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Abstract. To accurately estimate past terrestrial carbon poolsl Introduction

is the key to understanding the global carbon cycle and its re-

lationship with the climate system. SoilGen2 is a useful tool

to obtain aspects of soil properties (including carbon content)l he terrestrial ecosystem is one of the essential parts of
by simulating soil formation processes; thus it offers an Op_the global carbon cycle. Significant variations of terrestrial
portunity for both past soil carbon pool reconstruction andcarbon pool at geological timescales have played an im-
future carbon pool prediction. In order to apply it to vari- Portant role in past atmospheric g@oncentration change
ous environmental conditions, parameters related to carboff-alkowski et al., 2000; Post et al., 1990). The soil carbon
cycle process in SoilGen?2 are calibrated based on six soil peR00! is much larger than the biotic pool (Lal, 2004) and ac-
dons from two typical loess deposition regions (Belgium andCounts for about two-thirds of the terrestrial carbon pool.
China). Sensitivity analysis using the Morris method showsThus quantitative estimation of the soil carbon pool is the
that decomposition rate of humus(m), fraction of incom- key to revealing the mechanism of past terrestrial carbon cy-
ing plant material as leaf litter () and decomposition rate cle and narrows the uncertainties in the global carbon cycle
of resistant plant materiakgpy) are the three most sensi- inventory. However, because only parts of the carbon pool
tive parameters that would cause the greatest uncertainty i€ Preserved in sediments, past soil carbon pool reconstruc-
simulated change of soil organic carbon in both regions. Ac-tion is difficult by direct measurement. Modeling approaches
cording to the principle of minimizing the difference between then become the potential option for accurate estimation.
simulated and measured organic carbon by comparing qual- Currently, with the development of soil carbon mod-
ity indices, the suited values &fium, frecto andkrpwm in the els, quantitative simulation of soil carbon storage has been
model are deduced step by step and validated for independeMfidely done, but mostly focuses on modern processes and
soil pedons. The difference of calibrated parameters betweefims to predict future atmospheric @€oncentration change
Belgium and China may be attributed to their different vege-(Coleman etal., 1997; Jensen et al., 1997; Kelly et al., 1997;
tation types and climate conditions. This calibrated model al-Li et al., 1997). Changes of past soil carbon pools over
lows more accurate simulation of carbon change in the wholdong timescales have to account for changes in soil proper-

pedon and has potential for future modeling of carbon cyclefies (€.g., particle size, pH) due to soil formation processes,
over long timescales. which are seldom included in existing soil carbon models

(Finke, 2012; Finke and Hutson, 2008; Mermut et al., 2000).
Information on past soil formation factors for different re-
gions is unavailable (Finke, 2012; Sauer et al., 2012), and
few models consider the effect of all soil formation factors
(Jenny, 1961; e.g., climate, organisms, relief, parent mate-
rial and time) in simulation of soil formation (Kirkby, 1977;
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Minasny and McBratney, 1999, 2001; Minasny et al., 2008; (Vegetation dependent biomass production )
Parton et al., 1987; Salvador-Blanes et al., 2007). p. I

SoilGen2, developed by Finke (Finke, 2012; Finke and (L_selective root uptake of ion species |
Hutson, 2008), is a first attempt to reconstruct most aspects$ | m— itn e |
of soil evolution by taking all soil formation factors into ac- T

count. The advantage of the model is that it simulates the Dead plant material:
organic and inorganic carbon cycle simultaneously and re-
veals the influences on carbon pool by other soil processes
long time scales. The model has been validated and applieds] et ————+{ Mineralized OM (CO,, ion pools) |
in European soils developed over 15000yr from loess par<| LMl 1.

ent materials (Finke, 2012; Finke and Hutson, 2008), and the [ K™ Asior p——
results show that clear sensitivity and plausible response o V. VU Kaio
this model to the “climate”, “organisms” and “relief” factors Resistant

of soil formation exist. It also has been confirmed that recon- Material
structions of realistic initial status of soil profiles (including
carbon and other element contents) can be evaluated throu
simulating soil formation by SoilGen2 (Sauer et al., 2012).
Therefore, the model offers an opportunity to reconstruct theSoilGen2.c indicates a distribution factoz; is a rate factor. Pro-
past soil carbon cycle. cess parameters are in italics; grey boxes indicate pools of C and

Because the verification and application of SoilGen2 isassociated ion species. The white square box is added for concep-
still at its preliminary stage, only parts of the soil processestual'zat'on and white rounded boxes indicate processes. The dotted
included in the model have been calibrated (e.g., calcitd® Indicates the model boundary.
leaching and clay migration) (Finke, 2012; Finke and Hut-
son, 2008). No calibration on parameters related to organic
carbon (OC) cycle has been done yet. This work is necessaryemperature, which allows evaluation of the effect of soil
and this activity should be preceded by an analysis of such é&emperature change on values of chemical constants, min-
model to determine its most sensitive parameters (Skjemstadralization of OM (organic matter) and simulation of the ef-
et al., 2004). fect of frozen soils on water flow. It simulates various as-

In this study, soil pedons from two typical loess deposi- pects of pedogenesis including, e.g., OM accumulation, clay
tion regions (Belgium and China) with distinct climate condi- migration and CaC®leaching. For detailed model descrip-
tions are selected to calibrate OC cycle process in SoilGenzion, refer to Finke and Hutson (2008). This article focuses
Loess deposits have been continuously and widely depositedn the description of the OC cycle in SoilGen2, which in-
in Eurasia since 22 Myr ago (Guo et al., 2002; Kukla, 1987;teracts with other soil formation processes (e.g., clay migra-
Liu, 1985). More than 400 paleosols were developed in thetion, (de-)calcification and bioturbation) through the change
loess-soil sequences in China (Guo et al., 2002), and thesef soil physical properties (porosity and texture), hydraulic
provide the best record for reconstruction of past carbon cy-and thermic conductivity, and associated water and heat flow
cle through modeling soil formation processes in future stud-in the soil profile. One clear feedback mechanism between
ies. soil formation processes and the OC-cycle is that changes in

In summary, the objectives of this study are as follows: water content, clay content and temperature due to pedoge-
(1) to use sensitivity analysis to assess which parameters inetic changes in soil properties affect the degradation rates
SoilGen2 potentially cause the greatest uncertainty in calcuef organic matter.
lated change in soil OC in Belgium and China; and (2) to Basically, the soil profile is divided into a number of com-
do calibration and validation of the parameters related to OCpartments with equal thickness, and the routines of Soil-
cycle in Belgian and Chinese soil pedons. We focus on foresGGen2 operate on every compartment separately. Therefore,
vegetation on loess soils in this study. changes of OC in the profile are modified by different wa-

ter content, clay content and soil temperature in correspond-
ing compartments. One key soil parameter for converting OC

Solution and
gas phase

fr..o, — leaflitter (C, ion species)

(1-fr. ) dead roots (C, ion species)

y

Humified OM

k
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Q,Pg 1. Structure and process parameters of the organic C-module of

2 Material and methods fractions to mass per unit area, bulk density, is calculated by
the model by division between of the simulated mass of the
2.1 Modeling soil carbon change with SoilGen2 solid phase and (fixed) volume per compartment.

