects
the effect of leaching on soil properties (e.g., soil texture,
calcite and hydraulic properties) over 15 000 yr and shows a
more realistic initial condition.

Comparison between simulations and measurements
(Finke, 2012: Table 5) showed that simulations could repro-
duce the A-E-Bt horizon sequence and also the World Ref-
erence Base (WRB) soil classifications based on available
(non-morphological) measurements. Therefore these simula-
tions were considered as suitable basis for the current study.

2.3.2 Inputs for China

Representative climate data were interpolated from nearby
weather stations in China. The average January/July tem-
peratures were−6/22◦C, −5/23◦C and−5/23◦C for LJB,
ZW2 and ZW3, respectively, while annual rainfall and poten-
tial evapotranspiration were 482/1645 mm, 516/1582 mm
and 519/1587 mm, based on inverse distance interpolation
of 30-yr (1958–1988) monitoring data of 61 weather stations
distributed over the Loess Plateau. A typical year of daily

rainfall and weekly potential evapotranspiration was from
monitoring data of Xifeng in 1978 through comparing the
characteristics of yearly precipitation at three weather sta-
tions near these soil pedons.

Annual input of litter (Populus 4.5 Mg C ha−1 yr−1,
Robinia 4.4 Mg C ha−1 yr−1) was transformed from mea-
sured biomass data (including volumes of growing stock per
unit area, net annual increments and removals) in ZW forest
station (Zhang and Shangguan, 2005), based on the protocol
developed by De Wit et al. (2006). The bioturbation was as-
sumed to be 15.3–17.4 Mg ha−1 yr−1 affecting the upper 70
and 100 cm of soil forPopulusandRobiniaecosystems, re-
spectively (Gobat et al., 2004). In addition, distribution of
monthly litter input and roots were adjusted in the model ac-
cording to observed data ofPopulusandRobiniaecosystems
in Loess Plateau (Cao et al., 2006; Cui et al., 2003; Hu et al.,
2010; Zhang et al., 2001).

The Chinese climate has a large precipitation deficit, and
redistributions of calcite and clay towards greater depths are
not as significant as in Belgium. Furthermore, dust deposi-
tion is not negligible in study region of China, and fertilizes
the profile with additional calcite and changes the particle
size at the top. Soil properties with uncertain dust addition
cannot be simulated accurately to reconstruct the situation of
1000 yr ago, so we decided to assume that the current profile
represents this situation fairly well, and initial physical and
chemical properties of the soil pedons were from measure-
ments of their parent material layers at the bottom of pedon
(Table 1).

2.3.3 Sensitivity analysis method

Sensitivity analysis (SA) determines the response of selected
model outputs to variations (within plausible bounds) of un-
certain input parameters (Saltelli et al., 2000). Results of SA
can be used to select and rank the most important param-
eters for calibration. Various SA methods have been devel-
oped (Saltelli et al., 2005). A choice of a particular method
is based on a function of the number of parameters to be
evaluated and the CPU-time per run. The number of pa-
rameters to be evaluated in the current study is eight, and
a typical SoilGen-run for a 1000-yr period takes about 20 h
CPU time. Under these circumstances, Saltelli et al. (2005)
proposed four methods: Bayesian sensitivity analysis (Oak-
ley and O’Hagan, 2004), fractional factorial designs (Cam-
polongo et al., 2000), automated differentiation techniques
(Grievank and Walter, 2008) and the Morris method (Morris,
1991).

Bayesian sensitivity analysis is more efficient than tra-
ditional Monte Carlo techniques but still requires substan-
tial amounts of simulations and reprogramming of the Soil-
Gen code. This technique is therefore considered beyond the
scope of this study. Fractional factorial designs have the dis-
advantage that assumptions need be made on model behavior.
Automated differentiation techniques also require substantial
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reprogramming of the model code and may lead to results
only representing local areas in parameter space (Saltelli et
al., 2005). The Morris method is feasible in terms of com-
puting time, because it takes samples from levels rather than
from distributions of parameters (which may be a drawback
when such distributions are known, but this is not the case
here). For the above reasons we chose to apply the latter
method.

The Morris method is based on the principle that one fac-
tor (model parameter) is varied at a time over a certain num-
ber of levels in parameter space. Each variation, comprising
two simulations, leads to a so-called elementary effectui :

ui =
Y (x1,x2, ...,xi + 1xi, ...,xk) − Y (x1,x2, ...,xi, ...,xk)

1xi

(1)

wherex is the parameter value,1xi its imposed variation
for factor i only (1xi = 0 for the other factors) andY (x)

the model result with parameter setx. Values for x are
randomly chosen inside a plausible parameter value range
[xi,lowxi,high− 1xi ], and1xi is either 0 or a predetermined
multiple of 1/(p−1) withp the number of considered param-
eter levels (rescaled at range[0,1]) for whichp/2 elementary
effects are computed. In this study we tookp = 8, and fixed
1xi at 2× 1/(8− 1) on the[0,1] rescaled range. The num-
ber 2 is an arbitrary choice in the Morris method (Morris,
1991); it determines what fraction of the plausible parame-
ter range is covered by each elementary effect. The obtained
elementary effectsui comprise a simple random sample, of
which the meanµi and standard deviationσi are used to as-
sess how important a factor is. Hereto, a graph is made dis-
playing the position of a factori in terms ofµ∗i (the average
of |ui |) andσi . If the value ofµ∗i is high, then there is a
high linear effect of factori; large values ofσi indicate either
non-linear behavior of the model for factori or non-additive
behavior (relative to other parameter values). In this study we
took eight parameter levels, resulting in four elementary ef-
fects, for each one of eight model parameters. Thus, 64 sim-
ulations (32 pairs) for a period of 1000 yr were done for a
typical loess forest soil in Belgium (2.5 m depth with a verti-
cal discretization of 5 cm at the Uccle Plateau location) and
64 more for a loess forest soil in China (1.5 m depth with
the same vertical discretization at pedon of LJB). This com-
prised about 85-CPU-day simulation time on one core (less
than 6 days on four quad-core PCs), which was considered
feasible. The model output parameters considered were OC
(ton ha−1) in ectorganic layers and OC (mass ton ha−1 and
content %) in the mineral soil. Separate analyses were done
for ectorganic layers and endorganic layers, because later cal-
ibration would focus on the vertical distribution of OC.