Figure 1 shows the OC-cycle process modeled in Soil-
In essence, SoilGen2 is an extended solute transport mod&en2. Vegetation provides dead plant material (leaf and root
solving the Richards equation for unsaturated water flowlitter) as model input, which contains &g Mg?t, K*, Nat,
and the convection—dispersion equation for solute transAl3t, CI-, SO}[, HCO; and C@‘ previously taken up
port. Additionally, heat flow is calculated to estimate soil from the soil solution via the transpiration stream. These
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ions follow the carbon decomposition pathway describeddistances of less than 100 m, but extensive research revealed
hereunder dependent on vegetation types. Four vegetatioa clear relation between slope exposition and decalcification
types (grass/scrub, conifers, deciduous wood and agriculdepth (Langohr and Sanders, 1985), which was confirmed by
ture/barley) are identified in SoilGen2, each having a uniguemodel simulations (Finke, 2012). The loess cover is 2—4 m
root distribution pattern, associated water ion-uptake and tarthick and overlies a dissected plateau of pre-Weichselian age
get ion composition in living biomass (Finke, 2012: Table 2). in Tertiary clays that locally cause water stagnation, but not
Decomposition rates are considered invariant with respect t@t the three plot sites. Langohr and Saunders (1985) proved
the various ion species, which is a simplification of the truethat the landscape has hardly eroded in the last 20 000 yr.
system. Annals of landowners from the 14th century onwards indi-
Dead plant material is distributed over root and leaf lit- cate that this area was never under agriculture, as it was used
ter with a vegetation-dependent fractiogefs, and the root  for hunting by the nobility at least from this time onwards.
litter input is distributed over the soil depth such that it re- Older reports indicate that it was a mixed beech/oak for-
flects the root density distribution. These litter inputs are thenest previously (Davis et al., 2003; Verbruggen et al., 1996).
split and added to the decomposable (DPM) and resistanCurrently, the area is under beech fordsagus Sylvatich
plant material (RPM) pools using the (vegetation-dependentith selective felling activity. There is little undergrowth of
DPM/RPM factor. These plant material pools, existing in blackberry Rubus fruticosys Detailed investigations also
both the ectorganic layer and the individual mineral soil lay- showed no evidence of plowing in the soil profiles (Van
ers (endorganic layer), gradually decompose and mineraliz&anst, 1981). Thus, soil development shows little human in-
while being incorporated and redistributed in the soil by bio- fluence. The three pedons were classified as follows (IUSS
turbation, which is modeled as an incomplete mixing processNorking Group WRB, 2006):
(Finke and Hutson, 2008). Each soil layer that is subject to . ] . : : .
bioturbation contributes a depth-dependent input mass frac- L platequ p05|t_|on (P) §tagn|c cutanic fragic Albeluvisol
tion to a bioturbation pool, which is then mixed vertically. (dystric, greyic, siltic);
Further decomposition of OM is modeled according to 2. south facing slope of FAS): cutanic fragic Albeluvisol
the concepts of the RothC26.3 model (Coleman and Jenk-  (dystric, siltic);
inson, 2005; Jenkinson and Coleman, 1994) using degrada-
tion rates that are modified as a function of soil temperature 3. north facing slope of 12(N): cutanic fragic Albeluvisol
and moisture conditions. The mineralization process finally ~ (Siltic).

produces C@ and releases cations and anions (Finke and peaijed analysis of the mineral soils of these pedons was

Hutson, 2008: Fig. 1) into the soil solution. The decompo- ohqrted in Finke (2012: Table 3). For this study, samples
sition rates of DPM' RPM' t_)lomass (BIO) a”‘?' humified OM from the ectorganic litter layers were also taken and ana-
(HUM) are considered similar for all vegetation types. This ;o (Taple 1) for later comparison with simulation results.
is also assumed for the scaling factor (scalfac) and the fracy| ;me and dry weight were measured for bulk density esti-
tionation parameter BITHUM; scalfac is the constant (1.67) . ~tion. The weight loss-on-ignition (LOI) method was used

used in the equation to set the FBIO+HUM) ratio asin 4, getermine OC. Because the Belgian soil has been decalci-
RothC 26.3 mod.el, and .the ratio Is mfluencgd by the Clayfied and contains fairly low amounts of clay in the top, the
content of the soil. In SoilGen2, the constant is transformedbiaS of LOI method, overestimation of OC by ignoring loss

into a parameter that can be calibrated, and the ratio variegs \ ater from various clay minerals, calcite and gypsum, is
per soil compartment with the variation of clay content in the

; negligible.
profile.
Figure 1 shows there are eight parameters that describe thg2.2  Chinese loess soil under secondary and artificial
carbon decomposition pathwayssds, DPM/RPM (both for deciduous forest

deciduous forestkppm, krpm, Scalfac, BIQHUM, kg0 and

kqum- The relative importance of these parameters will beThis study also concerns three pedons at plateau position lo-

tested by sensitivity analysis and then calibrated in this studycated in Ziwu Mountains (35-3®8, 108-110E), China,
which is the best conserved region for secondary natural

2.2 Study regions forests on the Loess Plateau. The pedons are developed in
the loess deposited since Last Glacial Maximum (LGM).
2.2.1 Belgian loess soil under permanent deciduous The soil depths are about 1-1.5m, and it overlies the older
forest loess deposited in Quaternary. Because the Loess Plateau

is one of the important cultural origin and development
This study concerns soils at three topographic positionscenters in China, the vegetation in Ziwu Mountains has
in the Sonian Forest near Brussels, Belgium°@&B1" N, been disturbed by humans through felling and grazing ac-
4°24'9" E), developed in loess deposited during the Weich-tivities in the Holocene (Liu, 2007). However, since 1870s
selian glaciation. The three pedons are located at mutugbopulation moved out of the region and in 1970s a forest
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Table 1. Selected analytical results of ectorganic and endorganic layers in Belgian and Chinese pedons. Results for endorganic layers of
Belgian pedons were published in Finke (2012).

Ectorganic layer

Region Pedon Bulk density (kg dmd) OC (Mg ha1)
Plateau 0.090 15.372
Belgium South facing slope 0.123 24.910
North facing slope 0.146 27.142
LJB 0.243 15.432
China ZW2 0.226 13.182
ZW3 0.139 12.095
Endorganic layer
Pedon China LJB China ZzZW2 China ZW3
Depth (cm) OC Clay content pH CaGO OC Clay content pH CaC® OC Clay content pH CaC®
(%) (%) (%) (%) (%) (%) (%) (%) (%)
0-5 5.058 10.205 8.030 6.391 1.819 11.333  8.080 6.001 2.434 11482 8.310 13.358
5-10 4.310 10.656  8.220 6.984 1.888 9.024 8.110 6.568 3.004 9.000 8.250 13.023
10-15 2.643 9.897 8.110 8.279 2.140 9.123 8.070 6.520
15-20 1.594 10641 8600 10018  2.015 8.433 8270 6.18217%2 9.069 8230 13324
20-25 1.360 9.078 8.460 11.447 1.831 10.844  8.300 5.479
25-30 1.340 10.715 8.660 11.801 1.193 9589 8460 17.642
30-35 1.352 10.459 8.380 5.501
35-40 0.959 10.316 8.550 12.321 0.550 10.081 8.460 17.703
40-45 1.314 11.553 8.580 5.276
45-50 0.766 10.222 8.810 12.199 0.801 10.128 8.560 18.572
50-55
55-60 0.927 11.818 8.680 1.909
60-65 0.521 11.078 8.760 13.128 0.679 9.566 8.490 19.121
65-70
70-75 0.695 10.945 8.370 0.955
75-80
80-85 0.914 8.952 8.820 14.877 0.603 9.556 8.470 1.910 0.596 9.698 8.630 15.174
gg:gg 0.475 9.260 8.450 9.814
95-100 0.785 8.824 8770 77.099 0.480 10.094 8.490 12.780
100-105
105-110 0.498 10.490 8.530 13.981
110-115

protection project was started in this region by Chinese gov-densities were measured by volume and dry weight method.
ernment. Currently, the area is covered with secondary natThe potassium dichromate method, which is not sensitive to
the high CaC@ content, is used for OC analysis (Table 1).

ural forest (e.g.Quercus liaotungensjs?opulus davidiana
Betula platyphylldand production forest (e.dRobinig. The

three pedons are characterized as follows:

1. LJIB (36°05 N, 10834 E) slope of 0: calcic Luvisol

2.3 Model input data

(Gong et al., 2003; IUSS Working Group WRB, 2006), Two types of inputs are included in SoilGen2: one is for

secondary natural foredgpulus davidiana25 yr);

2. ZW2 (35°26'N, 10833 E) slope of 0: calcic Kas-
tanozem (Gong et al., 2003;

WRB, 2006), production foresR{pbinia 20 yr);

3. ZW3 (3527 N, 10838 E) slope of 0: calcic Kas-

WRB, 2006), production foresR{pbinia 20 yr).