2.4 Calibration and validation approach

Calibration is the process of modifying the input parame-
ters to a model until the output from the model matches
an observed set of data. Various techniques also have been

developed for model calibration, which differ in how param-
eter combinations are generated and how results are com-
pared. In many cases, the modeler selects parameter combi-
nations and evaluates results by expert judgment, in which
case calibration is more or less a skill and may not detect the
optimal parameter combinations. An alternative, often used
technique is the minimization of an object function describ-
ing the deviations between measurements and simulations
for various settings of parameters. The minimization pro-
cess advises on optimal parameter combinations under the
assumption that model outputs are differentiable with respect
to the model parameters.

A well-known implementation is the PEST software (Do-
herty, 2004). Model runs are sequential, and the software
decides if a new run with changed parameter settings is
needed after results of a preceding run have been confronted
to measurements by evaluating the object function. Another
emerging method is the exploration of parameter space by a
Markov chain Monte Carlo method. Model results are eval-
uated by calculating theposteriorprobability of the parame-
ter set given the data, using theprior distribution of the pa-
rameters and a likelihood that expresses the correspondence
between measurements and simulations. Of this Bayesian
calibration method, various implementations exist, but even
the most efficient ones (Vrugt et al., 2009) require numer-
ous simulations. With time-consuming models such as Soil-
Gen, convergence may take very long both in PEST and in
Bayesian calibration. Finke (2012) used therefore an alter-
native approach in which various chosen sets of parameters
were run with the model in parallel, confronting the model
with measured data to quantify simulation accuracy and fit-
ting a polynomial function predicting simulation accuracy as
a function of parameter value. Analyzing the partial deriva-
tives of this function, the position in parameter space with
optimal simulation results was predicted. This approach may
not find the true optimal parameter set and also depends on
the choice of the evaluated parameter values. However, for
reasons of runtime it was applied in Finke (2012).

The overall procedure of calibration is given in Fig. 2, fol-
lowing the principle of minimizing the difference between
measured and simulated OC step by step. During the steps,
parallel tests were firstly done for soil pedons by varying the
most sensitive parameters identified in sensitivity analysis.
Then the results were evaluated according to the quality in-
dices described below. If there was still possibility to reduce
the difference between measured and simulated OC by vary-
ing the same parameter, more parallel tests would be done in
a sub-range of the parameter; otherwise, the next, less sen-
sitive, parameter would be selected for tests. The process
would be repeated, according to the order of parameter sen-
sitivity, until no improvement was identified. In both studied
regions, the difference of simulated and measured total car-
bon of the whole pedon was firstly minimized. In the second
stage, the distribution of OC over ectorganic and endorganic
layers was calibrated.
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Fig. 2. Calibration procedure for OC cycle in SoilGen2 and the or-
der of events.

The calibration aims at minimizing the number of runs by
a quick convergence between simulated and measured OC.
First, the quantitative relationships between changed OC and
calibrated parameters revealed by sensitivity analysis were
used to set limits to the variation range of the parameters.
Second, a convergence criterion (< 5 %) was applied to a par-
ticular quality index during the calibration. Calibration for
each parameter was stopped when the best result was less
than 5 % better than the second best result (relative to the
value of the quality index of the first simulation).

The number of soil pedons per region (3) was low because
of the large input requirements of the model. We identified
the stability of the calibration result by repeating the calibra-
tion three times per region. Each time, two of three soil pe-
dons in each region were used to calibrate the model, while
the third one was used for validation.

The indices used for assessing the quality of the C-module
of SoilGen2 are the following:

1. root mean square deviation (RMSE) of total simulated
and measured OC mass per mineral soil compartment:

RMSE1endo,pedon= (2)√√√√√ K∑
k=1

((
fOCMk

× ρMk
× Tk

)
−

(
fOCSk

× ρSk
× Tk

))2

K

wherefOCM andfOCS are measured and simulated OC
mass, respectively,ρM andρS measured and simulated
bulk density (kg dm−3), andT the thickness of thek soil
compartments (all equal to 50 mm). RMSE1endo,pedonof
the two pedons in each group of pedons in each region
are averaged to obtain RMSE1endo;

2. RMSE of total simulated and measured OC mass in the
ectorganic layer:

RMSEecto = (3)√√√√ 1

N
×

N∑
n=1

(fOCMn × ρMn × Tn − OCSn)
2

where OCS is the simulated OC mass in ectorganic lay-
ers andn is the number of pedons (two per group of
pedons in each region);

3. RMSE of total simulated and measured OC mass in the
whole soil pedon:

RMSEOCMS = (4)√√√√ 1

N
×

N∑
n=1

((

K∑
k=1

(fOCMk,n
×ρMk,n

×Tk,n) + fOCMn×ρMn×Tn) − (

K∑
k=1

(fOCSk,n
×ρSk,n

×Tk,n) + OCSn))
2

4. mean difference (MD) of total simulated and measured
OC mass in mineral soil:

MDendo = (5)

1

N
×

N∑
n=1

(
K∑

k=1

(fOCMk,n
× ρMk,n

× Tk,n)

−

K∑
k=1

(fOCSk,n
× ρSk,n

× Tk,n)

)
;

5. MD of total simulated and measured OC mass in ector-
ganic layers:

MDecto =
1

N
×

N∑
n=1

(fOCMn × ρMn × Tn − OCSn); (6)

6. MD of total simulated and measured OC mass in the
whole soil pedon:

MDOCMS = MDendo+ MDecto; (7)

7. RMSE of simulated and measured OC % in mineral
soil:

RMSE2endo,pedon= (8)√√√√√ K∑
k=1

((
fOCMk

× 100
)
−
(
fOCSk

× 100
))2

K

which is averaged over two pedons to obtain
RMSE2endo;
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8. dissimilarity (DIS) (Gower, 1971) of simulated and
measured OC % in mineral soil:

DISpedon = (9)

1

K × (OC %max− OC %min)

×

K∑
k=1

abs(fOCMk
× 100− fOCSk

× 100);

where OC %max and OC %min are the maximal and min-
imal value found in a particular pedon. DISOC % is cal-
culated by averaging over two pedons and varies be-
tween 0 (perfect) and 1 (very poor). DIS gives the abso-
lute difference as a fraction of the observed differences
and thus is dimensionless. Therefore, it allows to com-
pare results over different output parameters, which is
not possible with other indices.

Of these statistics, the first six express how well the to-
tal OC mass in the soil is simulated, while the last two ex-
press how well the vertical distribution of OC content over
the pedon is simulated. The MD statistics indicate system-
atic under- or overestimation of simulated values relative to
measurements, while the RMSE statistics focus on the ab-
solute values of these differences. Both are ideally close to
0. The improvement of RMSEOCMS (IM RMSEOCMS) was
used as convergence criterion in the first stage of calibration,
while IM RMSEectoand IM RMSEendowere used in the sec-
ond stage.

3 Results and discussion

3.1 Sensitivity analysis

Table 2 gives the model parameters that were considered in
the sensitivity analysis and the plausible range of these pa-
rameters. In Fig. 3, at a double-logarithmic scale, theµ∗ and
σ of the elementary effects of the eight factors are shown.
The µ values for all rate factors were negative, which was
expected because these describe decomposition and positive
values for1xi , leading to higher values fork, and are ex-
pected to lead to lower amounts of remaining OC.

The OC mass in ectorganic layers and endorganic layers
and the OC % in endorganic layers respond most sensitively
to the decomposition rate of humuskHUM and less sensi-
tive to the fraction of dead plant material entering the soil
as leaf litter frecto, kRPM, and scalfac. The other factors show
less sensitivity. Most responses are between the|µ| = SEM
(stand error of the mean) and|µ| = 2*SEM lines indicating
a fair confidence level. Most certain response of the sensitive
factors is that of frecto, while the other factors are less certain.
This may be caused by non-linear response or non-additive
behavior (the model responds to interactions of factors).

The sensitivity order in the ectorganic layer is similar to
that of the mineral soil, except forkRPM and frecto. kRPM is
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Fig. 3. Estimated means (µ∗) and standard deviations (σ) of the
distribution of elementary effects of factors on OC.(a) OC mass in
ectorganic layers;(b) OC mass in endorganic layers;(c) OC con-
tent in endorganic layers. Closed symbols with names indicate the
4 most important factors.

more important in the ectorganic layer; the rate modification
due to moisture deficit is always equal to 1 in ectorganic lay-
ers while it can decrease in the mineral soil (Coleman and
Jenkinson, 2005). This results in stronger modifiedkRPM in
the ectorganic layer.

Comparison (Table 2 and Fig. 3) of results for the Chinese
and Belgian loess forest soils shows that the sensitivity orders
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Table 2.Model parameters in the organic C-module in SoilGen2 and results of sensitivity analysis.

Factor Meaning Default Plausible
OC ectorganic) OC endorganic OC endorganic

value range
(ton ha−1) (ton ha−1) (%)

Belgium China Belgium China Belgium China
µ* σ µ* σ µ* σ µ* σ µ* σ µ* σ

kHUM Decomposition rate (yr−1) of
humus

0.02a 0.005–0.035 1569.08 2085.04 630.23 708.39 2218.87 3131.79 4796.81 6064.40 17.85 24.57 35.51 43.51

kRPM Decomposition rate (yr−1) of
resistant plant material

0.30a 0.075–0.525 120.60 131.04 119.36 129.70 40.41 33.22 80.47 61.18 0.34 0.28 0.61 0.46

frecto Fraction of incoming plant ma-
terial as leaf litter

0.58b 0.36–0.98 56.21 21.55 38.50 9.17 77.92 35.29 110.43 29.42 0.65 0.29 0.84 0.21

scalfac Scaling factor for
CO2/ (BIO+HUM) ratio

1.67a 0.4–3.0 12.81 13.71 8.75 8.77 18.08 23.02 37.78 43.26 0.15 0.19 0.29 0.32

DPM/ RPM Ratio decomposable/resistant
plant material in incoming
plant material

0.25a 0.1–0.5 6.27 1.02 6.21 1.04 4.09 2.16 7.36 3.01 0.03 0.02 0.06 0.02

BIO / HUM Distribution ratio of
BIO+HUM

0.85a 0.68–1.02 6.93 4.84 5.04 3.30 6.77 2.10 16.86 3.88 0.06 0.02 0.13 0.03

kBIO Decomposition rate (yr−1) of
biomass

0.66a 0.165–1.155 1.50 0.81 1.32 0.67 2.39 2.49 3.56 3.01 0.02 0.02 0.03 0.02

kDPM Decomposition rate (yr−1) of
decomposable plant material

10.00a 2.5–17.5 0.02 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00

a Source: RothC26.3.b Source: SoilGen2.17, deciduous woodland.

of the factors follow the same pattern, irrespective of the dif-
ferences in soil (the Belgian loess soil is strongly leached
whereas the Chinese is not) and climate (a large precipita-
tion surplus in Belgium and a large precipitation deficit in
China). The values forµ∗ and σ differ (Fig. 3), which is
higher in endorganic layers in Chinese soil pedons but lower
in ectorganic layers. Nevertheless, the sensitivity order is the
same, which means that the same model parameters could be
selected for calibration in both soils:kHUM , frecto, kRPM and
scalfac.