Geosci. Model Dev., 6, 2944, 2013

boundary conditions (e.g., climate, litter input and bioturba-
tion history); another is for initial conditions (e.g., soil prop-
erties, typical year weather pattern). A full simulation of soil

IUSS Working Group from incipient stages of soil formation up to today (more than

10000yr) is ideal, but it takes a long run time, which would

render sensitivity analysis and calibration unfeasible. As for-
tanozem (Gong et al., 2003; IUSS Working Group Mer tests showed that amount; of O_C in. soil pedops W9U|d
become stable after a 300-yr simulation in case of invariant
climate and vegetation conditions (Finke and Hutson, 2008),
Samples from ectorganic litter layers were taken in the samall the tests in this study have a temporal extent of 1000 yr so
way as in the Sonian forest of Belgium, while in mineral that effects of initial values of OC are eliminated and effects
layers samples were taken at 5-10 cm depth intervals. Bullof soil properties are minimized.
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2.3.1 Inputs for Belgium rainfall and weekly potential evapotranspiration was from

monitoring data of Xifeng in 1978 through comparing the
Climate and weather data were taken from the nearbytharacteristics of yearly precipitation at three weather sta-
weather station of Uccle (near Brussels and at 5 km from thejons near these soil pedons.

studied site). A typical year of daily rainfall and weekly po-  Annual input of litter Populus 4.5MgChalyr1,
tential evapotranspiration data was used for the whole simRobinia 4.4 MgChalyr-1) was transformed from mea-
ulation period with an annual rainfall sum of 849 mm and sured biomass data (including volumes of growing stock per
potential evapotranspiration of 649 mm. Over this year, theynit area, net annual increments and removals) in ZW forest
characteristics of precipitation (e.g., total amount of the rain-station (Zhang and Shangguan, 2005), based on the protocol
fall, the number of days with rain, frequency of rainfall in- developed by De Wit et al. (2006). The bioturbation was as-
tensity and monthly distribution of rainfall) were similar to  sumed to be 15.3-17.4 Mghhyr—? affecting the upper 70
multi-year average conditions. The average January tempegnd 100 cm of soil foPopulusand Robiniaecosystems, re-
ature was 3C and July temperature €. An annual litter  spectively (Gobat et al., 2004). In addition, distribution of
input of 4.7 Mg Cha'yr=* (A. Verstraeten, personal com- monthly litter input and roots were adjusted in the model ac-
munication, Research Institute for Nature and Forest, Belcording to observed data BbpulusandRobiniaecosystems
gium, 2012) was taken. The bioturbation was assumed to bé |oess Plateau (Cao et al., 2006; Cui et al., 2003; Hu et al.,
8.2Mgha ! yr affecting the upper 30 cm of soil (Gobat et 2010; Zhang et al., 2001).
al., 2004). The Chinese climate has a large precipitation deficit, and
Initial physical and chemical properties of the soil pedonsredistributions of calcite and clay towards greater depths are
were only partly known from measurements (Finke, 2012:not as significant as in Belgium. Furthermore, dust deposi-
Table 3), and to obtain a complete set of initial soil propertiestion is not negligible in study region of China, and fertilizes
we did the following: the profile with additional calcite and changes the particle
1. Starting from the properties of the C-horizon, we simu- size at the Fop. Soil properties with uncertain dust. add_ition
lated soil formation between 15000 yr ago (end of loesscannot be simulated aqcurately to reconstruct the situation pf
deposition) to present. See Finke and Hutson (2008) and000yr ago, so we decided to assume that the current profile

Finke (2012) for details concerning the modeling ap- represents this situation fairly well, and initial physical and
proach and inputs. chemical properties of the soil pedons were from measure-

ments of their parent material layers at the bottom of pedon
2. The simulated properties at present were taken as initia{ Table 1).
inputs for the various scenarios of following tests for
the sensitivity analysis and calibration. However, simu-2.3.3  Sensitivity analysis method
lated OC was re-initialized to 0.5 % OC throughout the
pedon. Sensitivity analysis (SA) determines the response of selected
h model outputs to variations (within plausible bounds) of un-

practically no dust additions, above reconstruction reflectscertat')n mpu;paramleters (ialtelt ert] al., 200(,))' Results of SA
the effect of leaching on soil properties (e.g., soil texture, ©aN D€ US€ to select and rank the most important param-

calcite and hydraulic properties) over 15000 yr and shows &1€rS for calibration. Various SA methods have been devel-
more realistic initial condition. pped (Saltelli et al., _2005). A choice of a particular method
Comparison between simulations and measurements based on a function of. the number of parameters to be
(Finke, 2012: Table 5) showed that simulations could repro-€valuated and the CPU-time per run. The number of pa-
duce the A-E-Bt horizon sequence and also the World Ref.fameters to be evaluated in the current study is eight, and

erence Base (WRB) soil classifications based on availabl& YPical SoilGen-run for a 1000-yr period takes about 20h

(non-morphological) measurements. Therefore these simulacPY ime. Under these circumstances, Saltelli et al. (2005)

tions were considered as suitable basis for the current studyPrOP0sed four methods: Bayesian sensitivity analysis (Oak-
ley and O’Hagan, 2004), fractional factorial designs (Cam-

2.3.2 Inputs for China polongo et al., 2000), automated differentiation techniques
(Grievank and Walter, 2008) and the Morris method (Morris,

Representative climate data were interpolated from nearby991).

weather stations in China. The average January/July tem- Bayesian sensitivity analysis is more efficient than tra-
peratures were-6/22°C, —5/23°C and—5/23°C for LJB, ditional Monte Carlo techniques but still requires substan-
ZW?2 and ZW3, respectively, while annual rainfall and poten- tial amounts of simulations and reprogramming of the Soil-
tial evapotranspiration were 48P645mm, 5161582mm  Gen code. This technique is therefore considered beyond the
and 5191587 mm, based on inverse distance interpolationscope of this study. Fractional factorial designs have the dis-
of 30-yr (1958-1988) monitoring data of 61 weather stationsadvantage that assumptions need be made on model behavior.
distributed over the Loess Plateau. A typical year of daily Automated differentiation techniques also require substantial

As the Belgian climate is a strongly leaching one wit

www.geosci-model-dev.net/6/29/2013/ Geosci. Model Dev., 6,29-2013



34 Y. Y. Yu et al.: Sensitivity analysis and calibration of a soil carbon model (SoilGen2)

reprogramming of the model code and may lead to resultddeveloped for model calibration, which differ in how param-
only representing local areas in parameter space (Saltelli ed¢ter combinations are generated and how results are com-
al., 2005). The Morris method is feasible in terms of com- pared. In many cases, the modeler selects parameter combi-
puting time, because it takes samples from levels rather thanations and evaluates results by expert judgment, in which
from distributions of parameters (which may be a drawbackcase calibration is more or less a skill and may not detect the
when such distributions are known, but this is not the caseoptimal parameter combinations. An alternative, often used
here). For the above reasons we chose to apply the latteechnique is the minimization of an object function describ-
method. ing the deviations between measurements and simulations

The Morris method is based on the principle that one fac-for various settings of parameters. The minimization pro-
tor (model parameter) is varied at a time over a certain num-<ess advises on optimal parameter combinations under the
ber of levels in parameter space. Each variation, comprisingassumption that model outputs are differentiable with respect
two simulations, leads to a so-called elementary efigct to the model parameters.