3.2 Calibration and validation

Based on 67 and 57 test simulations, three sets of calibrated
parameters were obtained for Belgium and China, respec-
tively. Table 3 gives the model parameters in calibrations
tests. Results comparing simulated and measured OC by
eight quality indices are given in Figs. 4 and 5 and Table
3, with lower absolute values of them indicating better simu-
lated results.

In the stage of calibration (steps 2 and 3 in Table 3), tests
(1bs and 1cs) with default values of parameters in SoilGen2
(step 1 in Table 3) showed that simulated total OC mass was
lower than measured ones in both regions with larger de-
viations in Belgium than in China (Fig. 4d–f and j–l). The
differences in total OC mass were minimized by decreas-
ing the most sensitive parameterkHUM and the second sen-
sitive parameterkRPM during the first calibration stage (Ta-
ble 3). The IMRMSEOCMS became much lower than 5 %,
when kHUM values were set as 0.0061–0.0065 and 0.014–
0.019, andkRPM values were 0.27–0.29 and 0.25–0.29 in
Belgium and China, respectively. The RMSEOCMS resulting
from these simulations served as target quality for the second
stage of calibration.

The following calibrations for both regions were to ad-
just the distribution of OC in ectorganic (overestimation

in stage 1) and endorganic (underestimation) layers. Based
on tests in steps 4 in both regions with variation of
frecto, it was revealed that the decrease of frecto could
also increase the amount of OC mass in both layers (Ta-
ble 3). In order to reduce this effect and the values of
RMSEecto and RMSEendo simultaneously,kHUM and kRPM
were increased slightly (steps 5 and 6 in Table 3). The
best results were finally obtained in Test21b1, Test22b2
and Test22b3 in Belgium and Test18c1, Test17c2 and
Test19c3 in China with the following combination of pa-
rameters (Belgium,kHUM = 0.0065–0.0074,kRPM = 0.27–
0.27 and frecto= 0.30–0.38; China,kHUM = 0.016–0.019,
kRPM = 0.30–0.30 and frecto= 0.37–0.43), with the lowest
values of IMRMSEecto and IM RMSEendoat the same time
while the RMSEOCMS remained close to the value reached in
the first stage of the calibration.

Above tests were further confirmed as the best calibration
results by comparing eight quality indices synthetically (Ta-
ble 3 and Fig. 4), because the indices of them all belong to
the lower ones in all tests of two regions. Figure 5 further
shows that the simulated vertical distributions of OC content
are also similar to measured ones visually.

The comparisons between measured and simulated OC of
the validation pedons are given in Fig. 6. Two groups of OC
mass are evenly distributed along 1: 1 line (Fig. 6a), and
RMSEOCMS values of pedons are all less than 12 % of the
total OC mass. Furthermore, the consistency is also evident
in vertical distributions of OC content (Fig. 6b–g).

This two-stage calibration approach was repeated
three times, always calibrating with two pedons in a region
while checking the quality with the third pedon. Results
indicate that the calibration results are fairly stable and
independent on the subset of two pedons chosen for the
calibration. This suggests that the calibrated parameters are
applicable to other soil pedons in similar climate conditions.
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Table 3.Model parameters in the organic C-module in SoilGen2 and quality indices of one group of pedons during the calibration in Belgium
and China. Bold numbers indicate the best calibration results for each group of pedons.

Region Stage Step Test
Parameters Quality indices

KHUM KRPM fracecto IM RMSEOCMS IM RMSEecto IM RMSE1endo RMSE2endo DISpedon

Belgium N/P

1

1 1b 1 0.0200 0.3000 0.5800 0.79 0.29

2

2b 1 0.0160 0.3000 0.5800 10.84 % 57.65 % 7.47 % 0.74 0.27
3b 1 0.0110 0.3000 0.5800 24.40 % −140.93 % 17.85 % 0.63 0.23
4b 1 0.0060 0.3000 0.5800 56.27 % −487.93 % 49.39 % 0.56 0.21
5b 1 0.0070 0.3000 0.5800 −13.44 % −393.85 % −15.15 % 0.54 0.20
6b 1 0.0065 0.3000 0.5800 −6.79 % −438.74 % −10.07 % 0.58 0.21
7b 1 0.0061 0.3000 0.5800 −0.25 % −477.72 % −3.84 % 0.59 0.22

3

8b 1 0.0061 0.2300 0.5800 −1.01 % −591.30 % 1.19 % 0.56 0.21
9b 1 0.0061 0.1600 0.5800 −11.99 % −804.60 % 5.13 % 0.56 0.21
10b 1 0.0061 0.0900 0.5800 −47.23 % −1350.40 % 8.54 % 0.58 0.21
11b 1 0.0061 0.2900 0.5800 −0.23 % −490.58 % −16.20 % 0.55 0.21
12b 1 0.0061 0.2700 0.5800 0.07 % −519.16 % −15.47 % 0.55 0.21
13b 1 0.0061 0.2500 0.5800 −0.18 % −552.33 % −14.64 % 0.55 0.21

2

4
14b 1 0.0061 0.2700 0.4600 −1.14 % −201.11 % −1.49 % 0.54 0.20
15b 1 0.0061 0.2700 0.3400 −4.24 % −48.53 % −6.34 % 0.56 0.21
16b 1 0.0061 0.2700 0.2200 −8.19 % −360.45 % −22.66 % 0.61 0.23