A well-known implementation is the PEST software (Do-

(1) herty, 2004). Model runs are sequential, and the software
Ax; decides if a new run with changed parameter settings is
needed after results of a preceding run have been confronted
for factori only (Ax; = O for the other factors) and (x) to mea_surements _by evaluating t.he object function. Another
the model result with parameter set Values forx are ~ €Merging m.ethod is the exploration of parameter space by a
randomly chosen inside a plausible parameter value rang¥arkov chain Monte Carlo method. Model results are eval-
[ jowi.pigh — Ax;], and Ax; is either 0 or a predetermined uated by_ calculating thpo;terlorprobabll_lty o_f the parame-
multiple of 1/(p—1) with p the number of considered param- ter set given the_dat_a, using tpedor distribution of the pa-
eter levels (rescaled at rang 1]) for which p/2 elementary rameters and a likelihood that expresses the corr_esponde_nce
effects are computed. In this study we toek= 8, and fixed bet_wee_n measurement.s an_d S|mulat|on_s. Of th|s Bayesian
Ax; at 2x 1/(8— 1) on the[0, 1] rescaled range. The num- calibration me_thod, various implementations eX|s.t, but even
ber 2 is an arbitrary choice in the Morris method (Morris, the most efficient ones (Vrugt et al., 2009) require numer-
1991); it determines what fraction of the plausible parame-CUS simulations. With time-consuming models such as Soil-

ter range is covered by each elementary effect. The obtaine€": convergence may take very long both in PEST and in
elementary effects; comprise a simple random sample, of Bayesian calibration. Finke (2012) used therefore an alter-

which the meany; and standard deviation are used to as- native apprpach in which .various chosen sets of parameters
sess how important a factor is. Hereto, a graph is made disere run with the model in parallel, confronting the model
playing the position of a factarin terms ofu; (the average ~ With measured data to quantify simulation accuracy and fit-
of |u;]) ando;. If the value ofuux; is high, then there is a tnga polynomial function predicting simulation accuracy as
high linear effect of factor; large values oé; indicate either ~ @ function of parameter value. Analyzing the partial deriva-
non-linear behavior of the model for factoor non-additive ~ tives of this function, the position in parameter space with
behavior (relative to other parameter values). In this study wePPfimal simulation resuits was predicted. This approach may
took eight parameter levels, resulting in four elementary ef-Not find the true optimal parameter set and also depends on
fects, for each one of eight model parameters. Thus, 64 simthe choice of the evaluated parameter values. However, for
ulations (32 pairs) for a period of 1000yr were done for a "€asons of runtime it was applied in Finke (2012).

typical loess forest soil in Belgium (2.5 m depth with a verti- The overall procedure of calibration is given in Fig. 2, fol-

cal discretization of 5cm at the Uccle Plateau location) andloWing the principle of minimizing the difference between
64 more for a loess forest soil in China (1.5m depth with Méasured and simulated OC step by step. During the steps,

the same vertical discretization at pedon of LIB). This com-Parallel tests were firstly done for soil pedons by varying the
prised about 85-CPU-day simulation time on one core (|es§nost sensitive parameters identified in sensitivity analysis.
than 6 days on four quad-core PCs), which was considered hen the results were evaluated according to the quality in-
feasible. The model output parameters considered were odices described below. If there was still possibility to reduce
(tonhal) in ectorganic layers and OC (mass torrhand the difference between measured and simulated OC by vary-
content %) in the mineral soil. Separate analyses were doni'd the same parameter, more parallel tests would be done in

for ectorganic layers and endorganic layers, because later caft SUb-range of the parameter; otherwise, the next, less sen-
ibration would focus on the vertical distribution of OC. sitive, parameter would be selected for tests. The process
would be repeated, according to the order of parameter sen-

2.4 Calibration and validation approach sitivity, until no improvement was identified. In both studied

regions, the difference of simulated and measured total car-
Calibration is the process of modifying the input parame-bon of the whole pedon was firstly minimized. In the second
ters to a model until the output from the model matchesstage, the distribution of OC over ectorganic and endorganic
an observed set of data. Various techniques also have bedayers was calibrated.

_ Y(xg,x2, e X + AXG e, xg) — Y (X1, X2, 0 Xy ey XE)

Ui

wherex is the parameter value\x; its imposed variation
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2. RMSE of total simulated and measured OC mass in the
ectorganic layer:

Reset parameters according
A to their importance
in sensitivity analysis

b

Parallel tests with varied
parameters and other inputs

RMSEecto = (3

H N

: 1
A -

: —XE (focm, % pm, x T, —OCs,)?
Test stimulated vs. measured Data do not agree : N n=1 ! " CS'I
0OC with quality indices -

where OG is the simulated OC mass in ectorganic lay-
ers andn is the number of pedons (two per group of
pedons in each region);

Data | agree

A4

Model calibrated Calibration Procedure

3. RMSE of total simulated and measured OC mass in the
whole soil pedon:

Fig. 2. Calibration procedure for OC cycle in SoilGen2 and the or-
der of events.

RMSEocms = (4)

The calibration aims at minimizing the number of runs by
a quick convergence between simulated and measured OC.
First, the quantitative relationships between changed OC and
calibrated parameters revealed by sensitivity analysis were
used to set limits to the variation range of the parameters.
Second, a convergence critericn $ %) was applied to a par-
ticular quality index during the calibration. Calibration for
each parameter was stopped when the best result was less
than 5% better than the second best result (relative to the
value of the quality index of the first simulation). P )

1 N K K
J 5 2 (O (foem, oMy X Tien) + focm, X om, X T) = (3 (focs;, s, * Tien) +0Cs,)?
n=1 k=1 k=1

4. mean difference (MD) of total simulated and measured
OC mass in mineral soil:

MDendo = (5)

1 N K
TR > (focMy,, X My, X Tien)
n=1 \k=1

The number of soil pedons per region (3) was low because _ Z (focs., X ps., X Ten)
of the large input requirements of the model. We identified e ’ ’
the stability of the calibration result by repeating the calibra-
tion three times per region. Each time, two of three soil pe- 5. MD of total simulated and measured OC mass in ector-
dons in each region were used to calibrate the model, while  ganic layers:
the third one was used for validation.
The indices used for assessing the quality of the C-module 1 X
of SoilGen2 are the following: MDecto = & x X;-(fOCMn x pm, x T, —OGCs,); (6)
n—=
1. root mean square deviation (RMSE) of total simulated

and measured OC mass per mineral soil compartment; 6- MD of total simulated and measured OC mass in the

whole soil pedon:

RMSE]endo,pedon= (2)
P MDocms = MDendo+ MDecto (7)
2
X x T; ) — ( X x T )) . ) )
k§1(<foch Mk g focsk P g 7. RMSE of simulated and measured OC % in mineral
K soil:

where focm and focs are measured and simulated OC
mass, respectivelyyy and ps measured and simulated
bulk density (kg dm3), andT the thickness of thé soil
compartments (all equal to 50 mm). RMSEdo pedordf

the two pedons in each group of pedons in each region
are averaged to obtain RMSgds

www.geosci-model-dev.net/6/29/2013/

RIvlSE?endo,[;\edonz (8)
K
3" ((focm, x 100) — (focs, x 100))?
k=1
K
which is averaged over two pedons to obtain

RMSEZndo
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8. dissimilarity (DIS) (Gower, 1971) of simulated and
measured OC % in mineral soil:

10000.04

1000.0 kHUM‘ /
DISpedon = 9) V4
1 100.0+
K x (OC %max— OC %nin) F‘E 10.0 4
K s
X Zabifocmk x 100— focs x 100); o 101
k=1 014 eitor%a:iir(jalayers
where OC %axand OC %,in are the maximal and min- |u[=2*SEM
imal value found in a particular pedon. Q§8 is cal- 001 ., A Belgium
culated by averaging over two pedons and varies be- 0.0 " . - - - -luI=SEM
tween 0 (perfect) and 1 (very poor). DIS gives the abso- 0.0 0.1 10.0 1000.0
lute difference as a fraction of the observed differences 10000.07 (o) u* ton ha") ron
and thus is dimensionless. Therefore, it allows to com- kHUMA»’
pare results over different output parameters, which is 1000.0+
not possible with other indices. 1000
Of these statistics, the first six express how well the to- e
tal OC mass in the soil is simulated, while the last two ex- g 109
press how well the vertical distribution of OC content over g, 1.0 4
the pedon is simulated. The MD statistics indicate system- endorganic layers
atic under- or overestimation of simulated values relative to 01 ¢ China
measurements, while the RMSE statistics focus on the ab- 0.0 R 'B”F'_;;usmEM
solute values of these differences. Both are ideally close to K -« - ~u|=SEM
0. The improvement of RMStcums (IM_RMSEpcus) was 0.0 + T T T
used as convergence criterion in the first stage of calibration, o0 O'L* (ton h;? 50 10000
while IM_RMSEgcioand IM-RMSEgngowere used in the sec- 100.007 ()
ond stage.
10.00 4
3 Results and discussion
1.00 A
3.1 Sensitivity analysis %
Table 2 gives the model parameters that were considered in 0101 endorganic layers
the sensitivity analysis and the plausible range of these pa- ¢ China
rameters. In Fig. 3, at a double-logarithmic scale stheand 0.011 luf=2"SEM
o of the elementary effects of the eight factors are shown. ) . E‘Tlgs';”,\jl
The u values for all rate factors were negative, which was 0.00 +

va T T T T |
0.00 0.01 0.10 1.00 10.00 100.00

expected because these describe decomposition and positive o %)

values forAx;, leading to higher values far, and are ex-
pected to lead to lower amounts of remaining OC. Fig. 3. Estimated meansué) and standard deviations { of the

The OC mass in ectorganic layers and endorganic layerslistribution of elementary effects of factors on Q&) OC mass in
and the OC % in endorganic layers respond most sensitivelgctorganic layers(b) OC mass in endorganic layerg) OC con-
to the decomposition rate of humitsyuy and less sensi-  tent in endorganic layers. Closed symbols with names indicate the
tive to the fraction of dead plant material entering the soil 4 Mmostimportant factors.
as leaf litter fecto, krPM, and scalfac. The other factors show
less sensitivity. Most responses are between tthe- SEM
(stand error of the mean) and| = 2*SEM lines indicating  more important in the ectorganic layer; the rate modification
a fair confidence level. Most certain response of the sensitivelue to moisture deficit is always equal to 1 in ectorganic lay-
factors is that of fg:to, While the other factors are less certain. ers while it can decrease in the mineral soil (Coleman and
This may be caused by non-linear response or non-additivdenkinson, 2005). This results in stronger modifiggy in
behavior (the model responds to interactions of factors).  the ectorganic layer.

The sensitivity order in the ectorganic layer is similar to  Comparison (Table 2 and Fig. 3) of results for the Chinese
that of the mineral soil, except fdirppm and flacto krPM IS and Belgian loess forest soils shows that the sensitivity orders
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Table 2. Model parameters in the organic C-module in SoilGen2 and results of sensitivity analysis.

OC ectorganic) OC endorganic OC endorganic
Factor Meaning Default Plausible (tonha'l) (tonha 1) (%)
value range Belgium China Belgium China Belgium China
w* o n* o w* o w* o u* o w* o

kHUM Decomposition rate ()Trl) of 0.02 0.005-0.035 1569.08 2085.04 630.23 708.39 2218.87 3131.79 4796.81 6064.40 17.85 2457 3551 4351
humus

krPM Decomposition rate (yr!) of 0.3* 0.075-0.525  120.60  131.04 119.36 129.70 40.41 33.22 80.47 61.18 034 028 061 046
resistant plant material

frecto Fraction of incoming plant ma- 0.58 0.36-0.98 56.21 21.55 38.50 9.17 77.92 35.29 110.43 29.42 0.65 0.29 0.84 0.21
terial as leaf litter

scalfac Scaling factor for 1672 0.4-3.0 12.81 13.71 8.75 8.77 18.08 23.02 37.78 43.26 0.15 0.19 0.29 0.32
COy/ (BIO+HUM) ratio

DPM/RPM Ratio decomposable/resistant 0.25 0.1-0.5 6.27 1.02 6.21 1.04 4.09 2.16 7.36 3.01 0.03 0.02 0.06 0.02
plant material in incoming
plant material

BIO/HUM  Distribution ratio of 0.88 0.68-1.02 6.93 4.84 5.04 3.30 6.77 2.10 16.86 3.88 0.06 002 013 0.03
BIO+HUM

kslo Decomposition rate ()Trl) of 0.6 0.165-1.155 1.50 0.81 1.32 0.67 2.39 2.49 3.56 3.01 0.02 0.02 0.03 0.02
biomass

kppm Decomposition rate (yrt) of 10.0¢% 25-175 0.02 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00

decomposable plant material

a source: RothC26.3. Source: SoilGen2.17, deciduous woodland.

of the factors follow the same pattern, irrespective of the dif-in stage 1) and endorganic (underestimation) layers. Based
ferences in soil (the Belgian loess soil is strongly leachedon tests in steps 4 in both regions with variation of
whereas the Chinese is not) and climate (a large precipitafrecto, it was revealed that the decrease ofcfy could

tion surplus in Belgium and a large precipitation deficit in also increase the amount of OC mass in both layers (Ta-
China). The values foux and o differ (Fig. 3), which is  ble 3). In order to reduce this effect and the values of
higher in endorganic layers in Chinese soil pedons but loweRMSEqcio and RMSEngo Simultaneouslykyum and krpwm

in ectorganic layers. Nevertheless, the sensitivity order is thavere increased slightly (steps 5 and 6 in Table 3). The
same, which means that the same model parameters could lxest results were finally obtained in Test2llbTest22b2
selected for calibration in both soil&yum, frecto, krPm and and Test22[8 in Belgium and Test18&, Testl7¢2 and

scalfac. Test19c3 in China with the following combination of pa-
rameters (Belgiumkyum = 0.0065—-0.0074krppm = 0.27—
3.2 Calibration and validation 0.27 and fgcto=0.30-0.38; Chinakyum = 0.016-0.019,

krpm = 0.30-0.30 and fio= 0.37-0.43), with the lowest

Based on 67 and 57 test simulations, three sets of calibrate¥@lues of IMRMSEecto and IMRMSEendoat the same time:
parameters were obtained for Belgium and China, respecthilé the RMSkcms remained close to the value reached in

tively. Table 3 gives the model parameters in calibrationsthe first stage of the calibration. o
tests. Results comparing simulated and measured OC by Above tests were further confirmed as the best calibration

eight quality indices are given in Figs. 4 and 5 and Tablefesults by comparing eight quality indices synthetically (Ta-

3, with lower absolute values of them indicating better simu-Ple 3 and Fig. 4), because the indices of them all belong to
lated results. the lower ones in all tests of two regions. Figure 5 further

(1bs and 1cs) with default values of parameters in SoilGenZ'€ also similar to measured ones visually.