5

17b 1 0.0070 0.2700 0.5800 −10.96 % −435.24 % −28.89 % 0.54 0.20
18b 1 0.0068 0.2700 0.5800 −7.91 % −452.73 % −26.15 % 0.54 0.20
19b 1 0.0066 0.2700 0.5800 −4.92 % −470.85 % −23.27 % 0.54 0.20
20b 1 0.0065 0.2700 0.5800 −3.51 % −480.16 % −21.78 % 0.54 0.20

6
21b 1 0.0065 0.2700 0.3800 −0.18 % 0.00 % −0.22 % 0.53 0.20
22b 1 0.0065 0.2700 0.3700 −0.15 % −6.99 % −0.17 % 0.53 0.20
23b 1 0.0065 0.2700 0.3600 −0.14 % −24.19 % −0.32 % 0.53 0.20

Belgium N/S

1

1 1b 2 0.0200 0.3000 0.5800 0.86 0.28

2

2b 2 0.0160 0.3000 0.5800 11.42 % −27.94 % 7.35 % 0.81 0.26
3b 2 0.0110 0.3000 0.5800 25.47 % −96.30 % 17.53 % 0.69 0.22
4b 2 0.0060 0.3000 0.5800 44.42 % −244.62 % 49.38 % 0.54 0.18
5b 2 0.0070 0.3000 0.5800 −3.14 % −203.86 % −15.25 % 0.55 0.18
6b 2 0.0065 0.3000 0.5800 2.54 % −223.28 % −10.61 % 0.56 0.19
7b 2 0.0061 0.3000 0.5800 1.71 % −240.19 % −4.36 % 0.57 0.19

3

8b 2 0.0065 0.2300 0.5800 −3.24 % −272.64 % −5.12 % 0.54 0.18
9b 2 0.0065 0.1600 0.5800 −11.58 % −366.05 % 0.41 % 0.53 0.18
10b 2 0.0065 0.0900 0.5800 −46.70 % −607.04 % 12.76 % 0.53 0.17
11b 2 0.0065 0.2900 0.5800 −2.98 % −228.85 % −20.94 % 0.54 0.18
12b 2 0.0065 0.2700 0.5800 −2.75 % −241.25 % −20.18 % 0.54 0.18
13b 2 0.0065 0.2500 0.5800 −2.78 % −255.67 % −19.31 % 0.54 0.18

2

4
14b 2 0.0065 0.2700 0.4600 −3.25 % −108.73 % −4.21 % 0.50 0.17
15b 2 0.0065 0.2700 0.3400 −4.92 % 3.25 % 2.87 % 0.49 0.16
16b 2 0.0065 0.2700 0.2200 −7.46 % −20.85 % −12.88 % 0.51 0.17

5
17b 2 0.0072 0.2700 0.5800 −7.71 % −217.70 % −32.77 % 0.56 0.18
18b 2 0.0070 0.2700 0.5800 −5.67 % −225.01 % −30.17 % 0.55 0.18
19b 2 0.0068 0.2700 0.5800 −4.01 % −232.59 % −27.43 % 0.55 0.18

6
20b 2 0.0070 0.2700 0.3200 −2.88 % 13.86 % 0.21 % 0.48 0.16
21b 2 0.0070 0.2700 0.3100 −2.87 % 1.86 % 0.31 % 0.48 0.16
22b 2 0.0070 0.2700 0.3000 −2.86 % 0.32 % 0.11 % 0.48 0.16

3.3 Comparison

3.3.1 Comparison with former studies

Our results of sensitivity analysis are in accordance with for-
mer studies on RothC model in surface forest soils (Paul
and Polglase, 2004; Paul et al., 2003), which indicated that
change in soil carbon is particularly sensitive to the decom-
position rates of HUM, RPM and BIO pools. Comparing that

only the relative importance of the parameters was shown in
former analysis (Paul and Polglase, 2004; Paul et al., 2003),
a quantitative evaluation of their importance is given in our
study and the especially significant sensitivity ofkHUM is re-
vealed.

The calibrated values of parameters (kHUM andkRPM) in
our study all fall into the logical range of former calibrations
for RothC model (Shirato et al., 2004; Skjemstad et al., 2004;
Todorovic et al., 2010), covering various climate conditions
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Table 3.Continued.

Region Stage Step Test
Parameters Quality indices

KHUM KRPM fracecto IM RMSEOCMS IM RMSEecto IM RMSE1endo RMSE2endo DISpedon

Belgium P/S

1

1 1b 3 0.0200 0.3000 0.5800 0.65 0.33

2

2b 3 0.0160 0.3000 0.5800 12.83 % −19.21 % 8.23 % 0.60 0.31
3b 3 0.0110 0.3000 0.5800 28.87 % −75.60 % 19.73 % 0.50 0.25
4b 3 0.0060 0.3000 0.5800 38.04 % −208.78 % 56.58 % 0.48 0.23
5b 3 0.0070 0.3000 0.5800 9.76 % −171.64 % −17.93 % 0.44 0.22
6b 3 0.0065 0.3000 0.5800 1.83 % −189.30 % −15.61 % 0.51 0.24
7b 3 0.0061 0.3000 0.5800 −3.59 % −204.73 % −8.58 % 0.53 0.24

3

8b 3 0.0065 0.2300 0.5800 −8.67 % −234.43 % −6.18 % 0.45 0.22
9b 3 0.0065 0.1600 0.5800 −24.37 % −320.37 % 0.30 % 0.46 0.22
10b 3 0.0065 0.0900 0.5800 −67.16 % −543.48 % 13.09 % 0.49 0.23
11b 3 0.0065 0.2900 0.5800 −2.67 % −194.38 % −22.63 % 0.45 0.22
12b 3 0.0065 0.2700 0.5800 −4.15 % −205.70 % −21.76 % 0.45 0.22
13b 3 0.0065 0.2500 0.5800 −6.12 % −218.88 % −20.75 % 0.45 0.22