(step 1 in Table 3) showed that simulated total OC mass was 1he comparisons between measured and simulated OC of
lower than measured ones in both regions with larger defhe validation pedons are given in Fig. 6. Two groups of OC
viations in Belgium than in China (Fig. 4d—f and j-I). The Mass are evenly distributed along 1 line (Fig. 6a), and
differences in total OC mass were minimized by decreasRMSEocws values of pedons are all less than 12% of the
ing the most sensitive parametefum and the second sen- total OC mass. Furthermore, the consistency is also evident
sitive parametekgrpw during the first calibration stage (Ta- i vertical distributions of OC content (Fig. 6b-g).

ble 3). The IMRMSEpcms became much lower than 5 %, This two-stage calibration approach was repeated

when kpum values were set as 0.0061—0.0065 and 0.014-three times, always calibrating with two pedons in a region
0.019, andkrpy Values were 0.27-0.29 and 0.25-0.29 in While checking the quality with the third pedon. Results

Belgium and China, respectively. The RMS&us resulting  indicate that the calibration results are fairly stable and

from these simulations served as target quality for the seconéldependent on the subset of two pedons chosen for the
stage of calibration. calibration. This suggests that the calibrated parameters are

just the distribution of OC in ectorganic (overestimation
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Table 3.Model parameters in the organic C-module in SoilGen2 and quality indices of one group of pedons during the calibration in Belgium
and China. Bold numbers indicate the best calibration results for each group of pedons.

Region Stage  Ste Test Parameters Quality indices
9 g P Knum KreMm  fracecto IM_RMSEocms IM_RMSEecto IM_RMSElende RMSEZndo  DISpedon
1 1b1  0.0200 0.3000 0.5800 0.79 0.29
2b1  0.0160 0.3000 0.5800 10.84% 57.65% 7.47% 0.74 0.27
3b1  0.0110 0.3000 0.5800 24.40% —140.93% 17.85% 0.63 0.23
4b1  0.0060 0.3000 0.5800 56.27% —487.93% 49.39% 0.56 0.21
2 5b1  0.0070 0.3000 0.5800 -13.44%  —393.85% ~15.15% 0.54 0.20
6b.1  0.0065 0.3000 0.5800 —6.79%  —438.74% —10.07% 0.58 0.21
1 7b1  0.0061 0.3000 0.5800 —025%  —477.72% —3.84% 0.59 0.22
8b.l  0.0061 0.2300 0.5800 -1.01%  —591.30% 1.19% 0.56 0.21
901 0.0061 0.1600 0.5800 ~11.99%  —804.60% 5.13% 0.56 0.21
10h1 0.0061 0.0900 0.5800 —47.23%  —1350.40% 8.54% 0.58 0.21
3 11b1 0.0061 0.2900 0.5800 -0.23%  —490.58% ~16.20% 0.55 0.21
Belgium N/P 12h1 0.0061 0.2700  0.5800 0.07% —519.16% —15.47% 0.55 0.21
1301 0.0061 0.2500 0.5800 -0.18%  —552.33% ~14.64% 0.55 0.21
14h1 0.0061 0.2700  0.4600 -1.14%  —201.11% ~1.49% 0.54 0.20
4 15h1 0.0061 0.2700 0.3400 —4.24% —48.53% —6.34% 0.56 0.21
16h1 0.0061 0.2700  0.2200 -8.19%  —360.45% —22.66% 0.61 0.23
17h1 0.0070 0.2700  0.5800 -10.96%  —435.24% —28.89% 0.54 0.20
) 1801 0.0068 0.2700  0.5800 —7.91%  —452.73% —-26.15% 0.54 0.20
5 19b1 00066 0.2700 0.5800 -4.92%  —470.85% —23.27% 0.54 0.20
20b1 0.0065 0.2700 0.5800 —351%  —480.16% —21.78% 0.54 0.20
21b1  0.0065 0.2700 0.3800 —-0.18% 0.00% —0.22% 0.53 0.20
6 22b1 0.0065 0.2700 0.3700 —-0.15% —6.99% —0.17% 0.53 0.20
23b1 0.0065 0.2700 0.3600 —-0.14% —24.19% -0.32% 0.53 0.20
1 1b2 0.0200 0.3000 0.5800 0.86 0.28
2b2  0.0160 0.3000 0.5800 11.42%  —27.94% 7.35% 0.81 0.26
3b2 00110 0.3000 0.5800 25.47%  —96.30% 17.53% 0.69 0.22
4b2  0.0060 0.3000 0.5800 44.42% —244.62% 49.38% 0.54 0.18
2 sb2 0.0070 0.3000 0.5800 —3.14%  —203.86% —15.25% 0.55 0.18
6b2  0.0065 0.3000 0.5800 254% —223.28% —10.61% 0.56 0.19
1 7b2  0.0061 0.3000 0.5800 1.71% —240.19% —4.36% 0.57 0.19
802  0.0065 0.2300 0.5800 —3.24%  —272.64% —5.12% 0.54 0.18
9b2  0.0065 0.1600 0.5800 -11.58%  —366.05% 0.41% 0.53 0.18
10b2 0.0065 0.0900 0.5800 —46.70%  —607.04% 12.76 % 0.53 0.17
Belaium N/S 3 11b2 0.0065 0.2900 0.5800 —2.98%  —228.85% —20.94% 0.54 0.18
elgium 12h2 0.0065 0.2700  0.5800 —275% = —241.25% —20.18% 0.54 0.18
1302 0.0065 0.2500 0.5800 —2.78%  —255.67% —-19.31% 0.54 0.18
14h2 0.0065 0.2700  0.4600 -3.25%  —108.73% —4.21% 0.50 0.17
4 15h2 0.0065 0.2700 0.3400 —4.92% 3.25% 2.87% 0.49 0.16
16b2 0.0065 0.2700 0.2200 —7.46% —20.85% —-12.88% 0.51 0.17
17h2 0.0072 0.2700 0.5800 —7.71%  —217.70% —32.77% 0.56 0.18
2 5 18h2 0.0070 0.2700 0.5800 —5.67%  —225.01% —~30.17% 0.55 0.18
19h2 0.0068 0.2700  0.5800 —4.01%  —232.59% —27.43% 0.55 0.18
20b2 0.0070 0.2700  0.3200 —2.88% 13.86% 0.21% 0.48 0.16
6 21b2 0.0070 0.2700 0.3100 —2.87% 1.86% 0.31% 0.48 0.16
22b2 0.0070 0.2700  0.3000 —2.86% 0.32% 0.11% 0.48 0.16
3.3 Comparison only the relative importance of the parameters was shown in
former analysis (Paul and Polglase, 2004; Paul et al., 2003),
3.3.1 Comparison with former studies a guantitative evaluation of their importance is given in our

study and the especially significant sensitivitykgfyu is re-
Our results of sensitivity analysis are in accordance with for-vealed. _ _
mer studies on RothC model in surface forest soils (Paul The calibrated values of parameteksigu andkrpwm) in

and Polglase, 2004; Paul et al., 2003), which indicated thapur study all fall into the logical range of former calibrations
change in soil carbon is particularly sensitive to the decom-for RothC model (Shirato et al., 2004; Skjemstad et al., 2004;

position rates of HUM, RPM and BIO pools. Comparing that Todorovic et al., 2010), covering various climate conditions
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Table 3. Continued.

Region Stage  Ste Test Parameters Quality indices
g g P Knum  Krewm  fracecto IM_RMSEocms IM_RMSEecto IM_RMSElndo RMSEZngo  DISpedon
1 1b3 00200 0.3000 0.5800 0.65 0.33
2h3  0.0160 0.3000 0.5800 12.83% -19.21% 8.23% 0.60 0.31
3b3  0.0110 0.3000 0.5800 2887% —75.60% 19.73% 0.50 0.25
4b3  0.0060 0.3000 0.5800 38.04% —208.78% 56.58% 0.48 0.23
2 5p3 00070 0.3000 0.5800 9.76% —171.64% ~17.93% 0.44 0.22
6b3  0.0065 0.3000 0.5800 1.83% —189.30% ~15.61% 0.51 0.24
1 7b3  0.0061 0.3000 0.5800 ~359%  —204.73% ~8.58% 0.53 0.24
8h3  0.0065 0.2300 0.5800 —8.67%  —234.43% ~6.18% 0.45 0.22
9b3  0.0065 0.1600 0.5800 _2437%  —320.37% 0.30% 0.46 0.22
10b3 0.0065 0.0900 0.5800 _67.16%  —543.48% 13.09% 0.49 0.23
Belaium PIS 3 11h3 0.0065 0.2900 0.5800 _267%  —194.38% _22.63% 0.45 0.22
elgium 12h3 0.0065 0.2700 0.5800 —415%  —205.70% —21.76% 0.45 0.22
1303 0.0065 0.2500 0.5800 —6.12%  -218.88% —20.75% 0.45 0.22
14h3 0.0065 0.2900  0.4600 ~6.50% ~78.31% ~3.46% 0.43 0.21
4 15h3 0.0065 0.2900 0.3400 ~11.11% 3.93% ~12.10% 0.43 0.21
16b3 0.0065 0.2900 0.2200 _16.07% _41.64% ~31.49% 0.48 0.23
17h3 0.0074 0.2700  0.5800 _454%  —178.78% ~35.91% 0.43 0.22
2 5 18h3 0.0072 0.2700 0.5800 —216%  —185.19% ~33.07% 0.43 0.22
19n3 0.0070 0.2700  0.5800 —0.67%  —191.85% ~30.06% 0.44 0.22
20h3 0.0074 0.2700 0.3500 ~0.53% 0.48% ~1.45% 0.38 0.20
6 21h3 00074 02700 0.3400 ~0.50% 1.97% —0.17% 0.38 0.20
22b3  0.0074 0.2700 0.3300 —0.49% 0.88% 0.56 % 0.38 0.20
1 1cl 0.020 0300  0.580 0.68 0.18
2c1 0.016 0300  0.580 4257%  —23.22% 32.20% 0.62 0.16
3c1 0.011 0300 0.580 _37.79% —63.49% 13.72% 0.52 0.15
4c1 0.006 0300  0.580 ~301.80%  —125.70% _185.47% 0.56 0.17
2 5c1 0.015 0300  0.580 872%  —30.10% —4.52% 0.60 0.16
6c1 0.014 0300  0.580 3.08% —37.50% 4.18% 0.58 0.16
1 7cl 0.013 0300  0.580 ~6.69% _45.48% 6.13% 0.56 0.15
8c1 0.014 0230  0.580 ~11.02% ~93.16% ~0.33% 0.57 0.16
9c1 0.014 0160  0.580 _5842%  —198.38% 0.13% 0.54 0.15
China LIB/ZW?2 10cl 0014 0090  0.580 _205.00%  —468.32% _43.35% 0.51 0.16
3 11cl1 0014 029  0.580 ~0.25% _43.79% _5.44% 0.58 0.16
12c1 0014 0270  0.580 ~1.81% _57.74% ~3.76% 0.58 0.16
13c1 0014 0250  0.580 _5.25% _74.04% —2.07% 0.57 0.16
l4cl 0014 0290  0.460 ~10.88% 39.77% —0.75% 0.56 0.16
4 15c1 0014 0290  0.340 _28.32% 22.36% —22.90% 0.55 0.17
, 16cl 0014 0290  0.220 _48.04% ~80.84% _54.20% 0.56 0.18
17cl 0016 0300  0.430 ~1.11% 8.76 % 1.22% 0.58 0.16
5 18c1 0016 0.300  0.400 ~0.99% 0.53% 0.05% 0.58 0.16
19c1 0016 0.300  0.370 ~1.56% —9.06% ~1.04% 0.57 0.17

and soil types, They are lower than default values in RothC The calibrated f, is lower than the default value (0.58)
model, which was originally developed and parameterized inin SoilGen2 based on measured data (Kononova, 1975). In
surface agricultural soils (0—30cm) (Jenkinson, 1990). Therealistic soil carbon cycle process, part of litter carbon pool
difference may be attributed to following aspects: firstly, de- in ectorganic layer leaches to endorganic layers in the form
composition in agricultural soils is faster than that in forest of dissolved organic carbon (DOC). However, this process is
soils because of its lower lignin content in litter (Lambers et not simulated in SoilGen2, while only little carbon is being
al., 1998) and more favorable micro-climate conditions for exchanged between two layers by bioturbation in the model.
decomposition induced by human disturbance (Schlesingefherefore, fecto, as the ratio of carbon pool in ectorganic
and Andrews, 2000); secondly, carbon at deeper depth (1.5fayer to the total pool, was expected to be lower than the
2.5m in our study) is older than that near the surface, indi-literature value as this decrease mimics the effect of DOC-
cating that it has a greater resistance to decomposition or thdéaching.