2

4
14b 3 0.0065 0.2900 0.4600 −6.50 % −78.31 % −3.46 % 0.43 0.21
15b 3 0.0065 0.2900 0.3400 −11.11 % 3.93 % −12.10 % 0.43 0.21
16b 3 0.0065 0.2900 0.2200 −16.07 % −41.64 % −31.49 % 0.48 0.23

5
17b 3 0.0074 0.2700 0.5800 −4.54 % −178.78 % −35.91 % 0.43 0.22
18b 3 0.0072 0.2700 0.5800 −2.16 % −185.19 % −33.07 % 0.43 0.22
19b 3 0.0070 0.2700 0.5800 −0.67 % −191.85 % −30.06 % 0.44 0.22

6
20b 3 0.0074 0.2700 0.3500 −0.53 % 0.48 % −1.45 % 0.38 0.20
21b 3 0.0074 0.2700 0.3400 −0.50 % 1.97 % −0.17 % 0.38 0.20
22b 3 0.0074 0.2700 0.3300 −0.49 % 0.88 % 0.56 % 0.38 0.20

China LJB/ZW2

1

1 1c 1 0.020 0.300 0.580 0.68 0.18

2

2c 1 0.016 0.300 0.580 42.57 % −23.22 % 32.20 % 0.62 0.16
3c 1 0.011 0.300 0.580 −37.79 % −63.49 % 13.72 % 0.52 0.15
4c 1 0.006 0.300 0.580 −301.80 % −125.70 % −185.47 % 0.56 0.17
5c 1 0.015 0.300 0.580 8.72 % −30.10 % −4.52 % 0.60 0.16
6c 1 0.014 0.300 0.580 3.08 % −37.50 % 4.18 % 0.58 0.16
7c 1 0.013 0.300 0.580 −6.69 % −45.48 % 6.13 % 0.56 0.15

3

8c 1 0.014 0.230 0.580 −11.02 % −93.16 % −0.33 % 0.57 0.16
9c 1 0.014 0.160 0.580 −58.42 % −198.38 % 0.13 % 0.54 0.15
10c 1 0.014 0.090 0.580 −205.00 % −468.32 % −43.35 % 0.51 0.16
11c 1 0.014 0.290 0.580 −0.25 % −43.79 % −5.44 % 0.58 0.16
12c 1 0.014 0.270 0.580 −1.81 % −57.74 % −3.76 % 0.58 0.16
13c 1 0.014 0.250 0.580 −5.25 % −74.04 % −2.07 % 0.57 0.16

2

4
14c 1 0.014 0.290 0.460 −10.88 % 39.77 % −0.75 % 0.56 0.16
15c 1 0.014 0.290 0.340 −28.32 % 22.36 % −22.90 % 0.55 0.17
16c 1 0.014 0.290 0.220 −48.04 % −80.84 % −54.20 % 0.56 0.18

5
17c 1 0.016 0.300 0.430 −1.11 % 8.76 % 1.22 % 0.58 0.16
18c 1 0.016 0.300 0.400 −0.99 % 0.53 % 0.05 % 0.58 0.16
19c 1 0.016 0.300 0.370 −1.56 % −9.06 % −1.04 % 0.57 0.17

and soil types, They are lower than default values in RothC
model, which was originally developed and parameterized in
surface agricultural soils (0–30 cm) (Jenkinson, 1990). The
difference may be attributed to following aspects: firstly, de-
composition in agricultural soils is faster than that in forest
soils because of its lower lignin content in litter (Lambers et
al., 1998) and more favorable micro-climate conditions for
decomposition induced by human disturbance (Schlesinger
and Andrews, 2000); secondly, carbon at deeper depth (1.5–
2.5 m in our study) is older than that near the surface, indi-
cating that it has a greater resistance to decomposition or that
the environment at depth is less favorable for decomposition
processes (Swift, 2001).

The calibrated frecto is lower than the default value (0.58)
in SoilGen2 based on measured data (Kononova, 1975). In
realistic soil carbon cycle process, part of litter carbon pool
in ectorganic layer leaches to endorganic layers in the form
of dissolved organic carbon (DOC). However, this process is
not simulated in SoilGen2, while only little carbon is being
exchanged between two layers by bioturbation in the model.
Therefore, frecto, as the ratio of carbon pool in ectorganic
layer to the total pool, was expected to be lower than the
literature value as this decrease mimics the effect of DOC-
leaching.
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Table 3.Continued.

Region Stage Step Test
Parameters Quality indices

KHUM KRPM fracecto IM RMSEOCMS IM RMSEecto IM RMSE1endo RMSE2endo DISpedon

China LJB/ZW3

1

1 1c 2 0.020 0.300 0.580 0.70 0.13

2

2c 2 0.016 0.300 0.580 27.24 % −20.41 % 75.65 % 0.65 0.13
3c 2 0.011 0.300 0.580 −297.86 % −55.94 % −130.46 % 0.58 0.13
4c 2 0.006 0.300 0.580 −1016.44 % −111.00 % −548.35 % 0.70 0.18
5c 2 0.019 0.300 0.580 −2.24 % −4.58 % −59.46 % 0.69 0.13
6c 2 0.018 0.300 0.580 19.00 % −9.51 % −41.46 % 0.68 0.13
7c 2 0.017 0.300 0.580 4.11 % −14.76 % −21.42 % 0.66 0.13

3

8c 2 0.019 0.230 0.580 −8.30 % −53.30 % −31.49 % 0.68 0.13
9c 2 0.019 0.160 0.580 −145.05 % −146.18 % 10.41 % 0.65 0.14
10c 2 0.019 0.090 0.580 −542.17 % −385.55 % −118.09 % 0.63 0.15
11c 2 0.019 0.290 0.580 −18.45 % −10.05 % −66.68 % 0.69 0.13
12c 2 0.019 0.270 0.580 −6.20 % −22.23 % −59.62 % 0.69 0.13
13c 2 0.019 0.250 0.580 −0.38 % −36.47 % −51.44 % 0.68 0.13