the environment at depth is less favorable for decomposition

processes (Swift, 2001).
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Table 3. Continued.
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Region Stage  Ste Test Parameters Quality indices
g g P Knum Krem  fracecto IM_RMSEocms  IM_RMSEecto  IM_RMSElndo  RMSEZngo  DISpedon
1 1c2 0.020 0.300 0.580 0.70 0.13
2c.2 0.016 0.300 0.580 27.24% —20.41% 75.65 % 0.65 0.13
3c.2 0.011 0.300 0.580 —297.86 % —55.94% —130.46 % 0.58 0.13
4c.2 0.006 0.300 0.580 —1016.44% —111.00 % —548.35% 0.70 0.18
2 5c2 0.019 0.300 0.580 —2.24% —4.58% —59.46 % 0.69 0.13
6¢c.2 0.018 0.300 0.580 19.00% —9.51% —41.46 % 0.68 0.13
1 7c2 0.017 0.300 0.580 4.11% —-14.76 % —21.42% 0.66 0.13
8c.2 0.019 0.230 0.580 —8.30% —53.30% —31.49% 0.68 0.13
9c.2 0.019 0.160 0.580 —145.05% —146.18% 10.41% 0.65 0.14
China LJB/ZW3 10c.2 0.019 0.090 0.580 —542.17% —385.55% —118.09 % 0.63 0.15
3 11c2 0.019 0.290 0.580 —18.45% —10.05% —66.68 % 0.69 0.13
12c2 0.019 0.270 0.580 —6.20% —22.23% —59.62 % 0.69 0.13
13c2 0.019 0.250 0.580 —0.38% —-36.47% —51.44% 0.68 0.13
14c2 0.019 0.250 0.460 —26.63% 36.16 % —3.40% 0.67 0.14
4 15c2 0.019 0.250 0.340 —77.04% 30.01% —70.33% 0.67 0.15
) 16c2 0.019 0.250 0.220 —129.95% —65.30% —140.89 % 0.68 0.16
17c2 0.019 0.300 0.430 1.97% 2.24% —-0.37% 0.67 0.14
5 18c2 0.019 0.300 0.400 —7.13% —-0.11% —-11.41% 0.67 0.14
19c2 0.019 0.300 0.370 —15.68% —6.71% —26.73% 0.67 0.14
1 1c3 0.020 0.300 0.580 0.64 0.22
2c.3 0.016 0.300 0.580 31.59% —18.94% 29.72% 0.60 0.21
3c3 0.011 0.300 0.580 —49.96 % —51.98% 11.77% 0.54 0.19
4c.3 0.006 0.300 0.580 —326.56 % —103.61% —189.92 % 0.56 0.23
2 5c3 0.015 0.300 0.580 3.58% —24.57% -3.37% 0.59 0.20
6c.3 0.014 0.300 0.580 —1.86% —30.63% 4.42% 0.58 0.20
1 7c3 0.013 0.300 0.580 —11.07% —37.18% 5.31% 0.57 0.19
8c.3 0.015 0.230 0.580 —6.07% —67.42% —5.39% 0.59 0.20
9c.3 0.015 0.160 0.580 —47.82% —147.95% 0.97% 0.58 0.20
China ZW2/ZW3 10c3 0.015 0.090 0.580 —196.72% —354.04 % —33.86% 0.58 0.22
3 11c3 0.015 0.290 0.580 0.17% —29.40% —13.09% 0.59 0.20
12¢3 0.015 0.270 0.580 —0.45% —40.19% —11.00% 0.59 0.20
13c3 0.015 0.250 0.580 —2.34% —52.72% —8.74% 0.59 0.20
14c3 0.015 0.290 0.460 —4.49% 35.77% —0.13% 0.60 0.21
4 15c3 0.015 0.290 0.340 —16.28% 56.07 % —-13.41% 0.61 0.22
) 16¢c3 0.015 0.290 0.220 —32.22% —-59.41% —41.21% 0.64 0.24
17c3 0.017 0.300 0.430 —0.84% —28.45% —3.36% 0.61 0.21
5 18c3 0.017 0.300 0.400 —-0.23% —13.68% —0.98% 0.62 0.22
19c3 0.017 0.300 0.370 —-0.15% —1.07% —-0.14% 0.62 0.22

while it is under poplar in China, higher lignin and holocellu-

lose contents in the former ecosystem compared to the later
L Coldwell and Delong, 1950) induce slower decomposition

Although the orders of sensitivity for parameters are the Saméate of OC in Belgium than in China, which is reflected by

in two regions, the responses are less significant in Belgiar|10Wer decomposition coefficientgum, frecto andkrew) of
soil pedons (Table 2). It led to corresponding larger ranges. . tr)) | UM Tecto RPM
of parameterskqum, frectoandkrpm) that varied during cal- resstant(;:lar (;n pdoo S'b f

) . i ! n t istribution temperatur recipitation
ibration in Belgium (Table 3), which shows slower decom- Secondly, the distribution of temperature, precipitatio

osition rate of OC in Belaian soils. The differences ma beand evaporation over the year also affects the decomposition
griven by the following rezgsons ’ Y P€ ate and the loss of carbon from soil (Raich and Tufekcioglu,

Firstly, litter chemical composition is one of the most 2000; Schimel et al., 1994). High temperatures accompanied

. " . by significant rain occur in the summer monsoon climate
important factors that affect decomposition of litter. Espe- 7 : : : -

. . " . of China, which could lead to quicker litter decomposition
cially in late stage of decomposition for the formation of

humus, lignin decomposition exerts the dominant control in(RaICh and Tufekcioglu, 2000; Zhang et al., 2008) without

soils (Berg and McClaugherty, 2008; Quideau et al., 2001)5Jlny limit of energy or m0|§t-ure in this season. The d|fferen.t
N . ; - influences of climate conditions on decomposition process in
which is relatively resistant to decomposition (Lambers et al.,

1998). Since the study area in Belgium is under beech foresttWO regions may be reflected indirectly by setting different

3.3.2 Comparison between two regions
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Fig. 4. Quality indices for calibration result§a) RMSE of aver- In addition, the different calibrated results in Belgium and

age OC mass in N/P pedons in Belgiufin) RMSE of average OC ~ China indicate that future calibrations are needed for distinct
mass in N/S pedons in Belgiur() RMSE of average OC mass in Climate conditions, possibly for different soil types as well,
P/S pedons in Belgiun{d) MD of average OC mass in N/P pedons and uncertainty bandwidths of calibrated parameters should
in Belgium; (e) MD of average OC mass in N/S pedons in Belgium; be given. The current study however does not allow a cer-
(f) MD of average OC mass in P/S pedons in Belgifg);RMSE  tain statement on this topic as only a few soil type/climate
of average OC mass in LIB/ZW?2 pedons in Chiig; RMSE of combinations have been explored.

average OC mass in LIB/ZW3 pedons in ChifipRMSE of av-
erage OC mass in ZW2/ZW3 pedons in Chiig;MD of average
OC mass in LIB/ZW?2 pedons in Chingk) MD of average OC
mass in LIB/ZW3 pedons in Chin@) MD of average OC mass in
ZW2/Z\W3 pedons in China.

4  Conclusions

Sensitivity analysis based on the Morris method shows that

knuwm, frecto andkrpm are the three most important parame-

values of these parameters, because just decomposition ¢ grsin SO|IC_;en2 to affect chang_e .Of OC both in Belgian and
hinese soil pedons. The sensitivity orders of the parameters

efficients &xum, frecto @andkrpm) Of soil carbon pools were ) .
calibrated in this study, and not the mechanisms that mimicfOIIOW the same pattern in the two regions, but the values of

the effect of temperature and moisture on decomposition. elementa.ry effects differ. o . .
Finally, because the effect of some soil properties (e.g., According to the results of sensitivity analysis, SoilGen2
CaCQ content, pH) on OC cycle is not incorporated in Soil- parameters are calibrated by_decreasmg,M, fre."to and .
Gen?2 (except clay and water content), the difference of thes§rPm- The final result.s are obtained by the following combi-
properties in two regions may explain part of the variation in "2t" of parametersyy = 0.0065-0.0074gpw = 0.27-
calibrated parameters. This relationship could be quantifie -27 and feeto = 0.30-0.38 in Belgium andhym = 0.016—

via regression analysis based on many simulated and caILi_'r?llg’kRP.M :'f'0.30t_0-30'tar'1td tho: 0'37;0".13ﬂi1n Chingt_. i
brated plots. However, the small number of calibrated plots € less significant Sensitivity of parameters in the senstivity

in our study does not allow for such analysis. gnaly5|_s and larger varlatlon of parameters_ during cahb_rat!on
in Belgium compared to China may be attributed to their dis-
tinct vegetation types and climate conditions.
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sequences deposited in China in future studies, which will

200 @ offer an opportunity to understand the mechanism of carbon
° cycle at geological timescale.
o
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