2

4
14c 2 0.019 0.250 0.460 −26.63 % 36.16 % −3.40 % 0.67 0.14
15c 2 0.019 0.250 0.340 −77.04 % 30.01 % −70.33 % 0.67 0.15
16c 2 0.019 0.250 0.220 −129.95 % −65.30 % −140.89 % 0.68 0.16

5
17c 2 0.019 0.300 0.430 1.97 % 2.24 % −0.37 % 0.67 0.14
18c 2 0.019 0.300 0.400 −7.13 % −0.11 % −11.41 % 0.67 0.14
19c 2 0.019 0.300 0.370 −15.68 % −6.71 % −26.73 % 0.67 0.14

China ZW2/ZW3

1

1 1c 3 0.020 0.300 0.580 0.64 0.22

2

2c 3 0.016 0.300 0.580 31.59 % −18.94 % 29.72 % 0.60 0.21
3c 3 0.011 0.300 0.580 −49.96 % −51.98 % 11.77 % 0.54 0.19
4c 3 0.006 0.300 0.580 −326.56 % −103.61 % −189.92 % 0.56 0.23
5c 3 0.015 0.300 0.580 3.58 % −24.57 % −3.37 % 0.59 0.20
6c 3 0.014 0.300 0.580 −1.86 % −30.63 % 4.42 % 0.58 0.20
7c 3 0.013 0.300 0.580 −11.07 % −37.18 % 5.31 % 0.57 0.19

3

8c 3 0.015 0.230 0.580 −6.07 % −67.42 % −5.39 % 0.59 0.20
9c 3 0.015 0.160 0.580 −47.82 % −147.95 % 0.97 % 0.58 0.20
10c 3 0.015 0.090 0.580 −196.72 % −354.04 % −33.86 % 0.58 0.22
11c 3 0.015 0.290 0.580 0.17 % −29.40 % −13.09 % 0.59 0.20
12c 3 0.015 0.270 0.580 −0.45 % −40.19 % −11.00 % 0.59 0.20
13c 3 0.015 0.250 0.580 −2.34 % −52.72 % −8.74 % 0.59 0.20

2

4
14c 3 0.015 0.290 0.460 −4.49 % 35.77 % −0.13 % 0.60 0.21
15c 3 0.015 0.290 0.340 −16.28 % 56.07 % −13.41 % 0.61 0.22
16c 3 0.015 0.290 0.220 −32.22 % −59.41 % −41.21 % 0.64 0.24

5
17c 3 0.017 0.300 0.430 −0.84 % −28.45 % −3.36 % 0.61 0.21
18c 3 0.017 0.300 0.400 −0.23 % −13.68 % −0.98 % 0.62 0.22
19c 3 0.017 0.300 0.370 −0.15 % −1.07 % −0.14 % 0.62 0.22

3.3.2 Comparison between two regions

Although the orders of sensitivity for parameters are the same
in two regions, the responses are less significant in Belgian
soil pedons (Table 2). It led to corresponding larger ranges
of parameters (kHUM , frectoandkRPM) that varied during cal-
ibration in Belgium (Table 3), which shows slower decom-
position rate of OC in Belgian soils. The differences may be
driven by the following reasons.

Firstly, litter chemical composition is one of the most
important factors that affect decomposition of litter. Espe-
cially in late stage of decomposition for the formation of
humus, lignin decomposition exerts the dominant control in
soils (Berg and McClaugherty, 2008; Quideau et al., 2001),
which is relatively resistant to decomposition (Lambers et al.,
1998). Since the study area in Belgium is under beech forest

while it is under poplar in China, higher lignin and holocellu-
lose contents in the former ecosystem compared to the later
(Coldwell and Delong, 1950) induce slower decomposition
rate of OC in Belgium than in China, which is reflected by
lower decomposition coefficients (kHUM , frecto andkRPM) of
resistant carbon pools.

Secondly, the distribution of temperature, precipitation
and evaporation over the year also affects the decomposition
rate and the loss of carbon from soil (Raich and Tufekcioglu,
2000; Schimel et al., 1994). High temperatures accompanied
by significant rain occur in the summer monsoon climate
of China, which could lead to quicker litter decomposition
(Raich and Tufekcioglu, 2000; Zhang et al., 2008) without
any limit of energy or moisture in this season. The different
influences of climate conditions on decomposition process in
two regions may be reflected indirectly by setting different
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Fig. 4. Quality indices for calibration results.(a) RMSE of aver-
age OC mass in N/P pedons in Belgium;(b) RMSE of average OC
mass in N/S pedons in Belgium;(c) RMSE of average OC mass in
P/S pedons in Belgium;(d) MD of average OC mass in N/P pedons
in Belgium;(e)MD of average OC mass in N/S pedons in Belgium;
(f) MD of average OC mass in P/S pedons in Belgium;(g) RMSE
of average OC mass in LJB/ZW2 pedons in China;(h) RMSE of
average OC mass in LJB/ZW3 pedons in China;(i) RMSE of av-
erage OC mass in ZW2/ZW3 pedons in China;(j) MD of average
OC mass in LJB/ZW2 pedons in China;(k) MD of average OC
mass in LJB/ZW3 pedons in China;(l) MD of average OC mass in
ZW2/ZW3 pedons in China.

values of these parameters, because just decomposition co-
efficients (kHUM , frecto andkRPM) of soil carbon pools were
calibrated in this study, and not the mechanisms that mimic
the effect of temperature and moisture on decomposition.

Finally, because the effect of some soil properties (e.g.,
CaCO3 content, pH) on OC cycle is not incorporated in Soil-
Gen2 (except clay and water content), the difference of these
properties in two regions may explain part of the variation in
calibrated parameters. This relationship could be quantified
via regression analysis based on many simulated and cali-
brated plots. However, the small number of calibrated plots
in our study does not allow for such analysis.

(d)LJB/ZW2, China         (e)LJB/ZW3, China            (f)ZW2/ZW3, China
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Fig. 5. Comparison of vertical distribution of simulated vs. mea-
sured OC content in soil pedons.(a) N/P pedons in Belgium;(b)
N/S pedons in Belgium;(c) P/S pedons in Belgium;(d) LJB/ZW2
pedons in China;(e) LJB/ZW3 pedons in China;(f) ZW2/ZW3 pe-
dons in China. Min is minimal value while Max is maximal value.

In addition, the different calibrated results in Belgium and
China indicate that future calibrations are needed for distinct
climate conditions, possibly for different soil types as well,
and uncertainty bandwidths of calibrated parameters should
be given. The current study however does not allow a cer-
tain statement on this topic as only a few soil type/climate
combinations have been explored.

4 Conclusions

Sensitivity analysis based on the Morris method shows that
kHUM , frecto andkRPM are the three most important parame-
ters in SoilGen2 to affect change of OC both in Belgian and
Chinese soil pedons. The sensitivity orders of the parameters
follow the same pattern in the two regions, but the values of
elementary effects differ.

According to the results of sensitivity analysis, SoilGen2
parameters are calibrated by decreasingkHUM , frecto and
kRPM. The final results are obtained by the following combi-
nation of parameters:kHUM = 0.0065–0.0074,kRPM = 0.27–
0.27 and frecto= 0.30–0.38 in Belgium andkHUM = 0.016–
0.019, kRPM = 0.30–0.30 and frecto= 0.37–0.43 in China.
The less significant sensitivity of parameters in the sensitivity
analysis and larger variation of parameters during calibration
in Belgium compared to China may be attributed to their dis-
tinct vegetation types and climate conditions.
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Fig. 6. Comparison of measured and simulated OC based on soil
pedons for validation in Belgium and China.(a) OC mass in Bel-
gium and China;(b) OC content of N pedon in Belgium;(c) OC
content of P pedon in Belgium;(d) OC content of S pedon in Bel-
gium; (e) OC content of LJB pedon in China;(f) OC content of
ZW2 pedon in China;(g) OC content of ZW3 pedon in China.

The calibrated parameters follow the law that OC in deeper
soil layers is more resistant to decomposition than in surface
soil layers, which is induced by the age of carbon and an un-
favorable environment for soil micro-organisms in the deeper
layers. This indicates that the calibration allows better sim-
ulation of carbon storage in the whole soil pedon. The cali-
brated SoilGen2 will be the base for quantitative soil carbon
pool reconstruction based on the application of it to loess-soil

sequences deposited in China in future studies, which will
offer an opportunity to understand the mechanism of carbon
cycle at geological timescale.

Acknowledgements.This work was supported by the CAS Strategic
Priority Research Program Grant No. XDA05120000, the National
Natural Science Foundation of China (No: 41102222, 41071055)
and LiSUM project of Erasmus Mundus External Cooperation
Window. Thanks are extended to Arne Verstraeten and Nathalie
Cools of the Research Institute for Nature and Forest, Belgium, for
the measured data of litter input in Sonian Forest region.

Edited by: D. Lawrence

References

Berg, B. and McClaugherty, C. (Eds.): Plant Litter: decomposition,
humus formation, carbon Sequestration, 2nd Edn., Springer-
Verlag, Berlin-Heidelberg, Germany, 2008.

Campolongo, F., Kleijnen, J., and Andres, T.: Screening methods,
in: Sensitivity analysis, edited by: Saltelli, A., Chan, K., and
Scott, M., Wiley and Sons, Chichester, UK, 65–80, 2000.

Cao, Y., Zhao, Z., Qu, M., Cheng, X. Y., and Wang D. H.: Effects of
Robinia pseudoacacia roots on deep soil moisture status, Chin. J.
Appl. Ecol., 17, 765–768, 2006.

Coldwell, B. B. and DeLong, W. A.: Studies of the composition of
deciduous forest tree leaves before and after partial decomposi-
tion, Sci. Agric., 30, 456–466, 1950.

Coleman, K. and Jenkinson, D. S.: RothC-26.3 a model for
the turnover of carbon in soil, available at:http://www.
rothamsted.bbsrc.ac.uk/aen/carbon/download.htm(last access:
10 June 2012), 2005.

Coleman, K., Jenkinson, D. S., Crocker, G. J., Grace, P. R., Klı́r,
J., Körschens, M., Poulton, P. R., and Richter D. D.: Simulat-
ing trends in soil organic carbon in long-term experiments using
RothC-26.3, Geoderma, 81, 29–44, 1997.

Cui, L. J., Liang, Z. S., Han, R. L., and Yang, J. W.: Biomass soil
and root system distribution characteristics of Seabuckthorn×

Poplar mixed forest, Sci. Silv. Sin., 39, 1–7, 2003.
Davis, B. A. S., Brewer, S., Stevenson, A. C., Guiot, J., and Data

Contributors: The temperature of Europe during the Holocene
reconstructed from pollen data, Quaternary Sci. Rev., 22, 1701–
1716, 2003.

De Wit, H. A., Palosuo, T., Hylen, G., and Liski, J.: A carbon bud-
get of forest biomass and soils in southeast Norway, Forest Ecol.
Manag., 225, 15–26, 2006.

Doherty, J. (Ed.): PEST: model independent parameter estimation
user manual, Fifth Edition, Watermark Numerical Computing,
Brisbane, Australia, 2004.

Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield,
D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S.,
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